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Abstract

A detailed linear and nonlinear analysis of quasimode parametric excitations relevant to

experiments in supplementary heating of tokamak plasmas is presented. The linear analysis includes

the full ion-cyclotron harmonic quasimode spectrum. The nonlinear analysis, considering depletion of

the pump electric field, is applied to the recent Alcator A heating experiment. Because of the very

different characteristics of a tokamak plasma near the wall (in the shadow of the limiter) and

inside, t-he quasimode excitations are studied independently for the plasma edge and the main bulk

of tFle plasma, and for two typical regimes in overall d&nsity, the low (peak in density, ne = 1.5 x

10 H cM~?) and high (7o = _ x 10 ~M3) density regimes. At the edge of the plasma and for the

low density regime, it is found that higher Pz 's (nz = c kz'o) than those predicted by the linear

theory are strcngly excited. Inside the plasma,. the excitation of higher wave-numbers is also

signiftcant. These results' indicate that a large amount of the rf-power may not penetrate to the

plasma center, but will rather be either Landau-damped on the electrons or modeconverted into

thermal modes, close to the plasma edge . Moreover, for sufficiently high peaks in density it is

found that all the rf-power is modeconverted before reaching the plasma center. Inside the plasma

the power density of the excited sideband fields is shown to be always very small in comparasion

with their excitation at the plasma edge.
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I. Introduction

In the heating of tokamaks with rf-power near the lower-hybrid frequency, the driven fields

can act as a pump for parametric instabilities. The lower-hybrid fields are principally electrostatic,

and are characterized by a frequency WN = , and wavevectors k,, (parallel to the
(+ W2-n )1/pe e

ki
magnetic field B ) and k1  (perpendicular to B ) such that -< 1. The' quasimode type of

parametric instabilities consist in the excitation of a lower-hybrid sideband wave from the

background noise level through low frequency fluctuations in the plasma. The power levels in

current tokamak experiments [1] usually exceed the thresholds for this parametric instability to

occur, and these experiments, as well as several other tokamak heating experiments over the past

few years [2], all indeed show the presence of such excitations. This has provoked extensive

studies of these processes in the last few years. The original, linear analysis of the temporal

evolution of this instability (3] has been recently extended and complemented with extensive

numerical computations [4]. This instability is however a convective one and its spatial evolution in

a pump of finite spatial extent is more relevant. The linear spatial evolution, including group

velocities along and transverse to the magnetic field, for a constant pump of a finite spatial extent

is discussed in Ref. [51. The nonlinear effects of pump depletion have been formulated and

discussed in general terms, in Refs. [6,71. Other nonlinear saturation effects have also been

invoked; these relate mainly to models of temporal cascading in which the excited lower-hybrid

sidebands are treated in the random-phase approximation [8]. We shall not consider these here any

further, especially since the physically important nonlinear evolution is a spatial one. In spite of the

broad attention that this problem has recieved, there are still many unresolved questions regarding

the relevance and physical consequences of these parametric excitations in today's tokamak

experiments. More specifically, it is of interest to know how physical effects like pump depletion

will scale with density and temperature; what the excited spectrum will be in terms of
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change with changes in the density and temperatures. We present results that attempt to answer

these questions and give us a better insight into the effects that these parametric processes have in

plasma heating.

Our plasma model is a two-dimensional one, the x-direction is the direction of the plasma

inhomogenities (i.e. density, temperatures, and toroidal magnetic field inhomogenities), and the

z-direction is in the direction of the toroidal magnetic field. We apply the theoretical results to

parameters relevant to the recent Alcator A heating experiment [1].

We first start with a detailed analysis of the linear theory (Sects. II and III). The low

frequency fluctuations are due to both electrons and ions. In the previous works, it was commonly

assumed that the quasimode excitation due to scattering off ions is neglegible under the

approximation T. > Ti. This is never true for tokamak devices, and we shall see that scattering

off ions give important modifications to the excited spectrum. We distinguish between two different

spatial regions , the plasma edge (in the shadow of the limiters [9]) and the main bulk of the

plasma. We also make a comparative study between the two different regimes, of low and high

densities. The low density regime correspond to a peak density of about no = 1.5 x 10 cm- , and

the high density regime to a peak density around no = 5 x 10 1 cm-3. The plasma edge is

characterized by a large drop in density and temperatures inside the shadow of the limiter [9].

Parametric excitations are particularly strong here, and the characteristics of the excited spectrum

differ importantly from the ones found inside the plasma.

Nonlinear calculations are carried out in Sections IV and V . The linear analysis presented

in the preceding sections then acquires its complete physical meaning. We study how the pump is

depleted at the edge and in the plasma. Pump depletion is going to have importaht consequences in

plasma heating, since it may change completely the characteristics of the power spectrum entering

inside the plasma. These changes are mainly affecting the wave-number spectrum and the power

density. We find that at the edge of the plasma, strong nonlinear excitations of higher nZ 's may

take place that will change radically the power spectrum and the amount of power penetrating into
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the plasma. Depletion in the plasma depends critically on the density regime we are considering.

This becomes larger with increasing density. Inside the plasma the excited sideband spectrum has

a field amplitude which, in general, is never comparable to the pump amplitude. The modified

wave-number spectrum also plays an important role in determining how much of the total power

penetrates up to the center of the plasma. All the results are summarized in Sect. VI.

Finally, it should be remarked that there are a variety of nonlinear phenomena that can be

operative in lower-hybrid heating of a tokamak-type plasma. In this paper we have focused on the

quasimode parametric excitations. Other parametric excitations and selfmodulation effects, especially

at the plasma edge, may also have important consequences in lower-hybrid heating. Their

interaction with quasimode excitations is beyond the scope of this paper.
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1I. Linear Theory, Spatial Growth Factor

The linear steady-state evolution of a sideband field E driven by a pump field E 0

which decays via nonlinear damping on electrons or ions is given by [6],

i 1-4 V E = (C(x) E2 (x)E2 (I)

where Z , is the group velocity of the sideband, C(x) is the coupling coefficient, Ece (x) is the

magnitude of the pump field as described by the linear equations, and E is the magnitude of the

excited sideband field. The coordinate x is in the direction of the spatial inhomogeneities and is

normalized to the slab half-width a. By integrating Eq. (1) along the group velocity trajectory of

the sideband field, one finds the spatial growth factor (Fig. 1)

(x)=a y(x dx (2)
x1 v1 (x )

where y(x) = C(x) Ece (x)/2 is the temporal growth rate,

Y = sin2() - k1  2 2  M (3)

2 = 2 W2 W1)~ - Z Ik DC i + Xi + Xe) 32

,2 and o are the pump and sideband frequencies, w = o ) is the
S+ w , /nr

frequency of the quasimode, k 0 and k I the pump and sideband wavevectors, = 1 ~ , and

k
cos(<) = Ix . We are assuming a uniform pump electric field in the y-direction so that t =

(kox,ko). For this pump field, one finds,

2 (EO)2 Po G) 2 
j kOZVTe K (4)

B nTeVT, 0 ? 0 xi K

Po is the rf-power density, n and T, denote the local density and temperature (in energy units) and

K 11, KC1 are elements of the cold plasma dielectric tensor for the frequency wo.

Let us denote by the subscripts I and R the imaginary and real parts, respectively, of the

susceptibilities of the low frequency mode x ( k , w), where the subscripts e and i stand for,
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res'pectively, "electron" and "ion", then

Im(~~~ I , Z1 +x(( )2 + Xi(Xej + Xi1)] 5
+ Xi~x x+n x + XiR + XR) 2 + (X+

We see that the scattering off the low frequency mode can be due, in principle, to both electrons and

ions. We are now interested in getting explicit forms for x, and xi. For electrons one has that W <

Q, and k.LTr 2 < 1, which immediately leads to [10),

X l + Z (6)
e k 2 RikvT e RkzlvTe'

In previous works [3 - 7], it was commonly assumed that T, * T i, and thus that I ; Ix,!. Under

these conditions Eq. (5) becomes equal to

xe D = k2  2lk vTe 2kz v I

implying that the scattering is only due to electrons. This, we find, is never true for tokamak-type

plasma parameters where, in fact, one finds T, ~ T; and ion contributions to' the scattering is

important.

For lower-hybrid heating of typical tokamak plasmas one finds, that the low frequency

quasimode excitation in the plasma can span several ion cyclotron harmonics. In addition one finds,

that inside the plasma, An(O;) = l,(Oi) exp(-0;) is usually small, since ;= kiv7 i 2 is greater

than 1. This means that the contribution of the corresponding n will not be appreciable unless the

Z-function contribution is large. Let us fix w and x and define r(x,o) as the closest integer to

, we thus approximate xjg by

r+ I

k2X2  jl+ 722Q~ IA~~) (8)
k20 f2_jk,1vTi 7 4!kziVDi n=r-I

where we have reduced the infinite sum in all the cyclotron harmonics (n = -- , . . . 0 . . , w) to only

three terms, and ZR denotes the real part of the Z-function. For the imaginary part of x; one has,

= I k_ _ (- kJ Ar(nSi) (9)k2 2= 2 IkzjvTi 2 v2 (
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The behavior of the real and imaginary parts of Z with respect to its argument, and the fact that
ikyIvTI

< 1, lead to only large values of Z in a narrow interval of the frequency spectrum around

the point w = n S;; this interval being even narrower for the imaginary part of Z, for which one can

say that it is only different from zero when o is very close to rni. Thus, for fixed x and o, we

need only to take account of the closest harmonics as expressed in Eqs. (8) and (9). When o < Ili,

the main contributing term is for n = 0 which turns out to be always inappreciable for lxi < 1, since

it requires ts--< I and thus that 6 1 be very close to o .where the growth factor is

always small. For this situation, we can approximate x; by the real quantity: x =

We note that the growth factor of the interaction is only appreciable when electron Landau

damping for the quasimode is important, i.e. W < 3.5. The ion-cyclotron harmonic dependence
lkzl"Te

of the quasimode gives important modifications to the growth factor as a function of frequency. This

can be appreciated from the following: let us assume that X,j = 0, (i.e. Ik W > 3.5). Equation (5)
-zvT,

now becomes

D i+ Xe (I0 + XLR 4. X,R)' + (10)

where xE? = ' 2Te 2 and k2X2, << 1. Equation (10) is always very small, even if w
where eR WDD

nGi, since k2 X XJ,, is small. The only exception is when, for certain W = n(0 , ( + XiR) = -xR,
2

Eq. (10) then reducing to k2?, X which can give large growth factors if x;; (1 + xR)2

However, for I + X; + x, = 0, the low frequency is no longer a quasimode but a true mode; thus the

interaction becomes a resonant three wave interaction and is no longer described y the quasimode

equations, Eq. (1). Here, we shall not pursue such resonant interactions.

To calculate r as a function of o 1 for a fixed x and a given pump frequency Wo (e.g. O =
cko,

2.45 Ghz for Alcator A), we shall proceed by first choosing some values for no --- and niz -

ck ir
The parameter noz is really fixed by the rf-power spectrum distribution which we shall

specify in the next section. Besides there are two physical conditions limiting the range of variation
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for ncz and n iz: a) Pump and sideband are fluid like waves, that is they cannot be electron Landau

(A)0
damped k > 3.5 and > 3.5); this gives the upper bound

Oz7kTe IzVTe

I c (11
40,1 z< 3.5 FTe

b) The lower bound is given by the requirement k2 > 0 in the region where the interaction takes

place.

The excited frequency spectrum is found by using the condition of strong electron Landau

damping of the quasimode W < 3.5,
|kzlvT,

az ± 3.5 O_ Wa (12)a,* 3.5 cxz &o
0Z * 3.5 C( F')0

where az = k0oVT, 'Z = k IZvTt , and we assume that k Z > 0. The minus sign is taken when az

< 1, and the plus when a, > . Once we choose noz, n Iz and w 1, we can solve for k01 = kox and

k L using the lower-hybrid dispersion relation corrected for finite temperatures effects,

a ki + (bk - Kr)k2 + ck - k2 K1 = 0 (13)Z z

where a, b and c are given elsewhere (I .

Let us now determine the lower limit of the integral x1 , in Eq. (2), for a given x. Denoting

by V 0 the group velocity of the pump field, one finds

( o -1 L L. C l
x xx - +a x (

where L is the width of the pump propagation cone. It turns out that, for fxj < 1, x, is always very

close to x which allows one to approximate

J(x)= W lx L (15)

This growth factor can now be maximized with respect to the angle P. r dependencies on

4 come through y(x) which behaves like sin2(0) (see Eq. (3)), and through



V =X cos(#) K11
v~~ - -~PfK

jr2

VI VCZ K 1, K C1

11 1

V1x vF,. cos4 K K01

K I. and K ii are elements of the cold plasma dielectric tensor for the frequency G.

together in Eq. (15), leads to the total angular dependencies of the growth factor' r,

easily maximized to obtain
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(16)

(1 7)

Putting these

which can be

-K11) K 1  (-K111) K01cis( ) (18)
K L (-Koil) K 11  (-KO11)

In the computations we shall only consider the maximum growth factor with respect to h. We note

that in this section and for the rest of the paper, we limit ourselves to the case k > 0, which is

maximized according with Eq.(18) for vjx < 0. This case represents waves travelling toward the

center of the plasma. When k1z < 0, Eq.(15) is maximized with respect to cos (0), for v1 ,, >0

representing waves travelling toward the plasma edge. We are not considering this last possibility

since the results will be similar in both cases, and only the direction of propagation is reversed.

However, one has always to remember that when parametric excitations become strong and the

rf-power is transferred to the excited waves, a large part of this power will travel down to the

plasma edge. In general, we find that cos (4) > 0 (k1Z > 0)and as w I - wo, cos (4) - I (i.e. k1 - -

kix and kj, - 0). It should be noted that in the temporal evolution of the instability, the temporal

growth factor, given by Eq.(3), maximizes with respect to h when cos (4)) is zero, that is when k L

- ly and k Ix = 0 representing waves which will never get into the center of the plasma.
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III. Linear Theory, Calculations

A. Inside the Plasma

In our computer calculations we consider a D2-plasma and take the density, temperatures

and toroidal magnetic field to be spatially inhomogeneous obeying the following profiles, consistent

with measurements on Alcator A (12]

n = noI x2 )3/2 (19)

-2x 2

T = To e (20)

B = Bo (I - x) (21)

where no, To and B0 are the density temperatures and magnetic field values at the center of the

plasma, x = 0. We shall take Bo fixed at 60 KG, and consider two typical values for the peak

density, no = 1.5 x 10l, and 5 x 104 cm-3. The corresponding peaks in temperatures are, for the

low density regime: Teo = 1.3 Kev, Tio = 0.75 Kev, and for the high density regime: Teo = 1.15

Kev, Tio = 0.68 Kev. The accessible nz s are na = 1.6 and 2, respectively.

As an example we apply the theory previously outlined, to the experimental characteristics of

Alcator A. We use the maximum applied rf-power as 80 Kw, driven at the plasma wall through a

two waveguide array, each of width = 1.25 cms, and height h = 8 cms. Reflection back into the

waveguides, reduces the available power by 201. According to linear theory (13, 14], from the

remaining 64 Kw, about 35 to 40% is below accessibility. This power is fed to surface mode fields

that remain near the plasma wall, and never penetrates in the main bulk of the plasma. Let us

restrict ourselves to the propagation cone, koz > 0. Following linear theory, the accessible power is

distributed within the wave-numbers nz = 2 to 5 as follows: between nz - 2 and 3 there is an

average of approximately 7.5 Kw, between n. = 3 and 4 5.5 Kw, and between nz = 4 to 5 3 Kw;



Page 10

in addition there are about 2 Kw of power beyond nz = 5. The total power in a resonance cone will

be taken as approximately 17.5 Kw. We are modeling this power distribution with the function

2 c P &x) sin 2((z - nz) A)
2 c Pcx) s2(fz z , where A = x L, and L(x) is the width of the pump cone

which depends on the amount of power, Po(x), penetrating to a certain point in the plasma.

In addition to accessibility which limits the power penetration into the plasma,

modeconversion of the pump electric field (I0 will also restrict the amount of power getting to the

plasma center. In Fig. 2 we show how the different wave-numbers no, are modeconverted as they

propagate into the plasma, for the two regimes of low (Fig. 2A) and high (Fig. B) densities. We

see that for the low density regime, all the linear power spectrum reaches in the lasma center. In

the high density regime, and for x < 0.5, only that part of the spectrum between the wave-numbers,

nz = 2 to 3, penetrates. These considerations, and the nz power spectrum distribdtion predicted by

the linear theory, allow us to make the following estimations : Inside the plasma, c < I for the low

density regime and 0.5 < x < I for the high density regime, we will assume for iinear calculations

that Po - 17.5 Kw and the pump spectrum is centered at no, = 3.5, with L ~ 1.3w. For the high

density regime and for x < 0.5, one has, because 'of modeconversion, PO 7.5 kw, the spectrum

being centered at noz = 2.5, with L ~ 4w, i.e. the propagation cone is four times larger than the

waveguides width. In any of the former cases, the power density is obtained by dividing the

rf-power available by the area of the corresponding pump cone. We note that F is independent of

the pump width as can easily be seen from Eqs.(3), (4) and (15).

In Fig. 3 we are representing F as a function of the frequency spectrum for the two different

peaks in density, and for two different positions in the plasma, near the edge, x = 0.75, and near the

center x = 0.25 . The power distribution fixes no0 = 3.5 except for no = 5 x 10 14 cm~3 and x =

0.25, where as explained before no, = 2.5. The power available is 17.5 Kw except for the high

density regime and x = 0.25, where due to modeconversion, the power available is 7.5 Kw. We

have chosen niz = 2 in Figs. 3A and 3B, and n I, = 5 in Figs. 3C and 3D. Comparing Figs. 3A

and 3B we see that the spatial growth factor increases very rapidly with density due to the WKB
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enhancement and cylindrical focusing factor of the pump field; we ignore the focusing factor at about

half-way to the center of the plasma. We also note that vl, gives an additional WKB-type of

enhancement for r (see Eqs. (15) and (16)). Moreover we find that both v0, and vix are small, and

that pump and sideband move parallel to the magnetic field: I V-r I > I I > 30, and they reach

values of the order of 100 at the highest densities. The number of resonant peaks observed in the

calculations, vary with the width of the excited spectrum, which depends on noz, niz and x, see

Eq.(12) . When no, and n Iz are close in value, the number of resonant harmonics, and the width of

the excited spectrum, are smaller than when they are far from each other. This is illustrated in

Figs. 3A and .C where the density is the same but niz is different. We also note that r increases

with increasing n1 , this being due to the vix-dependency upon niz as shown in Eq. (16). We shall

discuss later on the important consequences of this fact. Figures 3B and 3D also differ in the value

of n z. As the density is already too high, sideband fields with high n , 's can only be excited close

to the edge of the plasma, x ~ 0.75, as shown in Fig. 3D. This is due to modeconversion of the

excited fields. Modecoversion for the pump electric field was shown to occur at different nz 's for

different peaks in density (see Fig. 2 ). Similarly, the values that n1z and w can take for a given

density are also restricted by modeconversion. As the density increases, w has to be closer to o

and niz closer to accessibility in order for Eq.(13) to give a real k; . For example, in Fig.3D and

for x < 0.5, no sideband fields can be excited due to n I, being too large (n I = 5) for such densities.

Similar restrictions due to modeconversion of the sideband are found in Fig. 3B, for x = 0.25 and

w Iw o < 0.96. In Fig. 4, we are representing r for the low density case at x = 0.75, and taking niz =

12 and noz = 6.5. The reasons why we have shifted the pump spectrum toward higher nz 's, will

be explained in the next sections. What we want to notice here, is that r also increases linearly with

no, (see Eq. (4)), and that parametric excitations for such high values of njz can only take place

close to the edge (x ~ 0.75).

The nodes of the growth factor occur when w is near n Qj, x; =0 and (i + XiR) = 0. As

pointed out, xi, is only different from zero in a tiny region around w = n V2,, thus for w i n ni we

can take
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(+ xj) x, ( + X,,)

Im r?+ i }x =Xe xI ~ R 2  2(22)IM + Xi + xe) (e + xiR + x, (

which becomes zero for xiR = -1. As we are considering an inhomogeneous magnetic field, the

position of the resonant o will change in space and so will also the the positions of the growth factor

nodes. This means that for a fixed w , there will be regions in x where the pump and sideband are

coupled, and others where the coupling is very small. The maximum values for F between nodes,

are approximately given by the condition: 1+ XiR + Xe/R ~ 0 ( except when XeR is very small and

then I + xis becomes zero simultaneously). We note that the function I + xeR + XiR has a zero

between each two harmonics, these zeros are very close to those of I + XiR. At these zeros, Eq. (22)

(1 XiR) 2

behaves like X . When x., is small, that is when o is far away from the main bulk of

the electron damping (e.g. > 3 or < 0.5), the zeros of I + X + xi can lead to
IzI VTr ikzI VT.

singularly high values for F, as can be observed in the different figures presented. These singular

values correspond to frequencies fulfilling, I + xi + x, ' 0, which, as remarked before, is the

transition condition between a well defined low frequency mode and a quasimode (i.e. one for which

1 + Xi + Xe $ 0 ). Our formulation is no longer valid here, and such values of F should not be

considered as reliable; they would have to be calculated from a resonant three-wave interaction

formulation.

I
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B. The plasma edge

Let us now study in detail the quasimode parametric excitations in a special region of the

plasma situated in the shadow of the limiters of the tokamak. This region is characterized by a

large drop in density and temperatures [9]. The drop in density can still be approximately

described by Eq. (19). taking lxi ~ 1. The corresponding drop in temperatures is about a factor 10

larger than the one prescribed by Eq. (20) taking lxi ~ 1. This leads to very high values of A

given by Eq. (4), and thus to very large values for the spatial growth factor. We are going to

explore the regimes of low (no = 1.5 x 10 cm-) and high (n 0 =5x 101 cm~ central densities.

According to the experimental results in Ref. [9], for the high density regime one finds at the edge:

n ~ 6.7 x 1012 cm~3 and T, ~ 10 ev; for the low density regime one has: n ~ 2 1013 CM-3, and

T, ~ 10 ev The toroidal magnetic field is about 50 KG and the ratio between electron and ion

temperatures will be assumed to be the same as in the center of the plasma, so' that Tg - T,. It

should be remarked that the ion temperature in the shadow of the limiter was not measured in

Ref. [9]. The possibility exists that T, > Ti and hence the parametric excitation could be a resonant

one involving ion-cyclotron and, or, ion acoustic waves. Here we assume T', Ti tor which case the

quasimode excitation is dominant. At the plasma edge, x - 1, the available power in a cone will be

assumed to be 32 Kw, centered around no, = 3, and L taken to be just the width of the waveguides,

w = 2.5 cm. We remark that by taking into account part of the power not accessible to the plasma,

we consider the possibility that by decaying into higher nz 's it might become accessible and then

penetrate into the plasma.

We have already commented that I increases linearly with niz, this will have important

consequences in this region of the plasma. The parameter n1z is restricted by the condition of Eq.

(11), and by modeconversion. At the edge, due to the large drop in temperatures, niz can vary

from I to 50. Hence, the growth factors will increase to enormous values for the higher nl,'s. In

Fig. 5, we represent F as a function of w I for the two regimes and for differents values of ni IZ for

the low density regime (Fig. 5A) we take n 1z = 6 and 8, while for the high density regime (Fig. 5B),
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we take njz = 1.5 and 4. We see that similar values for r are obtained for different values of niz

as one considers the regimes of low or high densities. As the density decreases, nlz has to become

larger in order to keep I as large as when the density is high and niz small. We also note that the

frequency spectrum is much narrower than the one usually found inside the plasma; this is also due

( 0to T, being small: The pump spectrum is centered at noz = 3, implying az = koz VTe 70, and

the lower limit of Eq.(12) becomes now approximately equal to, + . Thus, if niz < 10, that is
z ±3.5

if O= >> 3.5, one gets that is very close to 1. Given these large growth factors one
k z vre WO

can conclude, and we shall corraborate it in the nonlinear calculations, that the pump will be

completely depleted in the limiter region. The excited sideband fields have a frequency close to the

pump frequency, but the wave-number spectrum may.be very different from the initial linear

spectrum.

It should also be noted that in Fig. 5 the narrow regions of growth factor very close to the

pump frequency wC, can be attributed to ion-acoustic quasimode interactions, i.e. those driven by

ion-Landau damping of the quasimode, these giving rise to the peak very near O. However at such

small frequencies, it may be that our quasimode formulation is not the most appropiate one since

Xel ~ 0, and, again, a resonant three-wave interaction with w very small should be carry out.

Regarding the computational methods used in this region, we have to remark that as the

plasma parameters are quite different from the ones inside the plasma ixi < 1, the discussion

presented in Sect. I to derive Eqs. (8) and (9) is no longer valid here. In fact, now O

±VTi 32 . 1, and for a given w, we cannot be sure that the main contributing harmonic is the

closest to o = n 11, since the Bessel functions are not as small as they were before. In all the

calculations we have used a sufficient number of harmonics to obtain accurate results.
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IV. Nonlinear Depletion

The depletion of the pump field and the nonlinear evolution of the excited sideband field,

are described by the following nonlinear equations [6]

)E2 -CxE

(VOx(x) - + VO,(X) EO = C EI (23)

V IX(X) - + V ,z(x) E2= C(x)E2 E2. (24)

Equations (23) and (24) have been obtained through a WKB mode analysis assuming the plasma to

be weakly inhomogeneous.

For a homogeneous medium Eqs. (23) and (24) admit the exact solutions [15]

0 = - -L (en (S(O) - T(r))) (25)

= + -L(en (S(0) - T(r))) (26)

C E2 CE2 Xv11 and
where ,o =1= ux ' v = U--U-, 0 = z - a Idx' and -

= -(z - a dx'). We shall assume a finite uniform extended pump at x = 1, AO 4,0(x

= 1, Izi < ru/2), and denote by A I = fiP (x = 1) the noise level. The functions S(O) and T(r) are

uniquely specified in terms of AO and A 1 for the two different regions: fri < L12, 101 < L/2 (region I)

and Iri < L/2, 0 < - L/2 (region 11), see Fig. 1, and their analytic expressions can be found in [153.

For an inhomogeneous plasma we shall also describe the dynamics of the interaction through

Eqs. (25) and (26), but now AO and A I become slowly-varying functions of the inhornogeneity

coordinate x.

C(x) E e (x)
AOWx)= v(x) vIx(x)
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C(x) Ele (x)
A I(x) = x) vo) (28)

where ECe(x) and Eic(x) are the pump and sideband electric field as described by the linear

equations,

2 2 P kz -K110= cos ) 5- (29)

cos ( ) , p is the power density which, for the pump, has already been specified in the former

sections, and for the sideband we assume pr = - = 5 x 104. Equations (25), (26) and (27), (28)
Po

describe the evolution of the interaction in a WKB sense, that is if this evolution is faster than the

variation of plasma parameters with x.

As a measure of power depletion we compute the average of the square pump electric field

along the width of the resonance cone, and the sideband field coming out from the resonance cone

(i.e. at - L/2). For (I - x) > Ax,, where Ax = w ,a one finds approximately
|Viz/V1 - Voz/Vo,.

(see Appendix)

I E' (x,z) E2 1( (x+En() dz = E () en 4(a e + r) -2F , (30)

e -l+e

E2 (x,r = -L/2) E2t (x)I - 1(31l)
E ( E(1) -A1(6+r -1) .- AIL (23

) + e e (-l+e )

where 0 + -r = af Oz - dx', and I" = -(A0 + A 1)L/2 is the spatial growth factor. It

should be noted that Eq. (30) is independent of the width of the propagation cone, and so is also,

approximately, Eq.(31) since (8 + r) > L.
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In region I the electric fields are independent of z and there solutions are as found from a

one-dimensional analysis [15)

E2 (x) E W (x)
E (l) E(l) + (P 0+ArXe+ )

E (x) E (x)
2 2() -,40 A )(0 ,r)(33)

E0 (1) E0 ( P) + 2+;6
p+ e

and satisfy Ee + xEe E -+ 0 one has E I - E (x) +2 IX o+ E.TeniE .onhs 1 -

Eie (x), and the sideband will come out with all the pump power. On the other hand if the

depletion of the pump occurs in region II, then the power density of the sideband can be much less
-A (0 + r)

than that of the pump. Complete depletion of the pump in region II occurs when e = 0.

At that x, (30) and ('1) give E2 = 0 and E = E2.

Let us now analize carefully Eq.(31). The sideband electric field E, gets larger when the

-21 -At(0.r)
denominator of Eq.(31) gets smaller, which happens when e << I and e I (we note

-A1 L -2 r
that A I L < A, (0 + -) and that e 1). In order for e < 1, we n eed large growth

factors (e.g. I > 1), that is either high densities, or low densities and large n1Z 's. At high densities

-2rT -A1 ( + r)
or sufficiently high n i 's, we have e 0, but we still need e ~, i.e. A1 (0+ r) ~

Cta(x-l)
0. Combining Eq.(28) with the definition of (e + r), we get A (0 + r) ~~, and

thus, inside the plasma, lxi < 1, A , (e + r) will be small only if v0x is sufficiently large. However

as has already been pointed out, vox is always small and gets smaller as one increases the density.

Hence no strong sideband fields are expected to be created in the main bulk of the plasma. The

total rf-power is, of course, conserved, but it is now spread out in a larger region of space following

the group velocity trajectory of the pump field (i.e. along r = -L/2). This power is introduced in

the plasma through a two waveguide array, which for Alcator A has an area h to = 20 cm 2 ; as the

X

pump gets in the plasma the sideband it generates will be spread out in an area: h ( 2-+ a
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V dx'). For ha = 76 cm 2, and I I> 30, we find ha dx' > 2.3 x 103 (1 - x) cm2.

Thus, a strongly depleted pump does not lead necessarily to large amplitude sideband fields. The

excitation of strong fields requires a strong interaction between the pump and the noise (say r > 1),

and that this interaction is to occur near the mouth of the waveguides (x 1). At the edge, x very

close to 1, F is very large, larger than anywhere else; besides, Ax, is also large and increases with

decreasing density. Thus, at the edge the pump is just depleted in region I, and the .one

dimensional equations (32) and (33) are adequate to describe the depletion. The amplitudes of the

excited fields will then be comparable to that of the launched pump field.
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V. Nonlinear Theory, Calculations

A. The Plasma Edge

Let us now apply the nonlinear description of the previous section to Alcator A experiment,

and let us start with the plasma edge. In Fig. 6, we are representing the averaged square pump

electric field, as given by Eq. (30), for the minimum depletion distance out of the resonance cone,

Ax, = 1  as a function of the sideband frequency spectrum. We take the
1Voz1VOx - -V 17zIl ,

rf-power to be 32 Kw and according to the linear theory, no, = 3. In the case of low density, Fig.

6A, we see that the wave-numbers nj, = 6 and 8, deplete most of the pump power. For the high

density case, Fig. 6B, the wave-numbers, nj, = 1.5 and 4 are already able to essentially deplete the

pump. Let us call nzrh the minimum nIz for which the pump suffers an appreciable depletion in

the distance . This threshold will become smaller, and eventually equal to 1, as the density

increases. When the density is very small one has nA -- 1. In our two examples one can

approximately fix nzth ~ 7, for the low density regime, n ~ 3, for the high density regime.

For strong excitation of large amplitude sideband fields we require that pump depiltion is to

occur mainly in region I, that is in a distance from the edge approximately equal to . This

characteristic distance, Axe, is a function of density and sideband frequency w 1. At the edge W 1 is

so close to wo and the density is so small that Ax. is usually large. For example in Fig. 5, and for

those w I that give the strongest depletion we find, for the low density regime Ax, 0.07 , and

for the high density regime Axw ~ 0.04, (to recover Axw in real magnitude one has to multiply the

above dimensionless numbers by the minor radius of the tokamak, a = 10 cm). The large amplitude

excited fields, nz z, will propagate in a cone of width equal to the pump width, L ~ 2.5 cm. In

terms of wave-numbers this means that the width of the excited spectrum is of the order of the

width of the pump spectrum, Ani, ~ 4 (in general one has An1z < Ancx ~ 4). The question that

arises now is for n, : nh, which are the selected n, 's that deplete the pump. We are not going

to carry out in the present paper the calculations that lead to the excited spectrum. As a general
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criterion, we take those n1 -nz, that "deplete first" (i.e. those with the larger group velocities) as

the ones that deplete the pump: In order to support this criterion, let us present some physical

arguments on what would happen if the excited fields have the largest possible n 's. Initially the

pump spectrum is centered around the value n0iz ~ a; after decaying, the excited spectrum will be

centered at, say n7 ~ 45. Let us consider the excited spectrum as a new pump which essentially

differs from the initial pump in the wave-number spectrum. This new pump, centered at noz ~ 45,

may decay again. The spatial growth factor increases linearly with noz, see Eq. (4); this means that r

is multiplied by a factor of 15 with respect to the values it took when noz was 2, which makes this

new pump highly unstable. This would initiate a quick cascade evolution toward smaller nz's until

the pump reaches the most stable parametric decay, i.e. near the lowest n1 z for which the pump

completely depletes, which will be what we call the threshold nzt. We note that if the highest

possible 7z 's are excited, they could damp a certain amount of the rf-power on the electrons before

the new pump is able to penetrate inside the plasma. Nevertheless, in order to achieve a very high

excited new pump (i.e. n1 z > 45) one needs to decrease drastically the density of the plasma, since

otherwise the rate of decay toward smaller n. 's will be always larger than the linear

Landau-damping rate, and thus the cascading processes toward smaller nz 's will dominate.

It should be noted that nzth and the pump spectrum penetrating in the plasma, depend on

the assumed noise level. The thermal noise level is too small, and nonlinear processes always

enhances it. The experimental data show that for no = 1.5 x 10 A cm~, the electrons are heatd

close to the center of the plasma. For this to occur, we require the excitation of the wave-numbers,

njz = 6 and 7, which in turn leads to the estimation A/11 0 = 5 x 10~4 so that appreciable pump

depletion should occur into these wave-numbers. We want to remark that it is beyond the scope of

this paper to present quantitative results on the stability of the excited spectrum; with arguments as

the ones presented in this section, we only attempt to present a qualitative picture of the evolution for

these quasimode excitations and mainly wish to point out how they scale in the different regimes of

plasma parameters.

Now, we can summarize the situation at the plasma edge as follows. The pump is
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completely depleted in this region, and the excited spectrum has a frequency very close to the initial

pump frequency and propagates in a cone of width approximately equal to the waveguides width.

However, the wave-number spectrum may be very different from the initial linear. spectrum. For no

=1.5 x 10 CM-, 5 < n z < 10, and for 7z = 5 x 1014 M-3 j < ni. <6. The excited spectrum

will act as a new pump inside the plasma, which is now centered at about ncz - 7, for the low

density regime, and around noz ~ 3, for the high density regime. We note that. by decreasing the

density, noz will become larger, and all the rf-power may be modeconverted or damped on the

electrons, before getting in the main bulk of the plasma.
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B. Inside the Piasmna

The excited spectrum at the plasma edge will act as a new pump inside the plasma, centered

at-no, 7 and no, = $, for the low and high density regimes, respectively. We assume that 40% of

the rf-power will remain close to the edge and never be able to act in the plasma. This may

occur because the pump can excite, close to the plasma edge, new waves of higher nz 's (e.g. n, >

12, for the low density regime, and njz > 5 for the high density regime). The part of the power

which goes into these high n, 's will be either modeconverred or transfered to the electrons via

Landau-damping, before the new pump penetrates well inside the plasma. Under this

assumption,the amount of power penetrating into the plasma in a resonance cone is, for both regimes,

about 17.5 Kw.

The essential difference between the main bulk of the plasma and the plasma edge is the

rapid rise in the electron temperature, which is faster than the corresponding rise in density. We

have already seen that the growth factors are here smaller than at the plasma edge. Consequently,

pump depletion is expected to be weaker, and occur in a distance, Axd, much larger than Ax The

excitation of sidoband fields will occur mostly in region H, and their amplitudes will be much

smaller than that of the launched pump electric field. The way in which the excited spectrum will

be selected is also different from the plasma edge. First of all, the range of variation for n is now

more restricted by the increasing electron temperature and by the increasing plasma density. The

largest possible nz ' (e.g. nj, 12 Fr the lDw density regime and n7z ~ 5 for the hig- denzity

regime) will interact with the new purmp first because they have the largest growth factors, and will

deplete a large amount of the rf-power before the new pump is able to get well inside the plasma

However, their growth rates are now only moderate and because of that we assume that cascading to

lower nz '3 does not take place. Thus, the part of the power that is transfered to the largest possible

n, 's, will be either modeconverted into thermal modes or Landau-damped on the electrons. The

amount of rf-power transfered to the highest ni 's increases by increasing the central peak density.

For the high density regime we find that the new pump is completely depleted close to the plasma
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limiter. In the low density regime the depletion is not so complete and there may be still an

appreciable amount of power getting into the plasma.

To illustrate the above comments, let us present some calculations, first for the low density

regime. The ncnlinear power spectrum is assumed centered at n7x ~ 7; we remind that I' increases

with increasing n, so the depletion is stronger for the nonlinearly generated spectrum than it would

be for the original linear one (i.e. no, ~ 3.5). In Fig. 7, we are representing with continuous lines the

square pump -:eld averaged aicng the rescnance cone, as given in Eq.(30), and with dotted lines the

evolution of the rf-power, averaged also in the pump cone and normalized to the initial re-power of

17.5 Kw. The pump electric field suffers simultaneously the effect of the depletion, due to the

parametric procceses, and a spatial enhancement due to the inhomogenities of the plasma. When the

depletion is small the pump electric field will grow with x until the depletion overcomes this growth,

and makes E2 decrease down to zero. We take niz = 2 and 5 in Fig. 7A, and nlt = 12 in Fi. 7B

We also take one of the maximum growing frequencies w I/wc= 0.85 (Fig. 7A) and w/o g= 0.9 (Fig.

7B) and for these w, 's, we find Ax,= 0.01 and C.015, respectively. For 7:1z = 2, the depletion

is neglegible; for n, = 5 pump depletion starts at x ~ 0.5 and the overall depletion is around

35%. In Fig. 7B, x poes only up to 0.5, and this is due to modeconversion of the excited sideband

electric field of wave-number ni, = 12 and frequency G /oc= 0.9. However, this ex:ited field

starts transfering energy to the electrons at about = 0.75, befcre modeconversion in::o thermal

modes takes place. Thus, an appreciable amount of the available rf-power, say 40%, may be damped

on the electrons and heats the plasma close to the plasma limiter. Besides, this will reduce the

amount of power penetrating into the plasma center. The part of the power that penetrates may

excite lower wave-numbers, such as niz = 5, close to the plasma center. However, to properly

calculate how much power goes into the smallest nlz's one should make a more careful analysis than

the one presented here, and substract from the total power that part that has already gone into :he

excitation of the highest r a 's.

In Fig. 8 we study, for the low density regime, how the excited sideband electric fielci

evolves in x (continuous lines) compared to the linear evolution of the noise electric field (dotted
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lines), as given in Eqs.(29) and (31), for n1i = ws wo = 0.86 (Fig. SA) and n 1. = 12, co I1w = 0.9

(Fig. SB). We see that the amplitude of the excited fields are never comparable to the amplitude of

the launched pump field. This, as explained in the last section, is due to the fact that the pump is

moving parallel to the magnetic field. Thus, a pump depleted in a distance, Axd, in x of the order

of 2 or 3 cm has traveled a much larger distance in the z-direction, along which the power is

continuosly spread out. It should be noted that the sideband fields created close to the plasma edge,

as in Fig. SB, are always larger than the ones created well inside the plasma, as in Fig. 8A. This is

due to the fact that vox is larger when the density decreases, and about the same amount of power

will be put in a smaller distance following the pump trajectory. The ripple in Fig. SA at x ~0.7, is

due to the fact that pump and sideband are ocasionally uncoupled because of the spatial

inhomogenities of the toroidal magnetic field.

Next, we shall present some nonlinear calculations for the high density regime. In Fig. 9 we

study how the pump is depleted in x, for two different values of nit, niz = 2 (Fig. 9A) and nI = 5

(Fig. 9B). The pump power spectrum is centered at nc - 3, the available power is in both

examples, 17.5 Kw, and the frequency of the excited fields is the same in both cases, w i/o = 0.95.

For this w I we find that Ax ~ 0.015, and the distance in which the pumo is decieted is of the

order of 2 or 3 cms. We see tiiat for n = 2, (Fig. 9A), pump depletion starts at x 0.7. For ni =

5(Fig. 93), the depletion starts at x ~- 0.9, and the pump is effecaively depleted (there is only a 10

left) at x ~ 0.6. Thus, the sn allest n , 's will not deplete the pump, since the highest n . 'S will

interact sooner and do it first. The reason why in Fig. 9A, x goes only from I to 0.3, is due to

modeconversion of the pump electric field centered at noz = 3.5. From x = 0.3 to 0, one should take

into account only that part of the spectrum, if any, in between noz = 2 and 3 (that is a centered

spectrum at no, = 2.5). In Fig 9B, x varies from 1 to 0.5, but the reason is now modeconversion of

the excited sideband electric field whose frequency and wave-number are respectively = 0.95 wn

and n7 = 5. This effect of modeconversion of the excierd spectrum is having crucial ccnsequences,

since all the rf-power will be transfered to the highest nz7 's and modeconverted into thermal

modes, before reaching the plasma center. A cut-rff in the amount of rf-power getting into the



Page 25

plasma center is thus predicted for sufficiently high densities. In Fig. 10, we are showing the excited

fields for niz = 2 (Fig. 1CA), zlz = 5 (Fig. 10B), and / = 0.95. We observe again that their

amplitudes (continuous lines) are very small compared to the initial pump amplitude, but

considerably much larger than the amplitude of the electric noise (dotted lines). We also note that

fields excited closer to the plasma edge (Fig. 10B) have larger amplitudes than those excited near

the plasma center (Fig. 10A).
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V1. Summary and Discussion

Parametric excitations of the quasimode type present different characteristics in two distinct

region of a tokamak plasma, the plasma edge and the main bulk of the plasma. They also lead to

different results when considering the two regirnes of low and high densities, which are represented

respectively by the peak in densities: no = 1.5 x 10 14Cm~ and 5 x 1014 cm-.

At the edge of the plasma, we have found that parameric excitations are very strong and

that, in fact, the pump is depleted in this region. The excited spectrum has a frequency very close

to the initial pump frequency, while the wave-number spectrum may be very different from the

irritial linear spectrum (Le. 1 :s noz 5). As the temperature is very low here, the excited spectrum

can, in principle, run from n1z = I to say nj, = 50. The spatial growth factor increases linearly

with nji. Besides, and through the nonlinear theory, we have argued that there exist a certain

threshold, that we call nah, such that for nz nzth, the pump will be essentially depleted. We

have not calculated the detailed excited spectrum, and as a criterion, we have been taken those n1z

n which "deplete first' (i.e. those which have the larger group velocities) as the ones that deplete

the pump. Due to the finite spatial extension of the pump, the excited fields have a maximum

extension in wave-numbers, A ni ~ 4 or 5. By passing from the high density regime to the low

one, na becomes larger and eventually, by decreasing sufficiently the density, nzt can be large

enough so that the excited spectrum is modeconverted into thermal modes or Landau-damped on the

electrons, as soon as it gets into the plasma. For sufficiently high densities, and following the above

criterion, the excited spectrum will be similar in wave-numbers to the initial linear spectrum. In

order to support this criterion, we have presented the following argument: Let us assume that the

pump decays into the highest possible n1z 's, and let us consider the excited spectrum as a new

pump, centered at say noz ~ -5, which may decay again. The spatial growth factor 1 increases

linearly with no, and nl_. This means that r is multiplied by a factor of 15 with respect to the

values it took when no, was 3. This new pump is now highly unstable to quasimode parametric

decay, and it will quickly cascade toward smaller n1 , 's to become more stable. This process will be



Page 27

stopped when the new n. and r are sufficiently small, so that the excited sideband spectrum cannot

further decay. Thus, the most stable parametric decay is in general, well represented by the value

nzh. The highest nIz excited spectra can be reached just by decreasing sufficiently the density of

the plasma. It should be noted that if the excited fields have large nz 's (e.g. n. ~ 50) they can

transfer part of their energy to the electrons via Landau-damping. However, this can only happen

for very low densities, since for sufficiently high densities the rate of decaying into smaller nz 's, is

always very large and, in fact, it is larger than the linear damping rates. Then a cascading proccess

toward smaller nz 's would dominate, and the energy wUl not be transfered to the particles at the

edge.

As one gets inside the plasma, the plasma parameters will change: the density will increase

and so will the temperatures; the increase in the temperatures being much faster than the

corresponding one in density. This will also change the characteristics of the excited spectrum.

Thus, the most likely parametric excitations will be different, in terms of wave-numbers, frequency,

and power density, from the ones found at the edge. We start with the nonlinear spectrum excited

at the plasma edge. The frequency is just the same as the initial pump freqency. The power

density, or otherwise the width of the excited sideband cone, is not different from the initial one, at

the mouth of the waveguides. But the wave-number spectrum differs from the linear spectrum: for

the low density regime, it is centered at no, ~ 7, and for the high density regime, it is centered at

about n, 3. Notice that we are already considering the excited spectrum as a new pump, which

may decay into new nz 's as it propagates in the plasma. The possible n1z 's that can be excited in

the plasma are not as large as they were at the plasma edge (say, -n i1 s 12, for the low density case,

and n, 15 6, for the high density case). The spatial growth factors are usually smaller than the

ones found at the plasma edge due to the rapid rise in the electron temperatue. In the low density

regime, a large amount of the available rf-power may decay into the highest nit1 's, as say niz =

12, before reaching the plasma center . This part of the power will be transfered to the electrons,

via Landau-damping, and never reach the plasma center. In the high density regime further

decays into new wave-numbers will also occur as soon as the new pump penetrates into the plasma .
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The rf-power will be completely transfered to the larger nIz 's, such as nIz = 5, and modeconverted

into thermal modes before it is able to reach the plasma center. The lowest wave-numbers, such as

n11 = 2, may be excited close to the plasma center, but by then only a fraction of the power, or very

little, may be left.

The excited spectrum presents inside the plasma the following characteristics: The frequency

is usually smaller than the pump frequency, and becomes closer to it with increasing density. The

power density is much lower than the original one, at the waveguides mouth, and has spread to

many other wave-numbers. Thus, the rf-power will no longer be confined to propagate in a well

defined resonance cone, but will be dispersed across the plasma cross section.
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Appendix

The function S(e) - T(r) is given in terms of A I and AO(z) (A0(z) = A0 if jzj L12 and

A0(z) = 0 if Izi > L12), by means of the following equation,

S(8) - T('r) = 1 + f dyAIexp(f (A0 +A 1)dz) + f dyAcexp(jf (A0 +A 1)dz)(A.1)

In region II (Ilr 1 L/2 , 6 < -L/2), one finds:

____ -(A0+A1)12 -A0L12 A10 -(A0 +A 1)r
S(8) - T(r) = ( I + {-A 0 e +(A 0 + A1)e e +Ace I (A.2)

(A +(A,)

and through Eqs. (25) and (26),

k =

ill =

AO(AO + A 1)
A 1(+r) A0Qr - L12) (A0+ A1)( -L42)

(AO+A 1)e e -Ace +AO

A 1(A0 + A)

(A.3)

(AA)
-A1(8+Q/2) -1

(AO+A 1)-A 0 e +Ace e

From Eq. (A.4), taking r = -L/2 and contemplating the definitions, Eqz. (27), (28) and (29), it is easy

to recover the form of Eq. 031). In order to derive Eq. (30), let us consjder that A I (r - L/2) < A 0(r

A -- L/2) since Pr = T = x 10 ~, and that A 1(r - L12) < A 1(e + r) since 8 < -L/2. These

estimations allow us to write,

(A + A,)
= " A0(r-L/2) (A( + A1)

e + (1 + p,)e ] +

(A.5)

where now the only z-dependencies come from z,= -({- - L12) - z -:a + L/2. Eq. (A.5)

can be integrated exactly with respect to z. from zr 0 to z, = L, and the result is just Eq. (30).

,
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Figure Captions

Figure L Linear pump propagation cone and sideband group velocity trajectory.

Figure 2A. Modeconversion of the pump electric field at different x 's for different n. 'S. =

1.5 x 10 ' cm-.

Figure 2B. Modeconversion of the pump electric field at different x 's for different n '- S. 77 5
x 1014 cm-3.

Figure 3A. Inside the Plasma. Spatial growth factor vs. sideband frequency spectrum. no = 1.5 x

104 Cm-2, noz = 3.5, n i = 2, Po = 17.5 Kw.

Figure 3B. Inside the Plasma. Spatial growth factor vs. sideband frequency spectrum. no = 5 x

1014 cm-3, n1z = 2. We take at x = 0.75 , nz z 3.5 with Po = 17.5 Kzu, and at x = 0.25, noz 2.5

with PC = 7.5 Kw.

Figure 8C. Inside the Plasma. Spatial growth factor vs. sideband frequency s pectrum. no = 1.5 x

101 cm~3 , noz = 3.5, nj1 = 5, PC = 17.5 Kw.

Figure 3D. Inside the Plasma. Spatial growth factor vs. sideband frequency spectrum. no = 5 x

101 cm- , n oz = 3.5, ni = 5, P0 = 17.5 Kw.

Figure 4. Inside the Plasma. Spatial growth factor vs. sideband frequency spectrum. no = 1.5 x

10 cm7, OZ = 6.5, nz = 12, P0 = 17.5 Kw.

Figure 5A. Plasma Edge. Spatial growth factor vs. sideband frequency spectrum. no = 1.5 x 1014

cm, no = 3, PC = 32 Kw.

Figure 5B. Plasma Edge. Spatial growth factcr vs. sideband frequency spectrum. no = 5 x 1014

cm-0, oz =3, PC = 32 Kw.
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Figure 6A. Plasma Edge. Nonlinear depletion of the square of the pump electric field vs. sideband

frequency spectrum at the fixed position from the edge, Axt. no = 1.5 x 101 cm-, 7Oz "3 Po "

32 Kw.

Figure 6B. Plasma Edge. Nonlinear depletion of the square of the pump electric field vs. sideband

frequency spectrum at the fixed position from the edge, Ax,. no = 5 x 1014 Cm-3, = 3 Po 32

Kw.

Figure 7A. Inside the Plasma. Nonlinear evolution of the square of the pump electric field and of

the pump power density vs. plasma position. no = 1.5 x 1014 c-C 3, 71Oz = .5, - 0.86, PO

17.5 Km.

Figure 7B. Inside the Plasma. Nonlinear evolution of the square of the pump electric field and of

the pump power density vs. plasma position. no = 1.5 x 1014 cm-, noz = 8.5, niz = 12, = 0.9,

Po - 17.5 Km.

Figure 8A. Inside the Plasma. Nonlinear evolution of the square of the excited sideband electric

field and linear evolution of the electric noise vs. plasma position. no = 1.5 x 1014 cm~', no, = 6.5,

njz = 5, 1 - 0.86, Po = 17.5 Kw.

Figure 8B. Inside the Plasma. Nonlinear evolution of the square of the excited sideband electric

field and linear evolution of the electric noise vs. plasma position. no = 1.5 x 101 Cm-, nor = 6.5,
W I

niz = 12, - . 0.9, Po = 17.5 Kw.

Figure 9A. Inside the Plasma. Nonlinear evolution of the square of the pump electric field and of

the pump power density vs. plasma position. no = 5 x 10 " cm~, noZ 3.5, n i 2 , = 0.95,

Po = 17.5 Km

Figure 9B. Inside the Plasma. Nonlinear evolution of the square of the pump electric field and of

the pump power density vs. plasma position. no = 5 x 1014 cr~-, noz = 3.5, nnA = 5, = 0.95, PC

= 17.5 Kw.
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Figure 1OA. Inside the Plasma. Nonlinear evolution of the square of the excited sideband electric

field and linear evolution of the electric noise vs. plasma position. no = 5 x 1014 Cm- , n = S.

nIz = 2, = - 0.95, PC = 17.5 Kw.

Figure lOB. Inside the Plasma. Nonlinear evolution of the square of the excited sideband electric

field and linear evolution of the electric noise vs. plasma position. no = 5 x 1014 cM~ 3, noz = 3.5,
Co 1

n~z = 5>!1 = 0.95, P0 = 17.5 Kw.
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