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Abstract
We present new numerical and analytic solutions of the two-dimensional

Fokker-Planck equation supplemented by a parallel quasilinear diffusion term. The
results show a large enhancement of the perpendicular temperature of both the
electrons resonant with the applied RF fields and the more energetic electrons in the
tail. Both the RF generated current and power dissipated are substantially increased
by the perpendicular energy broadening in the resonant region. In the presence of a
small DC electric field the RF current generated is very much enhanced, much more
than in a simple additive fashion. In addition we present a relativistic formulation
of the two-dimensional Fokker-Planck quasilinear equation. From conservation
equations, based upon this formulation, we derive the characteristics of RF current
drive with energetic electrons. These show how the RF driven current and its figure
of merit (I/Pd) increase with the energy of the current-carrying electrons, and that
their perpendicular, random momentum must also increase.

The results are relevant to recent experiments of lower-hybrid current drive
on Alcator C and PLT in which the applied RF spectra are resonant with very
energetic electrons, and in which large perpendicular temperatures of the energetic
electrons have been observed. It is pointed out that substantial improvements in
the figure of merit, (I/P), of present experiments may be achieved by current
drive with fast-waves in the lower-hybrid frequency range. The ultimate limitation
in this type of current drive is likely to be the confinement of the very energetic
electrons.

* Work supported by DOE Contract No. DE-AC02-78ET-51013.
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I. INTRODUCTION

The past year has witnessed major progress in lower-hybrid current drive

experiments on large tokamak plasmas [1,2]. These have demonstrated the

maintenance of considerable currents by the RF in the absence of the ohmic

(DC) electric field. An important feature of these experiments is that the excited

RF spectra have phase velocities that are resonant with very energetic electrons,

fifty to a few hundred times the thermal energy of the bulk plasma which was about

1 keV in both experiments. Both experiments show that the RF generated current

is carried by electrons effectively in the 50-100 keV range and is characterized by

a perpendicular temperature which is of the same order in energy [3,4].

An analysis of RF current drive based upon the Fokker-Planck equation for

treating collisions and quasilinear diffusion was first given by Klima and Sizonenko

[5]; they, however, did not recognize that substantial current can be carried by a

plateau of resonant electrons when the RF power is sufficiently high. Later, in a

one-dimensional Fokker-Planck theory it was pointed out that such a plateau exists

and it may be maintained by an acceptably small power density [6]. A numerical

two-dimensional Fokker-Planck study [7] came to the conclusions that the "figure

of merit" - current density divided by power dissipated - is increased by a factor of

nearly 2, compared to [6] but no change in the current itself was found. Neither the

current generated nor the large perpendicular temperature can be understood or

predicted from any of the available theoretical or numerical works. Finally, none of

the previous theoretical or numerical analyses have addressed in full the relativistic

effects in current drive with energetic electrons.

In this paper we present our recent theoretical and numerical results relevant to

an understanding of these current drive experiments. In section II we present a new

numerical integration of the two-dimensional Fokker-Planck equation supplemented

by a DC electric field term and a quasilinear diffusion term due to the RF. These

results exhibit the large perpendicular temperature enhancement in the resonant

electrons and the more energetic electrons in the tail. The results also show how

this effect varies with the position and width of the applied RF spectrum. An

analytical description of these results, based upon an approximate solution of the
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two-dimensional Fokker-Planck plus quasilinear equation, is given in section III.

Here we show that the large enhancement in the perpendicular temperature increases

both the current generated and the power dissipated, and thus their ratio remains

essentially unchanged. Finally, in section IV we give a relativistic formulation of

the two-dimensional Fokker-Planck equation and quasilinear diffusion appropriate

for lower-hybrid current drive. The conservation equations that follow from the

moments of this equation are used to derive the properties of the steady-state RF

current drive for an effective distribution function in two-dimensional momentum

space. A relativistic limit to the figure of merit is derived, and improvement in the

currently achieved figure of merit is suggested through the use of fast waves in the

lower-hybrid range of frequencies for driving current with more energetic electrons.

The derived steady state also shows that with larger parallel momenta there must

be a larger perpendicular, random momentum. Thus lower-hybrid current drive

with energetic electrons will probably be limited by how well such electrons can be

confined in the plasma.

II. NUMERICAL SOLUTIONS

One method of investigation of the two-dimensional effects of lower-hybrid-

current drive is to solve numerically the relevant Fokker-Planck equation supple-

mented with an appropriate quasilinear diffusion term. The complete nonlinear

Fokker-Planck equation is a rather ambitious and expensive numerical task. We have

chosen an approximation for the Fokker-Planck operator - one more appropriate

to our needs. Following Karney and Fisch [7], we use an operator that is linearized

because we expect that, even with the largest amplitudes for the drive fields,
the bulk distribution will remain nearly Maxwellian. We also ignore all spatial

gradients - preferring to avoid the complexity and computational expense in order

to understand more completely the behavior of the electron distribution in velocity

space under the influence of the RF diffusion.

The problem we solve numerically here is a linearized Fokker-Planck operator,

valid for V/Vthermal > 1, due to Gurevich and Lebedev [8], in which we have

added an additional term due to parallel, quasilinear RF diffusion. The form of the

equation is
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af+Eo a ' 1 [D(viI) +f [(1- 2)- =0 (1)r avi av. avg. (1 )U U 5U u3 Ty al

where

a a (1-/.2) a
a ='9 +  - (2)
avil au U 09p

and u2 = v2 + vI, 'U = _g/U = cos0; u is the velocity magnitude in spherical

coordinates and 0 is the polar angle with respect to the DC electric and magnetic

fields, both of which are in the same direction (||). Symmetry is assumed in the

azimuthal coordinate. We work with the coordinates (u, A) rather than (vII, v 1 )

but we use the vii representauion to make the physics more transparent. The time

variable r is scaled by the Coulomb collision time and u is normalized to Vthermal.

Eo is an externally applied DC electric field and D is a RF diffusion amplitude

resulting from the application of external microwave power. Since the coupling of

RF power from the antenna to the inhomogeneous plasmas of interest here are not

yet well understood, we choose a model form

D(vII) = Do exp (3).

for the diffusion coefficient, which implies that the RF power spectrum inside the

plasma is

E(w, k) ~ (4).

where k is the wavenumber prrallel to the DC magnetic field. We find it numerically

advantageous to split the distribution function

f(u, p) = fo(u) + fA(u, m) (5)

fo(u) = exp(-u 2/2) (6)

although there is no requirement that fi be small. We can expect the solution of

Eq. (1) to be useful only for electric fields Eo sufficiently small that the critical

velocity v, : Eo is well above velocities of interest.
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We solve Eq. (1) in the computational region displayed in Fig. 1. The annular

region between -1 < y _< 1 and umin i u < umax is filled with a uniformly

spaced mesh-typically with 80 points in u and 60 points in p. The boundaries at

/y = -- 1 are lines of symmetry. On these lines

af af,a - 0 (7).

Within the bulk of the plasma (u < umin), Coulomb collisions are assumed

sufficiently frequent to insure that there will never be any appreciable non-Maxwellian

contribution. This condition is that fi(umin, A) = 0. The boundary at u = uma

is expected to be sufficiently far out in magnitude so that f (uma, M) is negligible;

physically, uma is chosen large enough so that there are never appreciable particles

to affect the distribution at smaller u.

The flux of particles through the boundaries at y = ±1 is obviously zero. The

flux of particles through the other boundaries at utmin and Umaz, given by

s = -- + f] (8)

is not zero; fo gives no contribution to Su but a finite contribution is obtained

from fi which may have arbitrary normal derivative on the two boundaries in

question. Since we will be interested in the time asymptotic state, we note that the

final state will be one that may exhibit arbitrary flow through the computational

volume so long as all features within the region are time independent. Details of

the computational techniques used are given in the Appendix.

In the initial applications, we considered several cases with finite RF diffusion

and no DC electric field. In Fig. 2a we show a contour plot of the total distribution

function f in which the contours are logarithmically placed starting with 1 X 10-8

on the outside. We have plotted levels 1, 4, and 7 within each decade. The innermost

contour is 0.7 . In this particular case, we have used Do = 1, v0 = 4, Av = 1,

and p = 4. The distribution function is obviously elongated in the region in which

the RF spectrum is applied. Several measures may be applied to the steady-state

distributions: the first vi moment of the distribution is the parallel current J

produced by this application of RF power. The dependence of J on the parameters
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in D(v11) will be presented in section III. In Fig 2b we display the perpendicular

temperature TL given by

T1 (v11) = j 2v f(v ,v(dvj (9)

as a function of v11. Particularly intriguing is the enhancement of the perpendicular

temperature not only in the region in which the RF spectrum is applied but also

in the region of v11 well above the spectrum. The temperature apparently rises until

there is no longer sufficient grid resolution to accurately perform the integration.

The temperature enhancement in the RF region is suggested by an analytic solution

presented in section III, but the large T1 for larger v11 is not yet well understood.

Fig. 3a and 3b are a similar set of plots for Do = 1, vo = 6, Av = 2, and a

reduced power in the exponent p = 2. This is a much broader spectrum centered

at a larger vo. For this set of parameters the distribution function is stretched,
understandably, farther in the positive v11 direction. The enhancement of TL is

much larger in the RF spectrum range than for the first case shown in Fig. 2 and

TL becomes even larger above the RF range. Lack of resolution is a more severe

problem in this case because the spectrum extends farther out in u. To properly

resolve this case, we have nearly doubled the grid points in u; this solution was

obtained on a 150 X 60 mesh. With the increased resolution, the behavior of T(v 11)

for large v1 can be more accurately displayed. Apparently, T1 (v11) does approach

the asymptotic value of 1 for very large v11.

The numerical results presented here clearly point out the large enhancement of

the perpendicular temperature associated with the current carrying electrons within

the RF spectrum, and those in the tail beyond the RF spectrum, for lower-hybrid

current drive. These features are bourne out by recent experiments on lower-hybrid

current drive on PLT [3] and Alcator C [4]. The increase of T1 in the resonant

domain was pointed out in [7], but its consequences were not fully explored. As we

point out in the next section, this introduces important modifications to both the

current generated and power dissipated in lower-hybrid current drive.

Finally, applications of this numerical procedure with a finite DC electric field

E0 are at this writing just beginning. Our immediate purpose is to consider the
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interaction of the RF current producing spectrum with a finite but small electric

field - a field sufficiently small such that the runaway velocity v, ~ 1/'-0 is

greater than uma. Preliminary results indicate that the current that results from

the interaction of RF power and Eo are not additive. For example, with E0 = 0,

Do = 0.2, vo = 4, p = 4, and Av = 1 we obtain a normalized current of 0.044;

with Do = 0, and E = 0.01, the normalized current is 0.023. If these two current

producing effects are simultaneously applied, the resulting current is 0.0872 - a

value 30%higher than the algebraic sum of the individual effects.

III. THE STEADY STATE SOLUTION OF A TWO-DIMENSIONAL FOKKER-

PLANCK EQUATION WITH STRONG RF DIFFUSION

The conclusions of previous numerical studies [7] were not based on an analytical

solution, and the range of parameters studied was very limited. As shown in section

II, we find numerically that for realistic spectra there is a substantial broadening

of the distribution function in the perpendicular direction. This leads to a large

T1 in the resonant domain of velocity space, compared with the bulk electron

temperature TB. As a result many more particles are carrying the current, since

the number of particles in the plateau scales as TI/TB.

As an intermediate step we use for f the result of the 1D theory f - exp

but with TL different from TB. Consider a model distribution function for the

resonant plateau:

( 1 exp(-v2/2)f = exp I (10)
2TL Dy11  (10)

where velocities, temperature and diffusion coefficient are normalized to the bulk

quantities. One can readily evaluate the current from

J = j vdv 1  I dvif (11)

For D> 1 we find

-v /2 V2 _V2
S= -T Tv- 1 (12)Vf2-r J_ 2
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But this is exactly the well known one-dimensional current multiplied by TL.
Similarly one can write for the power dissipated:

PD = 'vdv2 diD (13a)

An integration by parts gives

PD = - I dv V v[2 O f (13b)

and the final result is:

S-vi/2 V
PD = T )In (14)

Again, the power dissipated is enhanced by T compared with 1D theory; however,

the ratio J/PD is unchanged. This is not surprising, since J/p is a very insensitive

quantity and does not represent a good check on either theory or computations.

Obviously it is very important from a practical point of view, however, if J itself

is wrongly estimated the whole energy balance will be misleading.

While the model distribution function (10) describes qualitatively the effect

of the broadening in the perpendicular direction it does not satisfy the 2D Fokker-

Planck equation. Now we proceed to solve for the steady state 2D distribution

function in the resonant domain when D > 1. If we assume D = const. for

v1 < v < v2 the solution is of the form:

f = p(v2) exp[ 1 (vjj, vj)] (15)

We substitute (15) in the steady state 2D Fokker-Planck equation and to order D*

we obtain:

2 P+ (p' + p") = 0 (16)
(v + )3/2

where x =_ v and p- d= . Eq. (16) is solved by separating the variables.wher x an ~o -~ . 16)isx
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a 2o 4v2
4v: (X) (17)

Ov (v2+ X)3/2

(18

r770p + P' + Xp" = 0 . (18)

Here to is an arbitrary function of x to be determined from the boundary conditions.

An integration of Eq. (17) over v11 gives:

V - = 771(x) + 4rno(x) In (vii + fVIl X) - (12)

771(x) is also a function of x to be found from the boundary conditions.

We require that the distribution function and the parallel flux S11 are continuous

at vij = v1, V2. However, F(v 11 = v1 , v2) will be discontinuous. We assume that for

vil -+ vi(vll < vi) and V1 -+ v2 (v1 | > v2), " = - vlf. This implies that outside

the resonant domain the distribution functon retains its Maxwellian character in

the parallel direction. One should point out that this assumption is verified by the

numerical integration. The expression for the parallel flux is:

11= (2 2 + 1)f + (2vx 9 - x 0 f Da (20)

where v2 = v2 + x. For V2, D > 1 we find to order D* with f given by (15):

vii aip
S = -- 3-(p - 2xp') - p-- (21)

The S11 outside the resonance plateau (D = 0) is given by:

v||= - ( - 2xp') + v(4 + X )O (22)S11 V3V3 V2

To write (22) we ssume that f ~ p and f ~ -vojj for V ~ v1, v 2 . Thus we

have incorporated the condition of continuity of the distribution function at the

boundary and the assumption of a Maxwellian derivative in the parallel direction.

From (21) and (22) we obtain:
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a v 3 + ) for vil = V, V2 (23)

With the expression of 9 from Eq. (19) we determine 7o(x) and tll(x). The result

for t7o(x) is substituted in Eq.(18) and we are left with a linear second order

differential equation to solve. The numerical integration will be reported elsewhere.

Here we would like to point out that for x < vi, ?7o(x) takes the particularly simple

form.

2 242

7o(x) = (1 x)a , a = V2 1 (24)
4ln( viv2

From Eq. (18) it is easy to verify by direct substitution that approximately

p : exp(-ax - aX 2). (25)
4

Eq. (25) together with the expressions for 170, 71, from (19) and (23) determine

completely the distribution function in the resonant domain. Note that the

assumption of the 1D theory [6] was p = exp(-J). It fails to exhibit the important

scaling of a with the position and width- of the spectrum.

The current becomes

_-V2/2 ,2 _ 2 rooV2Vj pdX (26)
,/7r 4 0

With p given by Eq. (25) we find

-v,2/2 2 _ 2

4 a2

where 0 is the error function. In all realistic spectra a < 1 and (27) can be

simplified.

v21/2 2(8

J = 2 -7 42 - i e (28)
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This formula is tested numerically and the results are compared with the 1D theory

in Table I. It is clear that for a wide range of parameters the agreement with

our theoretical result (28) is good, while the 1D theory predicts considerably less

current. We calculate the power dissipated:

eav I2 2 V + V 2
PD = n vI dv 1  dv (29)

0 V1 2 a 2

From Eq. (16) we obtain

e-v/2 00 2 2

PD = - 10 dx] dv 2 (p' + xpV") (30)

After an integration by parts we find:

-v 2 floo V2

PD = e- j dx j12 dvip ] (31)
2 V--rVTX(V2 + X)3/2

For x < vf the expression can be simplified to:

e-v2/2 V2 1(,PD= In/ -V (32)

Note that again the power dissipated is increased by a-1/ 2, which reflects the

broadened distribution function.

Therefore the often cited ratio J/PD remains unchanged:

V2 _V2

J/PD = 2 in1! (33)2 In v2V

The model distribution function (10) is justified by the correct 2D solution only in

the sense that it shows the role a broadening in the perpendicular direction plays

for determining J and PD. Finally, we point out that recently attempts have been

made to explain the discrepancy between the current estimated from 1D theory

with a Brambilla-type calculation of the excited spectrum and the current observed

in experiment by an upshift of the spectrum; the latter possibly due to toroidal
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vi V2 2num

3.55

5.98

1.34

8.87

2.21

1.78

1.22

3.21

2.90

X 10-2 1.68 X 10-1

10-2

10~-

10-2

10-3

10~1

10~1

10-3

10~-

8 8.51 X 10-8

3.06

8.11

4.80

1.43

1.31

6.92

2.19

2.26

7.34

10~1

10-1

10-1

10-2

10-4

10~1

10-2

10-4

10-1

8.11 X 10-2

1.87 X

2.87 X

3.34 X

1.55 X

5.59 X

6.11 X

1.98 X

2.48 X

7.77 X

10~1

10-3

10~1

10-2

10-1

10-1

10-2

10-4

10-1

TABLE I

vI(v 2) are the low (high) velocity boundaries of the resonant region. From 1D theory

J,= L ~, and from 2D theory J2 = ±~ _ ! (,v2 - is)n g. Jvum lS

the result of numerical integration.
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effects, parametric processes, etc. With the present 2D results one needs much less

of an upshift than previously thought.

IV. RELATIVISTIC THEORY FOR LOWER-HYBRID CURRENT DRIVE

As pointed out in section I, the recently successful and significant experiments

on lower-hybrid current drive use RF spectra that are resonant with very energetic

electrons. Hence, we now turn to an evaluation of such RF current drive based

upon the relativistic Fokker-Planck equation with parallel diffusion due to the RF

fields. Previous analysis of relativistic effects [9] was based upon a different model

of current generation.

(a) The Relativistic Fokker-Planck Equation

For the collisional model we use the Lorentz limit of the relativistic Balescu-

Lenard collision operator [10-11]. The collisional flux in momentum space is given

by,

'ap = - 2q q'no J d3pp J d3k6(Q 0 - k - p) (1 .1

[1 - (2(34)(a - '9)
apa app

where the labels a and 0 refer to the test and the field species respectively, and

the vector is the relativistic beta: = = with m, -, 0 and A being theC mc71

rest mass, the relativistic gamma: y = (1 + p2 /m 2 c 2)1/2, velocity and momentum,

respectively. Furthermore q is the charge and ng the density of the field species.

It can be easily shown [121 that for non-relativistic field species the collisional flux

&p reduces to,

= dap a - fa(Pa)fp(P) (35)

where the tensor =ap is defined as

Iva -up| 27  ( -(V - "0) a2
Tap = Aap -va- UP = Aap |ca - ol (36)
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with

Aap = 27rqgqpnp ln Aa#. (37)

In Aap is the Coulomb logarithm which corresponds to a relativistic particle (a)
colliding with a non-relativistic one (,8). For fast electron-electron or fast electron-

heavy ion interaction it is given in [13].

The collisional flux given by Eq.(35) can also be written in the following form,

= fa (8
= ap + Papfa (38)

where the collisional diffusion tensor Dap and frictional force vector Pap are defined

by,

Dap f d'p ap , Pap = - d3 p f1p, = (39)

with is the gradient operator 1. As long as one considers fast test particles

interacting with a thermal background of field particles the magnitude of the

relative velocity Va - Up can be expanded around va = |a|:

ava 1 82va (40)

10a Up' 0 a 2 a0aava

where we dropped terms of order (VO/va) 3 and higher. Introducing the notation

<> for averaging over the field particle distribution (< ... >= f ... fpdpp) and

assuming that the thermal background does not carry a current (i.e. < Up >= 6)

yields for the diffusion tensor,

Da a_ 7(41)

Aap V3 V2 V3

and the frictional force vector,

- P2a = . (42)
Aap ap

Expressing now the velocities of the test particles in terms of their momenta in

Eqs.(41) and (42) yields for the collisional flux 3ap,
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'Ya~~ M2( 2<~ >~2
/31 a% 2 )Pa'

a 2 >(43)
( <m~vi> ) a r8f ma}

- 1~ a 2 papa - +2-7aafa
Pa

This expression coincides with the one derived in [12] in the limit < V2 >-+ 0.

(b) Moments of the Fokker-Planck Equation

The continuity equation in momentum space, if only collisions are taken into

account, is simply

( fc ) += 0 (44)

The kinetic energy mac2(a - 1), momentum (Pa) and velocity (Va) moments of

Eq.(44) are,

d3Pa 9 L mac2(7 a - 1) = - > 2maAp d3  fa - 2 (45)at Pa mp C 2

SdPa a = - 2maAaJ3Pa fa+( dal -a (46)at Pam/

and

d3Pa aa =- 2Aap d3 pa(+ ma _4
at p 3 mpa C2

where one can drop < vP > /c 2 since the field particles have already been taken

as non-relativistic. In our case the field species consists of thermal electrons and

thermal ions of densities n, and ni respectively. To the extent that the energetic

species (the relativistically treated test electrons, e') is a minority species, i.e.

ne, < ne, the quasineutrality condition is

n. ~ Zin (48)
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where Zi is the ionic charge number. Therefore in our case Eqs. (45), (46) and (47)

take the relatively simpler form,

dc (49)

dt (,y2 - 1)/2
<dt > - (72 -~ 1) 3/2 7)(1

where the angular brackets denote integration over the energetic electron distribution

function, and the operator d is defined as d < ... >= f ... (d~p. The energetic

electron subscript has been suppressed. Furthermore, the quantities vc and a are

defined as follows,

4'reene in Aeie __in Ae',
1/ = me IA ,  a = (52)

eac in A.,.

For moderately relativistic electrons and Z =:: 1 the parameter a can be approximated

by unity. In all other cases the Coulomb logarithms are given by, [12]

In A,,, = In [DemeC2 < - >< P > 2 I = (XDemec 2 <-><p>2

2(< y > +1)1/ 2e2 J=2Zie 2

(53)

where XD, is the electron-De'ye length.

(c) Fokker-Planck and Quasilinear Evolution, and Steady State

In the presence of an externally imposed driving mechanism (RF waves in

particular) the evolution equations Eqs.(49) to (51) take the form,

d< >= -'/2) + Pd (54)
dt (72 - 1)1/2
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< 0 >= -V Z% + 1 + y73)+ Fd (55)
dt (y2 - 1)3/2

and

< ( +>= -V 1( ,/ _ _) + Ad (56)dt ~(,1 -13/

where we set a = 1. The quantities Pd, Fd and Ad are defined as the input of RF

power (Pd) and the macroscopic manifestation of the force and the acceleration

(Fd, Ad) associated with the wave-particle interactions. They are normalized to

VeMC2, vmc and vec respectively.

The simplest evaluation of Eqs. (54)-(56) is for an effective distribution function

f(pi, p I) given by,

f(Pl P) = 6(P - )(P - ) (57)27rp 1

where pll and pI correspond to the average, effective values of the parallel and

perpendicular momenta. Omitting the overbars for simplicity one now has,

-I + P (58)
dt (,y2 - 1)1/2

= ( + 1 + 72 11 + Fo (59)
dt (,12 - 1)3/2

dfl ZA + 1 + 1/h .
dt (,2 _ 13/2 7P1 1+AO (60)

where the P0 , F0 and A0 refer to the RF quantities Pd, Fd and Ad, respectively, for

the distribution function of Eq. (57). Consistency of these three equations, namely

Eq.(59) being derivable from Eqs.(58) and (60), implies that,

A0 - Fo- (61)7 1 -
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Solution of Eqs. (58)-(60) in the steady state, in the sense of T < y <

7 >= <7 >= 0, finally yields,

PO =(62)
(72 - 1)1/2

=/(Z +;+1) + +(63)

and

Fo = A (64)

The first equation Eq. (62) provides the relationship between the RF power input

and the average energy e (in normalized units e = I - 1) of the energetic electrons.

Equation (63), on the other hand, gives the current these electrons are carrying.

Finally Eq. (64) is the macroscopic manifestation of the relationship between power

dissipated (normalized to vemc2) and force dissipated (normalized to vcmc)in the

case of resonant diffusion induced by a unidirectional RF wave [14].

In Figure 4 p1 and the normalized figure of merit, namely the ratio #P /Po, are

plotted as functions of e and for Zi = 1; for a given density n,, at an energy e the

current density is J11 = enc01 . For e > 1, both 01 and the ratio 01 /Po approach

unity. We note that

|| (e+ 1)2 _ 1
- - f~ Zi) (65)

P (E + 1) 3/2(e + 2 + Z81/2)

gives

J _e

- f(e, Z) (66)

Thus the figure of merit is found to be

I 31.2 f(e, Zi)
PD 4 ln A Rmn 20
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where R. is the major radius of the tokamak in meters and n20 is the plasma

density in units of 10 2 0/m 3 . In the nonrelativistic limit, e < 1, f - and the

figure of merit increases for current carried by more energetic electrons. In the

ultrarelativistic limit, e > 1, f -+ 1 and Eq.(67) gives an upper bound on the

figure of merit. Recent experiments on PLT and Alcator C can be considered to

be effectively in the range E - 0.1 - 0.2. Considerable improvement in the figure

of merit is therefore possible by RF current drive with more energetic electrons.

This should be possible with the use of the fast wave in the lower-hybrid range of

frequencies. The limit will most likely be dictated by how well energetic electrons

can be confined in the plasma.

Finally, taking into account Eq. (63) and the identity _y2 = 1 + q 2 + q2, with

q11 and q1 being the normalized parallel and perpendicular momentum respectively

(note that q11 = y011), yields for Zi = 1,

q= 'q2 + (q4 + 16q 2 + 16)1/2 1/2

q11 = 2 - 2 . (68)

22

In Fig. (5) q2, which is a measure of the perpendicular, randomly oriented

momentum of the fast electrons in the steady state operation, is plotted as a

function of the normalized parallel momentum q11. We thus note that in the steady-

state larger parallel momenta must have associated larger, random perpendicular

momenta. This is in concert with the enhanced perpendicular temperature effect

described by the nonrelativistic numerical and theoretical results of sections II

and III. We are currently in the process of generating numerical solutions of the

relativistic Fokker-Planck equation with quasilinear diffusion as formulated in this

section.
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APPENDIX 1

The important detail of the solution process resides in the numerical

implementation of the algorithm taking the initial fi to the time asymptotic

state. The usual approach is to simply finite difference the terms in Eq. (1), select a

time step At small enough for stability, and time integrate the initial distribution

to the final configuration. This is a straightforward procedure although it frequently

becomes quite expensive computationally if a fully explicit time advance is used.

We have achieved a quite significant reduction in the computer time required to

get to the asymptotic state by employing two additional techniques.

Firstly, the maximum At that can be used in a stable integration scheme -

which is proportional to the minimum grid resolution length squared for explicit

schemes - is considerably increased by using a alternating-direction-implicit (ADI)

procedure for the time advance [15J. Secondly, it is reasonable to assume that

during the integration from the initial to the asymptotic state there will be periods

for which is desirable (indeed necessary for stability) to take small At s. Similarly

there are also periods during which not much change in f is occurring and much

CPU time can be saved by increasing the At. What we have implemented for this

work is an adaptive At selection procedure which, for reason that will become

apparent, we call Aggressive ADI (AADI).

In the procedure we now outline, the guiding principle is that we want to

achieve the asymptotic state as fast as possible. This goal is achieved by using

as few time steps as possible consistent with stability of the solution. We are not

particularly concerned with the details of the time evolution providing we can

convince ourselves that the final state is independent of its evolution. We define

the residue E as

Of
BT max

where the subscript max refers to the maximum absolute value across the entire

u, y mesh. The concept is simple; we increase the At on successive time steps until

the E increases. As long as e decreases, the solution is considered acceptable up

to that "time" level and e is saved for future comparison. For an operator which
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is dominated by the diffusive terms (from velocity and pitch angle scattering), an

increasing c indicates the onset of instability. At is gradually increased until e no

longer decreases. We follow this last time step, which is on the verge of instability,

by a smaller At which is intended to allow the solution to stabilize itself. If a

reevaluation of e confirms that the solution is again stable (e is again decreasing),
the new solution is accepted, and another time step is taken with the. same time

step size that is near the stability limit at this time in the integration. If the small

step does not stabilize the solution, a second small step is taken in a final attempt

to stabilize the solution. Should it succeed, we are making optimal progress toward

the asymptotic limit; should it fail, the last big step and these two small steps are

discarded, the solution is restored at the last acceptable configuration, and At is

reduced substantially before an tempt is made to continue the solution.

This procedure provides for aggressive increases in At to the stability limit

during periods of inactivity in the time dependence of fi. Should the activity

increase, a rapid retrenchment is triggered which is very protective of the solution.

If a situation is encountered in which the only solution requires an increase in e,
this algorithm will fail. The signature of such a mode is that no further time steps

are "acceptable" and At is reduced to a very small number. This mode is never

observed in the present application to Eq. 1.

There are obviously several adjustable parameters which must be selected to

optimize this procedure; the most important are the ratio of the stabilizing step

size to the large step size and the factor which multiplies At when the solution

cannot be stabilized, typically .5 and .1 respectively, for this particular operator on

our 80 by 60 mesh. Typically 500 time steps are required to obtain a solution fi

which no longer changes in any significant way. These runs require no more than

60 CPU seconds on a CRAY 1 for Do less than one.
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FIGURE CAPTIONS

Figure 1 The computational region is an anular region. In spherical coordinates the

velocity magnitude u ranges from umtn to umax; the polar angle 0 is expressed

by u = cos 0 and A varies between -1 and 1. The solution is found on a uniform

orthoganal mesh in the u, , space within this region.

Figure 2 (a) Logrithmic contours of the distribution function f for RF spectrum

parameters: Do = 1.0, vo = 4.0, Av = 1.0, and p = 4. The contour values

begin with 1 X 10-8 on the outermost contour and increase monotonically to

0.7 on the intermost contour. Contour values of 1, 4, and 7 are plotted for each

decade. (Eight decades are shown.) Salient features include the stretching of f
in the vii direction in the region containing appreciable D(vj1 ) and an enhanced

temperature in both TL and T1 due to this stretching.

(b) The perpendicular temperature TL(vil) for the distribution function shown

in (a). The temperature of the inner core distribution is unity. T1 increases

rapidly to nearly 4 as vi moves through the rf spectrum. For vj1 > 6 the applied

rf rapidly diminishes but the perpendicular temperature continues to rise. In

this particular case, the mesh only extended to umax = 12. Consequently, as vj

approaches tmax, the information available (nearby grid points) to perform an

accurate integration over v 1 rapidly shrinks to zero; and the precise behavior

of TL is suspect for v11 > 10.

Figure 3 (a) In this plot are displayed logrithmic contours of f similar to those in Fig. 2a

with different parameters in D(vjj). Compared to Fig. 2, this spectrum, while

still having the same amplitude, Do = 1.0, has been broadened Av = 2.0,

has been made less abrupt, p = 2, and has been centered at a larger velocity

vo = 6.0.

(b) The perpendicular temperature T1 (vjj) for the distribution function shown

in a). Since umax is much larger in this case than in Fig. 2, much more

confidence can be given to the behavior of TL for oj above the rf spectrum.

As explained in Sec. III, the T1 within the spectrum is larger than in Fig. 2

because vi is larger. In the external region, T 1 continues to rise as in Fig. 2.

However in this case, enough grid resolution is available to indicate that Ti
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does approach the asymptotic value of 1 for very large vii.

Figure 4 The normalized parallel current #11 and the normalized figure of merit /l3/Po

(the dashed line is the nonrelativistic limit) are plotted as functions of the

normalized kinetic energy e = - - 1 for Zi = 1.

Figure 5 q2 is plotted as a function of the normalized parallel momentum q1I = y,81 for

Zi = 1.
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