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1.0 INTRODUCTION

Vertical plasma movement is inherently unstable in tokamaks using an

elongated plasma because creation of this shape requires a negative field

index. The radial field component associated with the latter is directed

such that the force on the plasma following a vertical displacement tends

to increase the displacement.

Recent operating scenarios for tokamaks have considered the use of

separate control coils to provide active vertical stabilization of the plasma.

An initial rapid vertical plasma displacement would be stabilized by eddy

currents induced in passive elements, then, as the induced field decays, a

set of active coils would be excited to provide the required field. This

would limit the power required for the control coils since they would re-

quire excitation on the time scale of the induced field decay and not on the

time scale of the displacement. Coils are also under consideration to pro-

vide additional plasma voltage for start-up (so called "blip" coils).

The placement of coils to serve these functions is dependent on spatial

demands imposed by other subsystems. The power and energy required by the

coils to perform these tasks is critically dependent on their location and

eddy current effects induced by their rapidly changing fields. The purpose

of this study was to provide the means to estimate the power and energy

requirements and to present the results of a preliminary investigation of

the eddy current effects. A simplified criterion was developed for relating

the characteristic decay time of the passive system to the charge time for

the active system.
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2.0 CONTROL COIL POWER AND STORED ENERGY WITHOUT
EDDY CURRENT EFFECTS

This section will develop the means for estimating the power required

and energy stored for a pair of PF coils which are to provide either a specified

radial field, vertical field or rate of change of flux at the location of the

plasma.

Figure 2.1 illustrates two coaxial control coils of radius "a" and with

planes located at z = d. Each coil is excited with I ampere turns. The plasma

is assumed to be located in the z = o plane at a radius, ro, and the sketch at

the right shows the coils in a space with dimensions normalized to ro. The

case shown is of interest for evaluating the ability of the coils to produce

a vertical field, Bz at (roo) or a specified total flux, , through a loop of

radius ro in the z = o plane. The case of radial field, Br, production at ro

will require one of the loop currents to be reversed.

2.1 Vertical Stabilization

Vertical- stabilization of the plasma requires production of a radial field

at the plasma location to interact with the plasma current and produce a z-direct-

ed restoring force. The coils shown in Fig. 2.1 will, therefore, be assumed

to be excited in series with axial fields opposed. The radial field produced

at (roo) by the two coils may be shown to be related to the energy stored in

the coils, Eo, in the following manner.
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Br 2rE3 Bre

where: Bre Bre (p, q, rw/a)

PO= permeability of free space = 4r x 10~7

[H/m]

p = a/ro

q =d/ro

w2= A

A = area of the envelope of the current carrying
cross-section of one of the coils

The function Bre in Eq. (1) is dependent on the dimensionless location coor-

dinates for the coils and a cross-sectional radius to coil radius parameter.

Bre may be considered to be a normalized radial field and contours of con-

stant Bre are shown in Fig. 2.2 for the case where (rw/a) 0.05. If a coil

location is specified, then the contour value can be found from Fig. 2.2 and

used in (1) together with the plasma radius, ro, and required radial field,

Br to find the energy stored in the coils. Alternately, a region may be out-

lined on Fig. 2.2 showing the allowable areas for coil position based on other

system interface constraints, then the coils can be located on the maximum

contour. This location corresponds to the maximum radial field production cap-

ability for a given stored energy. Furthermore, the energy required for dif-

ferent locations may be compared by using ratios of the contour values for the

locations. An example of this type will be presented in Section 4.0.

If the coil set has an initial current of zero, a characteristic time

constant, r0, and is ramped at constant I, then the power required at a time

t after start is
0
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P 2EO 1 + to (2)
p to 1 ToJ

where: Pp = power required at to while charging
at a rate I

EO = stored energy

To = (L-M)/R

L = self inductance of one coil

M = mutual inductance between coils

R = resistance of one coil

After Eois determined by using (1) then the power required to achieve Br in

a time, to, may be found for a coil set of known To by using (2). The time

constant To = po a a2G6 where G6 may be found from Fig. 2.3 when (rw/a) is

*

known.

For cases where the coil set is cycled according to a specified current

versus time scenario, the average power may be related to Br as follows:

Br = 11o P A, B (3)

ro% s

where: By = B(rpD,)Il

P = average power

Ac = current carrying cross-sectional area
of one coil

pes = resistivity of coil material

See R.J. Thome, R.D. Pillsbury, Jr., W.G. Langton, and W.R. Mann, "Coil
and Shell Characteristics for Passive Stabilization," PFC/RR-83-14.
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The function B-rp may be considered to be a radial field normalized with re-

spect to average power. Contours of constant Brp are given in Fig. 2.4 and may

be used to determine effective locations for vertical stabilization coils from

the average power standpoint or comparing the average power requirements for

alternate locations by using (3).

2.2 Radial Stabilization

Radial stabilization or control of the plasma requires production of

a z-directed field at ro, the plasma location, to interact with the plasma cur-

rent and produce a radial restoring force. The coils shown in Fig. 2.1 will be

assumed to be excited in series with axial fields aiding. The z-directed

field produced at (ro,o) by the two coils is given by:

B = B (4)
rl 3

where: Be = Be (.p, ,rw/a)

Contours of constant Be, the normalized z-field function, are plotted in Fig.

2.5. Coils on negative contours produce negative z-field at (r0,o) when they

are excited with positive current. Contours may be used in a manner similar

to that described for (1) to determine energy requirements for coils at

specified locations. The power required at to for a constant current ramp in

this case may then still be found using (2), however, it is necessary to re-

place the time constant, To, with

T + To (L + M)/R (5)
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If the coil set is cycled according to a specified current vs time scenario,

the average power, P, may be related to Bz as follows:

B = Po Ar7 B (6)

~es ro

where: Bp = Bp(p,n)

B is a normalized z-field function relative to average power. Contours

of constant Bp are given in Fig. 2.6 and may be used in a manner similar to Fig.

2.4 to compare average power requirements for coils at different locations.

Negative contours in Fig. 2.6 correspond to coil locations which generate

negative z-field at (r0 ,o) when they carry positive current.

2.3 Start-up

Coils used for start-up are required to produce a given rate of change

of flux through the plasma loop in order to provide a driving voltage for a

specified period of time. The required flux may be produced by two loops as

shown in Fig. 2.1. They will be assumed to be connected in series, with z-

field aiding.

The two loops produce an amount of flux 4 which links the plasma con-

tour of radius, ro.

# .r~ =e (7)

where: Oe = De (p, n , rw/a)

If the coil set is initially at current zero and is ramped at constant I to

an energy E0 in a time to then the rate of change of flux, * is given by:
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= 2 yara f% (8)
to

Contours of constant 4D are shown in Fig. 2.7. A coil set of specified coor-

dinates may be located in the diagram to find te which is then used with (8)

to find the stored energy if a rate of change of flux $, is to be maintained

for a time to. The corresponding power required for the coil set may then be

found using (2) and (5). As in cases described earlier, relative energy re-

quirements for coils at different locations may be determined using ratios of

contour values. Examples using these curves will be presented in Section 5.0.
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3.0 IMPACT OF INDUCED CURRENTS ON POWER AND ENERGY REQUIREMENTS

The previous section considered production of radial field and vertical

field at the plasma and generation of a rate of change of flux through the

plasma loop by a pair of discrete coils. Stored energy, average power and

peak power were derived without consideration of induced currents in nearby

conducting bodies. This section will present the results of a simple circuit

model used to gain insight into the important parameters when eddy currents

are induced in nearby conductors. Two time regimes are considered: 1) active

coils charging with times short compared to passive time constants to respond

to fast plasma displacements and 2) active coils charging with times long

compared to passive element time constants as in start-up voltage assist.

Consideration is given to criteria for relating the turn on time for active

stabilization coils to the characteristic time constants for passive stabili-

zing materials and to the relationship of the simple parameters to quantities

which can be computed using complex, finite element models. Results for the

penetration time for field and flux through toroidal shells will then be pre-

sented as derived from computations using a finite element* model.

3.1 Two Coupled Circuits

3.1.1 Field and Flux Delay

Section 2.0 assumed that the magnetic field was being produced by a

single circuit being driven by a power supply which could adjust its voltage

as required to cause a current increase from zero at a constant rate of change.

In this section, this primary circuit will still be assumed to be driven at

constant IlV It will be assumed to have a self-inductance and resistance of

R.D. Pillsbury, "A Two-Dimensional Planar or Axisymmetric Finite Element Pro-
gram for the Solution of Transient or Steady, Linear or Non-Linear, Magnetic
Field Problems", COMPUMAG, Chicago, Sept. 1981.
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Ll and R1 , respectively, and to be coupled through a mutual inductance, M,

to a passive secondary circuit with self inductance and resistance of L2 and

R2, respectively. The secondary circuit conceptually represents a conducting

body in which eddy currents may be induced. If the initial current in both

circuits is zero and if the primary is driven at constant I starting at t = 0,

then the current in the secondary will have the following form.

I 2 = 1)i -t/T2)

where:

2= L2 2

Equation (9) indicates that the secondary current rises from zero to a steady-

state value with a time constant, T2- It should now be noted that if there

were multiple secondaries, 12 would have a sum of terms like the right side

of (9) (ie - one for each secondary) as well as terms which arise due to in-

ductive coupling between secondaries. The implication is that there is no

single time constant for a complex system, however, if the primary is driven

by constant ij then the eddy currents will eventually reach. a steady-state pattern.

The magnetic field at any point in space due to the two circuits may be

expressed as

B = I Il + a 12 (10)

where c and T are functions of the coordinates of the point where B9 is mea-

sured and of the spatial distributibii bf the wires in each circuit, but

not of time. In most cases of interest to this effort -a and T will be posi-

tive. Equation (10) ,then, implies that the field at a point for a given time

will always be less when the secondary is present since 12 < o as indicated by

(9). If 11 is the same for two cases, one with and one without a secondary,
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then the time lag to reach the same value of Bi at the point is

*RtB = ( ) 2i .-exp [-(t + AtB)1T2 } (11)

where ai and Si are the functions associated with the Bi component of B.

when t >>T2, the time lag, AtB, reaches a constant value given by

AtBS= \i) M (12)

Equation (12) indicates that the time lag is not a function of I for t >> T2,

but is dependent on the location of the point relative to the two circuits

through (Oi/ai), on the location of the two circuits relative to one another

through M and on the resistance of the secondary. Even though there is only

one secondary, the time lag will not be the same for all points in space since

(Ci/ai) will, in general, not be a constant. Therefore, analysis of complex

situations involving many shells (or secondaries) will eventually require that

the time lag be evaluated for several points over an entire region of interest.

Scaling of results must be limited to equivalent geometries with equivalent

points, with AtBS inversely proportional to the resistance of the secondary

circuits. In situations involving shells as secondary circuits, AtBS may be

scaled proportional to the ratio of thickness to resistivity for the shells.

The scaling must involve multiplying the thickness to resistivity ratio of all

shells by the same constant in order to be valid, however.

If we consider the z-componenrt .of B in (10) then the flux linked by a

contour coincident with the plasma loop of radius ro in the z = o plane is

given by the following when the primary is charged at constant i = (IO/tO)t:

r
0

2(10/t0) f [az t- . (M/Rg) (1 - e 2/)] r dr (13)
0
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The first term in the integrand in (13) arises from the primary alone. If

the derivative of (13) is taken with respect to time it can be shown that $

for the contour is the same with or without the secondary provided t >> T2-

Thus, the induced voltage in the plasma loop will eventually be the same

with or without the secondary, however, there will be a time lag associated

with the flux linked by the loop which, for t >> T2, can be shown to be:
r

Ato = M 0(14)
#s R2 r

az r dr
0

In general, the ratio of integrals in (14) will not be equal to (Z/ctZ) in

(12), hence, the time lag for flux will not be the same as. the time lag for

field. All other comments on scaling made relative to (12) also apply to

(14).

3.1.2 Active Stabilization

This section will consider the case of control coils which would respond

faster than the PF system to stabilize the plasma. If the plasma moves suddenly,

it will be initially stabilized by restoring forces generated by induced currents

in the passive stabilization coils (or shells). As the current in the passive

system decays, the stabilizing function will be assumed by the active control

coil system.

In order to visualize the sequence of events, assume the passive stabili-

zation system to be a single loop.gircuit consisting of an inductance, L2 and

resistance, R2. The loop is inductively coupled to the plasma which undergoes

an instantaneous displacement and induces a current 120 in the passive loop.

The current then decays with a time constant, T2 = L2/R2 as illustrated in

Fig. 3.1 as the top curve. If, on the other hand, the same passive circuit

has zero current initially and is inductively coupled to the control coils
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which are activated at t = 0 with a constant current ramp I, then it will

respond as indicated by (9) and as illustrated by curve (2) in Fig. 3.1.

If both events occur then the current in the passive system will respond

as shown by curve (3). The latter indicates that the increasing current

in the control coil forces the current to decrease faster in the passive

system and, ultimately, to become negative and approach the steady state

value which can be found from (9).

Equation (10) describes the field at any point in space (e.g. - at the

plasma) due to the two circuits. If both currents are positive, they add

to the desired field. Curve (3) in Fig. 3.1 indicates that 12 eventually

becomes negative if il is ramped continuously. Therefore, we shall postulate

that the desirable sequence of operations is as shown in Fig. 3.2, that is,

to ramp I, until the time tw when 12 is zero, then hold I, constant at the

value Ilw* In this way, both the passive and active coils contribute to

the desired field at all times. Note that a more complex plasma model which

includes some form of dynamic response may alter the criterion for specifying

the time at which the active coil must be "on".

The ratio of the time, tw, in Figures 3.1 and 3.2 to the time constant

2 may be shown to be determined by the following transcendental 
function.

tw A- = ln + (15)
T2 (twr 2)

where: B
A =(- tBS)

d 2

Bo =120

Bd =aiw
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AtBS = time lag constant from (12)

In (15), Bo is the field initially induced by the plasma displacement

and produced by the passive coil system and Bd is the field produced by

the control coil after it is fully turned on. The ratio Bo/Bd > 1, but

may be expected to be of order unity. The chaiacteristic time lag AtBS

may be expected to be several times T2, hence, A is also of order unity

and is probably ; 3. Equation (15) is plotted as a function of A in Fig.

3.3 which indicates that it varies slowly in the range 1 < A < 5 and that

a value of z 1 for estimating purposes is appropriate. This implies that

the ramp time tw, for the active coil should be approximately equal to the

time constant of the passive system, T2* Now, the energy and peak power

for the control system may be estimated.

First, specify a plasma radius, r0 and control coil location in Figure

2.2, then determine Bre, the radial field normalized to stored energy, from

the contour value through the coil coordinate in normalized space. Let Br =

Bd, the desired field at the plasma from the control coil, and find Eo, the

stored energy in the control coil pair from (1). The energy input to the

control coils and peak power may then be estimated using the

following:

E2 <E r tw (16)
Ein E [+(

where: T 1  L1 /R = time constant for control coil circuit

2E tw
Pp 0E (l +-) (17)

w T
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This section has described the interaction between the active coil and

passive stabilization elements in terms of a simple two circuit model in which

the active coil is charged at constant 1 for 0 < t < tw. The passive

system has simplified time characteristics described by T2 and AtBS, where,

for estimation purposes, tw NT2. Continuous systems involving shells and

other distributed conducting materials, however, do not have a single

time constant. Section 3.2, therefore, will illustrate the means for

relating the simple concepts to the output from a continuum model.

3.1.3 Start-up Voltage Assist

The start-up voltage problem may also be envisioned with the two loop

circuit of Section 3.1.1. In this case the start-up coils are assumed to

ramp at constant Il. Eddy currents induced in conducting materials may be

modeled as a single passive circuit which then responds with the current

12 given by (9). The flux penetration into the plasma circuit will be delayed

by the eddy currents, hence, the start-up coils must ramp for a time At O

(see (14)) plus the necessary time interval for voltage application, t
v

If the coil locations are known then the normalized flux function,D e

can be found from Fig. 2.7 by finding the value of the contour through the

coil coordinates. This value may then be used with the plasma radius (r0 ),

voltage ,and time tv in (8) to find Eo, the stored energy in the start-up

coils when charged for a time t = to. The energy input to the start-up

coils after charging for the required time of (tv + Atts) may then be

estimated from t At
At 2 2 v ( 1 +1 (18)

Ein ~ E0 ( l + t ) 1 + 3 Tj tvtvJ
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Sample results based on (18) and coils located using Fig. 2.7 will be given

in Section 4.0.

3.2 Penetration of Field and Flux Through Shells

Section 3.1.1 showed that the time lag for field generation at a point

and the time lag for flux generation through a contour, due to a coil set driven

at constant I, are not equal and are dependent on the geometry and location of

the active coils as well as the passive conductors. This section will summarize

the results from a finite element model used to estimate typical time lags for

field and flux, which will then be used in Section 4.0 to arrive at peak power and

energy estimations for the control and start-up coils considered in Section 2.0

with corrections for eddy current effects.

The conductors in the axisymmetric finite element model are shown in

Fig. 3.4. The model utilized three toroidal shells which are shown as solid

lines and three coils designated as inside-inboard (II), inside-outboard (10)

and outside-outboard (00). Three of the boundaries for INTOR are shown using

dashed lines. Figure 3.5 is similar., but shows two of the boundaries for the

FED baseline.

Cases were run in which one of the coils was excited at constant i and

the z-directed field at the plasma center as well as flux through the plasma

loop were computed as a function of time. Typical results are shown in Fig.

3,6 which shows four curves. The curve labeled "no shells" is the solution

for coil excitation alone without eddy currents in the shells. The curve

labeled "cryostat only" assumes that the inner two shells have infinite re-

sistivity and, therefore, no eddy currents. The other two curves assume that

all three shells are present, but shows the effect of a resistivity change for

the two inside shells. In all cases, the effect of the eddy currents is to
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lead to a time lag which eventually becomes constant and corresponds to Ato S

in (14).

The time lag for the "cryostat only" or outside shell was 100 msec when

driven by coil 00 alone and 62 msec when driven by coil 10 alone. This shell

included a shell thickness to resistivity ratio, (ts/p), which varied poloidally

to account for differences in actual wall thicknesses and to make a first order

correction for openings in the shell on the outboard side. Table 3.1 summarizes

the characteristics of this shell which was unchanged between cases. The last

column gives the equivalent thickness for a toroidally continuous stainless

steel shell.

The time lag for field and for flux for the cases which were run are

summarized in Table 3.2. In all cases the outer shell values were held con-

stant as in Table 3.1 and only one coil was excited. In all cases considered,

AtB < Mot, however, they are comparable in size. The time lag for the 10 coil

is less than that for the 00 coil in all cases and the difference is more pro-

nounced for thinner shells. The model assumes toroidal continuity of all

shells. If the two inner shells are sectored to prevent net current flow

through the rz-plane then the time lags are estimated to decrease by M 2 for

cases where ts > o, but with the time lag for ts = o as a lower limit.
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Table 3.1 - Characteristics of Outside Shell
in Finite Element Model

Shell Segment

inboard

top

outboard

K

from
coord

(r, z)

2.5, 0

2.5, 3.23

8.06, 4.03

to
coord

(r, z)

2.5, 3.23

8.06, 4.03

9.9, n

ts/p
1

2.82 x 104

7.1 x 103

3.88 x 104

ts|

cm

2.73

0.7

3.77
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Table 3.2 - Lag Time for Field and Flux at the Plasma Center(i)

inner shell(2)
ts p
(cm) (10-6 0 cm)

3.2

1.0

0

3.2

1.0

0

3.2

1.0

122

390

122

390
00

122

390

ts
(cm)

3.2

1.0

0

3.2

1.0
0

3.2

1.0

mid-shell
p

(10-6 S cm)

72

230

72

230

72

230

(1) characteristics of outer shell are given in Table 3.1.

(2) inner shell resistivity increased by 1.7 to account for added
peripheral length of convolutions.

(3) model assumes toroidal continuity of both shells; if both shells
are sectored then time lags decrease by =2 for ts>0 but with the
ts = 0 value as a lower limit.

I

V ~

K

if
ii 41

Coil

00

I0

II

At (3)

(sec)

352
187

100

312

138

62

At (3)
BS

(sec)

315
180

285

131

265

142

Ii

I 4

$ i4

: ~
~4

4

'1

~Ki I
I ;I~ ~
4
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4.0 EXAMPLES

This section will illustrate the use of the material developed in Sections

2 and 3 to estimate the characteristics of two active loops for plasma stabili-

zation and for voltage start-up assist in INTOR. Four potential loop locations

will be considered. These are located on the following boundaries: (1)

the shield outer boundary; (2) the plasma side of the TF coil; (3) the TF

coil outer boundary; and (4) a curve which passes through the approximate

centers of the PF coils in an rz-plane.

The four boundaries are shown in Fig. 4.1. It is assumed that the blanket

is 0.:5 m thick, the shield is 1.0 m thick and that there is a 0.1 m gap between

blanket and shield. The TF and PF coil boundaries are based on the INTOR

*

Phase I design.

4.1 Vertical Stabilization

Figure 4.1 shows contours of constant dimensionless radial field pro-

duced by a pair of coils as well as the four boundaries of interest. The

points labelled A, B, C and D correspond to the location on the four bound-

aries where a coil should be placed to produce the maximum radial field at

the plasma for a given stored energy in the coil pair. Possible locations

at radii less than the inboard first wall are ignored for this exercise,

due to the limited space available.

Table 4.1 gives the four points, their locations, and their radial and

axial coordinates for an assumed plasma major radius of 5.3 m. The fifth

entry in the table gives the dimensionless radial field value. If the desired

field at the plasma is specified then the energy stored by the coils can be

* International Tokamak Reactor: Phase One, Report of the International
Tokamak Reactor Workshop, IAEA, Vienna, 1982.
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Figure 4.1 -INTOR boundaries superimposed on Contours of Constant
Bre (Figure 2.2). Points show most effective locations
a0ong each boundary.
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TABLE 4.1

ENERGY AND POWER FOR VERTICAL STABILIZATION
(FIGURES 2.2 AND 4.1)

1. Points A B C D

2. Locations Shield Outer TF Coil TF Coil PF Coil
Boundary Plasma Side Outside Boundary

3. Coil Radius, a[m] 1) 6.89 6.94 7.42 8.48

4. Coil z-Location, d[m]( 1 ) 3.18 4.77 5.78 7.16

5. Bre (2) .12 .079 .058 .037

6. Stored Energy, Eo[MJ](3),( 8 ) .41 .95 1.76 4.33

7. B (4) .09 .06 .041 .028

8. Time Constant, To[s] 1.0 1.27 1.46 1.91

9. Average Power, P[1W]( 6 ),(8 ) 0.86 1.91 3.58 5.87

10. Maximum Power, Pp [MW]( 7),(8)

t w = .01 82.8 191 354 871
= .05 17.2 39.5 72;8 178
= .10 9.00 20.5 37.6 91.1
= .50 2.46 5.30 9.45 21.9

(1) ro = 5.3 m

(2) Fig. 4.1

(3) Eq. 1 ; Br = .01 T

(4) Fig. 4.2

(5) Fig. 2.3
1.24x ~ ?m;A ='rr

2  2 2
(6) Eq. 3 Pes 1.724 x 10-8 r-m; Ac rw (rw/a) a ,(rw/a = .0125); B = .01 T

(7) Eq. 17; Br = .01 T

(8) Scales by (Br/'0l)2
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found by Equation (1). The energies are given on the sixth line for a radial

field of 0.01 T. If a different radial field is required these energies would

scale by (Br /.01)2.

Figure 4.2 shows contours of constant radial field normalized to average

power for a cycled system. The four boundaries are also shown, with the four

points A, B, C and D from Fig. 4.1. The seventh line of Table 4.1 gives the

value of the dimensionless radial field produced by coils at these points.

The time constants associated with charging the coil pairs is given by

To = poaa2G6 where G6 is given. in Fig. 2.3 as a function of d/a, and rw/a.

The four time constants for an r W/a = .0125 are listed in line 8 and are based

on copper. Lower values are possible with lower (rw/a) or higher Pes. Continuous

loops are assumed. If saddle coils are used, the time constants, T0 , will

decrease by a factor of 2 - 3 and the peak power will increase somewhat.

The average power required to produce a specified cyclic radial field

can be found from Equation (3) if eddy current losses are neglected. Line

nine in Table 4.1 gives this average power estimate for the four sets of

loops with a resistivity of copper (p = 1.724 x 10-8 S-m), an (rw/a) =

.0125 and a required field of .01 T. This power will scale by (Br /l)2 for

other field values.

Finally, (17) is used for line ten which shows the maximum power to

charge the coils to produce a stabilizing field of Bd = 0.01 T in a time,

t . For this to occur, it is necessary for a passive stabilizing system
w

to have a time constant T2 = tw'

The values in line 10 also assume that the active coils are complete,

toroidally continuous, loops. If saddle coils are formed for the point A,
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the time constant T becomes 0.38 sec and the maximum power for t = 0.01,

0.05, 0.10 and 0.50 sec in line 10 becomes 84.1, 18.5, 10.3, and 3.80 MW,

respectively.

The table shows that the required energy and maximum power increase by

an order of magnitude for an external coil located on the locus of the PF

coils relative to an internal coil located at the most effective point on

the shield outer boundary. The maximum power for any of the points decreases

sharply as tw increases thus implying the desirability of using a passive

stabilizing system with a long time constant. However, the latter will

increase the energy requirements for providing the start-up voltage, hence

a trade-off is necessary. This will be considered in a later section.

4.2 Radial Stabilization

Figure 4.3 shows contours of constant dimensionless axial field produced

by a pair of coils with the four boundaries of interest superimposed on them.

The points denoted by A',B', C', and IY are those locations on the boundaries

where a coil should be placed in order to produce the maximum z-directed field at

the plasma center for a given stored energy in the coil pair. Although, more

effective locations exist below the line n = d/ro = .44, this region was ex-

cluded in order to allow radial access for other systems.

Table 4.2 identifies the four points and their axial and radial coordi-

nates for an assumed plasma major radius of 5.3 m. The value of the normalized

axial field component from Fig. 4.3 is listed in line five.

The energy stored in the coil pairs for a desired axial field at the

plasma of .01 T is given in line six. As can be seen in Eq. (4), if other

field levels are required, the energies scale by the ratio (Bz/.0l)2
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TABLE 4.2

ENERGY AND POWER FOR RADIAL STABILIZATION
(FIGURES 2.5 and 4.3)

Points

Locations

Coil Radius, a [m](

Coil z-Location, d [m]( 1)

Be (2)

Stored Energy, Eo [MJ]( 3)

B (4)

Time Constant, TO' [s](5)

Average Power, P [MW] (6),

Maximum Power, Pp [MW](7,

tw = .01

= .05

= .10

= .50

, (8)

(8)

8)

I. _ _ _ _ _ _ _

A

Shield Outer
Boundary

7.53

2.33

.20

1.48

.155

1.92

0.24

298

60.7

31.1

7.46

B' f

TF Coil
Plasma Side

9.59

2.33

.15

2.63

.121

3.17

0.39

528

107

54.3

12.2

ro = 5.3 m

Fig. 4.3

Eq. (4); Bz = .01 T

Fig. 4.4

Fig. 2.3

Eq. 6 ;pes = 1.724 x 10-8 Q-m; rw/a = 0.125; Bz = .01 T

Eq. 17; T1 -+ ' ; Bz = .01T

Scales as (Bz/.01)2

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

C?

TF Coil
Outside

10.49

2.33

.13

3.51

.109

3.94

0.49

704

142

72,0

15.8

D'

PF Coil
Boundary

12.51

2.33

.099

6.04

.081

6.02

0.88

1210

244

123

26.2
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Figure 4.4 shows contours of constant axial field component normalized

to the average power for a cycled system. The four points A', B', C' and D'

are located as Fig. 4.3 - i.e., to produce the maximum axial field component

for a given stored energy. The values of the dimensionless radial field

normalized to average power are given in line seven in Table 4.2.

Line eight gives the time constants associated with the charging of the

coil pairs. assuming toroidally continuous loops. These constants are given

by T ' = poaa2G6' where G is given in Fig. 2.3. These time constants

are for copper coils with an assumed r w/a = .0125. Lower values are possible

with lower (rw/a) or higher pes.

If segmented coils are used for internal coils, for example, they must

be formed from 4 loops as illustrated schematically in Fig. 4.5. The most

desirable location for the small radius loop to return the current from A',

would be on a negative contour such as point E since the return current

would then provide an additive field to that produced by A'. Negative contours

are, however, in regions where coils may be difficult to locate because of

interface constraints. In that case, the return leg should be positioned on

the smallest possible contour value since return currents for A' on positive

contours will subtract from the field produced by A'. A return loop at F

for example, would have a relatively small effect on the field produced by

A', since the contour at F' has a value of 0.02 whereas the contour at A'

has a value of 0.20. The segmented coils would have a time constant which

would be about 0.45 sec rather than the 1.92 sec given in Table 4.2 for

complete loops at A'. These represent upper limits based on copper coils

and could be reduced by using higher resistance materials or smaller current

carrying cross-sections.
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In Table 4.2, the average power required to produce a specified cyclic

axial field for two loops can be found using Eq. (6) and Fig. 4.5. Line

nine gives the average power for the four sets of loops assuming copper

(Pes = 1.724 X 10-8 P-m), an (rw/a) = .0125 and a required field of .01

T at the plasma. This power will scale by the ratio (Bz .01) 2 for other

field levels.

Finally, Eq. (17) can be used to estimate the maximum power (line 10,

Table 4.2) required at time tw while charging at a constant I to produce

the required axial field of .01 T. If saddle coils are used for coils at

A', then the change in time constant leads to an increase in maximum

power to 303, 65.7, 36.1, and 12.5 MW for tw 0.01, 0.05, 0.10, and 0.50

sec, respectively.

The values given in line 10 assume that a passive stabilizing system is

present with T2 = tw as described in Section 3.1.2. The energy input is

approximately the same as Eo in line 6 since t << T= T'. The energy

input and maximum power required vary by a factor of four between coils

A' and D' and the maximum power decreases dramatically as tw increases as

in the previous section. Note that coils A' to D' in this section were

located at the best possible position in the allowed region and are not at

the same points as A to D in the previous section. The decrease in power

for this case as tw increases must be weighed against the increase in energy

which occurs with tw for start-up voltage assist. The latter is shown in

the next section and a trade-off is performed.

4.3 Start-up Voltage

Figure 4.6 shows the contours of constant dimensionless flux produced

in the plasma loop by a pair of coils. Also shown are four boundaries of
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interest. The point A', B', C', and D' correspond to the locations along

the boundaries where a pair of coils should be placed to produce the maximum

flux at the plasma for a given stored energy in the coils. Locations below

7 = d/a = .44 are ruled out in order to allow radial access for other sub-

systems.

Table 4.3 gives the locations and coordinates of the four points shown

in Fig. 4.6. The fifth line gives the normalized flux produced by coil

pairs at the four points.

The time constants associated with charging. the coil pairs is given by

T' = porra2G6 ' where G is found from Fig. 2.3. It is assumed that the coils

are copper (Pes = 1.724 X 10-8 p-m), with (rw/a) = .0125. The four constants

are given in line six. Lower values are possible with lower (rw/a) or higher

Pes'

Equation (8) relates the voltage $, at the plasma to the dimensionless

contours of constant flux, 0e, the stored energy and the time, to, over which

the coils are ramped at a constant I. For a given * and t , the stored

energy in each case can be found from (8). Entry 7 in Table 4.3 lists

the energies stored in the loops charged in times of t = .1, .5 and 1.0

seconds to achieve 25 V (FED) and 100 V (INTOR) at the plasma centers.

Other times and/or voltages may be obtained by scaling the entries for

* = 25 V, to = .1 sec by the ratio ( t0 /2.5)
2 . The total energy input

is dependent on t = tv; the interval for which the voltage is desired, and

on At*, the time lag for flux penetration. The energy input may be esti-

mated using (18), which is plotted in Fig. 4.7. Fig. 4.7 gives the ratio

Ein/E as a function of (At 0/tv) for selected values of (tv/Tl). The

graph clearly shows the increase in energy input as the time lag for flux
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TABLE 4.3

STORED ENERGY FOR START-UP VOLTAGE

N T I

Points

Locations

Coil Radius, a [m)

Coil z-Location, d [m](1)

e(2)

Time Constant, T0"[s](3)

Stored Energy, E0 [MJ] 4)

< = 25 V

t = 0.1 sec

= 0.5 sec

= 1.0 sec

p = 100 V

t = 0.1 sec

= 0.5 sec

= 1.0 sec

A"l

Shield Outer
Boundary

7.42

2.33

.86

1.28

.63

16.2

65.5

10.2

258

1050

B"

TF Coil
Plasma Side

9.43

2.33

.64

2.23

1.15

28.9

117

18.3

462

1870

ro = 5.3 m

Fig. 4.5

Fig. 2.3

Eq. 8

F F F

F F

F IF FF

1.

2.

3.

4.

5.

6.

7.

C11

TF Coil
Outside

10.23

2.65

.55

2.63

1.55

39.1

157

24.8

626

2520

D"

PF Coil
Boundary

11.93

3.18

.42

3.38

2.66

66.9

269

42.6

1070

4310

(1)

(2)

(3)

(4)
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penetration increases and may be used to estimate E for specific cases.

As an example, assume that a start-up voltage of $ = 35 V is desired

for an interval of tv = 0.5 sec after the initial transient lag in flux

penetration. Results in Table 3.2 showed typically that the lag time

Ats was in the range of 0.075 to 0.300 sec. This determines At /tv

to use for location along the horizontal axis in Fig. 4.7. Now consider

coils A" and D" in Fig. 4.6. The coil location determines its time

constant T ( T' in Table 4.3). The ratio tv/ 1 can now be found and

Eo can be determined from (8). The energy input can then be found from

(18) or from the ratio Ein/E0 from Fig. 4.7. Results for this case are

plotted in Fig. 4.8 as a function of the time constant, T2 , for passive

stabilization where it has been assumed that At = T 2. The curves

indicate that the external coils at D" require - 3 - 3.5 times the energy

input to provide the 35 volts for start-up regardless of the time constant

for passive stabilization. The energy input required in either case,

however, increases substantially as the time constant for the passive

stabilization system increases.

The increase in cost of the energy source for start-up as T2 increases

must be traded off against the decrease in cost of the power supply for

active stabilization as T2 increases. The peak power required for vertical

stabilization is shown in Fig. 4.9 for coils at A or at D (Table 4.1) in

Fig. 4.1. The coils at D are external and assumed to be toroidally con-

tinuous loops. The coils at A are internal and are, therefore, shown for

two cases: continuous loops or segmented into 12 saddle coils. Saddle coils

at A require somewhat more power than continuous loops at A, but are advan-

tageous from the maintenance and assembly standpoint. The external coils

at D require about an order of magnitude more power than the continuous
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loops at A regardless of the passive stabilization time constant. Power

requirements decrease substantially over the lower range of T2'

A similar plot is given in Figure 4.10 for active radial stabilization

coils based on A' and D' in Figure 4.3 and Table 4.2. In this case the

continuous external coils at D' require ~3.5 - 4 times the power required

for continuous internal coils at A'. The segmented configuration for

internal coils is based on coil sections through points A' and F' in Figure

4.3. For all cases, power decreases substantially over the lower range of

passive stabilization system time constant.

Figures 4.8 through 4.10 illustrate the strong dependence of the

energy input for start-up and the peak power required for active stabilization

on the time constant, T2, for the passive stabilization system and on

whether coils are internal or external. The selection of T2 depends on

the relative cost of the two sources, but the results in Figures 4.8 -

4.10 imply that a value of T2 = 0.200 sec would be consistent with saving

energy and peak power.
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