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1.0 INTRODUCTION

The rapid decay of magnetic flux associated with a plasma disruption
induces voltages and currents in conducting bodies which are nearby. Re-

cent tokamak designs utilize toroidal shells or shell segments near the

plasma which are divided into sectors for assembly and maintenance purposes,
but which may have electrically conducting paths toroidally in order to pro-
vide vacuum boundaries. The generation of voltage across sector gaps is a
potential problem in the form of arc initiation with material damage. 1In
addition, the induced currents interact with their own fields or fields

|
from the TF or PF coils to generate electromagnetic loads which reguire con-

sideration from the structural standpoint.

The examples presented in this report were generated as part of the
FED/INTOR reactor design study1 to illustrate the form and magnitude of
these induced current effects and some of the machine characteristics which

govern their behavior.

The rate at which the plasma flux decays and the strength of the in-
duced current, fields and forces are dependent on the overall shell geo-
metry since this governs the initial coupling with the plasma. The ability

of the shells to carry net current through an rz-plane, that is, parallel

to the initial plasma current, is also of fundamental importance. The mag-
nitude of the interaction is then dependent on wall thickness and resisti-

vitye.

Section 2.0 presents the results from a finite element model of a
multiple shell system for several cases involving shells capable of carry-
ing net current, shells restricted to no net current and combinations of

these cases. Field line patterns at selected instants after disruption




are given as well as plots of flux through the z = 0 plane in forms allow-
ing cases to be compared. Results show that toroidal continuity to allow

net current flow in partial shells or complete shells is an important in-

gredient for slowing down the initial rate of flux decay which is the source

of the maximum voltage generated across sector gaps.

Simplified models for gap voltage estimation are described in Section
3.0. It is shown that very conservative models may yield results which are
an order of magnitude higher than more accurate finite element models. The 3

latter models become necessary if predictions based on the former substanti-

ally exceed design allowable Léve[s. Examples related to INTOR and FED indi-
cate that even if the two inner torus shells are sectored so that net toroidal
current flow is prevented, gap voltages could be Limited to 20 to 50 volts
provided a third partial shell with toroidal continuity is used. Although
there is considerable uncertainty concerning the allowable level for this

voltage, the examples illustrate that design variations exist which can

strongly influence its magnitude. |

Section 4.0 considers the earlier cases from the standpoint of in—
duced current and field decay time. Results indicate that considerable
flexibility exists for adjustment of the decay rates and that rates are
not described by a singLé exponential time constant. For a fixed shell
geometry and set of restrictions on net current flow, decay times may be
scaled proportional to the ratip of shell thickness to resistivity. Scal-
ing ih this way requires that all shells be scaled in the same way, that

is, it does not apply if only a portion of the shell components are altered.

Section 5.0 presents the results for two cases based on the finite

element model* to show the form and source of the net overturning moment

*The results for all cases were generated with a finite element, transient
magnetic field program by Pillsbur‘y.2




on a sector due to the interaction of the induced saddle currents, with
the toroidal field. The eddy currents also lead to an equal and opposite
twisting about the plasma axis at each end of the sector. Typical load
levels for a FED/INTOR scale device are estimated to be nontrivial, but

feasible for support.

2.0 PLASMA FLUX DECAY

This section will Lay the groundwork for the discussion of induced
voltages and shell time constants in the sections which follow. Both
areas are strongly dependent on the manner in which the plasma flux Llinks
conducting shells in its vicinity and whether or not the shells can carry

a net induced current in the toroidal direction.

Figure 1a shows a cross section of two toroidal shells in the rz-
plane. Axial symmetry is assumed about the z—axis and symmetry is assumed
relative to the z = 0 plane. The field Llines from a uniform current den-
sity "plasma" of rectangular cross section are also shown. The field Line
patterns for a more realistic plasma current distribution would be somewhat
diffefent, but would not alter the general discussion or conclusions which
follow. Figure 1a will be considered to be the steady~state, t < 0, con-
dition. If the plasma current decays to zero in a time, t4, as in a dis-

ruption, then eddy currents will be induced in the walls.

Figure 1b is identical to Fig. 1a except that a shaded region has been
added to show that portion of the steady-state plasma flux which does not

Link any conducting material in the shells. This portion of the flux is
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not inductively coupled to the walls and can, therefore, collapse as the
plasma current decays in the time, tg. ALl other field lines either cut
through shell 1 alone (e.g. - field Line A), cut through both shells (e.g.
- field Lline B), cut through shell 2 alone (e.g. - field Line ), or Llink
both shells by passing through the "hole" in the torus (e.g. - field line
D) and, therefore, will be restrained in their attempts to move relative

to the conducting material by the induced currents.

2.1 Shells With Net Current Flow

First, assume that both shells are electrically continuous in the
toroidal direction. Hence, they are able to carry a net current through
the rz-plane following the plasma disruption. Relatively thin, geometri-
cally similar cases involving shells of this type would be expected to
respond identically to a plasma current decay provided the shells had
identical "magnetic Reynolds numbers" in the two cases. These parameters3
are proportional to shell thickness and inversely proportional to shell re-
sistivity and decay time for the driving current source. They represent
the ratio of the characteristic time for diffusion of the field relative
to the system to the characteristic decay time of the field source. Fig-
ures 2a and 2b illustrate field Line patterns at two instants of time fol-
lowing a plasma current decay to zero in td = 0.010 s. Each shell has a
thickness to resistivity ratijo of tg/p = 4.12 x 104 9"1 which corresponds
to ~ 4‘cm thick stainless steel. If, for example, the shells were ~ 0.08

cm thick copper, or ~ 0.13 cm thick aluminum then the patterns and results

would be the same because tg/p would be the same. Figure 2a shows that at

0.010 s there is essentially no change in the field pattern outside shell 1




Z Cm)

10

Case 10

/ﬁ:

i S TS S5 T S N O T B T TS IS I N TR TN U A DU G N N U T VNN A NS N YU BN S SN N N NN N SN SN A N N W N

1 I . l LH1
o IR EE RS I‘IIFIIIITIIIII iy ryrrTrryrrirriory

1 2 2 6 7 8 (]
R ( m)

(=)

Figure 2a. Field lines at t = 0.010 sec for two shells capable of
net current flow; induced currents flow primarily on
the inner shell and the field pattern outside the first
shell is essentially frozen (ts/p = 4.12 x 10% Q~1 for
each shell).

10




Z ¢ m

1q

1

Case 10

il 0ttt 1 t. ' 1 11

7
$ .1
1

lllL;llllllJll!llll%illl!lJLllllll

TSN
i
L

o l]TTerITIIlIIIT ‘IIIIIIIIIITTITIIIIIIAIIIT7TTjj

¢ 1 2 e 7 8 Q
R ( m)

Figure 2b. Field lines at t = 0.05 sec for the shellsin Fig. 2a;
some current has now been induced in the outer shell
near the outside of the torus.

10




(compare with Fig. 1a), indicating that the plasma current (i.e. - driving
source) decay occurred on a time scale which was fast relative to the
characteristic time for field diffusion through the shell. The presence

of an induced current in a shell is implied in the figures by "kinks" in

the field Lines as they pass through the wall because a current sheet in

the shell leads to a discontinuity in the tangential component of field at
the shell. Note, then, that induced currents immediately following the
disruption are concentrated on the inner shell since there are essentially
no "kinks'" in field Llines passing through shell 2. The fijeld Line pattern
within sheLL 1 has changed substantially because the uncoupled flux (i.e. -
the shaded region in Fig. 1b) collapsed with the plasma current and the
remaining flux within shell 1 was redistributed so as to satisfy V2§ =0

in this region. Figure 2b shows the field lines at t = 0.050 s, when suffi-~
cient time has elapsed for the field disturbance to begin to diffuse through
the inner wall and to induce significant currents in shell 2 as implied by

the kinks in the field Llines on the outboard side of the shell.

Further insight into the influence of the shells may be gained by con-
sidering Fig. 2c. The vertical axis is the net flux through the z =20
plane versus radijus for selected instants of time. Flux is given by

r
¢ = Flux = 21 [ B,(r, z = 0) rdr N
o
The flux at r = 0 is always zero and the maximum ¢ for t < 0 occurs at
point ¢ which is located at the plasma current center (see Fig. 1a) because
B, is of different sign inboard and outboard of this point. The rapid de-

crease in plasma current and corresponding loss of the shaded flux in Fig.

1b in the same time interval, together with the redistribution of flux
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within shell 1, and small amount of diffusion through the shell, leads to
the pattern indicated for t = 0.01 s. The subsequent decay of flux occurs

on a longer time scale corresponding to induced current decay in the shells.
The location of the shell intersections with the z = 0 plane (see, a,b,d,e

in Fig. 1a) are also shown.

2.2 Shells With No Net Current

The t < 0 field pattern is produced by the plasma current, I,, hence
any closed contour in an rz-plane which encloses the plasma current must

satisfy

§ B-dc = u I )

I1f, for example, the contour is chosen along a field Line outside both
shells such as D in Fig. 1b and if the field along this contour is to be
essentially unchanged before and after the plasma disruption then (2) im=-
plies that a net current of magnitude Ip must be induced through the rz-
plane and within the contour immediately after the rapid plasma decay.
Hence, the ability of the shells to sustain the flux in the region inboard
of the plasma is tied to their ability to carry net current though the rz-

plane.

Figure 3a is a schematic representation of the cross section of the
shells in the z = 0 plane and shows that one or the other or both provide
the ability to carry net current through an rz-plane if they are toroidally
continuous. If, on the other hand, the shells are cut with radial planes
and connected in sectors as schematically represented in Fig. 3b, then

currents can still be induced in the shells following a plasma disruption.

1




Figure 3a - Shells with
toroidal continuity allow
net current flow through
an rz-plane.

12

Figure 3b - Sectored shells
do not allow net current flow
through an rz-plane.




However, because thefe can be no net current flow through an rz-plane,
Eg. (2) cannot be satisfied, thus we would expect a substantial change in
the fietd\pattern from those illustrated in Section 2.1. From another
viewpoint, the change would be expected because of the substantial re-.
duction in mutual inductance between the pltasma and walls in Fig. 3b re-

lative to the case in Fig. 3a.

Figures 4a to 4c show results for two shells assuming that the sum
of the induced currents in both shells must be zero. Hence, the current
at a point on a shell may return in the same shell or the other shell,
but the sum of all currents through an rz-plane must be zero. Figures 4a
to 4c are directly comparable with Figs. 2a to 2¢ in which net current flow
was allowed. In Fig. 2a the field pattern outside shell 1 was essentially
frozen in the t < 0 condition (see Fig. 1a) immediately following the dis~
ruption whereas in Fig. 4a, the only field Lines which are frozen in the
t < 0 condition are the field Llines between shells. The field Llines
through the "hole" in the torus collapse during tq since no net current is
possible to sustain them. This point is emphasized by comparing Figs. 2c¢
and 4c where the latter shows the initial collapse of flux throughout all

space as well as in the vicinity of the plasma.

2.3 Combined Net and MNo Net Current Shells

First wall and shield boundaries in designs which have been considered
recently often consist of combinations of cases allowing net current flow
or restricting shells to no net current through an rz-plane. This section

will, therefore, present three cases to illustrate typical effects.

13
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The first case consists of threebsheLLs where shells land 2 are iden-
tical to those in Fig. 4a in that they are restricted to no net current
flow thus assuming they are sectored as illustrated in Fig. 3b. The third
shell is adjacent to and on the outside of shell 2, but is assumed to be
toroidally continuous and cah thus carry current through the rz-plane.
Each shell is assumed to have the same shell thickness to resistivity

ratio, tg/p = 4.12 x 10° @7

. Field Linés are shown in Figs. 5a and 5b

for times of 0.01 s and 0.05 s respecfivéty and a flux plot is given in
Figa 5c.. Comparison of these results with similar figures for the previous
two cases illustrate the ability of the continuous, net current outer wall
to sustain flux through the "hole" in the torus and restrain the initial
rate of flux decay between points a and ¢ relative to the two shell, no

net current case in Fig. 4c. The inner shell is not quite as effective in

slowing down the flux decay after the initial flux collapse as when it was

continuous (compare Fig. 4c with the case in Fig. 2c.)

The case illustrated in Fig. 5 involved two sectored shells and one
complete continuous outer shell which, for example, could be a vacuum
boundary. In some design variations, a complete shell which is toroidally
continuous does not lie close to the two sectored shells. Figure 6a for
example, shows a configuration where the two shells are sectored and,
therefore, cannot carry net current flow through the rz-plane and where
there is a third, partial shell inboard which can carry net current (this

is the case, for example, in "FED-81”4 where the continuous shell is part

of the spool). Figures 6a, 6b and 6c may be directly compared with earlier,

similar figures to show that the inboard partial shell segment is quite

17
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effective in decreasing the initial flux collapse because of its ability
to carry net current to support the flux which originally passed through

the "hole” in the torus.

The last case to be presented is similar to the configuration in Fig.
6 except that the continuous partial shell is located outboard rather than
inboard. Results are shown in Fig. 7a to 7c and, when compared with Fig. 6
show that the outboard shell is not as effective since it allows a fraction

of the bore flux to collapse along with the plasma current.

The results for cases presented in this section were generated using
a finite element model of shells with overall dimensions comparable to
those being considered for INTOR and FED.1 They illustrate the importance
of toroidal continuity of at Least a portion of a shell to maintain a
large fraction of the flux initially produced by the plasma. This has a
significant effect on the sector gap voltages which are produced by the
flux change during a disruption. The next section will show methods for
estimating sector gap voltages and use results from this section to arrive

at approximate voltage levels for these reactors.

3.0 SECTOR GAP VOLTAGES

First wall, blanket and shield designs which have been considered re-
cently have included shells which may or may not be toroidally continuous.
If they are sectored for ease of assembly and maintenance then questions
arise concerning possible arcing across sector gaps due to the voltage

induced by a disruption. The next section develops a simple model for
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estimating the induced voltage distribution. .This is then applied to ex-

amples for FED and INTOR in Section 3.2.

3.1 Maximum Voltage Estimation

The method for voltage estimation across sector gaps during a plasma
disruption may be described with a series of simplified diagrams. Figure
8 shows two inductively coupled circuits. The plasma is represented by a
single circular filament carrying a current Ip for t < 0. A wall or electri-
cally conducting shell which is induétiVeLy coupled to the plasma is repre-
sented as a closed Loop of resistors R carrying no current for t < 0. At
t = 0 the plasma current decays to zero and induces a current I, in the
wall which then decays with a characteristic time constaht for the Loop.
The driving voltage for the wall current is the instantaneous rate of
change of flux Llinked by the wall. At any instant during the wall current
decay, the net voltage drop between any two points A and B in the loop is
zero provided the number of resistors is infinite and they are uniformly
distributed. This is illustrated in Fig. 9 for a lLoop with a circumferential
Length, %. Figure 9 is a voltage plot along the periphery and shows that,
at any instant the distributed resistive and inductive voltages cancel to

yield a net voltage of zero everywhere in the loop.

If we now assume that the number of resistors is 2n, that the in-
ductance is still uniformly distributed, and, that the resistors are al-
ternately small and large in magnitude,'then the voltage distribution along
the circumference at a given jnstant is as shown in Fig. 10. Figure 10
jllustrates that the net voltage is still zero at points between each pair
of resistors, but the linear inductive voltage distribution combines with

the nonlinear resistive voltage to yield a '"sawtooth" variation in net

28




Figure 8 - When a disruption occurs, the decay of the plasma
current Ip induces a current I in the conducting
loop consisting of a ring of resistors.
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voltage. In this sketch, the peripheral length occupied by small and
large resistors is %1 and %, respectively. The maximum net voltage is
shown as Vg. In the extreme where L3 << £4 and all of the resistance is
in 22 with no resistance in %1, then V4 apbroaches the maximum value Vg.
The Latter is the inductive voltage divided by the number of resistor
pairs or segments. The manner in which this can be related to induced

sector gap voltages in the event of a plasma disruption is shown in Fig. 11.

The right side of Fig. 11 is a section of the outboard region of a
torus consisting of two continuous shells. The inner shell is convoluted
and forms gaps of width g on the plasma side. The plasma loop current lies
in the plane of the figure and is not shown. It produces some flux on the
plasma side in region (1) which does not lLink any closed contour'through a
shell. This portion of the flux may be considered to collapse at the same
rate as the plasma current decay. The flux ¢g, in the gaps is also in this
category. Flux produced by the plasma which originally passes through
regions such as (2) or (3) will take Llonger fo decay since it induces cur-
rents of the type shown for the shells in Fig. 3b and for shell e in Fig.

3a.

The left side of Fig.'11 shows one pair of resistors froma closed Loop
and represents wall resistances for one sector of the inner shell as shown
on the right. If there are n sectors (i.e. — n pairs of resistors) then
the maximum voltage across the gap g occurs for g << £4 and (R/2)4 > O

in which case

Vg max = - ¢/n (3)
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Figure 11 - Sketch of a sector inner and outer shell
and the contour around the plasma side for
estimation of sector gap voltages.
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where $ is the rate of change of flux through the area enclosed by the
dashed contour and is also the total inductive voltage available to drive
current along this path. If the wall resistances per unit length are finite

for both &1 and 22 then the gap voltage for g << 21 is given by |

-1
__9% (R/2) 124
Vg = " m [1 t RID ST, 4

Equation (4) shows that the gap voltage can be reduced significantly
by decreasing the resistance along the path L2 relative to that along 29 .
This could be done, for example, by using a lower resistivity material
along or in parallel with & or by using a thicker wall along £2 than

atong 21.

The most conservative estimate for i for use in (3) or (4) would be
to assume that all the flux initially produced by the plasma Links the
contour and collapses on the time scale of the plasma current decay. The
flux would then be equal to.Lp Ip whefe Lp is the plasma self inductance
and Ip is the plasma current. 'This is a conservative assumption and may be
overly pessimistic because it includes a large fraction of flux which does
not link the torus walls (e.g. - see shaded region in Fig. 1b). Equations
(3) and (4) will be used in the next section to estimate disruption—in-
duced gap voltages for INTbR and FED. They will be based on the computed
rates of change of flux at point d (Fig. 1a) which corresponds to the gaps
in the z = 0 plane on the outboard side. The examples will negLect the
flux ¢g originally in the gaps (see Fig. 11) since this can be shown to
be a small correction in these cases. In a later stage of design, the

estimates should also be performed at locations other than the z = 0 plane

2




with further consideration of the potential impact of plasma motion and

azimuthal asymmetry of the flux change.

3.2 Examples for INTOR and FED

Figures 2c¢ and 4c to 7c provide‘the means for estimating $ for any
contour in the z = 0 plane for several shell configurations. The gap lLo-
cations on the plasma side in this plane are at points d and b (see Fig.
1a). For the purposes of estimating voltages for FED and INTOR we shall
concentrate on the flux change for a contour through d since the flux in-
itially available at that point is greateh than that for b in all cases.
Note that the use of the total flux produced by the plasma (point c)
would considerably overestimate that available for voltage generation in

the gaps.

The model is based on a rectangular, stationary, discharging plasma
of uniform current density. The overall shell dimensions in the model
were comparable to those in INTOR and FED, but differ somewhat from these
cases as jllustrated in Fig. 12a and 12b. Exact shell dimensions must
eventually be used together with a better plasma model including motion.
However, the trends which are given may be expected to be correct and

voltage lLevels to be of the proper order of magnitude.

Table 1 gives estimates based on different shell configurations as
described in the figures for Section 2.0. In all cases shell thickness
to resistivity ratios correspond to ~ 4 cm of stainless steel. Parameters
assumed for FED and INTOR are given in the footnotes. Line 1 is based on

two shells which are each toroidally continuous to allow for net current

35




Axial distance, m

> N

—
1

N W D (6} (0)) -~
T

INTOR |
“outer shield boundary

Outer blanket
boundary

First
wall

Finite element
model

inner shell
outer shell

Plasma
center

O

Figure 12a - I1lustration of finite element model shell
locations relative to the INTOR inner boundary,
outer blanket boundary (assumes 0.5 m blanket),
and outer shield boundary (assumes 1 m shield
+ 0.1 m gap).
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Figure 12b - Illustration of finite element model shell
locations relative to the FED baseline first

wall and shield outer boundary.
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flow as éhown in Fig. 2. Maximum gap voltages are given in columns 3 and
5> based on Eq. (3) and gap voltages based on Eq. (4) are given in columns
4 and 6. The maximum gap voltage, Vg max~s corresponds to the maximum in-
ductive voltage drop per sector whereas the gap voltage, Vg, gives the
net voltage across the gap on the plasma side. Estimates do not include
the effect of the gap flux, ¢g, in Fig. 11, since it represents a minor

correction for the cases considered.

Two toroidally-continuous shells (Liné 1) yield lLow voltages, but are
probably not practical. The other extreme is two sectored shells which
cannot provide a net current flow through an rz-plane and is considered
in Line 2. The last three‘cases correspond to two shells with no net cur-
rent flow and net current flow in either a complete outer shell, partial
shell inboard or partial shell outboard. Results fall within the bracket
formed by the first two cases and indicate that gap voltages of the order
of 30 to 50 volts for FED and 20 to 40 volts for INTOR are probably achiev~
able if an equivaLent Llevel of toroidal electrical continuity can be pro-
vided adjacent to, but outside the outer shell, for example, in a spool or

vacuum boundary.

Table 2 is similar in format to Table 1, but considers variations in
the ratio of wall thickness, tg, to resistivity, p. Most cases involve
two shells with no net curfent plus a complete outer shell with net cur-
rent as shown, for example, in Fig. 5. Lines 1 to 4 utilize two shells,
each with an equivalent thickness to resistivity ratio corresponding to
~ 4 cm of stainless steel and an outer shell corresponding to ~ 9 ¢cm,

~ & cm, ~ 2 cm and O cm of stainless steel, respectively. Voltage results
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indicate that the largest incremental decrease in voltage occurs by pro~-
viding some toroidal continuity (e.g. - compare lines 3 and 4) and that
Little is gained by increasing the wall thickness to resistivity ratio

1 for the outer shell. Two shells with

beyond the Level of 2.06 x 10° o
net current are given in Lline 5 to illustrate a probable Lower Limit even
though providing two such shells is quite difficult. Line 6 gives results
equivalent to using ~ 1 cm thick stainless steel for all three shells and
line 7 provides an upper Limit to sector voltage since it corresponds to

a case where all of the fLux coupled by the contour through point d in
Fig. 1a is allowed to collapse with the discharge time of the plasma.

This assumption is conservative, but lLess conservative than the case in

line 8 which assumes that all of the flux produced by the plasma (point

¢ in Figure 2¢ and 4c to 7c) is available for gap voltage production.

The approach for the estimates in lines 7 and 8 can be applied fol-
Lowing generation of a simple flux map of the t < O steady state flux pro-
duced by the plasma or, equivalently, calculation of the plasma self in-
ductance and a coupling coefficient with a contour through the gap location.
However, results will tend to be overly conservative. The approach used
for the other cases in Tables 1 and 2 required a solution of the eddy
current problem to find the initial & through the contour. This is more
realistic, but still neglects theveffects of plasma motion or possible

asymmetrical flux changes.

The examples indicate typical voltage lLevels which can be expected
and the considerable flexibility in control of these lLevels through design

of wall continuity, thickness and resistivity. Before a realistic design
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can be approached, however, it will be necessary to specify an allowable

voltage level.

4.0 SHELL TIME CONSTANTS

The currents in the shells in the previous sections and their corres-
ponding fields are induced by the changing plasma flux during a disruption
and further decay over a time interQaL'dependent on shell geometry, toroidal
continuity, shell thickness to Eesistivity ratio and plasma geometry.

Flux decay versus time at the plasma center is shown in Fig. 13, for
selected cases. The top two curves correspond to configurations involving
two shells with net current flow and two different values of tg/p to show
that the decay times are proportional to this parameter for cases of equiva~
lent shell geometry, plasma geometry, and restrictions on net current flow.
The lowest curve (i.e., — fastest decay) is also for a two shell situation
and has the same tg/p as the second curve, but shows a dramatically dif-
ferent deéay time because it is a '"'no net current'" case. From a circuit
standpoint, "net current" and "no-net current’ may be envisioned as con-
ditions which significantly alter the coupling coefficients among the
shells and plasma and, in.turn, the circuit time.constants. The third
curve consists of two shells with no net current and a third, complete,
outer shell capable of carrying net current. This case is also considered
in Fig. 14 where the (tg/p) for two shells with no net current is held
constant and (tg/p),, the value for the outer shell, is allowed to vary.
The trend in decay time is as would be expected, but time scaling pro-

portional to (tslp)o is not valid since (tg/p) for all shells was nof
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changed proportionally.

Finally, it should be noted that all curves indicate a monotonic de-
cay in time which cannot be described by a single exponential time con-
stant. The initially induced current distribution may be envisioned as a
fundamental with higher order harmonics where the‘amplitudes are dependent
on shell geometry, resistivfties, and plasma current distribution. The
highest order harmonics decay first, but at any given instant the decay
is governed by a combination of "time constants". This is illustrated in
Fig. 15 where the instantaneous decay time for induced field energy is
plotted as a function of time for three cases. The decay time at any in-

stant is given by

r = 2Ei (5)

2E
¢ E,
3

where: Ei = energy associated with induced field

E.
;

instantaneous rate of change of Ei
In each case T, rises initially then levels off after the higher order
harmonics in the current distribution decay to a fundamental. The final

values of T, are not directly scalable to (tg/p), since all shells were

not scaled in the same proportion.

This section has discussed the induced field decay time associated
with many of the cases in Section 2.0. Results indicate that consider-
able flexibility exists for adjustment of these rates. For a fixed shell
geometry and set of restrictions on net current flow, decay times may be
scaled proportional to the ratio of shell thickness to resistivity. Scal-
ing does not apply if only a portion of shell components are altered,

however.
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5.0 EDDY CURRENT LOADS ON SECTORS

The toroidal currents induced in the shells when a plasma disruption
occurs must flow between shells at the ends of the sectors if the shells
are segmented, thus requiring no net current through an rz-plane as il-
lustrated in Fig. 3b. The currents are shown schematically in Fig. 16
which indicates that they can be considered locally as currents with com-
ponents transferring between shells or.combonents in the saddle direction.
The currents have the same magnitude, but are opposite in sense in the
other sector end plate. The interaction of these currents with the toroi-
dal field leads to a net torque T, on each sector end plate which is
balanced thus yﬁelding no net moment about the ptasma axis. The inter-
action also leads to a net z-directed force, F;, on each end plate which

produces a net overturning moment on the sector.

As an example, Fig. 17 shows the currents in the saddle direction

and in the transverse direction (note the difference in scale) at 0.010 s
after disruption for the Case of two shells with no net current and a com-—
plete shell capable of net current flow (case 20 in the previous sections).
The saddle current distribution around the end plate is shown in Fig. 18
for selected instants of time. The saddle currents are the primary source
of the force, F,, on each end plate which lLeads to the net overturning mo-
ment on the sector. The decay of this force in time is shown in Fig. 19
which indicates that it persists for about the same time as the currents

in Fig. 18.
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Figure 16

Currents Between

Shells :
LT TN
Saddle |
Currents b
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Induced currents which flow along the shells following a disruption
transfer between shells and also flow in the saddle direction in the
sector end plates. The currents lead to a net z-directed force on
each face which yields a net overturning moment. In addition, a

torque is generated on each face, but does not yield a net moment
on the sector.
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Figure 19  Total Z-Directed Force on Séctor End Versus Time (Case

20) (FZ « Ip; Ip = 5.4 MA).
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The "no net" torque, T, on each end plate is plotted versus time in
Fig. 20. This torque decays more rapidly because its primary source is
the current transfer between shells which would be expected to have a

sborter time constant than the saddle currents.

The purpose of this section was to illustrate the type of eddy cur-
rent patterns and loads which can be expected in a sector followingva
plasma disruption. Typical values were generated based on dimensions
comparable to FED/INTOR and indicate that the lLoad levels are nontrivial,v

but have magnitudes which are feasible for support.
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