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ABSTRACT

The existence of thermally stable sub-ignited equilibria of a tokamak

reactor, sustained in operation by a feedback-controlled supplementary

heating source, is demonstrated. The establishment of stability depends

on a number of radially non-uniform, nonlinear processes whose effect

is analyzed. One-dimensional (radial) stability analyses of model trans-

port equations, together with numerical results from a 1-D transport

code, are used in studying the heating of DT-plasmas in the thermonuclear

regime. Plasma core supplementary heating is found to be a thermally

more stable process than bulk heating. In the presence of impurity line

radiation, however, core-heated temperature profiles may collapse, con-

tracting inward from the limiter, the result of an instability caused by

the increasing nature of the radiative cooling rate, with decreasing tem-

perature. Conditions are established for the realization of a sub-ignited

high-Q, toroidal reactor plasma with appreciable output power (=2 000 MW

thermal).
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1 INTRODUCTION

The subject of burn control of fusion plasmas is one of the major problems

associated with reactor design and planning. The necessity for some form

of control stems from the natural tendency of an ignited D-T plasma to self-

accelerate the a-particle production rate beyond the point where the D-T

reaction cross-section turns over. Heat production actually ceases when

the a-particle deposition rate to the electrons and protons is outweighed

by radiation and heat diffusion losses from the plasma. This typically

occurs, if the reactor is not controlled, between 30 and 50 keV, a range of

temperatures for which the neutron flux to the walls attains intolerable

levels, and for which detrimental high-$ induced MHD activity is likely to

occur. Thus, the concensus so far as regards the ideal operational range

of tokamak plasma temperatures, T,and densitiesn, is somewhere between

T = 10 to 20 keV, and n = 1 to 5 x 1020 m 3 , subject to s and wall-loading

constraints, typically a s 10% and a neutron flux of less then 2 MW/m2

A number of burn control methods have been proposed and discussed over the

past few years, which, following Bromberg et al2 , can be appropriately

divided into two distinct classes termed as active or passive burn control,

depending, respectively, on whether or not information is fed back from the

plasma to control some external agent which, in turn, directly controls the

plasma state itself. As an example of active burn control we point out the

currently popular idea of induced toroidal-field ripple resulting in enhanced

a-particle deconfinement 3 . Evidently, the method achieves controlled

reduction in the heating rate by effectively turning down the principal power
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source, the a-particle heat deposition rate itself. Another natural

candidate for control is the equally important supplementary power

source4,5 be it radio-frequency or neutral beam.

Quite obviously, as far as the problem of control is concerned, feedback

onto an external heat source is the superior method, since it not only

involves a shorter time delay in the feedback loop, but mainly one does

not have to rely on whether an internal heat source is going to respond

in a particular predicted manner.

The present work is essentially a stability study of steady high-Q (Q =

power out/power in) tokamak reactor operation achieved by autonomous

(i.e. via temperature) control of the supplementary heating source. The

principal ideas, together with a proof of stability within a O-D plasma

transport representation, of this method of control were presented in Ref.

5. Here we go futher, examining the implications of radial effects on the

stability with respect to small perturbations of the sub-ignited radial

equilibria. The principal tools of our analysis are a criterion for the

linear stability of equilibria of non-linear non-uniform parabolic partial

differential equations due to Gelfand 6, and first used for plasma appli-

cations by Kolesnichenko7 and Rosenau 8 , and a 1-D (radial) transport code

incorporating neo-classical ion heat transport but anomalous particle and

electron heat transport consistent with ALCATOR-type scaling for the

energy confinement time (TE ~ density).

Our main results are, first, the demonstration, according to the Gelfand
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method, of asymptotic stability (i.e. stability with respect to small

perturbations) of the equilibria created below ignition (i.e. where

a-particle heating compensates all the losses) by a temperature-

controlled turn-down of the supplementary heating source. Second, the

successfull demonstration of stable sub-ignited operation using the 1-D

(radial) transport code. Third, we present examples of radiative col-

lapse of temperature profiles, specifically their contraction or inversion,

in fact the manifestation of an instability caused by the generally de-

creasing character of impurity line radiation, as a function of temper-

ature. Finally, we discuss the conditions for the realization of a

commercially viable (= 2 000 MW thermal) high-Q tokamak reactor.

It is not the purpose of this study to carry out a systematic parameter

study of tokamak thermal stability. Rather we select one particular

configuration, which we refer to generically as RFDTR (Radio-Frequency

Driven Tokamak Reactor) having parameters within the range of recent

1,9reactor designs . The material is organized as follows. In section

II we present the 1-D computational model for heat transfer. In section

III, we discuss the problem of stability. One-dimensional time-evolution

studies of the system are described in section IV. A reactor realization

is discussed in section V, and finally, our conclusions. make up section

VI. All units throughout this work are MKS except for temperature T

(keV), density n1l020 m- 3] and thermal diffusivity KIl020 m~I s I.
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2 COMPUTATIONAL MODEL

We will examine our concept of creating stable sub-ignited tokamak equi-

libria through autonomous control of the supplementary heating source

within the scope of a configuration that we refer to as RFDTR (Table

1).

The ALCATOR-A configuration is presented along with RFDTR not only for the

sake of comparison, but because it will be employed as a benchmark case for

testing our 1-D transport code, particularly as concerns the energy confine-

ment time for which extensive experimental data are available10 . The

rationale for the choice of RFDTR parameters lies in the necessity to

satisfy certain basic design criteria. Specifically, q 1 (see Eq. 16);

0 < 10% (in our units, average a = 9.6 x 104 1z <nT>/B 2= 5%), neutron flux

to the wall < 2 MW/m2 (14 MeY neutrons produced at the average rate of the

D-T reaction at To = 15 keV and at no = 3 x 1020 m-3/wall area = 2 MW/m2)-

and at 6 MA an aspect ratio Ra - 4 for at least 70% %-particle confinement11 ,12

The figure of 100 MW for the supplementary power is estimated in advance as

that required to compensate for heat loss with an ALCATOR-scaling confinement

time. We prefer RF heating over other possibilities, because of the ease

and speed with which RF power sources can be.controlled. Finally, if the

configuration is to be a viable power-producing device, we must aim for at

least 2 000 MW thermal at a Q (power out/power in) of about 50; this can be

achieved with the large system (a = 2m, etc.). Results for a = 1.4m, etc.,

will illustrate the limitations on power out and Q which are associated

with smaller systems.
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In order to describe the evolution in time, t, and in the radial direction,

r, of the ion and electron temperatures T. and Te, we solve the standard

13
set of transport equations somewhat simplified to serve our specific

needs, using a predictor-corrector time-centered Crank-Nicolson scheme14'15

We require of the system that it obey the ALCATOR-type scaling law for the

energy confinement time, TE na2 ,but we'allow for a reduction in TE as

recently evidenced for devices where supplementary, rather than ohmic

16
heating prevails . This is achieved by numerically adjusting the anomalous

electron heat conductivity. The major simplification of- our code with

respect to other larger tokamak transport codes is the absence of self-

consistent particle recycling. Since a major part of our study consists

in the examination of the system thermal stability in the peak density

versus peak temperature space, we assume an equilibrium plasma density,

characterized by a parabolic profile and an adjustable peak density.

The equations we consider are

DnT
2.4 x 1.0 = 1.6 x 104 (r Q )'+P + e P + g P ~ dat6 r4  e ohm ea eh-rd e

(la)

anT. 4
2.4 x 104 Dnt = 1.6 x 10 (+ f P + h + P (lb)r P a + iP eq

where (...)' alar, and the heat flux Q is taken as

Qe,i e,i e,i + *De ,Tn' (2)
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The relevant transport cofficients are ion neoclassical heat conductivity

Ki, electron anomalous heat conductivity e , and particle anomalous

diffusivity D. The ion neoclassical conductivity is

2 m VeT ie) [1 + 1.6 q2 + q2 (ff) 3/2 0.68 - - (3)
mi = n p (M T r + 0.36 v

a function which sharply decreases away from the plasma center. At r = 0,

K (r-+o) = 8.55 n 3 q(o) [10 20 -1 s-1, (4)
B2R

giving an appreciation of the neoclassical effect in the plasma core.

The neoclassical electron heat conductivity and particle diffusivity are

scaled down with respect to Ki by a factor of (me/mi)1. However, anom-

alous effects dominate electron heat and particle transport. In the

absence, to date, of a definite theory of anomalous transport, there is

some freedom to speculate about plausible expressions for the electron

thermal conductivity. We limit ourselves to two simple models, compatible

both numerically and as far as the scaling with density is concerned, with

the ALCATOR-scaling confinement time10 TE'

TE = 0.32 <n> a2qi. (5)

The first choice for Ke is simply a constant, ~e 1, the second is radially

dependent via a T1 term,

K ~ 1.5 T. [1020 mI sec~1 , (6)
e 1
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consistent with recent theories1 7, 18 of anomalous heat transport. To

obtain the value of the particle diffusion coefficient D, we take into

consideration the standard experimental observation that the particle

confinement time exceeds the energy confinement time by roughly a factor

of five. We hence take

2D = 0.2 Ke/n Im2Is], (7)

to be applied in the expression (2) for the heat flux Q.

In Eq. (3), pe is the electron Larmor radius

P = 7.525 x 10-5 Tel/B , (8)

with B the toroidal field. The collision frequency ve is 1

v -i 9.18 x 103 n Z £1n AIT 3/2 (9)

with A = 1.1 x 107 Te/ni, and v. is the ion collisionality parameter

e 7.54 x 10-8 V Z q R5/2T.~ . (10)

r3/2

Further, q is the "safety factor"

= r B (11)
q=R B

p

with B the poloidal field, determined via Amperes law

j = I (r B ) . (12)
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From Eq. (12), making the usual assumption

i j0 (TVT )312 (13)

with Te/To = 1 -r2/a2 for simplicity, we obtain for B

B j 2 1 (1 - r2a 12 (14)
Bp 11 o a 5r

whence further

27r B0  r2  , (15)

IR r2 2)1/2

which is the expression for q(r) we use in the code. At the plasma

center, r -+o, we have

q(o) = 2 x 106Ba2/RI, (16)

whereas at the limiter, q(a) = 2.5 q(0).

The remaining terms in Eqs (1) are defined as follows. Pohm is the

standard ohmic heating term. Its contribution to the power balance in

the reactor configuration can be neglected. Pa is the Maxwellian

a-particle energy production rate, approximated up to 100 keV by20

4.29 x 108 n2 exp(- 17.7/T.0.348  (17)

1 - 0.05 T + T 1/3 (0.1554 - 0.1418 T1/3 + 0.0364 T.)

The functions f ,i

(18)fe = exp(- 0.015Te) , f = 1 - f



approximate the curves obtained in Ref. 21 for the fraction of a-particle

energy going to the electrons and ions, respectively. We are assuming

here that the a-particles deposit their energy locally, i.e. on the mag-

netic surface they were born, an approximation which improves with in-

creasing plasma current and aspect ratioll, 12. Accounting for non-local

deposition would widen the P heating profile; for 3.5 MeV particles and

RFDTR parameters the banana orbit width is about 0.15 m, not a large

effect on the scale of the given minor radius. The power Prad radiated

out of the plasma volume is principally composed of Bremsstrahlung Pbr
and impurity line radiation P we neglect synchrotron radiation. For

Bremsstrahlung 19

Pbr 5.35 x 103 n2 Z T (19)

and for PX we use the polynomial approximation22

P1 1027 n n L (20)

where nI is the impurity density, assumed radially to follow the profile

n(r), and

5
log 10 L = z Ai (log10 Te)1  (21)

i=0

The coefficients A. for elements up to Z = 90 are given in Ref. 22. Out

of the large variety of high-Z impurity ions which mighi be present in a

23fusion-type tokamak discharge we select Molybdenum to represent the whole

group, noting that the dependence on Te of PI for most of these elements

has the same tendency to decrease with temperature between 1 and 10 keV.

The coefficients Ai for Molybdenum are given in Table 2.
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The energy equipartition term P with a deuterium mass ratio
1eq

(mi/me = 3600) is. 9

P = 26 v n (T - T) , (22)

where vei is given by Eq. (9).

Finally, Ph represents supplementary heating,

= PTOT C(T) h(r) , (23)

h 2r 2 R a2

where PTOT is the total available power (PTOT = 100 MW for the purpose of

this study), C(T) is a temperature-dependent control term and h(r) gives

the spatial distribution of RF power deposition. As regards the control

term, we may require, depending on the suitable diagnostic tool selected

for monitoring T, that C = C(T ), for example. It is convenient to

control as a function of one single parameter, however, and therefore we

require that C be a function of peak (or average) temperature. The mea-

surement of such a quantity can be performed on a very short time scale

(=us), using X-ray spectrocopy, for instance. In order to achieve stable

high-Q operation, given a steady operating density n 0 , the control function

C (T) must act to continuously decrease Ph as T approaches the point of

ignition T. where thermal instability occurs.
t gn

The stability problem is discussed in some detail in the next section.

We will require the function C (T) to remain constant up to near the

projected operating temperature T op, and then decrease as T approaches

Tign. A suitable representation is
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C(T = 1(24)
C(T)eo) 1 + exp[ac (T - T (2c eo op

where ac is the rate of control. The coupling function h(r) in Eq. (23)

is simplified to the extent that we suppress its possible explicit depen-

dence on Te, Ti, n, and on wave characteristics such as wave-guide config-

uration and the wave-number spectrum. A suitable representation for h(r)

is

h(r) = (25)
1 + expI-ah (r - rh)0

where rh defines the extent of the heating region, and we take ah = 10

for rapid attenuation.

In order to test the performance of our heat transport model, Eqs (1),

we have computed, for the ALCATOR-A configuration (Table 1), the principal

global heat transport characteristic, the energy confinement time TEl

defined as

4.8 x 104 n( e+ Ti)> , (26)
E <Pohm - rad>

where

= 2 a
... >= (...) r dr. (27)

a 0

Such a definition of TE is the computational counterpart to the confinement

time as determined from the results of measurements10 of n, T, the plasma

current and the loop voltage. The computations are summarized in Fig. 1.

The solid lines of Fig. la, labelled 1 and 2, correspond, respectively, to
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1Ce = I and to the K e of Ref. 17 [given roughly by Eq. (6)]. The TE

all lie within the region of experimental data10 scattered around the

dashed line. In order to appreciate the effect of the ion-neoclassical

contribution, we have included some results obtained with both enhanced

and reduced Ki. The crosses in Fig. I correspond to -+ 3Ki, while the

circles mark cases with a reduced K. -> C /3.
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3 THERMAL STABILITY CRITERIA

We will discuss thermal stability criteria within the confines of a

one-temperature representation of Eqs. (la,b),an approximation which

is valid when energy equipartition takes place on shorter time scale

than the energy confinement time. In the range of parameters of

interest here this is always true. We are then dealing with a single

transport equation, nonlinear with respect to its state variable, the

temperature. Such a system can possess several equilibria, character-

ized by distinct values of the temperature. An equilibrium of such

a system is termed thermally unstable if its pertubation will result

in the transition to another equilibrium state. The low-temperature

ignition equilibrium of a-particle heated tokamaks (defined by that

value of temperature at fixed density, magnetic field, etc. for which

all losses are compensated by a-particle heating alone) is koown

to be thermally unstable. Some form of control is therefore required.

Contributing to the power balance of a fusion plasma are power terms

which are generally strongly radially nonuniform, as well as nonlinear

in T. Such a term is, for example, the a-particle heating term Pa.

To activate P a, supplementary heating is required, itself possibly non-

uniform in space, and nonlinear by virtue of the control term (24).

If the effect of impurity line radiation is included, serious compli-

cations can arise on account of the fact that the radiative cooling

rate increases with decreasing temperature. It can therefore be expected

that radial nonuniformities will play an important r6le in the estab-
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lishment of equilibrium, and of its thermal stability. Accordingly,

under such conditions, a 1-D stability criterion is required for a

reliable prediction of system operation. Ideally, one would like to

understand the stability with respect to large perturbations from

equilibrium, but no general method exists to date for nonlinear partial

differential equations. Rather, we must content ourselves with the

examination of stability with respect to small perturbations. For dif-

fusion-type equations, the limited stability problem was solved by

Gelfand6 . We refer to Refs. 6, 7 and 8 for details. The essence of the

Gelfand method is as follows. In order to determine the stability of

the equilibria of the nonlinear equation

Ir9 (T,r)] + S(T, r) - , (28)at r IrcT )

defined for r between r = 0 and r = a, and subject to the boundary

conditions

T (o) 0 , T(a)=O , (29)

one has to first construct the plot of the radius a versus T , T0 being

the value at the origin, of the solution of the equation

1 d dT (0

rU- (r ic -) + S(T, r) = 0 (30)

satisfying the conditions (29). Obviously, one does not have to solve a

two-point boundary-value problem; if for a given T0 with T' = 0 the

solution vanishes at some value of a, then this particular pair (T , a)

constitutes an eigenpair. If for a T0 such a value of a does not exist,
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then there are no equilibria for that particular T 0 . The eigenfunctions

for which the function a(T ) increases are stable, whereas those for

which a(T ) decreases are unstable. Local minima and maxima of the func-

tion a(T ) mark points that are marginally stable. Singularities, i.e.

points where a(T ) diverges, limit domains of existence of equilibria.

In most cases of practical interest, the a(T ) plot must be determined
0

numerically. One proceeds as follows. First, a O-D analysis gives a rough

idea about the definition domain of the function a(T ). Then one inte-

00grates for a given T0 until either T drops below a certain reference noise

level, or until T' changes sign in which case an equilibrium does not exist.

Sometimes one is interested in the stability of equilibria in parameter

spaces other than (T , a). Specifically, in our case of interest, fusion

plasmas, the more relevant representation is in temperature - density

space (T0 , n0 ), for some specific, given, value of a. The determination

of such a plot requires the scanning for a = const of many (T , a) plots

produced at fixed n .

We now present, for the sake of comparison, the O-D stability criteria.

In (T0 , a) space we obtain a formally identical counterpart of the l-D

Gelfand criterion. The O-D representation of Eq. (28) is obtained by

assuming for T some reasonable form representing the quarterwave-like

eigenfunction it should be, and subsequently integrating term by term

over the given volume. The diffusion term, by application of Gauss'

Theorem, becomes the rate of flow across the boundary. Hence, what we

obtain amounts to a global energy conservation statement, in the general

form
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dT

dT0  = F(T ; a, no, ... ) , (31)

where the parameters a, no, and possibly others we have suppressed, are

now all, mathematically speaking, equivalent. For a fixed set of

parameters, an equilibrium T of Eq. (31), defined as F (T; a, n ) = 0,eq eq 0
is stable with respect to small perturbation if and only if

aF
< 0 , (32)

0 Teq

as immediately follows from Eq. (31) upon varying To around T . If0 ~eq-
we wish to express the stability condition (32) in parameter space (TO, a),

for example, we note that,

da ______

- (33)dT0  aFa
F=O F-0

The principal geometry effect in Eq. (31) originates in the diffusion term

of Eq. (28). Hence the function F contains a term which scales as -T /a2

Consequently aF/aa > 0, so that the equilibria are stable or unstable ac-

cording to whether da/dTo is positive or negative, respectively. Recalling

the Gelfand criterion, we note that the two are identical; the only differ-

ence between the two cases is to be found in the actual location of the

equilibria in parameter space. In contrast to 1-D, the paramter a in 0-D

has no exclusive position on numerical or other grounds, so that we might

as well go to the more useful (TO, no) representation. The equilibria in

(T , n ) space are stable if and only if
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dn o
F 0 (34)dT0  an F=O

Unlike aF/aa, the function (of T ) aF/an is not necessarily definite in

sign.
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4 STABLE SUB-IGNITED EQUILIBRIA

In this section, we demonstrate the existence of stable sub-ignited

equilibria of the system (la, b), sustained by a temperature-controlled

supplementary heating source. First, we give a rough picture of the

equilibria and their stability in the presence of the controlled supple-

mentary heating source using the 0-D approximation. More definite results

are then obtained using the Gelfand method. Finally, we demonstrate

heating and stable operation with the 1-D transport code. The 1-D simu-

lations give us an opportunity to observe phenomena like instability with

respect to large perturbations of the equilibria, and also temperature-

profile collapse due to impurity radiation.

As a basis for the 0-D approximation as well as for the Gelfand method,

we use a one-temperature model with a fixed (parabolic) density profile,

as in the previous section. The two equations (la, b), where we now

neglect Pohm' add up to

4.8 x 104 - 1.6 x 10 +Q.) +P +Pd (35)at r e + Q) +Pa + h - rad

which, upon volume-averaging, gives the 0-D equilibria

F < Ph> P diff + n0 2 <a rad> = 0 . (36)

The diffusion plus convection heat loss term can be written in the form

Pdiff ~ 4 .8 x 1004 , (37)

p TE
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where a p > 1 is a profile factor and TE is the energy confinement time

( 5 ). In performing the volume-averages one must make some assumption

about the profiles. Having already fixed the density profile, we assume,

for the sake of simplicity of this rough model, a Gaussian temperature

profile, T = T exp (-2r2/a2 ). Since TE ~ a2n0 , we first note that the

equilibria (36) can be written in the form

n 2 diff - <ph> = f (T), (38)
0 <P a -p rad>0

and that, second, 9F/an. is positive or negative depending on whether

<p- ~rad> is, respectively, positive or negative. The temperature for

which aF/an0 = 0 is thus the ideal ignition temperatude Tid'

Recalling now the stability criterion (34), we see that the stable

branches of the function (38) are those which for T0 <Tid are decreasing,

but increasing for T > Tid. As a first example, in Fig. 4a, of insuf-

ficient heating, we have applied a total power of 40 MW. If we initiate

the system at a point lying anywhere below the upper branch of the Ph > 0

curve, the system will tend toward the lower, stable branch. For example,

if the system is heated at constant density no = 2, starting at Te = 1 keV,

it will terminate at To = 3.5. Points lying above the upper Ph> 0 branch

are all unstable (but inaccessible for the given Ph)'

In Fig. 4b, we have increased PTOT to 100 MW and in the control function

C(T) of Ph, Eq. (35), we select a = 3 and T = 9. The choice of T0o is

basically determined by the position of the ignition curve. One could turn

down the source at a higher value of ToW, but that would obviously be at the

expense of having to operate a lower density in order not to risk runaway.
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The optimum combination of T and of an operational density nop would

maximize thermonuclear yield but leave a sufficient safety margin of the

operational point (T , n ) against fluctuations that could carry the

system over the ignition curve. In other words, defining the reactor

Q-factor

Q power out 5 <Pa> (39)
power in <Ph

one should aim for operating points having a high Q, keeping in mind the

trade-off in terms of stability again fluctuations whose margin -1/Q. Let

us now return to Fig. 4b. The heating now amply compensates for losses

in the region To <Tid with the result that the system will heat at any

density below no = 10. If, however, n0 exceeds 4 the system will heat

indefinitely, having access to the unstable region beyond the ignition

curve. A safe operating density for the controlled source would therefore

be n = 3, for example, but only n0o = 1 for the uncontrolled case. The

difference represents more than a factor of 10 in terms of thermonuclear

yield. This is the principal raison d'@tre for the implementation of a

controlled source. Going to higher values of power does not appreciably

change the operating conditions for the controlled source. For an uncon-

trolled source, however, the equilibria shift to the right with increasing

Ph, as follows from Eq. (38).

In principle then, stable operation is possible without control, but at the

expense of Q, since the operating point on the slope of the uncontrolled

source equilibrium curve is sustained at full power (which has to be in-

creased if we desire a higher-temperature operating point) and low density.

Thus, for the given example of PTOT = 100 MW, the controlled Q is about 10



23

while, without control, Q = 1. Higher values of Q can be attained in

the 10 keV operating range, and without narrowing of the stability

margin, if we include the effect of impurity line radiation. We are

not suggesting, however, that the impurity level be artificially in-

creased in order to achieve this, since other, deleterious, effects by

far outweigh the benefit in terms of control and output at 10 keV.

Specifically, as shown in Fig. 3 for a concentration of 10~4 n of

Molybdenum the level of line radiation at 1 keV is higher by an order

of magnitude than the level at 10 keY. The net result, shown in Fig. 2c,

is that while the ignition curve shifts to the right, and slightly upward

in the 10 keY region, the domain of densities for which the plasma will

heat in the low-temperature region has substantially narrowed(and also

the rate of heating will go down). Other effects of line radiation, not

evident in O-D, will be shown later.

The O-D n0 versus To plots such as in Fig. 2 are easy to produce and serve

as a useful guideline for locating the equilibria together with their

stability properties, but a verification of stability of specific operating

conditions is required and this is where the Gelfand method can be used.

We show, in Fig. 4a, a versus T0 plots computed from the one-temperature

model (35) under the conditions of Fig. 2b with a controlled source, for

five values of n0 ranging from 1 through 5. Thus, for the configuration in

question, i.e. for a minor radius a = 1.4 m, stable equilibria exist for

no s 2. For n0 > 3 no equilibria exist at all. A more useful repre-

sensation of the information contained in the a versus T0 plots parameterized

with respect to n 0 , are the loci of equilibrium points (T , n ) for a given

configuration (i.e. at fixed a) such as shown in Fig. 4b. To produce this plot
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we first computed arrays of a versus T at fixed values of no (with steps of

AT = 0.2 and An = 0.1) and then selected all the data points (T , n )

which fall into a certain interval centered around the given configu-

ration value of a, i.e. around a = 1.4 in this particular case . For

Fig. 4b, 1.3 < a < 1.5. The lower boundary of the data point field

corresponds to the upper bound of the a-interval, the upper boundary

to the lower bound, i.e. to a = 1.3. The stable equilibria form the

increasing branch of the n0 versus T curve, centered around To = 10 keV,

as dictated by the control term. The total reactor output Pout'

Pout ' 47 2R rdr 5P (40)

corresponding to these stable equilibria is shown in Fig. 4c.

Let us now see how the preceding predictions fare in l-D simulations of

the system, Eqs. (la, b) under conditions of Fig. 4. In these calcu-

lations we monitor the temperatures, the rate of change of the temper-

atures and the various power density terms. We terminate the computation

if either dT/dt converges to zero, or if T. exceeds a certain limit,

in which case we know that control has failed. The results for the given

case of wide-profile heating (rh = 1) are that for no = 2 the system

stabilizes at T. = 9.5 keV, while at no = 3 and 4, runaway occurs. In

Figs. 5 a, b, c we show, for illustration, the profiles of temperature,

density, of the heating terms Pa and Ph (all at the end of the run), and

the time evolution of T , in the unstable case of no = 3. While instability

was expected at no = 4, the failure of the system to stabilize at n0 = 3 is

most likely due to a large perturbation effect of the heating source Ph'
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To understand this we recall that the Gelfand stability criterion holds

true for small perturbations of the-equilibria. In the case of bulk

plasma heating, before equilibrium is reached, the Ph term is not only

larger in magnitude , but also has a wider radial profile then the P

term. The corresponding temperature profile thus approaches equilibrium

in a state which is, in fact, strongly perturbed with respect to the

equilibrium temperature profile, sustained at (presumably) high-Q operation

principally by P . Since the system is perturbed in the direction of a

larger energy content, it will have the tendency to run away once it

approaches the marginal stability boundary. We have observed the same

effect when the system was initialized with a wide temperature profile near

the marginal stability boundary. If, in contrast, the supplementary heating

term Ph is made to have a radial profile which is narrower than the P

term, there should be no danger of runaway even in the region of marginal

stability. An example of such plasma core heating is shown in Fig. 6.

Here, all the available heating power is concentrated within a radius of

r h = 0.35 m (rather than within rh = 1 as was the case in Fig. 5). We

observe that for a peak density of no = 4 the system first relaxes at

equilibrium but ultimately runs away, while at no = 3 we have stable opera-

tion. We thus conclude that core heating is a thermally more stable

process than bulk heating (in addition to being faster and more efficient).

It appears strange, of course, that core heating, associated as it is with

high power densities, does not cause runaway more easily than does bulk

heating. It is useful to keep in mind, in regard to this question, that

the heating source is directly temperature-controlled. If it weren't,

bulk heating would, in fact, be the less unstable heating process.
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In what follows, we briefly examine the effect, on thermal stability, of

a nonuniform heat conductivity and of impurity line radiation.. So far,

we have postulated that the dominant heat transport process, anomalous

electron heat conduction, can be represented by a constant heat conduc-

tivity, ~ 10 20 m 1 s-1 , compatible with empirical scaling for the

energy confinement time. On the other hand, the ion-neoclassical contri-

bution [Eqs. (3) and (4)1 is nonuniform and nonlinear. In terms of

magnitude, the conductivity Ki is (in the parameter range of interest)

much smaller than Ke everywhere except very near the plasma center. Thus

although Ki contributes very little to the global heat loss, it can have

an important local effect in the plasma core. This can be appreciated

particularly in the case of plasma core heating, since a centrally peaked

conductivity enhances the rate of heat flow away from the region of high

power densities. Such an enhancement can have a stabilizing or destabi-

lizing effect depending on the state of the system. The examples of Fig. 7

will help to clarify this point. In Fig. 7a, the conductivity is taken as

K = Ke + 5 K in order to amplify the nonuniform contribution. In contrast,

Fig. 7b has K = Ke, i.e. the nonuniform contribution is suppressed. The

system equilibria are slightly different in the two cases, and so is their

stability. The uncontrolled (ignition) equilibria are more stable, as one

would expect, when K = Ke + 5 Ki. In contrast, the controlled equilibria

around To = 10 are more stable when Ki is suppressed! This result, which

appears to contradict standard notions about the effect of enhanced loss

on stability is, however, perfectly understandable. With the contribution

of the centrally peaked ion conductivity gove, less energy is flowing away

from the center and since the peak temperature itself is controlled, the
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only effect of such a peaked conductivity is to produce a narrower and

thus more stable, temperature profile. We thus conclude that in the

presence of control the ion-neoclassical contribution has a destabilizing

effect, while in the absence of control or in a nonequilibrium situation,

a centrally peaked conductivity will have a stabilizing effect.

The heat conductivity is not only nonuniform but also is nonlinear. In

the case of K the two effects are, in fact, coupled. In the plasma core,

specifically, the principal radial dependence of K. is implicit, via the

T3/2 factor. The preceding conclusions, with regard to stability, are of

course generally true for any centrally peaked conductivity, but for the

particular case in question, the nonlinearity acts to enhance those features,

because an upward fluctuation in temperature will cause an upward fluc-

tuation in conductivity.

To close this section, we briefly touch upon some difficulties due to line

radiation associated with the presence in the plasma of high-Z impurities,

namely of Molybdenum, selected to represent this group of elements. We will

consider the effect of an impurity concentration nI = 10~4 n, an amount which

is still tolerable from a global energetics point of view (Fig. 3). To

observe a discernable effect in the high-temperature region a much more

serious effect could therefore be expected at low temperatures. For example,

as is well known, much more supplementary power would be required. Apart

from this fact though, even in the apparently "safe" domain of around

nI = 10~4 n, more subtle, 1-D effects, can upset an equilibrium. In the case

of core heating, for example, an effect which we term a "contraction instability"
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can occur. We show in Fig. 8 the result of a l-D simulation, under the

conditions of Fig. 6, but with line radiation. The equilibrium is now

perfectly stable, as is evident from Fig. 8a, but the temperature profile

shown in Fig. 8b has shrunk to about half its normal width, intolerably

reducing as a consequence the power output. What causes the contraction

is that once the temperature is allowed to decrease as a result of line

radiation, the rate of radiation increases, followed by a further drop in

temperature, and so on. The process will penetrate inward until the power

loss is compensated by heat flowing down the gradient or by the supplemen-

tary heating directly. Thus, in the presence of line radiation, heating

of the bulk of the plasma is probably a better stratagem than heating only

of the core, although even then difficulties may arise. We take again the

conditions of Fig. 8, only now with rh = 1. The result, shown in Fig. 8c,

exhibits a tendency of the profile to invert, for the same reason why it

contracts in the preceding example. The inversion, in this example,

however stops at a certain instant in time and the profile gradually recovers.

To sum up then, the presence of impurities is likely to obstruct optimum

heating strategy wherein less total power could be used to preferentially

heat the plasma core.

I
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5 REALIZATION OF REACTOR CONFIGURATION

So far we have demonstrated heating and control, and discussed a number

of radial effects, without the consideration of optimizing the reactor

output. If we go back to Fig. 4, we note that the total output at T = 10
op

and no = 3 is about 440 MW. This number, obtained with transport coef-

ficients corresponding to empirical ALCATOR-A scaling, falls short of what

is generally expected in terms of output from a configuration of this size,

at the given operating conditions. More specifically, the power outputs

quoted 24 for configurations of the type of UWMAK, HFCTR and STARFIRE are

all between 2 000 and 4 000 MW thermal, numbers which are reasonably high for

a viable power plant. If we examine the origin of the discrepancy between

our result and the projected system outputs, we conclude that the latter

must have assumed almost flat density and temperature profiles. If, for

example, we take a uniform plasma at T = 10 keV and n = 3 x 1020 m-3

occupying a volume of 300 m3 , we obtain a total power output of 1 750 MW.

If we increase the operating temperature to 15 keV, sayi the output approx-

imately doubles. When, however, profile effects are taken into account,

the output must be reduced by about a factor of 4, in the case of a para-

bolic density and temperature. It is not difficult to see that the dominant

profile effect is caused by the temperature on account of the Pa term,

which is a strongly nonlinear and increasing function of T (Fig. 3). Any

system studies which fail to correlate the power output to a specific tem-

perature profile are therefore unrealistic. Equally unrealistic are hopes

that more rigorous assessments, based on transport codes with scaled-up

configurations using present-day transport coefficients, as in the example
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of Fig. 4, will produce interesting outputs.

We have, therefore, asked ourselves the question what assumptions

must be made about heat transport in order to obtain an output of about

2 000 MW, at sub-ignited stable operation. Our task is, in effect, more

difficult than just a straightforward attempt to increase the output,

since the system stability deteriorates with increased output. Let us

begin with a 0-D discussion. At a presumed high-Q equilibrium, Ph in

Eq. (36) can be neglected, and so can Prad; the diffusion heat loss is

balanced by a-production. The total power output (40) can therefore be

estimated as

Pout = 2 .4 x 105 n 0 T0  2nRa2  (41)
a P TraP E

where a > 1 is a profile factor. For the conditions of Fig. 4, and

with ap ~ 4, the approximation (41) gives Pout = 400 MW, compatible with

the transport code result. There is, however, not much one can do to

increase Pout* First of all, we are restricted in our choice of peak

operating density and temperature by 0, and thermal stability conditions,

and second, if TE~ a2 then Pout does not depend on the minor radius. Let

us therefore examine to what extent do a and TE depend on the heat con-

ductivities. A radially uniform increase of the total heat conductivity

cannot affect a but TE ~ a2/1, so that Pout increases in proportion. The

thermal stability of a fixed operating point T0 , n0 below ignition improves

with decreasing T E, since, as a result, the ignition curve moves upward in

the (T , n ) plane. Nonuniform changes in the heat conductivity will
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affect the temperature profiles. Let us consider, specifically, an

enhancement which decreases with radial position. This is the case

when, for example, the ion-neoclassical conductivity is increased by a

constant factor, or if we replace the constant anomalous electron

conductivity by an expression of the type (6). The global effect of

such a variation in K is difficult to assess, but if K increases princi-

pally in the plasma core, not much of a change in -r E can be expected.

However, there can be an appreciable widening of the temperature profile,

with a corresponding decrease in the value of a . Again, the power

increases, but the configuration becomes less stable, as is clear from

the results of the previous section. A few examples will help to clarify

the preceding discussion.

In the example of Fig. 8 we keep the configuration of Fig. 4, the only

change being a higher T -, 15, and a wider density profile, n = n

exp (-r2 /a 2). As expected, the output has increased but is nowhere near

our goal of 2 000 MW. In all of the following examples we take T = 15 keV

and a parabolic density profile, but we increase, one way or another, the

total heat conductivity. As a first step, we increase the ion-neoclassical

coefficient K. by a factor of five, in accord with current ideas25 about

enhanced ion-neoclassical transport [to explain the observed deviation

At high plasma densities of the energy confinement time from the so-

called ALCATOR-scaling (5)]. This enhancement itself proves insufficient

to appreciably influence the power output, simply because the ion-

neoclassical contribution is small compared to the electron anomalous

effect in the first place. The temperature profiles, however, widen some-
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what and we, therefore, retain the fivefold neoclassical enhancement

in the next examples, where the electron anomalous effect is also

enhanced.

With a further enhancement of loss it becomes difficult to heat the

plasma with only 100 MW of supplementary power. In addition, wall

loading becomes a problem. In the following last two examples we

therefore increase the minor radius from a = 1.4 m to a = 2 m (and I

from 3MA to 6MA to maintain the value of q). We recall that Pout

will not change as a result of such a modification, but it becomes

easier to heat the plasma before P is sufficiently large. Figure 10
a

shows the result of a simple upscaling of Ke by a factor of three

(from the value K e = 1 compatible with empirical scaling). As expected,

the output (Fig. 10b) increased by about a factor of three compared to

the case of Ke = 1 in Fig. 4c. In order to introduce a profile effect

to push up Pout, we now take the theory-based anomalous expression(6).

Although the average value <Kce> is still only about three, as in the

previous example, the output is now larger, due to a wider temperature

profile. The associated n0 versus T0 Gelfand plot in Fig. lla gives

stable equilibria up to To = 16 and no = 3.1. The total output cor-

responding to these equilibria is shown in Fig. 1lb. At no = 3, T0

would be 15.5 keV (from Fig. lla), with an output of about 2 000 MW.

We have verified these results using the l-D transport code. We show

here, in Fig. 12, one particular simulation result, for no = 3.1, aimed

principally at testing the stability boundary of Fig. la. First, in

Fig. 12a we note the wide temperature profile (compared to that of



33

Fig. 5a.). Second, in Fig. lib we see T. slightly increasing as a

function of time, as expected for a marginally unstable operating

point. At no = 3, we obtained a perfectly steady equilibrium asso-

ciated with a total output of 2 200 MW, and Q = 75. We also moni-

tored the energy confinement time

Te = 4.8 x 104 (Te + Ti)> (42)

a h rad

In the example of Fig. 12, TE = 0.9 s.

We thus conclude our effort to establish conditions under which a

Tokamak reactor average power density of about 4 MW/m3 can be realized

during steady sub-ignited operation. While large values of the energy

confinement time, Te, are beneficial in the heating phase, at equilibrium,

in contrast, smaller values of TE (about ls) are necessary for large

power outputs and thermal stability. In addressing, ultimately, the

question whether such heat transport properties can be expected to exist

at reactor conditions, we recall that a number of present-day theory-based

anomalous electron heat conductivities17, 18, 26 exhibit the scaling T1

having the necessary property. Unfortunately, while all these anomalous

expressions give about the same numbers for present-day experiments, they

differ by wide margins at reactor conditions. This is why we have ex-

tracted the common factor Ti and suppressed the dependence on other param-

eters lumping them into a numerical coefficient consistent with empirical

,re. Finally, in going from ohmically to RF-heated plasmas some deterio-

ration of TE can be expected, but the experimental evidence so farl6 is

too scarce to make any definite conclusions about the size of this effect.
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6 SUMMARY AND CONCLUSION

We have demonstrated the existence of stable radial sub-ignited equilibria

of a tokamak reactor, sustained in operation by a feedback-controlled

supplementary heating source. The establishment of stability depends on

a number of radially nonuniform processes whose effect we have attempted

to analyse using both the Gelfand method and a 1-D fluid code.

Present-day tokamak experiments indicate the pre-eminence, in the tokamak

power balance, of heat loss. In a reactor configuration we would expect

an equally large proportion of power loss via diffusive and convective

processes with at least an equally important share due to anomalous electron

processes. We have therefore postulated the form of ALCATOR scaling for the

energy confinement time, and, given the lack of a definitive theory of

anomalous transport, we have assumed the simplest possible forms for the

associated transport coefficients, consistent with both the empirical

scaling law 10 and existing theory 7 , 18, 25. That is, we assume an enhanced

neoclassical ion heat conductivity, an anomalous particle diffusion coef-

ficient inversely proportional to density and an electron heat conductivity

which is either constant or proportional to Ti. With such a choice of

transport coefficients we avoid introducing arbitrary radial effects, attri-

buting the principal nonuniformity in heat transport to neoclassical effects

and to a theory-based T1 scaling in the anomalous contribution.

The heat conductivities peak at the plasma center and there is, conse-

quently a correspondingly high rate of heat flow away from the plasma core,

I
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at the expense of a-particle heat production. Since this rate of flow

decreases toward the plasma edge, the net effect is a wider temperature

profile than one corresponding to a uniform or radially increasing flow.

How do we understand this effect in terms of stability? We have to

distinguish between a nonequilibrium and an equilibrium situation. In

a nonequilibrium state during the heating phase, for instance, a large

rate of flow away from the center has a stabilizing effect, strongly

enhanced by the nonlinearity of K with respect to temperature. Once an

equilibrium is established, however, in a controlled fashion wherein

the central temperature is kept constant, an upward local fluctuation in

the rate of heat flow has a destabilizing effect, and vice versa. This is

understood on the grounds that a local enhancement in the value of con-

ductivity acts to extract more power from the a-particle heat bath, accu-

mulating this excess power elsewhere in the plasma. A less stable con-

figuration results. Similarly, a downward local fluctuation in heat

conductivity results in a more stable equilibrium configuration as can be

witnessed from the Gelfand plots in Fig. 7. In sum then, if a radially

nonuniform and nonlinear heat conductivity tends to peak at the location

of maximum heat production (typically the plasma core), there is a profound

effect on the thermal stability of the configuration. Namely, an upward

fluctuation in conductivity enhances stability when no control is imple-

mented, while controlled equilibria become less stable in consequence.

Equally difficult to understand within the confines of a O-D model are

radial effects due to the supplementary heating. Equilibria resulting

from various heating profiles can be adequately distinguished in O-D; the
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issue, however, is the nonequilibrium heating phase in the evolution of

the temperature profiles. If heating is radially uniform, the non-

equilibrium temperature profile tends to be much wider than its eventual

equilibrium profile, corresponding at high-Q operation to predominantly

a-particle heating, a term that is centrally strongly peaked. The system

thus arrives at the anticipated controlled equilibrium in a strongly

perturbed state and thermal runaway is likely to occur. It thus appears

safer to aim for core heating (associated with narrower heating profiles)

which is also the more advantageous stratagem as far as the rate of

heating and total power requirements are concerned. Core heating is,

however, not without problems of its own, and these are due to impurity

line radiation.

Line radiation is again a term difficult to incorporate into a O-D model.

The reason now is that the radiated power density is a decreasing function

of electron temperature, with the result that not only is the total radiated

power large when least needed, i.e. when the average plasma temperature

is low, but also, the radiative cooling rate tends to increase toward the

plasma edge. As a result, when most of the supplementary power is con-

centrated into the plasma core, the temperature profile is susceptible to

contraction, an instability driven by the uninhibited increase in the cooling

rate as the temperature drops in consequence. We have observed this effect

at low levels of high-Z impurity concentration (10~4 n of Molybdenum with

a Gaussian density profile) and thus we conclude that the effect of con-

traction is likely to present a serious problem in thermonuclear plasmas

which are not extremely clean.

I
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To conclude our analysis, we have examined, both computationally and

using a 1-0 thermal stability criterion, the conditions necessary for

achieving a tokamak reactor output of about 2 000 MW at steady, high-Q

operation. Essentially, with an assumed parabolic density profile, for

steady operation at a peak temperature of about 15 keV, one may not

exceed a peak density of about 3 x 1020 m 3 . Given these restrictions,

one then requires relatively wide (at least parabolic) temperature

profiles and an energy confinement time not exceeding about 1 s.

These requirements can be met if heat transport at reactor operating

conditions is assumed to be determined by ion-neoclassical and theory-

based (- TI) electron-anomalous diffusion coefficients,both enhanced

with respect to present-day theory values.
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FIGURE CAPTIONS

Fig. 1 Code benchmarking. Energy confinement time, TE, versus average

density, <n>. The dashed line is the ALCATOR-A experimental

result. The points lying on the curves 1, 2 are computed from

Eq. (26). The curves 1 and 2 correspond, respectively, to

K e = 1 and Ke = 1.5T . The circles correspond to a threefold

reduction, and the crosses to a threefold enhancement, of the ion-

neoclassical conductivity.

Fig. 2 O-D equilibria in peak density, n0, versus peak temperature, T

space. The ignition equilibria correspond to no supplementary

heating, otherwise bulk heating is applied. Control implemented

at T = 9. (a) Total applied supplementary power, PTOT = 40 MW;

line radiation P = 0. (b) PT0T = 100 MW; Pg = 0. (c) PTOT =

100 MW, P, z 0 corresponding to a concentration of 10~ 4n of

Molybdenum.

Fig. 3 Power densities, P, versus temperature, T, for a uniform density

n = 1. Pdiff is the diffusion loss [Eq. (37)], Pbr is

Bremsstrahlung Eq. 1(19)], Pline is line radiation [Eq. (20)],

and Pa the heating rate due to a-particles [Eq. (17)].

Fig. 4 (a) Gelfand plots for Eq. (35). Radius, a, versus peak temperature,

T0, for 5 different values of peak density, n . Bulk heating,

PTOT = 100 MW, Pt = 0. (b) Corresponding n0 versus T0 equilibria

for 1.3 < a < 1.5. (c) Total reactor power output of the stable

(increasing) branch in (c) as a function of peak density.
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Fig. 5 1-D simulation [Eqs. (1)]. Bulk heating, PTOT = 100 MW,

P = 0, no = 3.3. (a) Density, n, and temperatures, Te and

T. ,as a function of radial distance, r, at T = 3 s. (b) Power

source densities, Xn P, as a function of radial distance, r.

(c) Peak ion temperature, T i, as a function of time, t.

Fig. 6 Core heating, r. = 0.35 m, T = 10 keV, PTOT = 100 MW,

P = 0. (a) n0 versus T0 equilibria for 1.3 < a < 1.5. (b) 1-D

simulation; T. versus time for no = 3.1.

Fig. 7 N versus T equilibria for 1.3 < a < 1.5, T = 10; core heating,

PTOT = 100 MW, Pt = 0. (a) K = K£ + 5K. . (b) K = Ke.

Fig. 8 1-D simulation of core heating with line radiation corresponding

to 10~4 n of Molybdenum. Otherwise conditions as in Fig. 6.

(a) T versus time. (b) Equilibrium temperature profiles.

(c) Nonequilibrium temperature profiles during bulk heating

(r h m i).

Fig. 9 (a) n0 versus T equilibria for T = 15 keV, otherwise, conditions

as in Fig. 6. (b) Corresponding total power output as a function

of peak density.

Fig. 10 (a) n0 versus To equilibria for T = 15 keV, 1.9 < a < 2.1, and

enhanced heat conductivities K e = 3, K. = 5 Kneoclassical. (b) Cor-

responding total power output as a function of peak density.

Fig. 11 (a) n0 versus T0 equilibria under conditions of Fig. 10, except

that Ke = 1.5 T . (b) Corresponding total power output as a

function of peak density.
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Fig. 12 1-D simulation under conditions of Fig. 11, for n - 3.1.

(a) Temperature profiles at T 1.5 s. (b) Peak ion

temperature, T. i, as a function of time, r.



Table 1

TOKAMAK CONFIGURATION PARAMETERS

RFDTR ALCATOR-A

Major radius, R

Minor radius, a

Toroidal field, B

Plasma Current, I

Peak equilibrium

Temperature, T0

Peak equilibrium

Density, n

Central safety factor, q

Heating

8 m

1.4 - 2 m

6 T

3 - 6 MA

10 - 15 keV

(1-4) x 1020 m-3

-1

100 MW (RF)

0.56

0.1

6

0.2

0.5 - 1.2

1 - 10

= 1

Ohmi~c



Table 2

THE COEFFICIENTS A. FOR THE DETERMINATION OF LINE RADIATION,

EQS (20) AND (21), OF MOLYBDENUM

0.08 - 0.2 keV 0.2 - 2 keV

A0 - 139.1054 - 17.72591

A - 649.3335 - 1.058217

A2  - 1365.838 - 3.583172

A3  - 1406.464 1.660089

A4  - 708.6213 8.565372

A5  - 140.0571 4.532909

2 - 20 keV 20 - 100 keV

A - 13.85096 39.92683

Al - 36.78452 - 175.7093

A2  114.0587 207.4927

A3  - 163.5634 - 121.4589

A4  107.6260 35.31804

A5 - 26.42488 - 4.083832
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