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I.

ABSTRACT

The objective of this study was to evaluate a new concept for a

Tokamak type fusion reactor blanket. The design was based on using a
packed bed of lithium aluminate as the breeding material with helium
gas cooling. The unique aspect of the design was the assumption that
small coolant leaks were inevitable and should not necessitate major
maintenance. A modularized design was chosen with cylindrical breeder
rods and graphite shim rods. Redundancy was provided by designing the
blanket such that if a module failed it could be depressurized and its
heat load shared by the neighboring operating modules. The thermal

hydraulic analysis evolved analytical and computational methods for
determining the temperature profiles of all components and the pumping
power requirements. A-computer program TRIPORT was developed to evaluate
the tritium retention and transport. A one dimensional ANISN code was
used to determine the breeding ratio for different configurations. The
thermal hydraulic, neutronic. and mechanical aspects of the Breeder Rod
Shim Rod (BRSR) design were combined to determine a design window, that
is the allowable range of system parameters. Unfortunately adequate
breeding could not be demonstrated so that there was no open window.
Basically the low breeding was caused by the inherently poor breeding

potential of LiAlO2 combined with the additional structure required
for failure mode operation. However, this conclusion is based on a
specific design concept (BRSR) apd further research in the area may
prove more fruitful.
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1. INTRODUCTION

1.1 Background

Considerable attention has been given to the engineering Problems associ-

ated with the design of a thermonuclear power reactor. At this time, the

principal merits of design studies are: the identification of problem areas

previously not realized, proposed solutions, and eventually, the gener-

ation of enough information to make rational decisions concerning which

approaches to pursue further.

One of the most difficult problems is the design of the "blanket" region

surrounding the plasma. The blanket region must extract the energy of the

neutrons at a usefully high temperature and also produce sufficient tritium

to fuel the D-T fusion reactions while subject to a large number of diffi-

cult constraints.

Most designs investigated to-date, employ either helium as the coolant

or liquid lithium which is both the coolant and breeding material. The use

of helium has both advantages and disadvantages. The most obvious advant-

ages are the elimination of MHD effects, and the inert chemical nature of

the coolant. Some disadvantages are that an increased void fraction in the

blanket is required for coolant passages and additional structural material

is needed to accomodate the higher pressures needed with helium. The helium

cooled solid breeder does, however, appear as a viable alternative to liquid

lithium systems and several design studies have been accomplished, such as

1 2
the Japanese pebble bed design , the BNL MAMI module and the UWMAK II

3
design

One aspect of helium cooled designs which has received little attention

is the problem of coolant leakage into the plasma chamber through a failed

region of the.first wall, such as a cracked weld with a pin hole size fault.
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Even a very small hole could allow enough helium into the vacuum region to

quench the plasma. Considering the large surface area of the first wall,

2
typically on the order of 1500m , and the large number of welds which must

maintain their integrity in an exceedingly harsh environment, it seems

virtually impossible that a reactor could operate for one to two years with-

out experiencing a number of leaks. If every time such a pinhole sized

leak o.ccured, the torus had to be disassembled, the leak located, and the

damaged section reparied or replaced, the design probably would not be

acceptable from a practical viewpoint because of a high percentage of down

time for repair.

The UWMAK II report did address this question and proposed two possible

modifications to their original design. One suggestion was a "sacrificial"

first wall composed of cooling tubes welded together to form a second "first

wall" which would prevent any helium leaking from a module to enter the

plasma (Fig. 1.la). They noted the problem with this suggestion was that

while it could be designed to significantly lower the likelihood of leakage

into the plasma, the additional structural material would probably lower

their breeding ratio to below one and in addition, the manufacture of such

a structure would "tax the ingenuity of the industry". The other idea was

to make a double wall. In the basic design, the thermal stress on the first

wall was uncoupled from the pressure stress by adding thin semi-circular

coolant tubes facing the plasma to a thicker backing structure. By making

the-thin semi-circular tubes double walled, Fig. 1.lb, the likelihood of

leakage is proportedly reduced. The major drawback is that there is no re-

dundancy for the case of a leak at the weld which is the most likely point

of failure.
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The blanket design concept investigated in this report was conceived

by F. Chen and A. L. Bement and provides for redundancy by having a modu-

larized solid breeder in which any given module that fails can be depressu-

rized and the reactor operated in this manner with the heat load generated

in a failed module conducted to its neighbors. The objective of this study

was to develop a design envelope for this concept to determine if a viable

window exists and in the process evolve a systematic approach which could

be used in the analysis of other solid breeder designs.

1.2 DESIGN LIMITS

The design limits in this report will be taken to be the maximum

material temperatures and total stresses to which we can design structural

components while all other restrictions on choices will be called con-

straints.

The materials considered were helium coolant, graphite moderator,

lithium aluminate breeding material, and both 316SS and Nb-lZr as the

structural material. The design limits taken for these materials were as

follows:

MATERIAL MAXIMUM TEMPERATURE MAX. TOTAL STRESS

GRAPHITE 20000C

LIA10 2  18000C

316 sS 6500 10 PSI

Nb-lZr (w/He coolant) 6000C 10 PSI

Nb-lZr '(no coolant; unstressed) 2000*C

1.21 Graphite Design Limit

The use of carbon and other low-Z first wall materials was studied in

I



a report by the General Atomic Co. 4  The calculated equilibrium vapor den-

-5
sities in 10 atm H 2 for several materials as given in this report is

shown in Fig. 1.2. Their analysis of the energy loss rates for a typical

plasma indicated that ignition could be sustained in a plasma containing

an ionized carbon impurity level of up to 10% of the electron density.

13 - 3The plasma densities expected for our design should be close to 6 x 10 cm

To allow for uncertainties we introduced a safety factor of 4 which gives a

12 -3maximum carbon impurity density of 1.5 x 10 cm . This impurity density

in the plasma is reached at a carbon surface temperature of approximately

2000*C which is what has been taken as the design limit.

1.2.2 Lithium Aluminate Limit

The lithium aluminate melting point is approximately 1900*C and a

limit of 1800'C was taken to allow for uncertainty in the data.

1.2.3 316 Stainless Steel Limits

The limits taken on 316SS correspond to 1% creep in 10,000 hours as

6
given by Fraas (Figure 1.3).

1.2.4 Niobium- 1% Zirconium Limits

For Nb-lZr the maximum temperature for 1% creep in 10,000 hours at t

10 PSI is approximately 850*C (Fig. 1.3), but it appears that corrosion

from trace impurities in the helium coolant will lower the maximum operating

temperature. Fraas recommends a maximum operating temperature of approxi-

mately 600C and that is what we have taken. It does not appear possible 0

to remove this constraint by purifying the helium stream. In the 1950's d

Pratt-Whitney conducted the CANEL PROGRAM in which they examined various

helium purification processes to protect certain Nb-lZr loops from corrosion.
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7
All attempts were unsuccessful. More recently the Jet Propulsion Labora-

tory operated Nb-lZr loops using argon with an 02 and H2 0 content of lppm

and below respectively. After 1000 hours of operation the combined im-

8
purity content was 4480ppm. Studies show that the contamination of Nb-lZr

in high vacuum at high temperature requires that the total residual gas

-6 2
pressure be held to below 10 Torr (1.33 x 10 N/m ) to avoid serious de-

terioriation of mechanical properties in periods as short as weeks at

(9)
10000C(. With.a helium coolant at 40 atmospheres this would require a

maximum impurity content of .00003 PPM c/nHe=P/P(40)(760)TORR

-11
~ 3 x 10 ) and it does not appear possible to achieve such high

purity in any large scale system. Also, all attempts to develop a suitable

coating for the Nb-ZR have failed.

For cases where the Nb-lZr is not under stress and no coolant is pre-

sent, a limit of 2000*C has been taken to simply stay safely below the

melting point.

1.3 Design Constraints

The design constraints are basically the same as those identified by

Fraas as applied to the blanket portion of a reactor. It is assumed that

the reference reactor will be a Tokomak type. The following are the princi-

pal constraints which the design attempted to meet.

1) Breeding Ratio

The design constraint on the minimum acceptable breeding ratio depends

on a number of factors. First, if a fusion economy is postulated it is

desirable that the initial reactors breed an excess of tritium over their

fueling requirements to generate an inventory of tritium to be used in the

initial fueling of a new reactor. A fuel doubling time can be defined as10

Mww

ing

I

5.
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INVENTORY
2 (B.R. -l)r

where

B.R. = BREEDING RATIO

r = TRITIUM BURNING RATE

The size reactor postulated (1450 m ) under a steady state total wall

2
loading of 1.2 MW/m2 would consume .27kg of tritium per day. Taking the

reactor inventory to be 10kg, which is probably an upper bound, a doubling

time of 2 years can be attained with an overall breeding ratio of 1.05.

The breeding ratios calculated in this report are based on an average

module. An actual reactor would also require some portion of the blanket

to be used for access. Such access regions would be required for the

vacuum pumping system, the fueling system, diagnostic ports and divertors

if employed. Abdou gives an estimate of 10% for neutron loss due to

11
streaming and parasitic adsorption in such access regions . There also

exists the possibility of some small loss rate of tritium from the fuel

processing system and due to decay. Adopting an estimate of 10% for all

loss mechanisms would raise the required breeding ratio to 1.15.

There is also some uncertainty in the calculated breeding ratios due

to uncertainties in the basic cross section data and due to the calculational

method itself. Steiner and Tobias have investigated the effects of uncer-

6 7 93
tainties in cross-sections of Li, Li and Nb on the tritium breeding

12
of a particular type of blanket . For a liquid lithium, graphite moder-

ated blanket breeding in-the range of 1.5 they concluded that uncertainties

7
in the Li(n,n'x)t reaction attach an uncertainty in excess of 5% to the

6
tritium-breeding ratio. When the cross sections of the Li(n,x)t, the
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M7 Li(n,n'x)t, and the 93Nb(n,2n) reactions were varied simultaneously and

the uncertainties in the secondary-neutron energy distribution of the

7Li(n,n'x)t was included, the uncertainty in the breeding ratio approached

10%.

The computation of the breeding ratio for this design was accomplished

using a ID ANISN S P3 code in a slab geometry. The use of a 1D code and

the homogenization required by it will introduce some additional uncer-

tainty as will be discussed later.

For the purpose of this preliminary analysis it was decided to set the

minimum breeding ratio at 1.15 with the understanding that the uncertainties

present in the calculated breeding ratio would have to be reduced for a

more refined design by using a 3-D code and, if available at a future time,

more accurate cross section data.

2. Blanket Inventory

There is a strong motivation to have a small tritium inventory in the

blanket. Some reasons for this are as follows:

6
1. Cost: Estimates for the price of tritium vary from $2,000.000 to

13
$7,000,000 per kg. A large inventory in the blanket would be quite ex-

pensive and would serve no useful purpose.

2. Doubling time 6: For a reactor at a given power level, the fuel

doubling time will be proportional to the reactor inventory and it is de-

sirable to have this time short enough so that tritium availability will

not restrict the growth of a fusion based economy.

3. Hydrogen Embrittlement: With a lower inventory the tritium con-

centration seen by the structural components will generally be less and

therefore the effectsof hydrogen embrittlement should also be lessened.

I
I

I

7.
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4. Availability Fraas has indicated that it would be difficult to

obtain more than about 10 kg of tritium for starting-up the first power t

6
reactor C

5. Safety: It is desirable to reduce the amount of tritium available S

for release in the event of an accident and to keep the amount of tritium c

leakage to the. environment at a very low level. Fraas has indicated that t

there is a strong incentive in a lithium blanket to keep the tritium con- C

centration on the order of 1 ppm. t

What is desired for a design constraint is the maximum inventory allow-

able in the blanket beyond which the design is not viable. It will be

assumed that the capital cost for inventories of 10 kg or less will be

acceptable. If the overall breeding ratio of the blanket was exactly equal

to one, then the total inventory in the reactor would be limited to the

amount available for start-up which we will assume to be 10 kg. This in-

ventory would be distributed between the blanket, the fuel processing and r

injection system, and whatever amount of tritium has been absorbed in the

structural components. The availability of tritium therefore places a

limit on the total reactor tritium inventory and to obtain a limit for the

for the blanket inventory an estimate must be made of the fraction of the

inventory which is required outside of the blanket region. Without a

model for the fuel reprocessing system and the plasma parameters only a

rough guess can be made.

2
A 1.2 MW/m total loading on the first wall corresponds to 1740 14W

t

2
fusion power for a 1450 m reactor. This represents a consumption of .27

kg of tritium per day for steady state operation. Typical functional

3 10
burnup in a Toiamak type reactor is on the order of 5% ' . Therefore
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a reasonable figure for the amount of tritium which must be recirculated

through the plasma chamber is 5 kg per day. We next estimate the number

of kg necessary in the fuel system to achieve this 5 kg per day flowrate.

Some tritium inventories should be kept in reserve to permit operation in

case of temporary fuel reprocessing system failures.. In addition, some

tritium will reside within the reprocessing system, the amount depending

on the time required to reprocess the fuel. A reasonable guess for the

total inventory outside of the blanket seems to be 5 kg. This could be

broken down to a 2.5 kg reserve (a 12 hr reserve), 2 kg in the fuel system

corresponding to a turnaround time of approximately 10 hours, and 0.5 kg

absorbed in the structure. For a rough approximation therefore it will

be assumed that availability limits the blanket inventory to 5 kg.

For a total reactor inventory of 10 kg the doubling time with a breed-

ing ratio of 1.05 is 2 years whichappears acceptable and would therefore

not restrict the blanket inventory further.

For the solid breeder design employed here the steady state tritium

concentration in the coolant is independent of the amount of tritium

bound in the breeding material and the amount of hydrogen embrittlement

should not be a strong function of the blanket inventory.

Safety and environmental concerns do not seem to limit the blanket in-

ventory to less than 5 kg. It is assumed that the entire reactor will be

enclosed by a redundant wall system to prevent accidental leakage of trit.ium

14
to the outside since one study has shown that under certain circumstances

an airborne release of as little as 23 grams of tritium could exceed allow-

able radiation levels at the plant boundaries. If a suitable confinement

system is possible to handle accidents in the fuel processing and storage

I
I
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system, which probably would have amounts of tritium in the range of kilo-

grams, it should be.possible to contain tritium released from the blanket

in an accident. The problem should be easier since the tritium will be

bound in solid material and the diffusivity appears to be extremely small

at temperatures below 500'C. Within the reactor hall itself it also

appears feasible to cope with accidental releases of tritium on the order

of several kg. The study by Lawrence Livermore Laboratory of a mirror re-

actor system indicated that with careful design, allowable worker dosage

levels would not be exceeded even with the release of several kilograms of

15
tritium within the hall

3. The capacity to sustain a small number of leaks and to continue

operation without major maintenance. Since even a pin-hole size leak

wculd be a major problem (see Appendix D) it is assumed that there must be

some way of preventing the leaking coolant from entering the plasma, or

stopping the flow to the area of the leak.

4. A reasonably high thermal efficiency

5. High vacuum integrity

6. A blanket thickness of one meter was assumed, similar to other

reference designs. Thinner blankets would make shielding the magnets more

difficult and possibly hurt the breeding while a thicker blanket would in-

crease the cost of the magnet system.

7. Good accessibility to all blanket elements to permit remote main-

tenance

8. A projected lifetime for major components of approximately 2 year

9. A pumping power to heat removal ratio of not greater than 5%

s

.1
I
II
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0.

- 10. A-low first wall sputtering rate.

Economic constraints have not been evaluated nor is this meant to be

a complete reactor design. What has been done is an investigation of the

effects of imposing the constraint of designing a blanket from the- beginning

with the assumption that leaks are inevitable and the blanket must be able

to maintain operation with them.

f

irs
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CHAPTER 2

Breeder Rod - Shim Rod Design Over-view

2. General Blanket Arrangement

If a small section of the first wall fails, in order to continue oper-

ation either the failed section must be replaced or the flow of coolant to

it stopped. The design approach taken here was to have a modularized blanket

where if one module failed, it could be isolated from the coolant circuit

and the machine operation could be continued with the failed module de-

pressurized. Since any given module could be operating next to or surround-

ed by depressurized modules, it was also decided to design each module

essentially as a separate pressure vessel. This together with the desire

to have easily replaceable components led to cylindrical breeder rods.

To accomodate the space between cylindrical rods in a torroidal geometry

required the use of shim rods. Besides simply filling the space these also

had to have a high thermal conductivity to allow the heat generated in a

failed module to be conducted to its neighbors. To prevent neutron stream-

ing the shim rods material also should have a high scattering cross section

and for neutron economy a low absorption cross section. The material found

which best fulfilled these requirements was carbon. If a module is not

cooled by helium the first wall structural temperature can be kept low by

conducting most of the surface energy flux to the surrounding modules

by using a graphite shield in front. Th'e shield also is helpful in reducing

plasma contamination by high Z impurities. Additionally, by lowering the

energy spectrum of the-neutrons seen by the first wall, the rate of irradi-

ation damage to the metal should be reduced and the breeder rod effective

lifetime increased.
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The breeding material selected was lithium aluminate arranged in a

packed bed of spherical pellets. To cool the packed bed and remove the

bred tritium the breeder rod was divided into two concentric cylindrical

regions of equal area forming a single stream counter flow heat exchanger

with two possible routings which give a symmetric temperature distribution

for the blanket.

The general arrangement is shown in Fig. 2.1. The blanket modules to-

gether with the supporting back structure form the vacuum boundary. As

conceived the modules would be replaced from inside the torus by being

screwed-mounted onto the backing structure with a double high vacuum seal

of soft metal. The shim rods are also mechanically connected to the back

structure but have no vacuum boundary, and are allowed to have radial

freedom to accomodate swelling of the blanket elements. It is highly de-

sirable from a thermal viewpoint to have the shims in good physical con-

tact with the breeder rods since'they must conduct the heat away from a

failed module, but this is a difficult mechanical problem. The possi-

bility exists, that the breeder rods and the shim rods would swell enough

due to thermal expansion and radiation induced swelling to generate suffi-

cient normal force to prevent any relative sliding. In that case, the

higher thermal linear' expansion of the metal can would probably overstress

the carbon. In consideration of this problem, the design was also investi-

gated with a gap between the shim rods and breeder rods and a radiative

boundary condition for heat transfer.

For the given arrangement the breeder rods would all be identical but

the shim rods would vary because of the toroidal geometry. The shim rods

along a fixed major perimeter would all have the same size. There would
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therefore be as many types of shim rods as there are rows of breeder rods

along the minor -perimeter.

Irradiation of the blanket by the fusion neutron results in substantial

10
amounts of long-lived radioactivities (10 C /5000 WT for a niobium blanket

16
after 18 years of operation ). It appears therefore, that remote machine

maintenance will be required. The BRSR modularized design would be com-

patible with this. Any portion of the blanket could be replaced by remote

manipulations. Virtually no repair work would be required to be done with-

in the torus. Also, the backing structure would not be exposed to energetic

neutron radiation and should have a lifetime comparable to the rest of the

reactor.

The blanket is designed for a Tokamak type reactor and the assumed di-

mensions for the torridal vacuum wall are a major radius of 10.5 meters

and a minor radius of 3.5 meters. Additionally, the wall loading has been

2 2
fixed at 1MW/m of neutrons and a surface flux of .2 MW/m from plasma

radiation and particle flux. If a complete reactor design could incorporate

a diverter, the percentage of surface energy flux would be less, but this

alternative has not been considered. For a complete reactor study also an

analysis should be done to find the optimum wall loading based on material

lifetimes, replacement cost and efficiencies gained by higher loading.

The thickness of the blanket also has been arbitrarily fixed at one meter

which should allow enough space for breeding and moderating the neutron

flux so that the shielding requirements for the magnets are not excessive.

2.2 Development of Design Window

Rather than developing a fixed point design, the effort here has been

to. establish a design window to see what range of variables are possible

14.



for module sizes, operating pressure, pellet sizes, inlet temperature and

temperature drop through the module. The manner in which this was done was

to postulate a given geometry and then to find the relationships between

the different variables as the geometry and operating conditions varied.

The use of both Nb-lZr and 316 SS was investigated. The neutronic calcu

lations were performed for Nb-lZr and it was assumed that the use of 316 SS

would not significantly change the results. The principal change resulting

from the use of 316 SS was a much higher thermal stress in the first wall

which had to be accomodated. in the design.

The design geometry initially evaluated is given in Table 2.1. The

breeder rod outer diameter was taken to be 8cm, the thickness of the can 2mm,

the graphite shield thickness 5cm, and the diameter of the LiA1O2 spheres

4mm. The wall separating the cooling passages was one mm thick. For this

geometry the atom fraction is given in Table 2.2. The void fraction within

a breeder rod for this geometry is approximately .36 but when this is homo-

genized with the shim rod for a one dimensional neutronic study, the result-

ing void fraction is .13.

For this geometry a one dimension homogenized calculation was done to

determine the heating rates (Appendix B). A three-dimensional Monte-Carlo

neutron calculation would have been more accurate, but it was felt that

for a first approximation the 1-D calculation was sufficient. The energy

generation rates (q''' ) are reasonably approximated by the following exponen-

tial functions:

= 3.68e. 0 3 y (2.1)

3
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q = 2.296e -.043x (2.2)
'as c

fi -.084x
q '= 4.le (2.3)

4

:alcL. = 2.le 035x (2.4)
alcu. 2

SS
Where x is the distance from the first wall and y is the distance

.na
* from the surface of the graphite shield (Figures 2.2 and 2.3).

The relatively low energy generation rate in LiAlO is to be expected.
2

This is partly because of the large void fraction (.36) in the breeder rod,

and partly because of the choice of LiAlO which decreases the lithium
2

2mm, 6
concentration even further. It is the exothermic Li (n,a)t reaction which

is the primary source of energy multiplication. The relatively low lithium

concentration is evidenced in Table 2.2. At 5 cm from the can wall, the

Lin 6 7
total energy generation. rates in -L-i and Li are .21 w/cc and .31 w/cc

respectively, relatively low when compared to .71 w/cc in oxygen, .47

w/cc in Al, 1.8 w/cc in C and 3.16 w/cc in Nb. In the low energy intervals

(i.e. far from the first wall), the same is true. For example, at 95 cm

6from the first wall, the energy generation rates are .0117 w/cc in Li,

.0 .028 i.0028 w/cc in Li, .0074 w/cc in Al, .0099 w/cc in oxygen, .0217 w/cc in C

and .1053 w/cc in Nb.

2 2For a first wall loading of 1MW/M and first wall heat flux of 20 W/cm ,

men-
the postulated blanket as represented by equations 2.1 to 2.4 has an energy

multiplication of -1.0 resulting in the total energy removal from the blanket

) approximately equal to the energy content of the neutron first wall loading.

The low energy multiplication (and as later calculations will show a low

breeding ratio also.) is a reflection of the lack of optimization in the



neutronic design of the blanket at this point. To represent the case of

a neutronically well designed BRSR blanket, the following q'', represent-

ing an energy multiplication of -1.7 (energy removal from blanket is ~1.7

times the first wall loading), is assumed for the thermal/hydraulic calcu-

lation in addition to those of equations 2.1 to 2.4.

q;' = 3.68 e * 03y

,,, -.042x
q4 = 5.2 e *

(2.5)

(2.6)

I4
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TABLE 2.1

BRSR INITIAL DESIGN SPECIFICATIONS

Item Breeder Rod Shim Rod

Length 100.0 cm 100.0 cm
Outer cylinder OD 8.0 cm -
Outer cylinder thickness 0.2 cm
Inner cylinder OD 2.74 cm

Inner cylinder thickness 0.1 cm
Outer cylinder material Nb-lZr
Inner cylinder material Asbestos, Nb-lZr -

sandwich
Shim material Graphite
Breeding material LiAlO
Pellet diameter 0.4 9m

Void fraction . 0.36 0.0
Graphite shield thickness 5.0 cm -
Volume % of blanket 43.0 57.0

TABLE 2.2

ATOM FRACTIONS OF ELEMENTS IN THE
BREEDER ROD AND SHIM ROD

6 7
Zone C Nb He Li Li 0 Al

1 - - - - - - -

2 - - .- - - - -

3 1 - - - - - -

4 .643 .045 .001 .006 .072 .155 .078

18.
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CHAPTER 3

BLANKET RESPONSE UNDER NORNHAL OPERATING CONDITIONS

3.1.1 THEORY OF THE SINGLE STREAM COUNTER FLOW HEAT EXCHANGER WITH

INTERNAL GENERATION (THE BREEDER ROD HEAT EXCHANGER)

A schematic of the breeder rod heat exchanger is included as Figure

3.1. For the purpose of illustrating the derivation of the coolant

temperature solution, the case where the coolant enters through the outer

cylinder and exits through the inner cylinder is treated.

In the x' direction,

c dT1 q'' dVoll + q'' dVol3 + q' 1  dAl (3.1)

In the x direction,

mc dT2 = q;'' dVol2 + qj' 2 'A2 (3.2)

The boundary conditions are

T x 0 T(inlet helium temperature) (3.3)

T 2 2 -b t

T2 1 = (L2 q1' -L2q4'(e w lw-1)/b )/(c p) AT
.. x=0 x=0O w p 0

(3.4)

Boundary condition (3.3) represents the inlet condition of the coolant

while the condition of equation (3.4) reflects the coolant temperature

change at the bottom of the breeder rod due to the energy input from

the graphite shield.



In equations 3.1 and 3.2, the geometrically determined quantities 
are

dVol, = 11(R 2 R ) dx'

dVol = (L2 - 11R 2 ) dx' + L
2

3 . HR
XT dx' - L2 x' dx'

MR

dA 2TIR dx'

dA2 = 21TR dx

dVol2 = fIR2 dx

With the substitution of Equations (3.5) to (3.9), and the internal

generation rates as depicted in Figure 6, Equations (3.1) and (3.2)

becomes

dT
1

dx a

dT2

dx

e--b - + c e-b3 (XT-x)- x e-b3 (XT-x) (3.10)

+ f (T - T

ge -b1x + f (T -T 2)

where a = q
2 211CR - R )/M C

c q''' (L2 - TR 2 + L2
30 o -

XT)/i C
p

E = q ' L2 /MR/n C30 p

f = 2 H TI R /f C
i p

2 =
g = T 1R /M Cp

Transformation of Equation (3.10) from x' to x yields

dT 1
d=

- -bx -b x
- a e-b1 - c e-b3 + e(XT-x)e -f(T-2 T )

(3.11)

(3.lla)

(3.l1b)

(3.llc)

(3.lld)

(3.l1e)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.12)
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5)
With the boundary condition of

AT IXO = AT

The solution of Equation (3.13) is

AT C - e-b 1x y
1

Where AT= T2 T1
2 1

a - q jc R /m't

= C -c XT

y =/b3 + C/b3 2

C M a/b + /b3 + E/b3 2

e -b3 - x e-b3 (3.15)

(3.15a)

(3.15b)

(3.15c)

(3.15d)

+ AT
0

With the substitution of Equation (3.15), Equation (3.11) becomes

dT1

dx
-a e-b x e-b 3 - x e 3 - C1 f +

af e-b Ix + -b 3x + xe-b 3x

b3

Subtraction of (3.12) from (3.11) gives

dAT e -b1x + e-b3 + C x e-b3
1dx + x

21.

(3.13)

(3.14)

(3.15e)

(3.16)
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The boundary condition for this equation is

T = Ti (3.16a)

Integration of equation (3.16) with the boundary condition of (3.16a)

gives the following result.

T T + c 1f (XT -x) + (a/b - a f/b 2 e -b -b

+ (B/b3 - yf/b3 + 2/b 3 cf/b )(e-b3
3 - b3  - -b3  )

+ (C/b -ef/b2)(x e -3x -XT eb3XT)
3 -=3

With the substitution of Equation (3.15), Equation (3.10) becomes

cf -b1x
-c f + (g + ) e

1

-b3x -b3

+yfe +fx e

b3

with the boundary condition of

= i + AT 'x=XT

-b XT-e 3 )

(3.17)

dT
2

dx
(3.18)

(3.18a)

x=XT
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The solution of equation (3.18) by integration with the condition

of (3.18a) is

-b XT -bx

T2 T=y + c f(XT -x)+ (g/b + af/b )(e e
1 1T

-b3XT -bx
2 3 3

+ (f/b3)(y + c/b 3 )(e - e )

-bXT -b x
(fc/b3 ) (XTe 3 xe 3 (3.19)

Equations (3.17) and (3.19) then completely determine the

thermal behavior of the coolant for the case of entering through the

outer cylinder and exiting through the inner cylinder. For the sake

of completeness, but simultaneously avoiding redundant derivation, only

the final expressions for the temperature of the case where coolant

enters through the inner cylinder and exits through the outer are in-

cluded here.

AT is the same as Equation (3.15).

2
T = T + C  f (XT -x) + (a f/b - g/b1 ).

-b XT -b x -b3XT -bX
(e -e )+ f (y 4)( 2 ( e

b b
3 3

-b XT -b x
Ef 3 3

+ (XT e -xe ) (3.20)
b

3-
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T = T + AT + C f (XT x) +

-bXT -bx

(a/b +c afb)(e -e ) (3.21)

2 -b XT -b x
- a/b + Ci + /b + b)(e -e (.

+( b3 + b 3 + 3 b 3)(e -e )

C/ sf1 2 -b XT -b x
c/ e/23 3+( b3 + b3 )(XTe xe

All the constants are the same as those defined for equations (3.17)

and (3.19) with only the following exception of

2 2
c =q''' (L.- HR ) C (3.22)30 0 p

which can be attributed to the difference in dVol of the two cases.
3

A careful investigation of equation (3.15) reveals the inter-

esting absence of the effective conductance, H. This absence of H in-

fers the indifference of the AT profile to either the choice of par-

titioning materials or the flow conditions on either side of the heat

exchanger. This mathematical phenomenon can be explained as that of a

feedback of the temperature from the high temperature side to the low

temperature side. The effective conductance is the resistance for

heat transfer, whereas the temperature difference is the driving force.

Together, the effective conductance and AT govern the amount of heat

transfer as can be seen from equations (3.11) and (3.12). However,

being a single stream counter flow heat exchanger, the temperature at

any arbitrary point A prescribed by the heat generated and the heat

transferred up to point A eventually gets to a point B of the same

axial position as point A on its return pass. The doubling back of the

same fluid stream to the same axial position means that the temperature
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difference of point A and point B is a function of the energy released

between the two points and not a function of the heat transfer between

the two streams. Therefore, it is not surprising that H is not a fac-

tor affecting the AT profile as mathematically demonstrated by equation

(3.15).

3.1.2 Evaluation of the Breeder Rod Coolant Temperature

Before the evaluation of equations (3.17), (3.19), (3.20)

and (3.21) for the coolant temperature profile, several parameters are

first to be calculated. The initial geometry of the breeder rod in-

vestigated is given in Chapter 2. In the followingthe hydraulic and

thermal conditions are postulated and certain parameters calculated.

For the case of equations (2.1) to (2.4), the flow rate is .008

kg/sec. For the case of equations (2.5) and (2.6), the flow rate is

.011 kg/sec. The flow rates are different for these two cases and

represent values selected to maintain the pumping power to energy ex-

2
traction ratio below 4.0% for a system pressure of 49;3 kgf/cm . This

interaction of pumping power requirments and other thermal/hydraulic

parameters is discussed durther in Section (3.4). Both cases have a

2
helium inlet temperature of 300*C and an inlet pressure of 49.3 kgf/cm

Correspondingly, the temperature drops through the blanket are deter-

mined by the first law to be 230*C and 300*C for the two cases. The

heat transfer coefficients of coolant/wall for a packed bed are assumed

equal to that ofthe coolant/bed. For the stated conditions of the

case corresponding to equations (2.5) and (2.6), the heat transfer co-

2 2
efficient is calculated to be -.28 w/cm *C (~490 Btu/hr ft *F) with

the Coppage and London's Correlation17 , ~.37 w/cm *C (~650 Btu/hr ft2

I18 2 2
*F) with the Eckert's equation , and .27 w/cm *C (~480 Btu/hr ft *C)
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with the correlation suggested by Kunii and Levenspiel . With an

average of these calculated heat transfer coefficients (.3067 w/cm 2

*C) and the insulation equivalent to 1 mm of asbestos (the importance

of insulation is discussed later), the effective conductance (or over-

all heat transfer coefficient) is calculated to be .016 w/cm2 *C and

2 20
.018 w/cm *C for the two cases

For the stated geometry and thermal/hydraulic conditions, the

21
coolant, temperature profiles were calculated and plotted on

Figures 3.2 and 3.3, with the effective conductance as a parameter.

Both figures reveal interesting interactions between the peak coolant

temperature and the effective conductance. Interestingly, the peak

coolant temperature occurs before the exit from the breeder rod,

and furthermore shows an upward tendency with increased effective con-

ductance. Physically, this convexed temperature profile on the return

pass represents trapped energy in the breeder rod heat exchanger show-

ing up as a higher coolant temperature. As the effective conductance

increases, it becomes more difficult to get the generated energy out

of the heat exchanger, and subsequently-a bigger portion of the gener-

ated energy is recirculated which manifests as a higher temperature of

the coolant. This relationship is demonstrated as the upper curve of

Figure 3.4, in which the maximum coolant temperature is shown to in-

2
crease almost linearly at the rate of ~6000*C per w/cm -OC with the

effective conductance between the flow passages. Consequently, at

2
and above the effective conductance of ~.016 w/cm -*C, the coolant

peak temperature will exceed 600*C for niobium with this geometry and

flow rate. This interesting result serves to point out another im-

portant constraint in the engineering of the breeder rod heat exchanger,
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i.e. the peak temperature in the heat exchanger is dictated by the

amount of insulation as well as flow rate, q''' and geometry. The

lower curve of Figure 9 further shows the other factor of mass flow

rate which affects inversely the coolant temperature and can be

utilized to place the coolant temperature at a level not exceeding

the material limits, but concurrently compatible with the requirement

of thermal conversion efficiency.

3.2 GRAPHITE SHIELD TEMPERATURE PROFILE

In an effort to protect the first wall from the high energy

it 22
neutron irradiation, various concepts such as ISSEC , radiation

23 24
shield and first wall bumper were proposed as a way to relax the

stringent material requirements on the first wall. In these concepts,
>n-

sacrificial moderator placed in front of the blanket down shifts the
,rn

incoming energy spectrum under--normal operating conditions and acts

>W- 25
as a thermal damper under the conditions of a plasma dump . However,

the down shifting of the incoming neutron spectrum also reduces the
7

high energy (n, 2n) reaction as well as the tritium producing Li re-

action, the synergistic effect of which is a decline of the breeding
of

ratio. To remedy this, beryllium as a neutron multiplier is required
>f

in the high energy zone of the blanket. For the initial thermal design

calculation, a gitaphite shield of 5 cm is postulated, representing a

deduction by a factor of -2.5 in the hydrogen and helium production

rate, and a reduction by a factor of ~2 in the displacement damage

rates in the first wall.
id

3.2.1 Theory and Approximations

The graphite shield has an internal volumetric heat source,



boundary heat addition from the plasma and boundary heat rejection

to the breeder rod. The shield representation is approximated by a

two dimensional geometry in rectangular coordinates, as shown in

Figure 3.5. The small temperature drop through the breeder rod is

assumed to be negligible. The problem definition and its solution are

stated in the following. The derivation of the solution to a similar,

but more interesting problem is included in the later section (4.2.1).

In a rectangular coordinate system with the two variables of y and z,

this problem is described as

V2T + q'''/k = 0 (3.23)

with the following boundary conditions

2T0 (3.23a)
z

aT 0 (3.23b)

az z=L

- q '/k (3.23c)

BT L
-.0 ,<z<-+ R 0(3.23d)

'Y=Y - -

-h(T-T )/k ,- R < z <- + R
o 2 o 2 o

0 + R < z < L
2 o-
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It should be pointed out that, in the boundary condition of (3.23d),

the temperature drop in niobium (can wall) is neglected and the grap-

hite shield is assumed to be in perfect contact with the structure.

The heat transfer coefficient was obtained as discussed in Section

(3.1.2) with the choice of a higher value than the average without

asbestos to partially account for the effect on heat transfer when

the flow impinges on the bottom of the breeder can. The solution to

equation (3.23) subject to the given boundary conditions is as the

following

(1-b Y -b Y -bw)/(b 2
T q''/h + q' - w )/(b h) + ' (e w e k)a wo w w

+ (q''/k + q '/bw/k)(Y-y) + Co

+ C cos a z cosh a y (3.24)
n=-n n n

where

a n=l/L
n -b Y

(q+q - e )/b) (L - 2R + 2hE) 3.24a)
C =T +

2 hR - 2h2E

2 cos a -sin a R cosh a Ycos-a sin a R
E n 2 n o n 2 n n o

n1l 1 2 1
n a 2kLa sinh a Y + h (a R + cos a L sin 2a R )cosh a Y)
n 2 n n n o 2 n n o n

-b Y (3.24b)

2(h (T -C)- '- q''(1 - e ) )cos a sin a R -
C n 1 a w .n 2 n o

kLa sinh a Y + h(a R + - cos a L sin 2a R ) cosh a Y
2 n n n o 2 n n o n

(3.24c)



3.2.2 Evaluation of the Graphite Shield Temperature

For the case of a breeder rod with R = 3.8 cm, L 10.2 cm,

Y = 5 cm, h = 3407 w/m2 /*C, k = 86.5 w/m/*C, q'' = 20 w/cm 2 , qIT =

3.68 e 103w/cc and T = 544 *C corresponding to the inner to outer
0

flow case with H= .018 of Figure 3.3, Equation (3.24) was evaluated21

and the result was plotted in Figure 3.5b. The convergence of the

equation is discussed in Section (4.2 .1) along with the derivation

of the solution.

As shown in Fig. 3.5b, for this geometry the maximum tempeiature

is 852*C which is considerably below the 2000C limit imposed on

carbon by its partial pressure. The maximum temperature of the modulefi

wall is approximately 700*C which in in a range where corrosion

could be a problem. However increasing the module size and lowering

AT can solve this problem.

The treatment of the problem as two dimensional in rectangular

coordinate tends to lower the peak graphite temperature, whereas the

use of maximum coolant temperature affects the temperature profile in

just the opposite direction. The assumption of perfect contact be-

tween graphite and niobium also lowers the graphite temperature. At

present accurate values for the contact resistance between carbon and

metals under vacuum conditions are not known. Reference 4 has a dis-

cussion of this problem and concludes that for vacuum operation and

relatively low contact pressure, the thermal resistance would be high

-2 -3 -1 2
and would probably fall in the range of 10 to 10 W- m -*C. For

-3 -l 2
our design if a value of 10 W m -*C were taken for the thermal resis-

tance between the shield and breeder rod, the overall coefficient of
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3C

heat transfer would become

1 1 -3 ~ 2U= (I + 10 ) ~773 w/m -*C
1/h 1+ 1h 2 3407

1 2

The effect of this would be to increase the average shield

temperatures by approximately 350 *C for normal operation. Even with

this increase the graphite shield temperatures would still be well be-

low the design limit of 2000*C and it seems reasonable to assume safe

operation.

In addition to the contact resistance, it is possible that only

part of the shield would actually be in contact with the metal can,
Le fi

but this effect has not been considered because it would depend

strongly on the actual attachment method and geometry which has not

been addressed in this report.

3.3 SHIM ROD TEMPERATURE PROFILE

The graphite shim rod has a maximum operating temperature of

20000 C. Energy generated within the shim is assumed to be conducted

to the interface with the breeder rods where it is removed either

through conductance or by thermal radiation across a gap. For the

2 2
case of contact, a conductance of .4 W/cm -*C (700 BTU/hr-ft OF) has

been assumed at the interface. For the analysis with a gap the shim

and breeder rods have been treated as parallel plates with assumed

emissivities of 0.6 for niobium and 1 for graphite. This assumes that

the surfaces have been treated to enhance their emissivities.

3.3.1 Methods of Analysis and Results

The shim's thermal profile is analyzed by an adiabatic cylin-

der wall method. The shim and breeder matrix is represented by a two



region annulus,the inner region being the niobium can and the outer

region being the graphite shim. The outer region boundary is at a

radius equal to half the center to center distance between breeder

rods. The following boundary conditions are imposed:

1) an adiabatic condition at the outer radius of the graphite

region, i.e. point a of Figure 3.6,

2) a heat transfer coefficient and a coolant temperature at the

inner radius of the niobium region, i.e. point c. The inner

to outer flow arrangement with the coolant temperature pro-

files of Figures 3.2 and 3.3, and a heat transfer coefficient

2
of 0.35 w/cm was used.

Point b is the boundary of the graphite shim. Quantitatively,

the niobium annulus is expressed as

r a (r k n)+q ' = 0
r nr n

with the boundary conditions of

-kn n = h(T - T )

R R
C c

(3.25)

IT
+ k .--

n * a R b

-q' '(L 2 TR )-q'' (.%-R 2
c x n c E-h a

211R
C

2  2
= + q , ' ( L - ba 2

2b)Rb

(3.25a)

(3.25b)



where L = L (M+x)/MR
x

The graphite annulus is expressed as

(kc r + q =0
r r a r cm

where
' ' 2  2

- (L x _R )

IT(o.5 L 2 2)

with the boundary conditions for contact of

T =T

Rb 
Rb

+ a /HC w a
-2 3

(3. 26b)

(3.26c)-0
-aT
-c

Rr

When a gap is present the boundary condition, of equation

(3.26b) becomes

T [T"1 4

.Rb

+ a2 1 4
= a3

where

c nb

c nb c nb

Ec = Emissivity of carbon

C.: = Emissivity of niobium

a = Stefan Boltzmann constant (5.67 x 10-8 WM2 (K)-4

33.

(3.25c)

(3.26)

(3.26a)

.5a)

(3.26a)
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where C n +a 2  3.Rb

2

C2 = T + a + qn R C in R 3.8b
2 f 1 4 k __(.2b

q" R 2(3.28c)
3

and a3 E equation 3.26b or 3.26b" for the contact and

gap geometries respectively.

For the conditions already stated, and the geometry postulated

21
in Chapter 2, Equations (3.27) and (3.28) were evaluated . The

resulting temperatures at points a, b and c were plotted on Figure

3.6 and 3.7 for the two sets of boundary conditions. With a contact

conductance at the interface the temperature rise across the inter-

face is small and Tb follows the shape of the curve for the coolant

temperature. With a gap present, however, the temperature rise is

much greater and the curve in the vicinity of the first wall tends

to follow the exponential decrease in energy generation within the

carbon shim. Again, reasonable operating temperature is evidenced

and safe operation can be. expected. A parametric study of the de-

pendence of the maximum shim temperature on conductivity, heat trans-

fer coefficient and contact conductance was plotted on Figure 3.8

revealing a comfortable margin for safe operation even in the pres-

ence of fairly large parameter variations.
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3.4 HYDRAULIC ANALYSIS

The viability of any reactor design depends strongly on its

efficiency in producing net power, which is a further function of the

amount of recirculated power needed for the operation of the reactor.

In this respect, the pumping power to heat removal ratio is one impor-

tant factor in the design of the breeder rod shim rod blanket. The

use of gas coolant bypasses the difficulties associated with the MD

pumping of a conductive material in a high field environment. How-

ever, the porous breeder rod presents itself to the coolant with a

tremendously large surface area. The effect of which is high pressure

drop through the breeder and consequently high pumping requirements.

3.4.1 Pressure Drop

The pressure drop through a porous bed has contributions from

factors such as skin friction,~acceleration, elevation, entrance

and exit effect. These effects can be expressed as equation (3.29)

26
in terms of the momentum equation , friction factor, area ratio,

26,27
contraction coefficient and expansion coefficient

2
.. P [f A + (- 1 ) + ( + K - a )

1 cm m2 2

+ (K +2a -1) ] +p g(z2-z) (.79

For matrix surface with K = K = 0, equation (3.29) becomes
c e

-AP = [f ( 1 + 1 2 ) +( - ) a 2 + g p (z -Z) (3.30)

I c T1 P2 1

I



However, the pressure drop through a packed bed can also be calculated

27,28 2
by various empirical equations22 One of these suggested by Leva is27

A XT 2 (1-M)
2r f PM 3

p m

Where XT is the length of the breeder rod, r is the breeder pellet
p

radius, V the free stream velocity before entrance to the bed,f m

is the mean fluid density, m is the bed porosity (m - .32 + .45 r /r
0 0p im

where r is the inner flow channel radius which for our case yields

equal cross sectional area for the inner and outer flow channels),

and X and n are functions of the Reynolds number as illustrated in

reference 27. P was evaluated using Equations 3.30 and 3.31 for

several cases and the results are tabulated in Table 3.

3.4.2 Pumping Power

The pumping power to heat removal ratio is calculated by29

(3.32)Q Q

where l is the mass flow rate, is the inlet coolant density and

Q the total heat removal rate from the breeder rod module.

For an ideal gas and isotropic condition this can be expressed as

___ Y. Pi 2 -
-( 2 -l 0.098 (3.33)

The results of pumping power to heat removal ratio for the cases

of Table 3 were plotted in Figures 3.9, 3.10, and 3.10. For the

geometry under consideration the PP/Q were found to be 2.8 %.
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and 3.9% corresponding to Equations 2.1 to 2.4 and Equations 2.5

and 2.6 respectively.

From Equations 3.31 and 3.32, assuming an ideal gas, and that

2
Q is proportional to r 0(t.he module radius) it can be shown that

PP C x Tin lefm (1-r0)

Q r 3 2 3 (3.34)
p AT P m

where AT-is the temperature rise through the module, T inlet is the

inlet helium temperature in *K, Tm is the average coolant temperature

(OK), P is the average helium pressure kgf/m 2), and C is a constant

related to Q. Thus, from a hydraulic point of view the desired

system is one with large AT, large particles, low inlet temperature

and high pressure.
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TABLE 3. Pressure drop through the Breeder Rod With Inlet Temperature

of 300 *C

AP (nt/cm
2

1 -49.3 kgf/cm2

(700 psia)

by Eq. (3.31) by Eq. (3.30)

1 21
142.3 kgf/cm

(600 psia)i

by Eq. (3.30)

18.12 1 80. -

Eqs. (2.4)
and (2.5) .0242 300 2 27. 24.9 -

3 22 --

10.276

.0176 230 2 15.1 - -

Eqs. (2.1)
to (2.4)

1 82.4 - 95.9

12.59 .0122 200 2 26.3 24.8 30.6

3 17.7 14.7 20.6

4 9.8 -

1 44.6 - 52.1

12.59 .0081 300 2 16.1 13.5 17.1

3 8.9 - 10.5

Q/module
(kw) (kg/sec)

AT
("CC

p )
(MM)
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CHAPTER 4

BLANKET RESPONSE UNDER OFF-NORMAL OPERATING CONDITIONS

4.1 Module Conditions Considered

This chapter will examine the thermal response of the blanket components

when a module is depressurized and cooled only indirectly by the surrounding

modules which are operating. For the geometry postulated in Chapter 2,

shield, shim, failed module and operating module temperatures are determined

for both the case where the shim rods are in contact with the breeder rods

and for the case where a gap is required between them to accomodate different

thermal expansion. For the second case it was found that the peak LiA102

temperature within a failed module was considerably higher than our design

limit.

In addition the peak structural temperature was found to exceed 600*C

under off-normal conditions. Means to alleviate these problems are

considered in Chapter 5 where the geometry was varied in an attempt to

meet the thermal constraints.

One facet of the design important to failure mode operation is the

valving and header arrangement. With a first wall area of 1450 m2 and

a center to center distance of 10.2 cm 140,000 modules would be required.

For such a large number it obviously is desirable to have less than one inlet

valve per module. The blanket would be divided into sections. Within each

section, modules are arranged in groups fed by independent supply headers.

If each section had two supply headers, then if one module fails the

corresponding header would be depressurized and half the modules in the
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section would be isolated and the other half would have twice the normal

heat load. If five supply headers per section were used,then this addition2'

heat load in failure mode operation would be 1/4 of normal; with nine supply

headers the additional load could be reduced to 1/8. The remaining thermal

analysis will assume a 5 header arrangement so that the heat load of a

failed module is shared between the four adjacent breeder rods. It should

2
be noted that the number.: of modules is proportional to i/L so it is

desirable to go to larger modules. For L 13 m the total number of modules

would drop to 85,800.

In the event of a coolant failure, the solution for the coolant tempera

is modified slightly to account for the additional heat input from the

failed module. The results were plotted as Figure 4.1, showing a higher

level of coolant temperature than the normal case by =70*C with the same

mass flow rate. [21 These temperature profiles were later used as input

to the structure temperature calculation.

4.2 STRUCTURE TEMPERATURE PROFILE

4.2.1 Graphite Shield

The description of the graphite shield temperature in two dimensional

rectangular geometry can be formulated as (see section 3.2)

2
V2T + q'''/k = 0 (4.1)

with the following boundary conditions

T =0 (4.2)
z= 0
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aT - 0 (4.1b)
az z=3L/2

T -
( 4 . c )

_T 0 L
a I < z < -R 0  (4.ld)

hL L
- T - T ) -- R, < z<-+ R

o= 0 2 o- -2 0

+ R < z < L

where for a first approximation 4.lc neglects thermal radiation from the

surface to the rest of the interior of the torus.

This problem is separated into two problems in T and T where Ta b

= a + Tb. The first problem is dependent on y only, and is as the

following

a2T

a + q'''/k = 0 (4.2)

ay
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with the following boundary conditions

aT

ay y=0 k

ay a -h Tj I//k

y=Y y=Y

The second problem is a function of y and z as in the following

(4.2a)

(4.2b)

(4.3)V2Tb =0

with the following boundary conditions

BTb

az

Tb

aTb

ayb

= 0

z=0

IZ =

Iy=O

y=Y

(4.3a)

(4.3b)-0
3L
2

=0

= T
k a

(4.3c)

(4.3d)

0 < z< - R
2 0'y=Y

i(T bl=T 0

- T

ia y=Y

L
2

L

R < z < -\- R
0 2

3
+ R 0< z< L
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The solution to equation (4.2) with only y dependence is obtained by

integration with the boundary conditions of (4.2a) and (4.2b).

-b Y

T =.q" /h + q''' (1 - e ) (b h)
a a 0

-b Y -b y 2
+C (e -e )/ (b k)

+ (q'':/k + / (b k)) (Y-y) (4.4)

With the expression for Ta, equation (4.3) was solved using the method

of separation of variables . Applying boundary conditions of (4.3a)

and (4.3c), the solution becomes

T = C + I C cos a z cosh a y (4.5)
b o n=1 n nn

where y = 2nir/3L is obtained by applying the boundary condition of
n

(4.3b). ..'he constants of C0 and Cn are obtained by satisfying the re-

maining boundary condition of (4.3d), and are defined as the following.

iT 2 (3L-2R + 2 h E)
C =T + a =Y 2 (4.5a)

0 0 2
2 h R - 2 h E

C = 2D (h(T -C) - h TI _ ) (4.5b)

cos(a ) sin (a R )
Dn2 n o

La sinh(a Y)+h cosh(a Y)(a R + -cos (a L)sin(2a R ))
4 ( n n n4o 2 n no

(4.5c)

I
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E = Z - cosh (a Y) cos (a -) sin (a R)

n1 a n n 2 n o
(4.5d)

Equations (4.4) and equation (4.5) then define -the off-normal graphite

shield temperature profile. The convergence of equation (4.5) is rather

1 2 1 3
rapid as can be seen from the /n in Cn and /n in E. The solution was

computer coded. With the maximum coolant temperature of 5980C at the

bottom of the module obtained from Figure 4.1, the resulting profile was

plotted as Figure 4.2. The maximum graphite temperature is estimated at

1227*C, whereas the maximum operating can wall temperature is estimated

at 900*C. This high wall temperature is a problem and ways of reducing

it will be discussed later. Maximum can wall temperature of the failed

(depressurized) module is 11450 which is much below the 2000*C design unit

for unstressed niobium with no He coolant present.

4.2.2 Shim Rod

The modelling of the off-normal shim temperature is the same as that

discussed in section (3.3). However, the geometry of the graphite annulus

is different and is defined in Figure 4.3 with point a denoting the adiabatic

boundary. Within the graphite annulus bounded by point b of Figure 4.3,

a volumetric heat generation equivalent to twice of the normal heat load

is assumed instead of the 1 1/4 due to the sharing of the energy of the

failed module by the four adjacent operating modules. With this new

arrangement, the off-normal shim temperature is described by equation (3.27)

and (3.28), just the same as that of the normal shim temperature, but with

the following new definitions reflecting the differently assumed q''' in

graphite.

IR

SI
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a, 2 q L 2 2 + c2 ) + q'' R (4.6)
C x nrR+b7q''

2T R h
C

2 2 2 2 2
a2  2 q' (L 2 2 + q ' 7R +qn T (Rb 2 Rc (4.7)

2w Rb

2 2,,, R 2 2 2 (48
q' = 2 q''' (L 2 rR) +q RC +q 'T( -R2) (4.8)

(R 2  2
a b)

With the higher off-normal coolant temperature profile as input,

the shim temperature profiles were calculated using equations (3.27) and

(3.28) and plotted as Figure 4.3 for conduction at the .interface and 4.5

for the radiative boundary condition.

From the results of Figures 4.3 and 4.4, continued operation. of the

blanket element is reasonably predicted, though the differential expansion

of the shim will cause additional stress on the surroundifig as well as

the failed blanket elements when in contact with the breeder rods. A

parametric variation of the effect of heat transfer coefficient, the

contact conductance and the graphite conductivity was performed and is on

the peak shim temperature, plotted as Figure 4.5.

4.2.3 Failed Module

The failed module is analyzed as a cylinder surrounded by an annulus.

Two cases will be examined. For the first case the shim will be assumed

to be in contact with both the failed module and with the surrounding

operating modules with an interface contact conductance of .4W/cm2 -*C. In
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the second case it will be assumed that there exists a small gap around

the entire shim. The boundary conditions for the annulus at point a con-

sist of a surface flux equivalent to the total heat generated in the

cylinder and annulus, a shim temperature as calculated in the previous

section for the two cases, and either a contact conductance of the same

value as above or a parallel plate radiative boundary condition.

With the annulus temperature profile, the cylinder than has the

boundary conditions of finite temperature at point d of Figure 4.6, and

a surface temperature at point e from the annulus temperature profile.

The temperature solutions for these two regions are

T a + (R r + - n (4.9)an 3 4k a k Rn n

T nT + q'(R 2  r) (4.10)
cy an r R 4kb

e

where

2 2 2-
T + q'' (R - Re) + q''' R

a =a n a e b e (Case (1)(4.10a)
3 ~2 R IIC

2R2 2
a

q'' (R 2- R 2 + q R 2

a b [T4 b ( - Case (2)) (4.10b)
2 R

C E
-c Nb

E:+C -C e
c Nb c Nb

2 2
C= q''' R q '' -R

Se e
2 2
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and, T is from the shim rod temperature calculation for either case 1 or 2.

For the conditions of HC = .40 w/cm2/*C, k = .69 w/cm/*C, kb = .05 w/cm/*C,

and the geometry postulated in section (2.3), the failed module temperature

was plotted for case 1 and case 2 with Ec = N .6 as figures 4.6 and 4.7.

The effective conductivity of the failed module was based primarily on the

effective conductivity of porous material corresponding to the geometry

(30]
of the packed breeder rod at elevated temperature . The effective

conductivity of the packed bed was assumed based on only the contribution

from radiation at elevated temperature and therefore is subject to slight

variations. The maximum temperature in the failed module is inversely

proportional to the effective conductivity and safe temperature levels

exist for case 1 for effective conductivity of as low as .02 w/cm/*C. * It

should also be pointed out that the temperature of the niobium annulus

is independent of the value of the effective conductivity and therefore

the off-normal maximum can wall temperature will vary little even under

extremem variation in the packed bed effective conductivity. Furthermore,

Figure 4.6 serves to illustrate the exponential nature of the spatial

heat generation rate which raised only a small region of the breeder to a

temperature of 1000C or above for the case of contact. In view of the

nelting temperature of 19000C of LiA102, the structure of the failed breeder

rod is reasonable guaranteed in this case.

From Figure 4.7 it can be seen that for this geometry and with an

energy generation rate corresponding to Equations 2.5 and 2.6 a portion

of the packed bed close to the first wall would exceed the melting point



of LiAl02 if a gap is required around the shim rods. Obviously this is

not acceptable. The next chapter will investigate the effects on the

peak temperature of reducing the module size and going to a closer packing

arrangement.
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CHAPTER 5

EFFECT OF SHIELD THICKNESS AND MODULE SIZE ON TEfPERATURE PROFILE

The results of breeding ratio calculations, to be presented later,

indicated a strong incentive to decrease the thickness of the graphite

shield and also the amount of graphite in the shim rods. In addition

the results of the thermal analysis indicated a need to reduce the peak

temperature of the module's. first and side walls when operating under off-

normal conditions and also the peak temperature of the LiAlQ2 in a failed

module when a gap is required around the shim rods. This chapter examines

the effects on these peak temperatures of reducing the shield thickness,

going to a closer packing arrangement of the breeder rods and varying the

module side wall radius.

For the same geometry as discussed so far the effect of reducing the

shield thickness on various critical temperatures was first investigated.

The results for failed mode operation are shown in Figure 5.1 for

Tinlet = 300, AT = 300. These curves are based on the assumption that all

heat transfer is by conduction and illustrate that the temperatures go

through a minimum near a thickness of 3 cm. For thicknesses less than

2 or 3 cm, the temperatures increase as the thickness decreases because

the effective conductance from the failed module to its neighbors is

decreasing but the same surface energy flux is present. For thicknesses

greater than 2 or 3 cm the additional energy generated within the shield

becomes important and the temperatures tend to increase again.

49.



The closest packing in a rectangular array is where the center to

center distance between adjacent modules at the first wall equals twice

the module side wall radius. This arrangement was assumed and also a 1 e

shield thickness to evaluate the effect of changing module radius. One

cm was taken as a minimum shield thickness because of the steep rise in

the maximum structural temperature of the operating module first wall

for smaller thicknesses. In order to approximate the additional heating

in a blanket containing Be as a multiplier and more LiA102 , an assumed

heating rate was taken for which the total energy removed from a breeder

rod divided by the first wall surface area of a unit cell, equalled 1.5 Mw/m

or a total energy multiplication of 1.25. The corresponding energy generatc

rae -0 42x 3
rates are q ''4 5 e W/cm (5.1)

q'' = 3.68e-.
10 3y (5.2)

For the conditions given in Table 5.1 and an inlet temperature of 3000CI

and a temperature rise in the module (AT) equal to 200, the maximum

temperature of the graphite shield, the operating module side wall, the

first wall, and the coolant are plotted versus module radius in Figure 5.2

for normal operation.

For the same temperature drop between inlet and outlet with different

module radius, the coolant mass flow rate per unit volume of the module

must be approximately constant assuming volume energy generation rates

do not change.

.1

I
5]

I

I
I

I

I"

I
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The fraction of heat which is trapped because of the finite thermal

conductivity of the insulating wall is expected to be proportional to

the surface area of the wall divided by the volume of the flow passages

and therefore inversely proportional to the module radius and this

is the type of variation found as shown in Figure 5.2 for normal operation.

OFF NORMAL RESPONSE

For. the same condition as above, the blanket thermal response was

evaluated for failure mode operation and the results are shown in

Figure 5.3 and Figure 5.4. Two curves were calculated for LiAlO2 . One

assuming the same contact conductance between the shim rod and breeder

rods as before (h = .4 W/cm 3/*C) and one based on the radiative boundary

condition with emissivity of the niobium assumed to be enhanced by surface

treatment to yield a value of 0.6. The lithium aluminate temperature

shown is the peak temperature which o-ccurs at the point closest to the

first wall in the center of the failed module. It can be seen that the

introduction of the gap raises the LiAlO2 temperature profile by over

600*C and places a restriction on the maximum allowable module size. For

normal operation however, the gap would only increase the shim rod temperature

and this would not be close to the design limit.

Figure 5.4 is the same as 5.3 on a magnified scale to show the variation

of maximum structural temperature. The maximum temperature calculated for.

the first wall of an operating module under off-normal conditions is

considerably above 600*C, varying between approximately 780* to 750*C.

The calculations however, are quite conservative since they do not include

radiation from the failed module shield to the rest of the enclosure. For

the off normal case the maximum shield temperature was calculated to be 945*C

for a 5 cm radium module while the rest of the enclosure would be at 587*C, the

normal shield temperature. For those temperatures and an emissivity of .3
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the failed module shield would radiate at 8.4 watts/cm2 if the temperature

was uniform. This is a very significant fraction of the incident 20 w/cM2

and indicates that equilibrium would be reached at a signficantly lower

temperature. Also, simply increasing the shield thickness to 2.75 would Im

the maximum temperature by 65*C although this would be detrimental to the

breeding. A three-dimensional calculation to represent the spherical cap

and allowing radial heat conduction down the shim rod from the shield would

also lower this calculated peak first wall temperature. A quantitative

calculation of these effects has not been accomplished but it is felt that:

this were the only design problem, it would not be difficult to resolve.

For the present therefore, it will be assumed that the first wall maximum

temperatures are approximately equal to the maximum side wall temperatures

and if a viable design window can be found based on this then the assumptim

will have to be justified or the window altered.

TABLE 5.1

REVISED GEOMETRY

L = 2 Rm

shield thickness = 1 cm

Q/L2  1.5 Mw/M
2

ia 1.5 Mw/m

=(AT) 1 C = constantL 2normal p

H = .016 w/cm
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CHAPTER 6

ANALYSIS OF THE BREEDING ZQATERIAL AND

1* TRITIU1 TRANSPORT IN THE BRSR

6.1 INTRODUCTION

The selection of the breeding material and the analysis of tritium
id

transport in the BRSR will be the subject of this chapter. At first it

may seem odd to include these two subjects in a single chapter. However,

as it will soon become clear, they are closely linked and perhaps inseparable.

After the basic design requirements for material selection such as thermal

stability, material compatibility, strength, etc., have been established,

the single most important consideration is the transport of tritium in

the breeding material and throughout the blanket module. The mere

existence of large quantities of tr-itium is a potential hazard. Thus,

a fusion reactor blanket must be designed to breed tritium and facilitate

separation from the bred material to keep the inventory low.

6.2 BREEDING MATERIAL

6.2.1 Selection of Breeding Material

A solid breeding material must display certain characteristics

to be acceptable for use in a fusion reactor blanket. The most important

points are as follows:

1) High melting point

2) High lithium content

3) Low tritium rententivity

4) Chemical stability

5) Compatibility with structural material

6) No resource limitation

7) Low vapor pressure



Several possible lithium compounds are listed along with their

characteristics in Table 6.1. Due to the requirement that the BRSR desig

be able to sustain a faiulre, failed module temperatures in the range

of 1000C must be expected, and therefore, the melting point of the

breeding material is of prime importance. Of those compounds presented,

this requirement leaves LiA102 , Li2SiO Li BeO Li 20 and Li B 0 for

consideration. Next, the compound must have a significant lithium content

(> 25% lithium atom fraction) as the rod is already 36% void volume due

to the packing geometry. This requirement eliminates Li B 0 Of the

remaining four compounds, all have both positive and negative points.

However, due to the large amount of information available on lithium

aluminate relative to the other compounds, LiAlO was selected for use2-

in the BRSR study. A serious drawback of LiA102 (lithium aluminate) is

the low lithium content, indicating a possible need for a neutron

multiplier. However, this drawback is somewhat countered by a favorable

margin of safety in the melting point (19000C). Nevertheless, the main

determining factor is that it is the only lithium compound on which

tests have been performed for the purpose of exploring its possible use

in a fusion reactor blanket. These experiments are being performed

[31, 32]
at Brookhaven National Laboratory and form the data base for all

computations involving LiA10 in this report.
2

Additional features of lithium aluminate are that it is readily

available, inexpensive., inert and not resource limited. Other drawbacks

of LiA102 are that lithium aluminate obtained commerically contains 21.4%

Li20 (lithia) which is quite volitile at high temperatures and displays
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Table 6.lb*

Potential Non-Mobile Breeder Materials

Material

Li (liq.)a

LiAl
b

Li Bi

Li20c
LiOHc

LiAlO
2 e

Li Sio

Li C g2 2
LiFd

LiHa, c

N. pt.
*C

180

718

1145

1700

471

1700

1256

>1000

848-

686

Vapor Li atoms
Pressure 1022 /cm3

1342*C(B. pt.) 4.2

2.7

4.0

10-i torr (1400*C) 8.2

5 torr H 20(500-C) 3.7

Li 20 (1400-C) 2.3

Li 20 (1256-C) 4.8

Li (1000-C) 4.1

b. pt. (1693*C) 6.1

24 torr H 2(686 0C) 5.9

a. V. A. Moroni, E. J. Cairns, and F. A. Cafasso, "A Review of the Chemical,
Physical and Thermal Properties of Lithium that are Related to Its Use

in Fusion Reactors," Argonne National Laboratory, ANL-8001 (1973).

b. M. Hansen, Constitution of Binary Alloys, McGraw-Hill, New York (1958).

c. T. Kikuchi, Japan Atomic Energy Research Institute Memo - 5837 (1974).

d. W. A. Hart and 0. F. Beumel, Jr., Comprehensive Inorganic Chemistry,
Vol. I, A. F. Tnrutman-Dickenson, Ed., pp. 340-361, Pergamon Press, Oxfor

e. D. W. Streckler and Rustum Roy, J. Am. Ceramic Soc., 44, 225 (1961).

f. F. C. Kracek, J. Phys. Chem., 34, 2645 (1930).

g. T. Ya. Kosolapova, Carbides, pp. 61-63, Plenum Press, New York (1971).

* Table IV-B-2 Reference 3-

I
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[32j
high tritium rententivity. Additionally, LiAlO undergoes a phase

change at 9000 C from a rhombohedral structure to a more open tetragbnal

structure resulting in a 30% volume increase. This is an important point

which may limit the use of LiAlO2 to lower temperature systems. However,

all things considered, LiAlO2 appears to be an acceptable starting point.

6.2.2 Pellet Size Effects on Breeding Ratio

The breeding capability of this design is affected by the pellet

size through the void fraction. Clearly, the optimum breeding arrangement

is one in which the blanket consists of perfectly dense breeding material.

However, a packed bed of pellets yields a fertile material number density

that falls far short of the optimum, and is therefore, an inherently

difficult design with which to achieve breeding. For spherical pellets

packing into a cylindrical tube, the void fraction can be related to

the ratio of the pellet diameter to tube diameter, C, through Figure 6.1.

As one can see, for a given tube diameter, a reduction in the pellet

radius (and hence c) results in a reduction of the void fraction.

The breeding ratio increases with an increase in the ratio of fertile

material (Li) to total blanket material. In this design, an increase in

the void fraction means a decrease in the fertile to total material ratio

resulting in a breeding ratio that varies inversely with the void fraction.

Therefore, since the optimum void fraction is zero (which is impossible

in this design) one can only say that the void fraction should be kept

to an absolute minimum implying a pellet radius as small as possible. The

calculations of the breeding ratio are presented in detail in Chapter 7.



6.2.3. Effect on Inventory

If the tritium that is bred inside the pellet is unable to escape

into the coolant stream, an inventory will accumulate that may exceed

the maximum acceptable level. The possible mechanisms limiting tritium

escape are the surface reaction of tritium to form T2, the diffusion

of tritium through the pellet and the solubility of tritium in LiA1O2

Studies performed at Brookhaven National Laboratory indicate that diffusio

(321
is the rate limiting mechanism. Therefore, an inventory of tritium

will be present due to slow diffusion. The amount of inventory buildup

is a function of the temperature, crystal size and the pellet size as

discussed in Section 6.3.1. These relations are discussed in detail

later, and it will suffice to state that the pellet size will influence

the tritium inventory. Hence, from an inventory standpoint, one would

like to keep both the crystal and pellet size as small as possible.

6.3.1 Diffusion of Tritium in LiAlQ2

The diffusion of tritium in LiAlO2 can be expressed by the well known

equation1 3 3 ]

D = D exp(-Q /RT) (6.1)
o D

where

2
D = Diffusion coefficient in cm /sec

0

QD = Activation energy for diffusion in cal/mole

R = Gas content, 1.987 cal/mole *K

T = Temperature, OK
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The determination of the tritium diffusivity in LiA102 is essential

to any study of tritium transport in a breeding material. Drs. J.R. Powell,

R.H. Wiswall, and E. Wrising of BNL have tried to determine the diffusivity

of tritium in several lithium compounds one of which was LiAlO2 '

Their experiment consisted of crushing and screening LiAO2 to an

approximately uniform particle size of 150-210P in diameter. A one-half

gram .sample was then exposed for one hour to a thermal neutron flux of

1013 n/cm 2-sec in the Brookhaven Medical Reactor. After irradiation,

250 mg was transferred to an extraction tube where the tritium was

carried away by a flowing helium stream. The stream then flowed into

a mixing device where one part of helium was mixed with 10 parts of P-10

counting gas (90% argon, 10% methane). Since a significant fraction of

the tritium was released from LiAlQ2 as T2 0 or HTO, an oxygen reducing

step was inserted before the gas reached the counter. Tritium dis-

entegrations were recorded on standard counting equipment that could

measure instantaneous counting rates or the total number over a period

of time.

The diffusion coefficient was extracted by relating the fraction

of tritium released to the time, through the solution of the time dependent

diffusion equation. [34]

= D( + ) (6.2)
t 79-2 r ar

r



For Dt/a < 0.5 the solution to Eq. (3.4) can be approximated by

f 6 (6.3)
a AV

where

3
C = Tritium concentration in pellet, Ci/cm

2
D = Diffusion coefficient, cm /sec.

a Pellet radius, 0 < r < a, cm.

t = Time, sec.

f Fraction of tritium released.

A plot of Eq. (6.2) as compared to the exact solution is presented in

Fig. 6.2 which indicates good accuracy for small times. Thus, given the

particle radius and the fraction removed at a given time, the diffusion

coefficient can be calculated.

From the diffusion coefficient, a tritium retention time or hole up

time can be calculated by solving the steady state inhomogeneous concentr

equation for a sphere.

1 . 2 ;C
2 r -) =-B (6.4)
r

3
where B = Tritium generation rate in Ci/sec-cm

with boundary conditions,

3C
- (0) 0

C(a) = C
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The solutions to this equation is

C(r) B (a2  r2) + C ci/cm3 (6.5)

Integration over the volume of a sphere results in the inventory

5
4ira B
45D

which can be separated into 2 terms

2
4 3 a2

I = (7 a3B) ( ) Ci (6.6)

where

43 2
Tra 3B is the tritium generation rate in Ci/sec and - is in

15D

units of sec and is known as the holdup time, T.

Substitution of T for t in Eq. (6.3) gives

f =6
avAi

6 Da

a/ 15D

f 6 .874

The holdup time as defined in Eq. (6.6) is the time for 87.4%

of the bred tritium to diffuse out of the sphere. Results obtained from

the BNL experiments are presented in Table 3.2. Performing a "once

through" regression on these results yields average values of

6 2
D = 3.899 x 10 cm /sec, and

QD = 64055 cal/mole *K



TABLE 6.2

TRITIUM DIFFUSIVITY IN.LiA1O
2

Material D eter Temperature Holdup Diffusion
Mtra (00) time, T coefIicient

(hrs.) (cm /sec)

LiAlO 2  150-200 500 500 3.0 x 10-12

LiA102  150-200 600 4 3.8 x 10~10

LiAl0 2 120-177 650 1 1.0 x 10~ 9
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resulting in the following diffusion equation for LiAlO 2

6 -64055 2
D = 3.899 x 10 exp ( ) cm /sec (6.7)

These results will be used in all subsequent calculations involving

tritium transport in LiA 2.

One further point must be briefly discussed. Although this design

deals with pellet radii on the order of .2 cm, experimental results are

based on .0075 cm radius particles. These results do not indicate whether

the particles used in the experiment are single or polycrystalline. If

these particles are crystals, then the 0.2 cm pellet can be thought of

23
as being composed of (.0) single crystals. Now, since the grain boundary

diffusion will most probably be much greater than the grain (solid state)

diffusion, the pellet inventory will be the inventory of a single .0075 cm

.2
radius particle times the number of particles/pellet, ( 75).However,

if the particles analyzed are polycrystalline, then the grain boundary

diffusion has already been accounted for and the pellet inventory will be

that of a 0.2 cm radius pellet. Since the inventory varies as the 5th power

of the radius (see equation 6.6) and the number of particles/pellet is

2 3
) ,the inventories for the 2 cases will differ by a factor of 711.

This is a significant point in that it may very well determine the feasibility

of gas-cooled blankets from the standpoint of tritium inventory and release-.

Because the nature of this diffusion coefficient is presently unknown,

both cases will be examined. Therefore, in subsequent *sections, where

the word particle appears in place of pellet, this will indicate that the 0.2 cm

2 3-
pellet is composed of particles each with an inventory proportional

to.0075 ~ a t c e 
4

5 5
t(.0075) as opposed to one pellet with an inventory proportional to (.2).



6.3.3 Tritium Transport Dynamics

In order to accurately calculate the tritium inventory of the BRSR

blanket design, a computer code, TRIPORT, was written. A description

of this code is given in reference [21]. It calculates the amount of

time needed for the tritium concentration in the blanket material to

reach steady state assuming steady state reactor operation. Then, using

the steady state conditions, it calculates the tritium inventory of the

blanket. Thus, the solution to the time dependent inhomogeneous differ-

ential equation for the concentration at any point along the BRSR and

[33]
for any time t forms the basis of TRIPORT. This differential equation

is

1 2 3 4 5

ac1 BC 2 a CD (r -) + B - XAAA q(r) (6.8)
at 2 Dr a r c cr

where

3
B Tritium generation rate in Ci/cm sec

-1
X = Decay constant for tritium, sec

6 -1
A Decay constant for parent substance, (Li ), sec

A= Concentration of parent substance (Li) Ci/cm
3

q(r) = Fraction of atoms formed within dr of the surface which escape.

This equation can be simplified without loss of accuracy. Term

number 5 gives the loss of tritium from a sphere due to recdil. The

amount of bred tritium that is lost from a 0.2 cm pellet due to recoil

is less than 1.0%. Similarly, term number 4 is the tritium loss due to

radioactive decay. If after 2 years, the entire steady state inventory
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vas assumed to be present from time t=O, the loss would be at most 10%.

These two terms are neglected in the solution. The remaining equation is

9 C 1 3 2 aC
T= D -2 T (r2 T) + B

at r 3r r
r

substit-utinlg U= C -r gives

a2  B
D Du= +

r

(6.9)

(6.10)

The boundary conditions are

u= 0

u= aC

u = 1 f(r)

r= 0

r =a

0 < r < a

f(r) = C

This equation is the basis of TRIPORT and is most easily solved by

separation of variables (Appendix E) with the final solution

B 2 2
C(r,t) =- (a - r ) + C

6D a

+ 2 1 (1)n (Ca + B
r (C a + 2 )

n DX
n

2
-D2 tn

sin r
n 3cm

where

n a

C = C(a)

t > 0

t > 0

t = 0

(6.11)



At this point it will be helpful to explain the operati cn of TRIPORT so th.

the presentation of subsequent equations and their interactions can be mo

easily understood.

6.3.3.1 TRIPORT Overview

Given the diffusion coefficient of tritium in LiA102) the tritium

production rate and other system parameters, TRIPORT evaluates the solution

of the concentration equation for each x cm length of the breeder rod every

N seconds. Figure 6.6. The time step should be chosen such that signifi

changes will not occur in the tritium concentration of a pellet over any

2 2
one time step. A safe rule of thumb for At is 0.1 a /(DuT ) where

D > .75 times the smallest value of D over the length of the rod. The se

length should be fine enough such that the temperature and tritium product

rate do not change appreciably. between segments. One one-hundredth of the

total length (down and back) or 2.0 cm is satisfactory.

Each time step, TRIPORT calculates the tritium concentration and

release from the pellets in each segment of the rod. The tritium concentra

in the coolant is then calculated for each segment. The T concentrationot
2

segment J is equal to the cocentration of segment J-1 plus the amount

produced in segment J minus the amount lost through the walls in the At

necessary for the coolant to travel 1 segment.

C(J) = C(J-1) + PROD(J) - LOSS(J) (6.12)
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This is done for each segment after which the concentration is

converted to a partial pressure and used to calculate the boundary

condition of the concentration equatio (6.10); the T2 concentration

at the boundary of the sphere, from which the T2 solubility in LiA102

is determined. This T2 concentration is then used to evaluate the solution

to the concentration equation in the next time step.

This entire process is performed each time step (evaluating the

solution based on the boundary condition of the previous time step and

updating theboundary condition for the next time step) until a convergence

criteria is reached. This criteria is that the fractional change in the

T concentration in a pellet between two time steps,
2

Ct+l C t
C t+I

doe not exceed 0.001. A more accurate convergence criteria is to

ensure that the fractional difference between the pellet release rate

at the time t and the steady state release rate,

9C BC

s t
ac

S



is less than 0.001.

When this condition is satisfied, steady state has

been reached. However, since the temperature in the rod

varies from segment to segment, steady state will be reached

at different times for each segment. A safe solution is to

monitor a segment with a lower temperature than most of

the blanket (" 80%), as the time to reach steady state

varies inversely with the temperature.

After steady state is reached, the inventory is ready

to be calculated. It is calculated by integrating the

tritium concentration over the volume of the pellet in

each segment for the given particle/pellet size distribution

as specified by the user. The inventory of each pellet is

multiplied by the number of modules/reactor to arrive at

a total blanket inventory. It should be noted that experi-

ments have shown that most of the tritium released from

the pellets is in the form of T2 0 or HTO. This is accounted:

for by assuming that 90% of the tritium released from the

pellets is in the form of T2 0 while the balance is re-

leased as T2.

Each of the steps described above will be analyzed

below with a presentation of results of computer runs.
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6.3.3.2 Analytical Treatment in TRIPORT

As discussed in Section 6.3.2, the tritium concentration at a point

r in a pellet at time t- is given by

B 2 2
C(r,t) = g (a - r ) + Ca

2e n -DA t
2 (-1) B n Ci

+ n (C + -)e sin Ar (6.11)r A a 2 n 3
n=l n - DX cmn

The release of tritium from the sphere is calculated by multiplying D

times the derivative of C(r,t) at the pellet/particle boundary r=a,

giving

2
-DX t

B - D[- - + )e ]Ci/cm -sec (6.12)ar f 3D 3 a 2
r=a n= DX
t=t

Multiplying by the pellet surface area, A cm2  the number of pellets/cm

3in the rod and dividing by the void fraction gives the Ci/cm -sec released

into the coolant stream per segment. Next, multiplying by the segment

length and dividing by the coolant velocity gives the concentration in Ci/cm3

added to the segment in t sec.

(NP)AD k 3
CC - J Ci/cm (6.13)VF V f

where



CC = Tritium concentration added to coolant, Ci/cm 3

.3NP = Number of pellets/cm

VF = Rod void fraction.

= Segment length, cm.

v = Coolant velocity, cm/sec.

The corresponding pressure in torr is

P(torr) = 1.065(CC Ci/cm 3)T(OK)

P(atm) = P(torr)/760.0

From this pressure, the solubility of tritium in LiAlO in
2

Ci/cm 3 can be calculated from41

S SO exp (-Qs/RT)/P(atm).

where

3S = Solubility of tritium in LiAlO 2 in Ci/cm

SO = Solubility coefficient, Ci/cm3 atm/2

Qs = Activation energy in cal/mole *K.

Similarly, the permeation of tritium through the module walls

41
can be calculated by

PO(P - )WA
1d 2PF = exp (-Q /RT) (6.16)

(6.14 )
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where

PF = Tritium permeation in Ci/sec.
2 1/2

PO = Permeation coefficient in Ci mm/cm -sec-atm

p =T Pressure inside module, atm.

=T Pressure outside module, atm.
2

WA = Wall area of segment, cm .

d = Wall thickness, mm.

Qp= Activation energy for permeation, cal/mole *K.

Finally, the inventory can be calculated based on a

specified particle/pellet size distribution. The options

available are the uniform size distribution, the gaussian

distribution and the log normal distribution, included due

to the frequency with which sieved particles fit this type

of distribution. The inventory distribution for each dis-

tribution will be briefly explained below.

The inventory calculation for the uniform pellet/

particle size distribution is simply the integral over the

volume of the pellet resulting in a segment inventory of

2B a
13= a ( + C )NP curies (6.17)

100
and a module inventory of I = I IM J



The inventory for a segment containing particles/pellets

that fit a gaussian distribution is more complicated. The

[351
gaussian distribution can be described as

G(r) = H exp [-h (r - rm 6.2

where

H - 2h + erf (hr
g M

and h is related to the standard deviation a, by

2 2 f r hr exp (-h2r2
a = (r -r = (r - r )G(r)dr = 2 2 + (-hrJ h~{~~ lerf (hrj,)

0In

(6.19)=

Table 6.3 provides an easy determination of h given a and r

Based on this, the inventory is given as

CO B r2
= JG(r) [ r 3( + Ca )jdr (6.20)'

-2h 4 B r5 exp[-h2(r-rm)2]dr
irl+erf(hrm )J(rD

+ Jar3 exp h2rm21dr}NP (6.21):

3 a3 1-D

100
w i t h 4 52

n1



TABLE 6.3

COMPUTATIONAL PARAMETERS FOR THE GAUSSIAN DISTRIBUTION

a/ri 
hrm

0.10

0.20

0.30

o.4o

0.50
0.60

0.70

0.80

0.90

1.00

14.1421

T. 0711
2.6316

1.722T

1.3145

1.0459

0.8698

0.7490

o.6611

0.5939

*ref. 35
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Finally, the inventory for a segment containing pellets/

particles that fit a log normal distribution can be described

as follows. If a is the standard deviation of the distribu-

tion and C the mean radius, the particle size distribution is

[351
given as

LN(r) = r exp 2 (6.22)
aLN r 2aLN

where.

2
aLN log 2O + 1

eLN (- LN/2)

are the logarithmic transformations of a and ( respectively.

Now, the segment inventory is given by

2

I LN(r) [.7r3(Bjr-+ Ca.)Jdr (6.20)

L 20222

+ 4 Cj[ r 2N dr NP (6.23 -)
S 2OLN j

100
with I I.

j2M
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Two important points should be noted. First, the tritium generation

rates used in TRIPORT are based on the output from ANISN.

Second, the diffusivities in a -pellet were assumed to be constant

across the pellet diameter. This is a valid assumption as the temperature

gradient across a 0.4 cm diameter pellet is expected to be quite flat. The

temperature profile in a sphere is given by

T T + 6k ~ (a - r 2 ) (6.24)

where

T = Pellet temperature at surface, *C

3
q''= Heat generation rate, w/cm

k = Thermal conductivity of pellet, w/cm*C

Therefore, the maximum AT occurs between the pellet surface and center r=0.

AT = 6k 2 (6.25)

Calculations indicate that the maximum heat generation rate in LiAIO
2

will occur at the plasma end of the module and will be approximately

3 [21]4.0 w/cm . Now, since the thermal conductivity of LiAlO2 is unknown,

an estimate must be made. Based on the thermal conductivities of alumina

(Al 203) and lithia (Li2 0), a reasonable estimate of k is 0.04 w/cm*C[3 6]

This conductivity coincides with that of UO2 and will probably represent.

a conservative estimate on which calculation can be based. Results for

AT pellet vs pellet radius are presented in Figure 6.4.

6 .3.4 TRIPORT Results on Tritium Inventory

In calculating the tritium inventory for the BRSR design, the first

interesting result noted was that in all computer runs with uniform 0.2 cm

radius pellets, steady state was reached only when the temperature profile
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ranged from 600 - 900*C. All runs with module temperature profiles

8
of lower magnitude did not converge in 10 seconds or 3.2 years (64%

of the life of the module). This slow transient is not unreasonable

judging from the extremely low tritium generation rates. Nevertheless

8
all parameters were well stabilized and slowly changing by 10 seconds

so that a steady state inventory calculation based on these parameters

remained valid.

This finding, however, indicates that the calculated steady state

inventories can grossly overestimate the actual inventory if the steady

state condition is not reached in the lifetime of the module. For the

0.2 cm radius pellet composed of uniform 0.0075 cm radius particles, the

steady state will have been reached by the 5 yr. module lifetime

in all cases except the one where the temperature profile ranges from

300-600*C. These results are presented in detail later but are alluded

to here to caution against the use of steady state calculations when

this condition may in fact never be reached. All parametric calculations

were performed at temperatures at which steady state will be reached

within one year of operation. An example of the inventory profile along

the breeder rod is given in Figure 6.5 for a module consisting of uniform

0.2 cm radius pellets and a coolant profile shape as given in Figure 6.3

for H = .018 and inner to outer routing but with an inlet temperature

of 500*C and AT = 300'C. This is for the design with BeO at the plasma

end of the rod as can be noted by the low tritium inventory between 95-100

Also note the higher inventory in the inner cylinder where the helium

temperature is much- lower, Figure 6.7.
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W,
'6.3.4 Reference Design Results

The inventory calculated for the uniform 0.2 cm radius pellets under

sceady state conditions for the initial reference design (T. = 300-C,

12
T = 300*C, P = 700 psia) is 6.99 x 10 Ci. However, after 5 years,

8
only a maximum of 2 x 10 curies will be produced and is therefore the

maximum possible inventory for the blanket. For the particulate pellet,

8
the 5 year inventory accumulation will similarly be about 2 x 10 curies

9
while 9.88 x 10 curies will be present at steady state. Therefore,

7
both values clearly exceed 5 kg (5 x 10 Ci) limit and render this temp-

erature profile impractical from the standpoint of tritium inventory.

Since diffusion is such a strong function of temperature (see Eq. 6.

an increase in the temperature level with constant profile shape will

decrease the inventory. In order to determine what temperature level is

needed to keep the inventory within the limit, a series of computer

runs was made in which the temperature levelwas raised but the profile

shape remained constant.

6.3.4.1 Temperature Level Variations

The temperature level was increased in magnitude in units of 100*C

to a maximum -increase of 300*C while keeping the profile constant. Figure

6.6 -gives an illustration of the reference design (T = 300-600'C) temper-

ature profile while Table 6.4 presents the effect of increasing the temp-

erature level and Fig. 6.7 illustrates the temperature effect on the

steady state inventory. In Table 6.4, columns 2 and 4 give the calculated

steady state inventories while columns 3 and 5 give the probable inventories

after 5 years of operation. As is evident from this table, a 200C inlet

77. I
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TABLE 6 A

EFFECT OF TDPERATURE ON BLANKET INVENTORY

I
Temperature Uniform pellets, Uniform particles

range (0C) 0.2 cm radius 0.0075 cm radius

Steady state Time to 5 year Steady rime tc 5 year
inventory reach inventory state reach inventor

(Ci) steady (Ci) inventorysteady (Ci)
state (Ci) state

Reference
design 12 8 9 8
300-600 6.99x10 >1000 yT 2.OxlO 9.88x10 >10 yr 2.OxlO

400-700 3.62x1010  190 yrs 2.0x108 5.14x1 116 day 5.14x10

500-800 1.62x107 3.5 yrs 1.62x10 2.5x10 3.9 day 2.5xlO5

600-900 2.86x105 45 days 2.86xio 6.5x103 r.5 hrs 6.5x103



I
I 'temperature increase is necessary to keep the inventory of a blanket

7
containing uniform 0.2 cm radius pellets below 5 kg (5 x 10 Ci) limit

while a temperature increase of only 100*C is needed for the uniform

0.0075 cm radius particulate pellets. The results of varying the type

of particle size distribution are presented in the following section.

6.3.4.2 Particle Size Distribution Variation

The particle size distribution can be specified as uniform, gaussian

or log normal as illustrated in Figure 6.8. The effect of varying the

type of pellet or particle size distribution for the 600-900*C temperature

range is presented in Table 6.5- for a mean pellet radius of 0.2 cm and

a mean particle radius of 0.0075 cm for T/rm (coefficient of variance) of

.5.

This table shows that the inventory is greatest for the log normal

distribution and smallest for the uniform distribution. Physically, this

occurs because the smaller particles release the gas quickly and do not

build up large inventories. However, these smaller particles represent

only a small fraction of the total mass while the fewer large particles

account for the balance and retain tritium to the extent that it over

compensates for the small particles' quick release, resulting in an

increased inventory. Thus to minimize the inventory it is desirable to

use uniform size particles or a size distribution with a strict upper

limiting size.

6.3.4.3 Solubility and Permeability Effect

The coolant temperature will have a direct bearing on the solubility

of T2 in LiAlO2 and its permeability through the module walls. As the

79.
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TABLE 6.5

EFFECT OF PELLET/PARTICLE SIZE DISTRIBUTION

ON _BLANKET INVENTORY --

For 600-900 *C range and Oa/r_= .5

Size
distribution

Inventory (Ci)
Mean pellet

radius = 0.2 cm

Inventory (Ci)
Mean par icle

radius = 0.0075 cm

Uniform 2.85 x 10 5 2.21 x 103

Gaussian 1.40 x 106 5.36 x 10

Log normal 2.04 x lo 6.24 x 10

I
I
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coolant temperature rises, the percentage of the total tritium inventory

that is dissolved in the LiAlO2 increases. Further, tritium solubility

increases with the square root of the T2 partial pressure in the helium.

Thus, two effects, temperature and pressure influence solubility.

The temperature distributions are well established while the T2

partial pressure profile in the coolant is highly questionable. This

arises from the extremely high permeability of niobium, the principal

reference design material. Calculations (Appendix C) show that even for a

fast moving helium stream (150 cm/sec), the tritium in the form of T2

will permeate through the module walls faster than it can be generated.

Thus, assuming the inner cylinder is not permeable, and the T2 concentration

is building up as the helium flows through this cylinder, a T2 concentration

-4
equivalent to 10 Torr will permeate the walls of the outer cylinder

(which separates the coolant from the vacuum) in the first .03 cm of

exposed wall. This means that all the tritium will be lost to the

vacuum surrounding the modules.

This calculation was performed assuming a vacuum outside the modules.

However, Fraas has shown that this "vacuum" may contain a T2 concentration

-6 5 [4) l5
as high as 10 to 10 Torr . Assuming 10 Torr, the T2 concentration

will equalize with that outside the module instantly upon reaching the

exposed wall. Although this treatment of permeation may have far reaching

consequences for fusion reactor aspects such as heat exchanger design,

the discussion at hand will be confined to the effect on solubility.



TABLE 6. 6

TRITIUM SOLUBILITY AS A FUNCTION OF PRESSTMRE

For 600-900*C range

Pellet/particle
radius (cm)

3Solubility (Ci/cm)

P = 0.0 torr P = 10-5 torr

% inventory
due to

solubility

Uniform pellets 8 8
r = 0.2 cm 1.95 x 10 1.97 x 10 1.0

Uniform
particles 5r = 0.0075 cm 3.61 x 10 1.89 x 10 81.0

I

Ip-VOW
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If one compares the 2 cases; that with the outer annulus having a

-5
7, partial pressure of 0.0 and then 10 Torr in a module with the temp-

erature ranging from 600*C-900*C, the solubility will behave as displayed

in Table 6.6. Thus as explained earlier, the smaller particle size and

higherT partial pressure combine to greatly increase the inventory due

to solubility in high temperature ranges. If structural considerations,

however limit the maximum temperatures to approximately 600*C, the con-

tribution to the inventory from solubility should not be significant.

6.3.4. 4 Summary of Results

Pellet shape has not been considered since its effect on inventory

will be minimal. However, since the sphere has the smallest surface

to volume ratio, it is evident that decreasing the sphericity will decrease

the inventory.

From the preceeding discussion, certain brief generalizations

about tritium inventory can be made. First, the smaller the particle,

the lower the inventory. Second, higher temperatures reduce the inventory.

Third, uniform particle size minimizes the inventory. Last, lowering the

T2 partial pressure will lower the inventory. Table 6.7 summarizes

these results. The effect on a design window will be discussed in Chapter 9.

6.4 TRITIUM RECOVERY

Several recovery schemes are possible for the recovery of tritium

from the helium stream. Since most of the- tritium is present as T20 or

HTO the proposed schemes will be structured toward handling such a case.

Two schemes are outlined briefly below.



6.4.1 CuO Bed with a Desiccant

The easiest way to remove T2 0 or HT) from a flowing helium stream

is with a desiccant or molecular sieve. A fraction of the circulating

helium stream (1-10%) can be diverted on each pass. The T2 or HT present

in the stream can be transformed to water by passing it through a CuO bed.

Now, with all the tritium in the form of water, a desiccant or molecular

sieve can be used most efficiently to remove the tritiated water from

the helium stream.

6.4.2 Metal Window with a Desiccant

In place of a CuQ bed, the residual T2 or HT can be removed by a

metal window consisting of a highly permeable metal such as vanadium

or niobium. After permeation of the T2 or HT through the metal window,

the T2 0 or HTO in the helium stream can be removed with a desiccant or

molecular sieve. These recovery schemes appear to be most applicable

to this type of blanket design. The next section will present a dis-

cussion on the breeding capability of the BRSR design.
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TABLE 6 -7

SUMMARY OF FACTORS AFFECTING
TRITIUM INVENTORY IN LiA1O2

Direction Characteristic Effect on
of change inventory

Decrease Pellet size Decrease

Increase Temperature Decrease

Increase Pellet size Decrease
uniformity

Decrease T 2 partial Decrease
pressure
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CHAPTER 7

BREEDING CAPABILITY OF THE BRSR DESIGN

As discussed previously the BRSR design will be considered potentially

feasible if a gross breeding ratio of 1.15 can be demonstrated.

Since the quest for a blanket design with the ability to breed may

lead to drastic changes in the base reference design, certain ground rules

must be obeyed to ensure a final working design. These rules are simply

that any altered design must satisfy the limits or constraints in a

"first-cut" analysis imposed by the thermal/hydraulic, material strength

and compatability, and tritium transport design considerations. Although

the purpose of this chapter is to assess the breeding capability of the

BRSR design and to perform alterations necessary to achieve breeding, it

is unrealistic to ignore the effect such alterations may have on the

overall feasibility and success of the blanket design. Hence, all

designs presented in the following section will address this concern.

7.1 METHOD OF BREEDING RATIO CALCULATION

Early in the planning stages of a neutronic calculation, it was

decided to attack the problem using a one dimensional neutronics code

for reasons such as cost, time, availability of expertise and above all,

the primitive stage of the design. The code selected was ANISN, a

one dimensional, multigroup code that solves the neutron transport

equation in slab, cylindrical or spherical geometry using the S method.

N

'4



A glance at -Figure 7.1 will immediately illustrate the problem

with using a 1-D code on such an inherently three-dimensional design.

ANISN, like any other 1-D code is quite valid when applied to problems

with different material zones whose boundaries are parallel to the

symmetry axis of the neutron source. As is evident from Fig. 7.la,

the material boundaries lie in a direction perpendicular to the symmetry

axis of the plasma. Furthermore, Figures 7.la and b show that the carbon

shims vary in thickness in both the 6 and * directions. Hence, the

BRSR design is not well suited to a l-D calculation. Hopefully, using

the homogenization technique, fairly accurate results can be obtained

for a "first-cut" analysis.

7.1.1 Alternati~re Neutronic Treatments of the BRSR Design

There. exists two basic options of handling an AISN calculation

of the BRSR design. The most attractive alternative would be to create

a line source down the center of the breeder rod so that all material z

vary in the correct direction. This method has several drawbacks, most

important of which is the generation of such a source. A line source must

be generated from a point source and therefore cannot be more accurate

than a calculation based on a point source. The point source generation

is the second alternative.

The option selected will treat the plasma as a point source and

account for the effect of the structure and carbon by homogenization.Thi

treatment results in a design as pictured in Figu. 7.2. Homogenizatiock

is a common practice and will be used in determining the breeding ratio

BRSR designs. The following section will describe the process.
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7.1.2 The Homogenization Technique

The homogenization process as detailed in reference [34)

consists of taking the carbon shims, the niobium struc'-&ae

and the breeding material and homogenizing them uniformly

along the blanket cross-section and as a function of blanket

thickness. The solution to the transport equation is carried

out in slab geometry (as the curvature of the torus wall is

insignificant in a single rod and shim combination) with an

isotropic neutron flux impinging on the face of the breeder

rod. This treatment will account for variations in material

in the r direction and will yield a neutron flux as a function

of depth which can then be used for a single cell calculation

as previously described. However, the consequences of homo-

genization must be considered.

First, in homogenizing the niobium, the probability of

neutron capture by the Nb93 (n,y)Nb9 4 reaction is altered.

The reason for this is that whereas a neutron may travel one

or more mean free paths (mfp) in the breeder material alone

without encountering the niobium structure, homogenization

has insured that in every mfp, a neutron has a probability of

being captured. In effect, homogenization results in a

change from a high macroscopic capture cross section (E)
a Nb

in a discretized volume to a low macroscopic capture cross

section over the entire rod volume. The same is true for

the carbon shim. However, the neutron capture cross section



is small enough that it will probably not affect the results. The

homogenization of the carbon may, however, alter the neutron energy

spectrum due to its strong moderation.

Thus, homogenization will affect the results, and although it is

hard to determine in what direction the effect will be, it appears that

a 1-D calculation may tend to under-estimate the breeding. ratio. This

same prediction was made by the UWMAK-II: group when in fact a 3-D calculav

[31
resulted in a drop from 1.18 to 1.06 . This effect was due to an

underestimation of the amount of structural material present, differing

material compositions, and neutron leakage. For the same material

composition the 3-D calculation gave a BR less than one. Based on the

UWMAK-II results the 1-D calculated breeding ratios will be considered

as an upper bound, but a 3-D calculation would be desirable.

7.2 BREEDING CALCULATION RESULTS

Several blanket designs were tested for their breeding ability in

the hope of finding a design that will breed and comply with the requireme=

set forth earlier in this chapter. The designs will be presented in the

order .they were conceived so as to show the progressive elimination of

possible alterations that may enhance breeding. Each design will be

illustrated by a schematic showing the material compositions and locations

in the rod, followed by the results of the ANISN S8 P3 run which will

include the important breeding, multiplication and absorption reaction.

This will be followed by a discussion of the results and a consideration

of the effects any alterations may have on other design aspects. Finally,

alterations to the design will be suggested.
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7.2.1 Neutronic Reference Design 1

A schematic representation of the initial reference design is

presented in Figure 7.2. Table 7.1 gives the results of the breeding,

neutron multiplication, and parasitic absorption reactions occuring

in the blanket. From these results, it is evident that there are three

6
basic problems with the design. First, the Li number density is too

low. This can be seen from the successful competition for neutrons

6
by the niobium (ny) reaction. A blanket enriched in Li would raise

the macroscopic cross section and thus reduce the parasitic effect of

niobium. This problem can also be identified by comparing the ratio

7 6
of the Li to the Li breeding reaction (.10), despite the large

number density ratio advantage of Li over Li (12.33). Hence for this

6
particular energy spectrum, the Li reaction is more fruitful.

Second, there are simply not enough neutrons to breed. The low

multiplication of this blanket makes breeding impossible with parasitic

absorptions such as in niobium, indicating the need for a multiplying

material.

Finally, the 5 cm graphite layer on the front face of the rod is

7
degrading the neutron spectrum to a degree such that the Li (n, n-a)t

93 92
and Nb (n, 2n)Nb  threshold reactions are of little value. Removal

of the shield would greatly enhance these reactions.



7.2.2 Neutronic Reference Design 2

The schematic of design 2 is presented in Figure 7.3 with the

results of the ANISN run appearing in Table 7.2. The changes over the

6
reference design consist of enriching the Li in LiA102 to 90% Li , and

adding a neutron multiplier in the form of 5 cm of beryllium oxide (BeO)

pellets in the front of the module followed by one cm of alumina (Al203)

pellets. The breeding problem with this blanket appears to be due to

the effect of the 5 cm graphite shield. This graphite layer may account

for the low neutron multiplication in the beryllium and hence the low

breeding ratio of only 0.684. Thus, the recommenid alteration would be

to remove the graphite shield.

Concerning the other design aspects, materials compatibility may

become a problem if not accounted for. Beryllium mxide (BeO) may tend

to leach out Li from LiA10 . Thus, in order to renice this reaction, a

buffer layer of 1 cm of alumina pellets was placed between the BeO and

LiA102 pellets. Alumina is one of the most stable oxides known, with a

heat of formation of -399 kcal/mole. A more efficient buffering technique

may be to coat the BeO pellets with an inert matexial such as siliceous

glass. Other than this concern, BeO is a stable rzmpound with a very

safe melting point of 2530*C.

7.2.3 Neutronic Reference Design 3

The schematic representation of NIRD3 is shown in Figure 7.4 with the

results of the ANISN run presented in Table 7.3. Mlis design differs

from NRD2 only by the removal of the 5 cm graphite shield. The results

show that although the carbon was reducing the neu=ton multiplication of

beryllium and niobium by about a factor of 2, the reutron mutliplication--
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is still too low to facilitate breeding. The answer to this problem is

,o increase the beryllium number density or change the breeding material.

B3fore this is discussed, the effect of the alteration on other design

aspects will be evaluated.

The consequence of removing the graphite shield is that the niobium

Dow must absorb the full impact of the plasma heat load and neutron load.

This will lead to sputtering of high z material, higher helium and hydrogen

production rates, afterheat, induced activity and biological hazard potential,

all of which are undesirable.

In addition if 316 SS is to be used, a minimum graphite shield thickness

of approximately one cm is required to keep the first wall temperature

of the failed.Land operating modules within design limits.

Returning to the problem of increasing the neturon multiplication

there exists at least two possible w-ays in which this can be done. The

first option is to extend the BeO layer for another 5 cm or so to increase

the number density. This suggestion will probably not work based on the

follwoing argument. From the figure given in Table 7.2, if 5 cm of BeO

yields only .1 extra neutron and the breeding ratio is .77, then in order

to raise the breeding ratio above 1.0, one would need about .3 more neutrons

or a BeO thickness of 20 cm. Now, since the Be9 (n,2n) 2a reaction is a

threshold reaction it is important that the beryllium be "up front" in

the module to capture the uncollided neutrons. Therefore, it is unlikely

that a BeO thickness of greater than 10 to 12 cm will be effective in

neutron multiplication.



The second possible alternative is to replace the graphite shield

with a beryllium carbide (Be2 ) shield. This shield would have two

advantages over BeO pellets. First, it is completely unscreened and will

efficiently utilize the high energy neutrons. Second, it has over four

times the beryllium number density of BeO in the module. Since the

module is only 64% breeding material and the BRSR cell is 43% breeder rod,

this means that the number density of a Be2C shield is 1/(.64)(.43) or

3.6 times as great as 5 cm of BeO pellets. Adjusting this figure for both&

the beryllium number in the molecule and the densities gives a number dens-

ratio of 4.56:1. This idea will be investigated in the next section.

7.2.4 Neutronic References Design 4

The schematic of NRD4 is given in Figure 7.5 and the results are

presented in Table 7.4 along with a comparison of the UWMAK-II design. Tre

difference between this design, NRD4, and NRD3 is the use of a 5 cm Be2

shield in place of the graphite shield and BeO pellets, and the addition

of 5 cm of LiA103 pellets in the front of the module containing natural

lithium. As is evident, this blanket will breed in excess of the previousi

stated breeding requirement of 1.15. The key to such successful breeding

was the increased beryllium number density at the front of the module (as.

in the UWMAK-II design) whose effect is illustrated in the neutron multipli-

Consideration of other design aspects include the amount of berylliuM

used and the behavior of the Be2C shield. The beryllium us ed in .this desi;*

amounts to 8 tons or 1/5 that of the UWMAK-I requirement. Although this i

a significant amount of beryllium, it is not unreasonable for a test reacV11
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The beryllium carbide shield is of greater concern. It has been

;ound that Be2C shows little resistance to thermal cracking. Experiments

have revealed that Be2C will crack when cycled 4 times between 1475 and

2000C[371]. Although the loss of structural integrity could be compensated

by blanketing the shield with a layer of graphite cloth, the thermal

conductivity makes this design completely impractical. Beryllium carbide

has a thermal conductivity of about 0.2 w/cm*C at 1500C as compared with

.7 w/cm*C for graphite. A thermal analysis indicates that no amount

of Be 2 C would be able to keep the niobium wall temperature below its

limit during off normal operation. Therefore, this design will be removed

from consideration. The next option remaining is to pack Be2C or BeO

pellets inside the module.

7.2.5 Neutronic Reference Design 5

This design consists of a one cm graphite shield followed by the

first wall and varying thicknesses of a Be2 C pellet zone. BeO could have

been used just as well, but Be2C was chosen due to its number density

advantage (1.27) and the low absorption cross section of graphite. Fig.

7.6 shows the schematic of this design. The only materials problem with

Be2C is that it is reduced by water forming BeO and methane at low

temperatures and corroded by oxygen and nitrogen at high temperatures.

Since this is a concern with the T 20 and HTO release from LiAlO2 and

impurities in the coolant stream, the pellets can be coated with a thin

layer of siliceous glass which is effective in reducing corrosion.[
3 8 1



To test this last option, a computer run was made with a 20 cm

region of Be2C resulting in a breeding ratio of .6265, neutron multiplicati

of 1.3203, and parasitic absorptions of .6455. The reason for the extreme

low breeding ratio is due to the presence of a high threshold reaction

material, Be, a strong moderator, C and an absorber, Nb in the neutron

multiplication zone. In effect, the Be was producing neutrons and the C Va

moderating others for capture by the Nb before they could reach the

fertile (LiAlO2 ) zone. A reduction in the Be2 C zone thickness to 10 cm

resulted in a breeding ratio of .7641, neutron multiplication of 1.2574 and

parasitic absorptions of .4550. This is a definite improvement, but far

from the required 1.15.

The last remaining alteration is the carbon shim rod content of

the blanket (57% for reference design). This content could theoretically

be reduced to 21% of the blanket. Several runs were made to test out the

effect of a reduced carbon content with a 10 cm thick zone of Be2C pellets.

A summary of these results appears in Table 7.5 and Figure 7.7.

Next, the Be2C region thickness was varied from 15 cm to 3 cm for the

21% carbon content case as given in Table 7.6 and Figure 7.8. To find the

optimum Be2C thickness as is evident from these tables and figures, the

optimum carbon content is the minimum content while the optimum Be2 C

thickness is 5 cm. However, the best breeding ratio attained (.91) is

still .24 away from a neutronically feasible design of 1.15. Thus, the

probability of breeding with a neutron multiplier inside the module appears

dim.
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TABLE 7.5

NEUTRONIC SUMMARY FOR VARYING BLANKET CARBON
*

CONTENT

Carbon % Breeding Neutron Parasitic
of blanket ratio multiplication absorptions

57 .7641 1.2574 .4550

27 .8355 1.4193 .5263

21 .8549 1.4787 .5598

Be2 C pellet zone thickness = 10 cm.

TABLE 7'.6

NEUTRONIC SUMMARY FOR VARYING Be2 C
ZONE THICKNESS*

Be 2C thickness Breeding Neutron Parasitic
(cm) ratio multiplication absorptions

15 .7398 1.5455 .7341

10 .8549 1.4787 .5598

5 .9100 1.3706 .4045

3 .9037 1.3077 .4032

Carbon content of blanket = 21%, 'corresponding to a hexagonal close
packing rather than a rectangular array

WWWWWWWOOMMU*



7.2.6 Neutronic Reference Design 6

The final neutronic configuration considered was substituting a BeO

shield for the carbon shield as done in reference design 4 with Be2C. The

motivation for using BeO is that the thermal conductivity is much higher

at the lower range of temperatures encountered then for Be2 C. At 9000K

-1 -l
for example the BeO thermal conductivity is .57 watt cm K but is

highly nonlinear, falling to .18 watts cm"K 1 at 1700-K. The breeding

ratio results were similar to case four although slightly lower.

Figure 7.9 shows the calculated breeding ratio versus thickness of the

BeO shield. For a breeding ratio of 1.15 a thickness of 6.3 cm is require.

The use of BeO as a shield still presents serious difficulties.

One study [4] indicates that a BeO shield would be limited to a projected...

2
lifetime of .7 Mw-yr/m and would, therefore, require frequent changing.

In addition, the ability of BeO to withstand thermal stresses appears

to be poor. The study defines, a quantity R.' called the thermal stress

[4]resistance parameter as

S t 1-pi)k
R

aE

Where S; is the tensile strength, p is Poisson's ratio, a is the coefficie=
t

of linear thermal expansion, E is Young's modules and k the thermal

conductivity. It is a measure of the material strength relative to the

thermal stress. For carbon at 1500C R' 250 w/cm while for Be0 it equals

1 w/cm.

It appears unlikely therefore that BeO would make an acceptable

shield particularly under off-normal conditions.
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7.2.7 Effects of Structure and Void Fraction

All of the preceeding results were for a fixed void fraciton within

the breeder rod and fraction of structural material. Since no configuration

was found that met all the constraints it was decided to pick one geometry

for the remainder of the report and investigate the effects of different

operating conditions. Consistant with the thermal analysis a close packed

rectangular array was assumed giving a carbon content of 31% and a con-

figuration otherwise the same as reference design 5. For this case,

however, the breeding ratio was calculated for 2 fractions of structural

material to allow for different system pressures and also for three void

fractions. The first case was for a 2 mm thick wall with 5.62% Nb and

the second for a 4 mm thick wall with 11.7% Nb. The results are shown

in Figure 7.10. It can be seen that the breeding ratio is much more

sensitive to the amount of Nb than to small changes in the void fraction.

The results are tabulated below and shown in Figure.7.10.

Void Fraction

.32

.36

.40

.36

Breeding Ratio

.8971

.8843

.8705

.7203

% Nb.

5.62

5.62

5.62

11.69
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CHAPTER 8

STRUCTURAL CONSIDERATIONS

8.1 STRESS CALCULATION

A simple first order calculation of, the stresses in the breeder rods

was done neglecting edge effects and stresses due to mechanical attachment of

the graphite shield. The pressure stress was taken to be simple hoop

stress on the side walls and the thermal stress on the side walls was

considered small enough to be neglected. The maximum tangential tension

occurs at the inside surface and is given by

2 2
r + r.

*=+P .(8.1)
PS i 2 - 2r r

0

where P. is the internal pressure and r0 and r are the outside and

inside module radius respectively.

The first wall facing the plasma was assumed to be a spherical

cap and the maximum stress again occurs at the inside surface but in this

case it is the sum of the pressure stress and the thermal stress. The

thermal stress was taken as that generated in a flat plate. The two

components are both tensile on the inner surface and are given by:

P. 2r 3 + r 3
= 3 3 (8.3)

r- r

E (W t (2)8.3)
tr 2 k(l-v) s(3
thermal f

where

a = coefficient of thermal linear expansion

E Young s modulus

k = Thermal conductivity



V =Poisson's Ratio

S =.Surface energy flux incident on metal cap

W = Volume energy generation rate

t = thickness of the plate

Subscripts

f = first wall

s = side wall

The stresses for both 316 SS and Nb-lZr were calculated. The

physical constants used were:

TABLE 8.1

316 SS

2.90 x 10 6

17 x 10

.2 w/cm*C

.28

4.5 w/cm 3

20 w/cm 2

psi

in/ in*C

Nb-lZr

15.2 x 106 psi

-6
8.3 x 10 (in/in*C) at 500*C

.544 watts/cm*C

.38

3;16 w/cm3

20 w/cm2

The volume heating rate for Nz-lZr was the value calculated

previously (3.6 w/cm) and for 316 SS the heating was assumed to be 30%

higher based on the result of William et a?9who calculated a heating

rate 31% lower in a niobium first wall than a 304 SS first wall.

For r, fixed at 3.8 cm and wall thickness (t) varying, the first

wall and side wall stresses are shown in Figures 8.1 and 8.2. The high

thermal stresses in 316 SS causes the curves to have a minimum and

*for an initial evaluation the surface flux is taken as that incident
on the graphite shield, For thick shields the energy generated in the

shield should be included.

E

a

k

V

W
n

Ws
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stricts the use of 316 SS to thin thicknesses. The thermal stresses

:ib-IZr are much smaller and the limiting stresses are the cylindrical

.;all hoop stress rather than the first wall total stress.

The design approach taken was to fix the stress -a then find the

relationship between pressure, module radius and wall thickness. To

minimize the amount of structural material and therefore help the

breeding ratio it was decided to design to a stress of 10,000 psi for

both 316 SS and Nb-lZr. This was considered thelhighest allowable

stress. It was also assumed that to ease fabrication both the side

wall and the first wall would be the same thickness.

For 316 SS the highest stress occurs at the first wall and exhibits

a sharp minimum when plotted against thickness as previously mentioned.

It is highly desirable to operate at this minimum. This condition

along with a fixed stress, heating rates, and a given wall thickness

then determine the module size as a function of pressure.

We have the conditions:

4
+10+ =10 psi (8.4)f Pf tf

0 (8.5)at

where 3 3
2r. + r

1 0 2
a~~ 3 ) + At + Bt rA0f 2~ 3 3 )+tB

r -ri
0

w
SE W B E n

A -- WB =- r -r.= t2 k(l-v) s 2 k(l-v) 2 o i

I
4
,



8.5 reduces to

9r 12r032A +4Bt_2 0
-r 3 r 3 2 P P.
(r - r.) )

or expanding this

4 5 6
r 2 2r t+ t2 2A + 4Bt {r t - 2t + + } = 00 0 P 0 3 r 3 2 3

0 0

3 t
since r >> t typically we will neglect terms of order t (-) and

3
higher compared to t and lower terms. We then have a quadriatic

equation for r0 and the solution is

2
r b + b 4C(8.6)

where b
2 3

b 2At + 4Bt + 2t

Pi

3 4
4At + 8Bt 2

C + t

We now have two unknowns, (r and t) for a given pressure and two

equations (8.4 and 8.5) so the problem is determined. For the assuned

values given above the optimum thickness for 316 SS was found to be nearly

constant between 800 psi and 200 psi varying between .147 cm and .144 cm.

This optimum choice for the first wall gives a thermal stress nearly

equal to the pressure stress. Since the pressure stress on the spherical

cap is roughly half. the cylindrical wall stress the total first wall

stress is approximately the same as the side wall stress. It was found
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that the side wall stress in some cases was just slightly over 10,000 psi

requiring slightly smaller module radii, but this correction was small

(= 2%). The module radius vs. pressure for 316 SS and for several thick-

nesses of Nb are shown in Figure 8.3.

8.2 PERCENTAGE OF STRUCTURAL MATERIAL

Another consideration is the amount of structural material which

is important because the breeding ratio is fairly sensitive to this.

For a unit cell with the first wall center to center distance between

breeder rods equal to twice the outside radius the total volume is equal

to2- to (2r.)
2 02 2 3

V= 2 r 2+ =4.57 r (m)
t o 2-(:5) o

where the Torus minor radius is 3.5 m and the length of the cell Im.

The volume of structural material is given by

2 2 2
V 7 u(r -r )+ t r

and therefore

V 2
5 t+tt)- .687(2 - (-) + t) 1.37 tV r r r

t 0 0 0

a thin cylinder approximation gives

t i
r a

where the hoop stress is taken as a constant for our design. Therefore

we should expect to percentage of structural material to be directly

proportional to the pressure.



Equation 8.1 was used to determine r for a given t and pressure fo0

Nb-lZr then Vs/Vt was calculated. The resultant percentages are given

in Table 8.2. There values of Vs/Vt are nearly independent of t and

are within about 1% of the values for 316 SS at its optimum thickness.

3 4
If we were to design to 5 x 10 psi versus 10 psi to allow a large-

safety factor in the mechanical design, this would approximately double

the percentage of structural material and would have a serious effect

on the breeding ratio.

Table 8.2

P(psi) t(cm) r 0 (cin) Vs/Vt z

800 .2 2.60 10.3

700 ..2 2.96 9.11

600 .2 3.44 7.90

500 .2 4.10 6.68

400 .2 5.10 5.47

300 .2 6.76 4.14

250 .2 8.10 3.49

200 .2 10.1 2.83

8.3 RELIABILITY

Another area of concern is the large total number of modules

required for this design. For a module radius of 4 cm, 140,000 breeder

2
rods would be required for a first wall surface area of 1450 cm as

postulated. An extremely .high degree of component reliability is

therefore required.
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A potential problem is the vacuum seal made by screwing the

cylinder into the backing structure. In an effort to estimate the problem,

reliability data for typical pnematic components was reviewed in the

[40 71 72
literature '417., - Such components as pipe joints, unions and junctions and

-6 -7"0" Rings all seemed to have failure rates in the range of 10 to 10 .

failures per hour (Figure 8.4). If you assume a value of 5 x 10

5
failures/hr for our postulated seal and 1.4 x 10 modules the mean time

between failure for the whole blanket is only about 14 hours which is

obviously unacceptable. A solution appears possible however. It would

require designing a double seal such that the second seal is not stressed

unless the first seal breaks. The problem of determining the average

number of modules that will have both seals failed after a given time

is formally the same as for a radioactive decay chain going from parent

to daughter to grandaughter where you want to know the number of grandaughter

products present as a function of time. From this approach it can be

shown that the probability of n breeder rods surviving a time t in a double

seal system, with each seal having a failure rate independent of time,

is given by

-nXt n
P e (Xt +l1)

s

for

5
n =1.4 x 10

-7
X 5 x 10 /hr

3
t =10 hr

I



this gives P .983, that is the probability of the blanket, lasting

10 hours without a leak from any vacuum seal joint is 98.3%. If the

6
failure rate were to be 5 x 10 , an order of magnitude higher, then a

triple seal would probably be required. In this case

2n

P -nt (1 + 2 + )
s 2

and for the same n and t as above P = .997.

Thus, if an effective double or triple seal can be designed for

the breeder rod - backing structure junction the reliability should be

acceptable.

Fraas gives a rough guide to estimate the occurrance of leaks in

his comparative survey of blanket concepts. Summarizing his estimate,

the mean time between coolant leaks is given by

9
I4TBF(hr) = [N tube joints + N ft weld]-A-B

where A = thermal stress factor (coolant temperature rise*C/50)

B - pressure stress factor = nominal pressure.'stress/allowable stress

For.our design with. O = 10 and for AT = 200, A = 4 Ea/(Ea) and

B = 1. For the original design assuming 2 tube to header joints per

module and a circular weld around the first wall cap

No tube joints = 2.8 x 105

No ft. weld - 1.15 x 105

For a niobium structure E .195 and
(Ea)SS

MTBF = 3.24 x 103 hr

F-or 316 SS, MTBF = 633 hr.



107.

If material considerations require the use of 316 SS this problem

would have to be addressed in a much more accurate manner.

Going to a large module size, lowering the design stress, and reducing

AT would all help but would increase the pumping power. For failure mode

operation the temperature in the failed module LiAlO2 limits the maximum module

radius to something between 6 and 7 cm which would not significantly

increase the MTFB.

F'
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CHAPTER 9

DESIGN ENVELOPE

The objective of this section is to establish the allowable range

o, module sizes, wall thickness and system pressure. In attempting to

establish the designenvelope for this concept it was assumed that the

:ost difficult constraint to fulfill was the breeding requirement. Con-

sequently in the process of picking certain parameters to be fixed, where

a choice was possible, the value most favorable for breeding was taken.

Thus the stress was fixed at 104 psi, our design limit and the ratio of

pumping power to heat removal (PP/Q) at 5%, which is probably the highest

allowable. The design also employed the smallest allowable void fraction.

Despite these choices, the breeding ratio could not be demonstrated to be

above one and there was therefore no open window. To illustrate the approach

however, we will show a design window based on the other known constraints

with the parameters optimized for breeding and assume a breeding ratio

higher than calculated.

9.1 GEOMETRY AND HEATING RATE

The geometry evaluated was for a module with a one cm thick graphite

sheild. The module outside radius (R ) and wall thickness (t) were

variable and the modules were arranged in a close packed rectangular array

so that L = 2R and the average volume of carbon in the blanket was 31%

which is the minimum for a rectangular array. The heat rate was taken to

be q"'' - 5.0 e 0 4 2xW/cm3 within the modules. The heating rates and

2.geometry correspond to what was assumed in Chapter 5 with H =.016 w/cm 0C.



9.1.1 REMOVAL OF HIGH INLET TEIPERATURE CONSTRAINT DUE .TO NTTENTORY

CONSIDERATIONS

If the inventory calculations of section 6 were used to set the

minimum inlet temperature, a viable design window could not be obtained

because of the high temperatures required. Several possibilities exist

however, First inventory calculations are based on a sphere .2 cm in

radius composed of 0.0075 cm radius particles. It may be possible to

manufacture the LiA1O2 with a smaller particle size and eliminate the

problem entirely. Second the experimental data odi diffusion in LiA102

is quite recent and the values may not be totally accurate. Finally if

indeed the diffusion is as calculated previously, a change in operational

procedure might be possible to allow the use of lower inlet temperatures.

If an inlet temperature-of 300C is used, the tritium inventory

will build up and based on the previous calculations should take approxi=at

20 days to go from 1 kg to 5 kg. At that time with the plasma querrhed,

the blanket heat exchanger could be bypassed and the He slowly reci zulated

with little or no cooling. The inlet temperature should then rise because

of the afterheat. In an inlet temperature of close to 600*C could. be

maintained with a small temperature rise through the module, the tritidm

in the blanket could be "flushed" out. Based on .0075 cm particles and

.2 cm.spheres it would take about 2.3 hours to reduce the inventory to

1 kg and then begin the cycle again. In establishing a design window

therefore it will be assumed that for one or another of the above reasons

it will be possible to remove the constraint of high inlet temperature

imposed by inventory considerations.
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9.2 HELIUM TEMPERATURE SELECTION

The calculations of Chapter 5 showed that for an inlet temperature

of 300*C and AT equal to 200*C, the maximum temperature of the side wall

under off-normal operation varies between approximately 645*C and 605*C.

To obtain an open design window' an inlet temperature of 275*C will be

taken with AT = 200*C. The effect of lowering the outlet temperature

is to decrease the thermal efficiency. The pumping power however is also

reduced or for the same pumping power, smaller pellets can be used giving

a slightly smaller void fraction because of wall effects. It will be

assumed that the shape of the temperature profile is the same as before

and the previously calculated temperature will simply be .lowered by 25*C.

9.3 WINDOW CONSTRUCTION - STEP 1 - MODULE SIZE

As the size of the module increases the first component to reach a

design limit temperature is the LiAlO2 in a failed module. Conversely

as the module radius is decreased the first component to reach a design

limit temperature is the module side wall in an operating module where

we have assumed that the peak first wall temperature will equal the peak

side wall temperature as calculated for the reasons discussed in Chapter 5.

The peak temperature of these components as a function of module radius

is plotted in the upper left quadrant of Figure 9.1. Two curves are

shown for LiAlO2 the upper corresponding to a contact conductance of

.4 W/cm 2*C between shim and breeder rods and the lower to the case where

a gap is present around the shim rods and the emissivity of the metal

wall is taken to be .6 and the shim emissivity equal to one. For the

stated conditions the LiA1O2 design limit temperature of 1800"C limits

the maximum module radius to 6.6 cm for contact conduction at the shim

breeder rod interface. For the case of a gap around the shim rods the



maximum allowable module radius is only 4.0 cm.

The smallest allowable module size is set by the peak temperature

of the module side wall which increases as module radius decreases

and is limited to 600 0C. This limit is reached at a radius of 4.3 cm.

Therefore for the above conditions the thermal constraints allow module

radii between 4.3 and 6.6 cm for contact conductance between shim

and breeder rods. For the radiative boundary conditions between shim

and breeder rod however there is no.open window for these conditions

since the maximum radius allowed is less than the minimum. To employ

a gap, the inlet temperature could be lowered. This would shift the

peak component temperature curves to the right, increasing the maximum

and decreasing the minimum allowed module radii. If the inlet temperature..

were lowered 30*C with AT kept at 200*C, a narrow window would open

around a module radius of 4 cm.

With the inlet temperature and AT given and the range of module

radii established it is desirable to find the allowable range of operating

pressure.

9.4 WINDOW CONSTRUCTION - STEP TWO - MAXIMUh PRESSURE

A maximum pressure can be determined in principal from the breeding

ratio design constraint of 1.15. The logic behind this is as follows.

Increasing the amount of structure decreases the breeding ratio as

shown before. Increasing the design pressure also allows a small reduction

in the void fraction for the same PP/Q, but the breeding ratio still

decreases because of the first effect. For a given wall thickness and



9.5 MINIMUM PRESSURE

Figure 8.3 is duplicated in the upper right quadrant of Figure 9.1

for several thicknesses of Nb-lZr. These are curves for a constant

4
maximum stress of 10 psi. A minimum thickness has been set somewhat

arbitrarily at .145 cm because of the difficulty of handling and

fabricating large components with thinner walls. This minimum was chosen

to be the same as the optimum thickness for 316 SS. The curve of

minimum thickness sets the lower pressure boundary and closes the

design window.

Figure 9.2 shows the corresponding window for 316 SS where it has

been assumed that the only change is the additional first wall thermal

stress. In this case the window degenerates to a single line at the

optimum thickness going from the maximum radius to the minimum module

radius.

The optimum thickness for 316 SS was based, among other factors,

2 2
on a surface loading of 20 W/cm . If an additional loading of 3.5 W/cm

was added to allow for the energy generation within the shield the optiimu

thickness would decrease slightly to .125 cm.

The principal variable which has not beed fixed is AT. It would

be desirable to have this as large as possible to minimize the pumping

power but the upper bound will be set by reliability. The larger AT is

the greater the thermal stress will be and the shorter the mean time be-

tween failure. To accurately fix this would require a detailed fracture

mechanics analysis of the first wall and structure which was beyond the

scope of this report,
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pressure there will be a specific percentage of structural material

and void fraction and therefore breeding ratio. The maximum pressure

is then the pressure at which the breeding drops below 1.15.

The minimum void fraction to be used in the breeding calculation

can be determined in the following manner. Given the wall thickness

and pressure the module radius can be determined as in Figure 8.3.

Then with AT and T (the average coolant temperature) known or estimated

the equation for PP/Q (Eq. 3.34) can be solved for the pellet size which

gives PP/Q = 5%. This will also give the void fraction which is just

a function of the ratio of pellet size to cylinder radius. Estimating

T by T . + AT/2 for an inlet temperature of 300*C and AT = 200C

gives the pellet sizes shown in Figure 9.3. The void fractions based

on pellet sizes found in this manner are shown in Figure 9.4 and Figure

9.5 for the single thickness of 316 SS and for two thicknesses of Nb-lZr

for several inlet temperatures.

The calculated breeding ratio for the stated geometry shown in Fit. 7.10

5- ~was interpolated to give the solid curve (#4) of breeding ratio versus

pressure shown in the lower right quadrant of Figure 9.1. Since it is

never above 1.15 there is no -.open window. For illustration however

suppose the breeding ratio followed the curve (#5) corresponding to

a module with a 6.3 cm BeO shield. In this case the maximum amount

of Nb is 5.69%, which is reached at a pressure of approximately 430 psi.

ios
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e Dependent Properties

Thermal Cycling

This preliminary study has not taken into account an analysis of the

effects of thermal cycling and the associated structural fatigue. It

should be recognized that this could be a limiting factor. To estimate

this effect however requires an accurate model of the first wall shield

and module wall interface and also the time dependent thermal wall

loading. At this point the necessary information is not available for

the BRSR design.

Irradiation Effects

A more refined design would also have to allow for the change in

parameters as a function of the cumulative radiation over an estimated

module lifetime. Information is required on the changes in such parameters

as the thermal conductivity of the graphite and allowable stress levels

for given temperatures of the structure.



115.

CHAPTER 10

OVERALL DESIGN REVIEW

A number of difficulties were encountered during the evolution

of this design and its generalization into a design window. A review

of these along with suggestions for potential solutions could help

define directions for further work on solid breeders.

The most obvious and serious problem was the poor breeding ratio.

Part of the reason for this was the poor blanket geometry which was

required to make each module a separate pressure vessel to permit

failure mode operation. The solution could be a more clever geometry

that would eliminate or greatly reduce the size of the shim rods. It

would also help if the structure of a depressurized- module could still

contribute to the support of the remaining breeder rods, allowing a

smaller total amount of structure in the blanket. Also,.if niobium

is the structural material it may be possible to entirely eliminate

the shield in front of the module although this would not be possible

with 316 SS because of its lower melting point (1430*C). The breeding

ratio would also be improved if an alloy of vanadium could be developed

that was suitable. Aluminum has a lower absorption cross section than

niobium or 316 SS and was used in the Brookhaven design but the high

temperatures reached in failure mode for this design would preclude its

use here.

It appears that a closer look should be made for improving the

solid breeding material. For LiAlO2 it would be helpful if it could

be made as basically solid blocks with flow channels cut through with a



microstructure that allows sufficiently rapid diffusion. This could

allow a smaller void fraction. If beryllium is needed for neutron

multiplication some consideration of using a BeO shield should be given

although its thermal shock resistance is poor and it would probably

have to be replaced relatively frequently. Another possibility would

be to develop a composite shield with both carbon and a beryllium

compound that would retain a high conductivity by effectively having

the thermal resistances. in parallel, but would still have a high enough

percentage of beryllium to satisfy the breeding requirement.

For failure mode operation in a modularized system, provision must

be made for removal of the heat generated in a depressurized module. In

the reference design this was done by conduction through the packed bed

of the failed module to the graphite shim rods and finally to the

surrounding operating modules. It is possible that because of the

different thermal linear expansion of the metal can and the carbon shim

that a gap would have to be provided between them and the heat transfered

by radiation. As noted previously this required a large surface to

volume ratio and a correspondingly small sized module. If such a gap

is required, reasonably sized modules most likely could be designed by

going to the closest possible packing instead of a rectangular array

and coating or otherwise treating the surface of the can to raise the

total hemispherical emissivity to the range of .8 to .9. It would also

be highly advantageous to raise the conductivity of the breeding

material. A possibility here is to utilize the phase change at 900*C

in a failed, depressurized module to decrease the void fraction and
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increase the conductivity. This would require very careful engineering

and an accurate knowledge of the swelling of LiAlQ 2 due to radiation.

Another possibility would be to design for a gap between the breeder

rods and the shim rods for normal operation but in a failure mode allow

the expansion due to the higher temperatures to close the gap and

permit conductive heat transfer from the failed module.

A more difficult problem than handling the volume energy generation

in a failed module is absorbing the surface energy flux without exceeding

any limits. In the reference design the carbon shield provides a

conduction path to the surrounding modules which are operating. Within

the very conservative assumptions discussed previously, the maximum first

wall temperature for an operating module rises to approximately 800*C,

at the point closest to the failed module. The problem at this temperature

is corrosion with the coolant stream. If a more accurate calculation was

done accounting for radiation from the first wall surface regions at

elevated temperatures to the rest of the enclosure, a closer packed

geometry, and a spherical rather than rectangular cap, this maximum

temperature would undoubtedly be lower. At the expense of increasing

the pumping power the coolant mass flow rate could also be increased if

required. An alternative design philosophy might be to allow no

conduction of the surface flux to surrounding modules and to rely entirely

on radiation. For example, if the normal operating surface temperature of

a graphite shield is 850*C, then for a 5 cm thick shield the entire

surface flux and volume energy generation in the shield could be dissipated by

radiation from the.surface at a temperature of approximately 1700'C.



If niobium is the structural material it should be possible to

eliminate the shield entirely and allow the surface to be cooled by

radiation. An additional benefit would be that there would be a signi-

ficant increase in n, 2n reactions in the niobium which would help the

breeding ratio. To reduce plasma contamination a thin carbon coating

or carbon curtain as in UWMAK-II could be used. For a 1 cm thick niobium

wall with an emissivity of .8 (assuming a thin carbon coating), a surface

23
load of 20 w/cm and a volumetric generation of 3 w/cm the surface

temperature for a depressurized module would be on the order of 1300C

well below the melting point of 2468*C, assuming the rest of the enclosure

is at 700*C and lateral transport of the heat generated internally in

the failed module. As shown previously, however, the breeding ratio

is still significantly less than desired.

A difficulty not considered in this design is the effect of swelling

of the breeding material either from helium production because of

radiation or the phase change at 900*C. On a small scale, radiation

induced swelling would cause flow irregularities and hot spots. In a

failed module the danger would be that the phase-change-induced-swelling

added to whatever radiation-induced-swelling is present could cause

large stresses on the structure and possible failure. fore data on

swelling is needed in order to evaluate these possibilities. It should

be remembered also that if extra volume is provided for such swelling

there still must be adequate heat transfer for failure mode operation

without the coolant present.
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Another design point which would have to be handled in a full

reactor design is the piping and valving required. A major constraint

here would be the physical space available. For a modular system such

as postulated here there are a very large number of modules, on the

order of 140,000. It obviously would not be desirable to have twice

that number of valves which is what would be required to isolate

individual modules. On the other hand, every module valved to a failed

module would also have to be replaced when the time came for maintenance

because the high temperatures reached when operated without coolant

would cause the LiA102 phase change discussed previously. Also, it is

possible that local sintering of the lithium aluminate could occur.

For a system with five headers this means 1/5 of- all the modules in a

section would have to be replaced which could be a large number re-

quiring a costly and time consuming job. An invention that would help

here would be some simple type of valve, similar to concept to a fuse

in an electrical circuit, which would be used just once to isolate a

single module permanently.

Rapid location of a leak is another requirement which remains at

present an unsolved problem. A trace gas in the coolant could most

likely be used to detect such a leak by looking for the presence of the

given impurity in the plasma spectrum but to use such a method to determine

which module it is coming from would require a very complicated

additional piping and valving system. Present mass spectrometer type

systems for locating the leak would require access to the inside of the

torus and a time consuming search. Research is needed in this area.

One avenue of investigation possible is to determine if a small leak
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would cause a detectable vibration or sound in:the structure. Another

idea would be to see if a small coolant leak would cause a temperature

change on the first wall that could be seen on an infrared type detector,

after the plasma was quenched in a normal cycle.

It would be very advantageous to use 316 SS as the structural

material since it is the only metal considered that has an established

industry. For this particular design however, an estimate of the

probable mean time between leaks using the criterion given by Fraas,

indicates a very low reliability with a MTBF on the order of 600 hours.

The main reason s for this are the high thermal stresses in the first

wall and the extensive welding.

The results of the tritium transport calculations indicated that

for reasonable steady state inventories, high coolant inlet temperatures

were required. It appears possible, however, to relax this constraint

by allowing the tritium to build up in the blanket to a maximum allowed

level and then to flush out the blanket using high coolant temperatures

with no plasma present. For example the blanket inventory could be

allowed to cycle between one and five.kilograms where one cycle would

take about 20 days. Then without the plasma present the heat exchanger

could be bypassed and the afterheat used to keep the coolant temperature

high with a fairly uniform profile. For the breeder particles discussed

before,,80% of the trapped inventory could then be released in 2.3 hours

with a coolant inlet .temperature of 600*C. If the structural material

was niobium most of the tritium would diffuse into the vacuum chamber

and could be recovered by the same system used to pump out the spent fuel.
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- It may also be possible to manufacture the LiA1Q 2 with a small enough

particle size that diffusion would not be a problem for temperatures

between 300* to 600*C.
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Chapter 11. Future Directions

Effects Plasma Physics On Reactor Design

The objective of fusion reactor studies is to evolve an economically

attractive energy source. To achieve this end will require a compromise

etween what is most desirable from the point of view of the plasma

physics and what engineering reality will allow. At present the engineer-

ing problems associated with conceived reactors are enormous. It may

be possible through clever design to overcome the problems but it may

also be worthwhile to begin looking for ways to alleviate these problems

through changes on the plasma side.

As a beginning consider what a proposed plasma confinement scheme

determines:

1. The general geometry as for example in a low aspect ratio

Tokamak or a Mirror machine.

2. The percentage of total power which appears in the form of charged

particles or radiation which becomes a surface heat flux.

3. The neutron generation rate in space and time and its energy

spectrum, which is essentially a delta function at 14 Mev for D + T)He + n

4. The plasma heating requirements necessary to achieve ignition as

for example neutral beams or R.F. power input.

5. The allowed flux of impurities from the first wall.

6. The magnetic fields required to confine the plasma, both steady

state and pulsed.

7. The fueling requirement, that is the rate at which D and T are

to be injected and the proposed manner such as pellet injection.

8. The operating. cycle. Tokamaks presently are considered to run

in a pulsed mode for example while mirror machines could run steady state.
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In each of these areas certain directions for change are more favorable

to the engineering then others.

1. General Geometry. It is highly desirable to have a geometry whicb

would permit easy access to all areas such as in a linear system or a torroid

system with a high aspect ratio. This is especially important since the

blanket region will require remote maintanence. Another factor is that

fabrication costs would be decreased considerably if the geometry would

allow the use of simple structures such as boxes or cylinders for major

components rather than requiring the use of compound curves for structural

components or a very large number of small modules.

The geometry can also help decrease costs if it allows an increase in

the ratio of power output to reactor volume. Finally development costs

would be reduced if the geometry allowed smaller sized first generation

machines.

2. Surface Flux. Large surface heat fluxes on the first wall lead

to thermal stress problems and require complex cooling arrangements

which also reduce the reliability of the system. As proposed neutron

wall loadings increase, it becomes even more important to ensure that

designs include divertors or some scheme to reduce the surface heat flux

on the first wall. This is particularly true if 316 SS is to be the

structural material.

3. Neutron Generation. If D and T are to be the fuels the only neutronic

help would be a configuration which gives a spatial flux favorable to the

engineering requirements of a specific design.

4. Heating. In evaluating alternative plasma heating schemes some

consideration should be given to the effect on the overall reactor design.
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Schemes which require. a large number of holes in the blanket will reduce

a breeding, complicate the shielding requirement for the magnets and

probably make access more difficult.

5. Impurities. The requirement to control the flux of impurities

reaching the hot plasma is another strong factor favoring inclusion of

a divertor in the design. Naturally if plasma parameters can be varied

to increase the tolerance of impurities the required efficiency of the

impurity control system can be relaxed, hopefully allowing the use of

bare metal walls.

6. Magnetic Fields. It is well known that the costs of the magnet.

system can be significant. In very general terms, changes which would

reduce the complexity of the field windings required and/or the amount

of stored energy in the fields would be desirable.

7. Fueling. To fuel the plasma requires tritium breeding and a fuel

reprocessing and injection system. An area of concern in a reactor is

the tritium inventory. A considerable fraction of the inventory is tied

up in the reprocessing system and in any reserve fuel stockpile. If

the particle confinement time is increased and therefore the fractional

burnup, then the amount of tritium which must be recirculated for a given

Power level is reduced and consequently the inventory could be lower.

8. Operating Cycle. Steady state operation is naturally the most

desirable. Pulsing creates problems of thermal fatigue and requires

additional complexity to supply a steady state output from a pulsed source.

A combination of the fueling and heating requirements strongly

influence the recirculating power fraction. It is naturally desirable

to have a system with a low recirculating power fraction (.10%).

Tokamak reactors for example appear much more favoravle in this reguard

then a simple mirror reactor.
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11.2 Effect of Changes on the BRSR Design

Since this study was a blanket evaluation rather then an integrated

reactor design only some of the proposed areas of change are directly

applicable.

The biggest help would eome from a reduction in the surface heat flux

Thicker 316 SS first walls could be tolerated and higher pressures. This

effect is shown in figure 11.1 which has curves showing the maximum module

size versus pressure for different first wall heat fluxes. As before

4
these are based on a design stress of 10 psi and the optimum thickness

for a given pressure. With a lower heat flux the optimum thickness

increases. The original design line shown for 316 SS then opens up into

a window as shown. Reducing the surface heat flux will also reduce peak

first wall temperatures.

While not evaluated for this_ design, thermal fatigue could be a

significant problem. Reducing the surface flux would help here also.

Naturally steady state operation would be ideal from the viewpoint

of thermal fatigue.

11.3 Possible Engineering Changes in the BRSR Design

It would be desirable to increase the size of the modules in order

to reduce the total number and increase the reliability. What is needed

even more however, are changes to increase the breeding ratio.

To increase the breeding ratio some possibilities are:

1. Increase the lithium density in the modules, possibly with a

different lithium compound.

2. Reduce the percentage of carbon in the blanket. If the structure

of a depressurized module could be used to help support an operating

module it may be possible to use a breeder rod shape besides cylindrical

which would reduce the size shim required or perhaps eliminate it entirely.
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3. Again the percentage of structural material may be decreased with a

better design

4. Design a composite shield containing BeO which could satisfy

all constraints.

To increase the module size:

1. Increase the thermal.conductivity within a failed module

2. Eliminate or reduce the size of the shims

3. Lower T. and/or 6T although this would be at the expense of thermal

efficiency.

4. Reduce the hot spot peak in the LiA10 at the center front of2

a failed module perhaps with a short annular region or a high thermal

conductivity path.
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CONCLUSIONS

1. The design features required to meet the thermal and mechanical

constraints for failure mode operation when combined with the inherently

low breeding potential of the solid breeder type design reduced the

breeding ratio to an unacceptable level. A thick (6.3 cm) BeO shield

in front of the module would give, the desired minimum breeding ratio

(1.15) but the lifetime of such a shield would be short and it appears

that designing a support structure that would permit it to withstand

the thermal stresses would be very difficult.

It should be noted that the breeding ratio conclusion is based on

the results of 1-D ANISN calculations. A 3-D !1onte-Carlo calculation

would be desirable but for the conclusion to be different such a 3-D

calculation would have to give breeding ratios approximately 25% higher

and this seems unlikely.

2. If adequate breeding could be demonstrated however, it appears that

the thermal constraints imposed by requiring the blanket to be capable

of operating with some modules depressurized could be met.

3. Calculations based on initial experimental values for the diffusion

of T in LiAlO indicate the possibility of unacceptably large T2 inventories22

for inlet temperatures of less than 500*C. For a viable solid breeder

design either the diffusivity must be increased over the initial experi-

mental values by different fabrication techniques or the inventory content

of the blanket must be periodically decreased by some high coolant

temperature "flushing" technique.



4. The use of a single thickness 316SS first wall may be possible but is

not desirable. It would be quite sensitive to variations in thickness

produced in fabrication and allowance for stress concentration probably

would require very small modules or pressures less then 200 psi.

5. The analysis of a solid breeder design should start with a preliminary

one dimension estimate of the breeding ratio after the rough geometry is

decided upon. This would then give an indication of the amounts of structure

and void fraction that could be tolerated. Such an approach would have saved

considerable effort in this study.



I 7,

Ie

129.

prCOMENDATIONS

A number of recommendations specific to this design were made in

the previous section. At this point it would be better to try to take

a general view.

Part of the motivation of requiring failure mode operation was

the assumption. that because of the low aspect ratio torus shape and

the nested magnetic coils required in a Tokamak, access to a blanket

element would be quite difficult. If a plasma confinement scheme could

be developed that would permit relatively easy access, the engineering

problems would be eased a great deal.

The most difficult thermal problem encountered was handling the

20 w/cm2 surface heat flux. It would be quite helpful from this point

of view if the reactor design included divertors which besides removing

impurities could take a significant percentage of the surface flux

composed of energetic particles and spread it out over a larger surface

area separate from the breeding portion of the blanket.

The UWMAK-II breeding ratio was 1.06 and to attain it required

very large amounts of beryllium. In addition if a redundancy was

incorporated into the first wall the breeding ratio would probably drop

below 1. The breeding ratio for this design was only on the order of

.9. The conclusion from this seems to be that either a more efficient

neutron design, if possible, is required or a different solid breeding

material with better breeding characteristics should be found.
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Geometry as in

AT = 300 *C

TIN = 300 *C
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Fig. .6.3 Simplified TRIPORT Flowchart.
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Fig. 7.1 Schematic Views of the BRSR Reference Design
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0

Fig.

5

7.2

100

Neutronic Reference Design 1 Schematic

TABLE 7.1

BREEDING RESULTS FOR NRD 1

167.

Zone

Material

Radius
(cm)

1 -2

C C
Nb
LiAlO (natural 1,2 92.5% Li .)

I

*1
*

.1

V..

Breeding reactions Multiplication reactions Parasitic absorptions

Li (n,a)T .357 Li (n,2n-a)p .0003 Nb (n,y)Nb 595
7 7 6 27 28Li (n,n-a)T .037 Li (n,2n)Li .0013 Al (ny)Al .0003

Li 7 (n,2n-a)H2  .0015

Nb 93 (n,2n)Nb92  .0723

Breeding Neutron Parasitic
ratio = .3938 Multiplication = 1.075 Absorptions = .5958

:.7
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Zone,

Material

Radius
(cm) I-

0

Fig. 7

5 10 11 10

.3 Neutronic Reference Design 2 Schematic

TABLE 7.2

BREEDING RESULTS FOR NRD 2

1 2 3 4

C C C C
Nb Nb Nb 6
BeO Al LiAlO (90% Li )

03

-'--a

0

Breeding reactions Multiplication reactions Parasitic absorptions

L6  6 .003 Nb94yN .1
Li (n,a)T .6814 Li (n,2n-a)p .ol8 Nb (n,y)Nb .1418
L7  7 .6 27 28

Li (nn-a)T .0020 Li (n,2n)Li - Al (n,y)A1 .0016

Be 9(n,T)Be .0008 Li (n,2n-a)H2

Be 9(n,2n)2a .0539

Nb 93(n,2n)Nb92 .0308

Breeding Neutron Parasitic
ratio = .6842 multiplication = 1.0865 absorptions = .1434

... I -



Zone

Material

Radius
(cm)

0 5 6

Fig. 7.4 Neutronic Reference Design 3 Schematic

TABLE 7.3

BREEDING RESULTS FOR NRD 3

169.

1 2 3

C C C
Nb Nb Nb 6
BeO Al- LiAlO2 (90% Li )

03

100

I.

ft

~1

Breeding reactions Multiplication reactions Parasitic absorptions

Li (n,a)T .7644 Li (n,2n-a)T .0030 Nb9 (n,y)Nb91  .1697
L7  .03 7i 6 27 28

Li (n,n-cc)T .0030 Li (n,2n)Li .0001 Al (n,Y)Al .0019
9 7 7 2 12

Be (n,T)Be .0023 Li (n,2n-a)H .0002 C E a total .1396

Be (n,2n)2a .1048

Nb (n,2n)Nb .0659

Breeding Neutron Parasitic
ratio = .7697 multiplication = 1.1739 absorptions = .3112

minus Cl2 = .1716



Zone

Material

Radius
(em)

0 5 10

Fig. 7.5 Neutronic Reference Design 4 Schematic

TABLE 7.4

BREEDING RESULTS FOR NRD 4

Breeding reactions Multiplication reactions Parasitic absorptions

L6  6 93 914
Li( n,a)T 1.1395 Li (n,2n-a)p .0015 Nb (ny)Nb .2153

77627 28
Li (n,n-a)T .0101 Li (n,2n)Li .0004 Al (n,y)Al .0033

Be9 (n,T)Be7 .0128 Li 7 (n,2n-a) 2  .0005 C 12Ea total .124
Be9 (n,2n)2a .5563 0 Ea total .0233
Nb93 (n,2n)Nb92 .0253

Breeding Neutron Parasitic
ratio = 1.1624 multiplication = 1.5840 absorptions = .3623

minus C12&016 =.2186

UWMAK - II

Breeding Neutron Parasitic
ratio = 1.18 multiplication = 1.59 absorptions = .2173

170.

1 2 3
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2 Nb Nb 6
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Fig. 7.6 Neutronic Reference Design 5 Schematic
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Fig. 7.7 Breeding Ratio vs Blanket Carbon
Content.
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800 psi psi 316 SS--- 700 pi 36S
24 -600 psi

20

16 -pf as in Eq (8.2)

O-thermal t as In Eq (8.3)

Conditions of Table 8.1
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x
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Fig.8.4 *FAILURE RATES OF COMPONENTS AND PARTS

STATIC COMPONZNTS
pressure Vessel
piping per 100xDiameter of Length
Filters, Strainers
Adsorbers
Minual Valves,Gate,GlobeBall-V
Check Valves
Rupture Disc Assemblies
Relief Valves, Spring Loaded

DYNAMIC COMPONENTS
Motor, A.C.
Pumps, Centrifugal
Motorized Valves
Control Valves
Solenoid Valves

or Reciprocating

EQUIPMENT
Transformers
Heat Exchangers ,Boilers ,Condehsers
Air Ejectors
Steam Turbines
Computers

INSTRUMENTS
Temnerature:

Thermocouple Element
Temperature Indicator
RTD (Resistance Temp. Detector)

Pressure:
Manometer Assembly, U-tube
Bourdon Tube
Pressure Differential Indicator

Flow:
Orifice fixed, Venturi
Orifice variable
Pitot tube
Rotameter, Sight-type
Flowmeter, Orifice & Ap gage
Flow Detector, Magnetic

Level:
Glass Tube Assembly
Ap Gage (calibrated for level)

Instrumentation, Common
Transmitters
Controllers, Pneumatic
Controllers, Solid State
Nozzle and Flapper Assemblies
Transducers
Recorders
Replays
Amplifier, Solid State
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* Table 3.1 Reference 40

(

(

10- 8

- - -
I I I i I . I I I I I I I I

10-4

179.



-Sw

180.

Fig.8.4 Con't.

PARTS
Mechanical
Bearings Ball, heavy-light duty

Bearings Roller
Bearings Sleeve
Bolts
Clutches Friction
Clutches Magnetic
Couplings
Drive Belt
Fulcrums Knife. Edge
Gears Helical
Gears Spur
Joints. Mechanical
Nuts
Pins
Pivots
Screws: Set screws
Shafts, heavily-lightly stressed
Springs, heavily-lightly stressed
Springs Calibration
Springs Hair
Vibration Mounts

Pneumatic and Hydraulic
Bellows

- Cylinders
Diaphragm, Metal
Diaphragm, Rubber

. Ducts Ventilation
Gaskets
Hoses, heavily-lightly stressed
Joints Pipe
Pistons
Restrictors
Seals "O" Ring
Seals Rotating
Seals Sliding
Unions and Junctions

10 4 10-5 1-6

5-

Jt>--
-5--

-5-
'--
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-5---
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PP/Q= 5%

IN =300 
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AT =200* C
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* Cl)

- 2.0

LL
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t= 0.4
Nb

t=0.21
1.0-

300 400 500 600 700 800

PRESSURE, psi

FIG. 9.3 PELLET RADIUS vs. PRESSURE
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STAINLESS STEEL

PP/0=5%
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t fixed at 0.145 c
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I
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FIG. 9.4 VOID FRACTION vs. PRESSURE
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APPENDIX A

STRUCTURAL MATERIAL CONSIDERATIONS

Among the primary tasks of reactor design is the identification and

selection of suitable structural materials. In the BRSR design, the structure

will consist of the breeder rod module and the end cap which is the "first

wall" as seen by the plasma. When considering this design, the most

important requirement of a structural material is its ability to maintain

its integrity in a high temperature ( 700*C) system. Based on this constraint,

the list of candidate materials can be narrowed down to three general classes

stainless steel, niobium and niobium alloys, and vanadium and vanadium alloys.

Molybedenum was not included due to the serious problems encountered with

.4elding. The following sections will identify the selection criteria and

evaluate the candidate materials based on these criteria. The material to be

used in the BRSR design will then be selected along with other promising

alloys.

A.l STRUCTURAL MATERIAL SELECTION CRITERIA

Due to thehostile environment in a fusion reactor, a structural

material must be able to meet several diversified requirements. These

requirements form the criteria by which a material will be selected. The

most important criterion are listed below followed by an evaluation of

the candidate materials based on these criteria.

1. Mechanical and thermophysical properties

2. Ability to withstand stress at high temperatures

3. Creep strength

4. Irradiation effects on mechanical effects

5. Surface effects of irradiation

I



TABLE A.1

MECHANICAL AND THERMOPHYSICAL PROPERTIES OF CMTDIDATE MATERIALSa

Property 316 SS Niobium Vanadium

Density (g/cm ) 7.92 8.7 6.11

Melting point (0c) 1430. 2468. 1900.

Thermal conductivity0
at 5000C (cal/cm-sec C 0.05 0.13 0.088

Linear coefficient of
thermal expansion at -6

5000C (in/in 00) 17.0 x 10-6 8.3 x 10-6 9.6 x 10-6
(6000c)

Modulus of elasticity 6 6 b 6
at R.T. (psi) 29.0 x 10 15.2 x 10 20.0 x 10

Elongation (%) at

5000C 49. 19.6 31.3

Poisson's ratio 0.30 0.38 0.36

a
b

ref- 42
ref. 43

188.
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6. Neutronic characteristics

7. Impurity effects

8. Fabricability, availability and cost

A.2 MECHANICAL AND THERMOPHYSICAL PROPERTIES

The mechanical and thermophysical properties of the three base

candidate materials 316 stainless steel, niobium and vanadium are presented

in Table A.l. The desirable characteristics are of course, a high

melting point, high thermal conductivity to reduce thermal .stress due

to temperature excursions, a low coefficient of. thermal expansion for

compatability with blanket goemetry, a ductile material and a material

with a high modulus of elasticity. The available data for strength will

be compared at appropriate temperatures in the following section. However,

after a review of the relevant properties above, none of the candidate

materials exhibit characteristics that would eliminate them from

consideration as a structural material although the low metling point

of 16 SS is not attractive.

A.3 ABILITY TO WITHSTAND STRESS AT HIGH TEMPERATURES

The selected material must be able to withstand high stresses at

temperatures in the 800*C range, as might be encountered during a module

failure. Pure vanadium is not suited to this type of application but

alloying with titanium greatly increases its tensile properties as

shown in Table A.2. The VANSTAR alloy and V-Ti alloys show impressive

strength at high temperatures. The VANSTAR alloys were developed by

the Astronuclear Division of Westinghouse Corporation. The compositions

of the alloys are as follows:
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TABLE A.2

TENSILE PROPERTIES OF THE CANDIDATE
AT HIGH TEMPERATURES

MATERIALS

Material Temperature Yield strength Ultimate Total ref.
C C) (.2% offset) tensile elongation

psi strength (W)
(psi)

V 700 8,500 15,200 22 44

V--1cTi 700 39,900 73,600 21 44

V-20Ti 700 57,200 87,900 21 44

VANSTAR-7 700 28,000 56,200 22 44

VANSTAR-8 700 32,000 6o,800 19 44

Nb 600 20,000 34,200 19.6 45

Nb-lZr 650 12,300 27,000 23.8 45

316 ss 700 20,500 66,500 43 42
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VANSTAR-7 (V-9Cr-3Fe-l.3Zr-0.05C)

VANSTAR-8 (V-8Cr-l0Ta-l.3Zr-O.05C)

VANSTAR-9 (V-6Fe-5Cb-1.3Zr-0.05C)

Although pure vanadium has a very low yield strength, its alloys

have much higher yield strengths providing a wide safety margin.

Niobium, Nb-lZrand 316 stainless steel are not quite as attractive.

A.4 CREEP STRENGTH

The high temperatures and stresses characteristic of the fusion

reactor environment demand high creep strength from the alloys used as the

first wall material. From the results presented in Tables A.4 and A.5, it

is evident that alloying niobium and vanadium has a considerable strength-

ening effect. Although all creep tests were not conducted under identical

experimental conditions, it appears that the VANSTAR alloys are comparable

to Nb-lZr in creep strength. The V-Ti alloys are attractive but are not

as creep resistance as the VANSTAR alloys. The addition of titanium adds

to the strength but tends to degrade the time-dependent properties with

increasing concentration.

A.5 IRRADIATION EFFECTS OF MECHANICAL PROPERTIES

Due to the intense neutron and light ion flux at the first wall,

it will be advantageous to know the response of the candidate materials

under this irradiation environment. Table A.6 exhibits the effect of

irradiation on the tensile properties of the candidate alloys. The data

indicates the large amount of radiation hardening that occurs in the

vanadium and niobium alloys. It should be noted that although both are

embrittled, the Nb-lZr alloy is most severely embrittled as the total



192.

TABLE A.4

CREEP RATES OF CANDIDATE ALLOYS

Material Tempgrature Stress Min creep ref.
C) (psi) rate, %/hr

Nb-lZr 982 10,000 .0017 47

982 20,000 .0058 47

982 30,000 .o4o - 47

V-lOTi 700 30,000 .006 46

700 35,000 .023 46

800 10,000 .18 46

V-20Ti 700 30,000 .09 46

800 10,000 .09 46

VANSTAR-7 800 10,000 .0017 46

800 15,000 .0074 46

VANSTAR-8 800 '- 15,000 .0011 46

VANSTAR-9 800 25,000 .0013 46

316 SS 700 24,000 .-154 46

800 9,000 .089 46

TABLE A.5

CREEP RUPTURE PROPERTIES OF CANDIDATE ALLOYS

Material T (0 C) Stress Rupture Elongation Time to
(psi) life, hr at rupture % 1% strain ref

V-loTi 800 9,000 147 137 - 46
800 12,5001 105 119 3 46
800 15,000 71 118 1.7 46

V-20Ti 800 10,000 365 132.5 13 46
800 18,000 47.5 119 1.8 . 46

Nb-lZr 982 10,000 148 50.8 7.8 47
982 15,000 14.8 29.7 1.2 47

316 SS 815 7,000 1000 - - 48
760 10,000 1050 59 - 48
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elongation drops to only 8.3% whereas the vanadium alloys retain

modest ductility.

A.6 SURFACE EFFECTS OF IRRADIATION

Surface erosion can arise from a number of processes. Among the

most important are plasma-particle sputtering, neutron sputtering and

the bursting or radiation-induced blisters.

A.6.1 Sputtering

Sputtering yields are heavily dependent on the energy of the

light bombarding ions. There is quite a volume of data available and

much of it is in only pseudo-agreement. This is largely due to the

fact that no real theoretical understanding of neutron sputtering yet

exists. Further, sputtering results tend to be very model dependent.

Kulcinski et al., estimates the erosion of the 316 stainless.steel

first wall of the UWMAK-l due to sputtering to be .20mm/yr [49 Similarly,

a niobium wall is expected to erode at a maximum rate of .15 to .22 mm/yr

for a plasma-particle energy deposition of 1 MW/m 2 [5) The anticipated

erosion rate of vanadium is slightly higher than that for niobium,

approximately that of stainless steel. The effect of the erosion of

the wall and a reduction in thickness and strength of the first wall

on the plasma is mainly in the form of an energy loss due to bremsstrahlung

radiation, the energy loss being proportional to the square of the

atomic number. However, probably the most meaningful data is that

[51-]
reported by Duchs et al. . Table A.7 gives the sputtering yield in

atoms/incident particle due to a 50-50 D-T mixture for various materials.

Also included are C it and C . is . C . is the critical impurity
critcrit H crit
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TABLE A.6

IRRADIATION EFFECTS ON THE TENSILE PROPERTIES OF VARIOUS ALLOYS

Material ' (0 C) Fluence Yield Tjltirmte Total
(>.i2MeV) strength tensile elongation ref.
n/cm sec (psi) strength

(psi)

Vanadium RT 0 37,500 41,ooo 27 52

RT 8.0 x lo17 45,000 48,000 15 .52

V-2OTi 800 0 38,571 47,857 59.4 .44.

750 5.2 x 1021 45,142 51,157 39.4 53

VANSTAR-7 650 0 34,300 61,000 20 45

650 1.5 x 1022 81,000 87,600 14 45

Nb-lZr 650 0 12,300 27,000 23.8 45

650 3.7 x 10 66,300 66,300 8.3 45

316 ss RT 0 36,500 89,506 66.5 42-
14

RT 1.0 x 10 35,000 90,000 70.0 42
(slow)
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Loncentration above which ignition becomes impossible. C /S givescrit H

the time in units of T (particle confinement time of the fuel) after

which the critical concentration is reached. It should be noted that

niobium has a distinct advantage over stainless steel and vanadium in

that the impurity concentration doesn't reach the critical level until

a time 60% longer than vanadium or stainless steel. However, even this

is an extremely short time that will be unacceptable for actual

operation and all results can be considered comparable.

A.6.2 Blistering

The result of Das and Kaminsky will be presented in comparing

the blistering of V-20Ti, vanadium and niobium. The eegree of

blistering will be defined as the ratio of the blistered area to the

total specimen area.

Niobium

Niobium was irradiated at room temperature with 0.5 MeV helium

2
ions at a dose of 1 Coulomb/cm . The irradiation resulted in large inter-

connecting blisters of M1000 Dpm in diameter. The blister area was 87%.

At 600*C, the average blister size was reduced to \.400 pm and the blister

area covered 47% of the specimen. Finally, a temperature increase to

900C yielded blisters with an average diameter of 15 pm and the blistered

area accounted for only 9% of the surface area.

Vanadium

Under identical irradiation conditions at room temperature, blisters

an average of 350 pm in diameter were produced in commercially pure vanadium.

When the temperature was raised to 900*C, the average diameter was reduced

to 10-15 pm in diameter.
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SPUTTERING

TABLE A.7

YIELD FOR VARIOUS WALL MATERIALS 51

Material SHa crit Ccrir/S H

Fe (SS) 5 x 10 2.5 x 10- 2  0.5

V5 x 10-2  2.5 x 10-2 0.5

Ti 5 x 10- 2  2.5 x 10-2 0.5

Nb 1.5 x 10-2 1.2 x 10-2 0.8

a 2-5 keV.

TABLE A .8

-9-
EROSION OF THE 316 SS WALL OF UWMAK-I DUE TO BLISTERING

Ion Mean energy Sputtering FlF Erosion rate
(keV) yielda n/cm sec mm/yr

S

He 23 1 4.T x 1012 017

11
He 100 3 1.7 x 10 .0019

D+ 23 .01 6.4 x 1013 .0023

T+ 23 .01 6.4 x 103 .0023

Total blistering = .024 mm/yr

a atoms/incident particle.

4.



197.

V-20Ti

Irradiation at room temperature yielded blisters with an average

diameter of 10-250 Pm. When the temperature was raised to 9000 C, the

blister size decreased to an average of 8-20 pm with several blisters

at 1 Um.

The degree of blistering declines in the order Nb, V, V-20Ti.

One possible reason for this is the very low diffusivity of helium in

niobium. The correspondingly higher diffusivities in V and V-20Ti may

have aided in reducing the degree of blistering in these alloys.

316 Stainless Steel

The expected blistering damage to the 316 SS first wall of the

UWNAK-l is estimated by Kulcinski in Table A.8 s should be noted,

helium blistering will account for the majority of the damage., In summary,

it can be concluded that V-20Ti and 316 SS are attractive due to their

low blister damage.

A.6.3 Gas Production

The gas production rates in the first wall of UWMAK-l were calculated

by Vogelsand et al, Table A.9.[ 55 The three candidate first wall materials

were 316 SS, V-20Ti and Nb-lZr. It should be noted that in 316 SS, Fe is

the main contributor to helium and hydrogen production although Cr,

Ni and Si contribute large amounts relative to their abundance in steel.

In V-20Ti, vanadium is the dominant contributor to hydrogen and helium

production although titanium adds significantly to the hydrogen production

(47%). Niobium is the only real concern in the Nz-lZr alloy, accounting

for almost all of the helium and hydrogen production. Atom displacement

rates are also presented and are comparable for Nb and V, and are calaculated
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TABLE A.9.

MAJOR CONTRIBUTORS TO GAS PRODUCTION
IN THE UWMAK-I FIRST WALL 55

Element Original amys at % of Annual
concentration (appm per 2 total disp/atom a

(at ) MW-yr/m2)

He H He H

Fe 62.6 154 230 65 45

Cr 18 35 64 15 13

u Ni 14 23 184 10 36

Yn 2 2.6 8 1 2

Si 1.5 13 8 5 4

C .28 9.3 - 4 -

Total 238 505

V 79.5 47 94 88 52 22

Ti 20 3.3 85 6 470

0 .26 1 .3 2 .2

C .26 2.1 - 2 -

Total 53.5 181

Nb 98.7 27 75 96 98 22

Zr 1 .1 .9 .3 1

C .03 .9 - 3 -

Total 28.7 76

a based on neutron wall loading of 1 MW/m2
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using a secondary displacement model based on the work of Lindhard and

P5 )
Robinson.

From Table A.9, it is evident that 316 SS is the least desirable

with Nb-lZr the most attractive and V-20Ti falling close behind. The

large amounts of helium and hydrogen produced may enhance embrittlement

at high temperatures and over long times. The results are presented

[55]graphically in Figure A.3.

A.6.4 Void Production and Swelling

Vanadium

Swelling has been found to, be near a maximum at 5509C in vanadium.

Table A.10 gives the swelling in various vanadium alloys at 525*C. 561

The ability of titanium to limit void formation in vanadium could be

due to one or a combination of the following reasons.

1) The gettering of impuring interstitial atoms that had been

serving as void nuclei

2) The formation of a high number density of cohe'rent precipitates

that could serve to limit swelling

3) The addition of a substitutional solute atom that can promote

point defect recombination by trapping self-interstitial atoms.

Niobium

Table A.ll gives the effect of neutron irradiation on niobium and

Nb-lZr. 57) Annealing the specimen increases the size of the void but

reduces the number density and consequently the volume fraction. In Nb,

the voids were annealed out until 13800 C. Annealing at 1230*C increased

the size but decreased the number.
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Fig. A3 Helium Buildup in UWMAK-I for
316 SS, Nb-lZr and V-20Ti
Structures.
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TABLE A.10

VOID FORMATION IN IRRADIATED V-Ti ALLOYS AT 525'C

Material Fluence Void Average Volume
(> .12MeV) concentration diameter fraction %
n/cm sec (voids/cm3 ) (A)

Vanadium 1.1 x 1022 1.2-8.0 x 105 102-198 .3-1.1

V-lTi .o4-o.5 x 1015 60-120 .005-.011

V-5Ti

V-Ti ------ no voids -----
V-20Ti

ref. 56

TABLE ;A.11

VOID FORMATION IN Nb AND Nb-lZr IRRADIATED AT T90Ca 35

Material Condition Average void Void density volume
diameter, A (voids/cm3 ) fraction %

Nb as-irradiated 152 8.7 x 101 .21

as-irradiated 210 1.9 x 101 .08
annealed 1230 C

as-irradiated no voids
annealed 12300 C

Nb-lZr as-irradiated 575 1.8 x 1014 2.20

as-irradiated 616 8.2 x 1014 1.16
annealed 1230 C

as-irradiated 663 3.4 x 103 .58
annealed 1230 C

fluence = 2.5 x 10 n/cm sec (E > .1 MeV).
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Thus, voids in niobium are stable to .6 T . Alloying with 1% zirconit

reduces void nucleation resulting in increased diameter and decreased con-

centration. The presence of voids after 1380*C annealing indicates that vo1

are stable in Nz-lZr to .6 Tm

316 Stainless Steel

Broger et al performed neutron irradiation and swelling measurements on

316 SS at temperatures from 4 5 0*C- 6 9 0*C, [58] Table A.12. The 450*C irradiateA

specimen contained a moderately high density of voids fairly uniformly dis-

tribued throughout the matrix. The speciments irradiated at 5350C and 610'c t

contained unusual microstructural features. Void formation at 535C was

very heterogeneous. However, a few regions contained a high concentration

f large voids in the form of bands similar to microtwins. Steel irradiated

at 610*C exhibited a duplex void size distribution. All of the large voids

were attached to M23 C6 polyhedral precipitates. The formation of voids

near the precipitates may be due to stres field attraction of voids to

precipitates. It may be noted that the addition of titanium may reduce

void swelling as in the vanadium.

From data presented, it is evident that the swelling is a minimum in

vanadium which is most attractive. However the swelling due to irradiation

does not appear to be a major problem with either niobium or 316 stainless

steel.

A.7 NEUTRONIC CHARACTERISTICS

Nuclear afterheat and induced activity can become a serior problem

when considering various structural materials. Steiner[58] and Vogelsang[551

have done extensive work on this problem in vanadium, niobium and 316 SS.

The areas that will be considered here are neutron multiplication, nuclear

heating, nuclear afterheat, induced activity and biological hazards.
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TABLE A.12

SWELLING IN 316 SS DUE TO IRRADIATION
*

Temperature Fluence Void diameter,A 'Void Void Swelling

(0C) (E >.lMeV) min max mean density vol. % (%6p/p)
n/cm 2 sec (voids/cm3 ) (AV/V)

454 8.6 x 1022 117 240 400 2.2 x l10 .18 .13
22 12

535 8.9 x 10 117 347 834 8.6 x 10 .03

117 749 1450 6.8 x 1013 2.0 .42

609 8.8 x 1022 133 315 7oo 4.6 x 1013 .8 2.30
467 1506 2767 1.1 x 1013 3.63J

689 9.4 x 10 22 < 10 0.0 -.009

ref. 5&
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The information will be presented for vanadium and niobium with some

contributions on 316 SS, V-20Ti and Nb-lZr.

A.7.1 Neutron Multiplication

Table A.13 gives the neutron multiplication and parasitic

absorption (including the (ny) reaction) of vanadium and niobium in

the four structural zones of the breeding blanket considered by Steiner 5

All quantities are normalized to a source of one fusion neutron. The

following points should be noted:

1) Neutron multiplication (n, 2n) is 45% higher in niobium than

in vanadium. However, parasitic absorptions are 68% higher

in niobium. Now, comparing the (n,2n) and parasitic absorptions

in each structural material, it is -noted that the parasitic

absorption is greater than the neutron multiplication by only

a small amount in vanadium, but by a large margin in niobium.

2) Resonance capture is higher in niobium but thermal capture is

higher in vanadium.

Based on these results, vanadium appears to be superior to niobium in

neutron economy which will affect tritium breeding.

A.7.2 Nuclear Heating

Nuclear heating rates in vanadium and niobium structural zones

of Steiner's blanket analysis are presented in Table A.14 (zone 3 is the

2
first wall). The rates are normalized to a neutron wall loading of 1 W/m

Important points to note are:

1) Nuclear heating in the first wall is 36% lower in vanadium.

This reflects vanadium's lower gamma--ray contribution due to

its lower atomic number.

2) This effect is somewhat offset by the higher neutron contribution
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TABLE A .13

SUMMARY OF (n,2n), (n,y) AND PARASITIC
ABSORPTIONS IN THE BLANKET STRUCTURE a.

Material (n,2n) (ny) Parasitic
Absorption b

Vanadium .0242 .0247 .0285

Niobium .0342 .0466 .0480

ref. 58.
includes (n,,r) reaction.

TABLE A14

NUCLEAR HEATING RATES IN V AND Nb STRUCTURAL ZONES

Heating rate in Vanadium (w/cm ) Heating rate in Niobium (w/cm )

6one Total From From Total From From
neutrons gamma-rays neutrons gamma-rays

3 4.12 2.04 2.08 6.43 0.97 5.46

5 2.35 0.81 1.54 3.70 0.22 3.48

7 0.62 0.28 0.34 0.47 0.01 0.46

9 0.16 0.00 0.15 0.22 0.00 0.22

ref. 58
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of vanadium. This is due to the larger cross-section for charg

particles as compared with niobium.

3) A comparison of the total energy deposited in a blanket with

either niobium or vanadium was made by Abdou fil and he Poia~d:

2
out that for a 1 iW/m loading the use of niobium produces

about 1 Mev more per fusion than vanadium and about 1.1 Mev more

fusion than 316 SS. It appears possible however to use a higher

wall loading with vanadium than with 316 SS and this would make

vanadium more attractive economically.

A.7.3 Nuclear Afterheat

Table A.15 gives the afterheat as a function of time for a 1 MW/m2

neutron wall loading. Here, vanadium exhibits greater afterheat due to

52
the V isotope. However, as displayed in Table A.16, the afterheat has

decayed to approximately 13% of its initial value in only 0.01 days

(15 min.). This decay continues until after one day, the afterheat is

one order of magnitude below that of niobium. Figures A.4 and A.5[55

illustrate the afterheat after startup and after shutdown following

10 years of operation of UWMAK-I respectively.

A.7.4 Induced Activity

The induced activity is expressed as a function of irradiation

2
time for a 1 MW/m2 neutron wall loading in Table A.15. Vanadium exhibits

a consistently lower activity level than niobium. The rates for UWMAK-1

are given in Table A.17 after 10 years of operation. Again, 316 SS and

Nb-lZr are considerable hotter than V-20Ti. Figures A.6 and A.7[55 1 gives

the activity of 316 SS, Nb-lZr and V-20Ti at shutdown and after shutdown,

respectively.
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TABLE A .15

*. 58
AFTERHEAT AND ACTIVITY AS A FUNCTION OF IRRADIATION TIM

Irradiation Afterheat Activity
time (yrs) % of reactor thermal Ci/w th)

power

Vanadium Niobium Vanadium Niobium

1 .291 .100 .23 .65

2 " .105 .68

3 o.109 " .70

4 ".113 .73

5 .118 .75

6 .122 .77

7 " .126 " .79

8 .130 .81

9 .134 " .83

10 .137 .85

loading of.IMW/m2
*

neutron wall



TABLE A.16

AFTERHEAT AS A FUNCTION OF TIME AFTER SHUTDOWN 5 8

2after 10 years operation at a wall loading of 1

Time after Afterheat as
shutdown of reactor thermal power
(days)

Vanadium Niobium

0.0 .291 .137

.01 .038 .127

.1 .017 .125

1.0 .012 .118

10.0 4.0 x 104 .074

100.0 3.8 x 104 7.13 x 10

1000.0 6.5 x 19 3.23 x 10-4

*

208.
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A.7.5 Biological Hazard Potential

A good indication of the biological hazard of the induced

activity is the BHP (Biological Hazard Potential) as described by Steine.:

The BHP is determined by dividing the activity in Ci/w by the maximum per.

missible concentration (HPC) for exposure in air. The BHP is equivalent

to the volume of air required to dilute the activity per thermal

kilowatt to the MPC. As is evident from Table A.16, the BHP for V-20Ti

is significantly lower than for Nb-lZr or 316 SS. However, it'.is

probable that impurities may significantly raise this level.

The following obserations can now be made.

1) The parasitic absorptions in vanadium are significantly less

than in niobium and will aid in tritium breeding.

2) Nuclear heating in the first wall is substantially- lower in

vanadium than in niobium.

3) Vanadium will exhibit an afterheat, activity and biological

hazard several orders of mangitude lower than niobium and about

10 times lower than 316 SS.

These results all heavily favor a vanadium alloy as a first wall material

as opposed to a niobium alloy or stainless steel.
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A.8 EFFECTS OF OXYGEN, HELIUM AND HYDROGEN

It is greatly feared that helium, hydrogen, and oxygen will have

severe embrittlement effects in structural materials at high temperatures.

Therefore, it may be helpful to present some points of view on this

question. First, titanium and zirconium are added as getters to vanadium

and niobium, respectively, Further, it has been found that nitrogen and

oxygen can improve the creep strength of niobium for T < 0.5 TM . However,.

an oxygen substitution for carbide in VANSTAR alloys can greatly reduce

the creep strength.

In considering hydrogen embrittlement, it is expected that substantial

hydrogen concentrations will be necessary to produce a ductile to brittle

transition in niobium and vanadium at CTR operating conditions. For

example, an extrapolation would predict that 36 atom % H in niobium and

93 atom % in vanadium would be required to raise the Ductile to Brittle

Transition Temperature, DBTT to the CTR operating temperature range.[59]

Even if this extrapolation is invalid, the entire problem has not been

presented. At various ,periods during the lifetime of a CTR, the reactor

will be brought down near room temperature and the structural integrity

must be preserved at these temperatures. The data available concerning

impurity effects at high temperatures is sparce, but relevant findings

will be presented.

A.8.1 Oxygeni-ffPrt-

Loomis et al irradiated nio lium and Nb-lZr with 3.5 MeV Ni

ions.[601  Voids were observed in pure niobium at 600*C. However, after

an addition of 900 ppm 02 .the voids were not observed until 700*C.

Furthermore, they were smaller and more evenly distributed.

I
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Pure Nb-lZr and Nb-lZr doped with 570 ppm 02 were irradiated at

800C and 900*C to the same fluence. The oxygen doped alloy developed

ordered bcc super lattices of voids at 25 DPA. This was not observed,

until 100 DPA in NB or NB with 0 . Figure A.8 shows the effect of te:per

atures on the void swelling of Nb and Nb-lZr while Figure A.9 shows

[60]
the effect of oxygen on swelling.

From this data, it appears that oxygen reduces swelling in niobiu

and enhances it in Nb-lZr by promoting a void lattice. It would also

appear that for a vacuum wall the swelling could be reduced by increasing

the oxygen concentration -to the solubility limit which is 4000 ppm at

8000C. However, corrosion and embrittlement may become a problem long

before this.

For commerical purity vanadium, the addition of oxygen appears to

increase the void diameter and the swelling. Figure A.10 shows the

effect of oxygen on void formation in vanadium for specimens irradiated

at 525C to a neutron fluence of 1.1 x 1022 n/cm (E >'0.1 Mev).[ 5 6 ]

The reaction rate of Nb-lZr at 1093C with oxygen is given in Fig.

&.11 [6 1-]. For an oxygen pressure of 10-6 torr (immeasurably low in a

helium system pressure of 35,700 torr) the reaction rate is about 0.04

mg/cm hr. This reaction rate is related to a reduction rate of the niobi=

wall thickness through the number density.

-5 2
2 4 x105 g/cm hr -6

0.04 mg/cm hr = 4x 7 g/cm r 4.6 x 10 cm/hr
8.7 g/cm
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After 1000 hours, the reduction would amount to 1000 x (4.6 x 10-6)

.0046 cm or .046 mm. For the 2.0 mm module wall design, this would result in

a 2.3% reduction in thickness and a corresponding loss of strength. Clearly

this material will not survive long under such conditions.

Vanadium is believed to be even more reactive with oxygen than niobium

and this would restrict the maximum operating temperature to a lower value.

Fraas stated that a maximum temperature for niobium with a helium coolant

would be approximately 600*C and for vanadium approximately 500*C.

A.8.2 Helium Effects

Helium in vanadium has been found to reduce swelling.[621 The

reasoning behind this is that since the material has a low dislocation

density, the helium bubbles were the predominant sink for the radiation-

produced point defects. This would have an effect in low ering the vacancy

super-saturation and hence the swelling. Table A.18 shows the effect of

helium on swelling in vanadium.

It is also known that helium reduces the ductility of stainless steel..

Table A.19. However, it has been observed that doping 316 SS with 100 ppm

helium by cyclotron implantation and subjecting the specimen to thermal

aging for 1000 hours at 650*C enhances fatigue performance of annealed and

20% cold worked 316 SS by increasing fatigue life and decreasing the crack

growth rate. Helium has the effect of supplanting the massive M2C6

precipitate that reduced fatigue life.
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TABLE A .18

VOID SWELLING IN VANADIUM AFTER Ni+ ION IRRADIATIONa 6 2

Material T (C) Helium Void Average Void
content concentration void volume

(atom ppm) (voids/cm3xlOl5) size, A ()

HPVb 650 10 0.97 120 0.21

HPV 100 1.60 115 0.29

CPVb 10 18.0 52 0.22

CPV 100 19.0 45 0.13

HPV 750 10 1.9 206 2.17

HPV 100 1.7 141 0.61

CPV 10 2.1 238 3.45

CPV 100 2.5 100 0.34

a dose ~60 dpa.
b HPV is high-purity vanadium and CPV is commercial-purity vanadium.

TABLE A.19

REDUCTION IN DUCTILITY OF 316 SS DUE TO He CONTENT

Helium content Yield strength Elongation %
(appm) (psi) Uniform Total

0 11,000 9 4T

40 12,000 4 6

ref. 64
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There is not one model available to completely explain swelling under

the mixed irradiation condition of high DPA and high helium production.

However, it appears that helium is the main contributor to swelling. Cold

work is effective in suppressing swelling at temperatures below 600'2 since

in the cold-worked sample the cavity density is greater than in the

solution annealed specimen. The increased cavity density will accomodate

the increased amount of swelling. However, the helium concentration at the

grain boundary may lead to intergrannular failure well before swelling

becomes important. Finally, the breakdown of the resistance of cold-worked

stainless steel to swelling at 680C indicates an upper limit of 700C

for reactor operation. The effect of the helium content on 316 stainless steel

is given in Table A.20.

A.8.3 Hydrogen Embirttlement

It is well known that hydrogen causes severe embrittlement of vanadium

and- niobium near room temperature. The suspected embrittlement mechanism

65
is the formation of vanadium-hydride particles at the DBTT . One other

possible explanation is that the hydrogen reduces the true surface energy

and therefore the associated binding energy or cohesion of vanadium.

However, it is questionable as to whether hydrogen will have a strong

effect on vanadium and niobium at such high temperatures as those expected

at the first wall. It is quite unlikely that the hydrogen concentration

in these metals can push the BDTT to a point near reactor temperature

cycling range. Experimental data on permeation and diffusion of hydrogen

in niobium and vanadium are extremely sparse, but the general range will

-4 2
be a diffusion coefficient on the order of 10 cm /sec and a permeability

2 cc(STP)mm
of 10 atm1/2 hr-cm2 (extremely high). The effect of hydrogen on

vanadium is given in Table A.21.
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A.9 FABRICABILITY, AVAILABILITY AND COST

Fabrication methods for all three metals are well established but

[67-]
perhaps not yet developed on the industrial scale. Initial hot reduct±o

is usually carried out under the protection of a steel jacket. Westinghou

Astronuclear, developed of the VANSTAR alloys has found that V-20Ti and the

VANSTAR alloys are equally fabricable and no unusual problems have been

[6a.]'
encountered in forging, sheet rolling or swagging.

The amount of vanadium currently used in industry is small when

compared with the quantity that would be needed for one fusion reactor. 6 9

It is doubtful that discoveries could increase world reserves enough to

support a fullblown fusion economy at this time, however, this is not

within sight for the next several decades. For the purposes of this study

and near term use of refractory metals, the available amounts are adequate

for experimental purposes and pioneer fusion power reactors. Table A.22

gives reserves of vanadium, niobium and titanium.

Cost is an area in which stainless steel enjoys a tremendous advantage

over refractory metals such as niobium or vandium. For example, the cost

of one kilogram of stainless steel is approximately $15 while niobium will

cost about $65/kg and vanadium even more.[7 0 1  Thus, on a small scale, only

stainless steel will be economical, and on a large scale, the scarcity of

niobium could keep its price prohibitively high.

A.10 CONCLUSION

Based on the preceeding analysis, vanadium alloys as a whole are

most attractive. This conclusion was based on several different vanadium

alloys evaluated on each criterion. They exhibit good high temperature

strength, creep strength, ductility, extremely low swelling, afterheat,
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TABLE 'A 20

SWELLING DUE TO HELIUM CONTENT IN IRRADIATED 316 SS 65

a DPA calculated from the Lindhard model.

D atomic concentration calculated by the formula
atoms He/g Ni, where t is the thermal fluence.

c measured helium content.

C = 9.8x10l9 4t),6

T (0C) Fluence Calculated Calculated Measifred swelling %
(E > 1 MeV) displacements helium Solution 20% cold
n/cm sec (dpa)a content treated worked

(ppm)b

535 3.79 x 1022  52 1930 3.5 .52

574 4.21 x 1022 58 17 9 1c 3.3 -

602 8.71 x 1022 119 5940 8.0 3.3

679 8.74 x o22 121 6090 14.1 16.8
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TABLE A .21

HYDROGEN EMBRITTLEMENT OF VANADIUM AT ROOM TEMPERATURE *

ref. 66

Condition Yield strength Ultimate tensile Elongation %
(psi) strength (psi) Total Unifrm

Annealed 27,571 47,143 42 22

Low H2
(400 ppm) 36,571 38,143 40 22

High H2
(163 ppm) 38,857 60,000 24.4 18.6
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TABLE i.22

ESTIMATED RESERVES OF SELECTED REFRACTORY METALS
*

Material Inventory for World reserves Ratio of
106 MWe capacity (metric megatons) quantity in the
(metric megatons) Earth's crust to

world reserves

Niobium 3.3 10 9.4 x 103

Vanadium 2.4 10 6.6 x 1o

Titanium 0.5 150 1.9 x 105

ref . 50
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gas production and induced activity. The areas of concern in the proposed

design environment are embrittlement and corrosion by hydrogen and oxygen

and the high cost. However, there is no single .vanadium alloy that exhibit,

all of these attractive characteristics. This is in part due to the lack of

data available on many of .the alloys analyzed. Nevertheless, with the

availability of data on vanadium alloys, there appears to be good promise.

While 316 SS enjoys a large cost, availability and fabricability

advantage over either niobium or vanadium, it is limited to lower operating

temperatures by its comparatively low melting point (1430*C) and low creep-

rupture strength. In the case of a failure, temperatures in the 800*C

range may be reached which would require stainless steel to operate above

0.5 T m Furthermore, it develops high thermal stresses and exhibits a

high helium production rate, afterheat and activity.

Niobium-lZirconium has an advantage over stainless steel in that

its melting point and operability limit is the highest of all alloys

surveyed. It has high temperature strength, low swelling and gas production.

However, Nb-lZr suffers from the possibility of hydrogen and oxygen

embrittlement and corrosion, high afterheat, activity and cost. Nevertheless.

all things considered, Nb-lZr possesses the most characteristics necessary

for the structural material of the BRSR. Therefore, NblZr has been used

as the reference material for the first wall and module structure of the

BRSR.
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APPENDIX B

ENERGY GENERATION IN FUSION BLANKETS

B.1 KERMA

A fusion neutron carries 80% of the fusion energy and

therefore is the primary energy source in a non-fissioning fusion

blanket. Contrary to a fission reactor where most of the energy re-

leased is deposited locally, a fusion neutron undergoes a variety of

reactions with the blanket materials releasing various amounts of

energy in each of the reaction types before its final thermalization

and/or its absorption by the breeding materials. Among the neutron

reactions, (n,y) produces a photon which also has high penetrating

power and carries a non-negligible amount of. energy.- For the purpose

of calculating the energy generation in a blanket, the heating rate

is divided into two types of contribution.

1. Heat generated by the various neutron reactions

2. Heat generated by the absorption of the secondary

gamma radiation produced by the neutron reactions.

Therefore, the calculation of the energy generation in a

blanket require's the knowledge of energy released per neutron re-

action and per gamma reaction. The factor which governs the prob-

able energy released per reaction is the Kerma factor (an acronym

for kinectic energy released in material). The neutron kerma fac-

tor is defined as

k (E)Ea ~ (E) E (E) B-1

k (E) = Z k (E) B-2:1 ~ jii
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B1, B2,B3
Many investigators had calculated the neutron

B4.
kerma factors with the most recent contribution from Abdou , the

B5 B10
results of which are documented in DLC-29 and DLC-37b

The gamma kerma factor is defined by the following equat4oU

kj=c r E + Oj (E - 1.02) + a E B-3y pe p pp p cs p

B6
Equation (B-3) reflects the three processes that are mainly re-

sponsible for the absorption of the gamma radiation,. namely. the

photoelectric absorption, the compton scattering by the electrons in

the atoms and the production of electron-positron pairs. In the

pair production process, part of the photon energy, though initially

absorbed, reappears almost immediately by the production of two

0.511 Mev photons. This is the reason for the correction in the

pair production of equation (B-3). The calculation of the gamma

kerma was computer coded and is documented in PSR-51 , and the

BlO
gamma kerma factors are included in DLC-37b .

To facilitate the calculation of the q... to be discussed

later in Appendix B.3, a computer code KERMA was developed to ex-

tract the kerma factors from DLC-37b and to create a new data set

DISKERMA on disks containing the kerma factors for 26 materials as

exhibited in Table B-1.[ 2 )

B.2 ANISN

In addition to the kerma factors, the calculation of the

blanket energy production rate also requires the spatial distribu-

tion of the neutron flux and the gamma flux. The central problem
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of flux determination is the solution of the integral-differential

[B8}
boltzman Transport equation. With the exception of a very simple

case, the solution to the Boltzmann's equation requires the execution of

one of the several computer codes: ANISN, DOT, Monte Carlo, etc. In this

study, the ANISN code was used. The group to group transport cross section

data sets used with ANISN was DLC-28 , which is a coupled neutron/gamma

data set .with 52 neutron groups from 14.9 Mev to 0.02 Mev and 21 gamma

groups from 14.0 Mev to 0.01 Mev. The procedures for the operation of

ANISN is documented but a slight variation was adopted in this study. The

details of this procedure can be found in C-hen's thesis. [21]

B.3 CTRHEATFLUX

With the flux distribution and the kerma factors, the energy generation

rate is calculated by the following equation

q'''(r) f4 (r,E) E E n.(r) k i. (E) dE B-4
all j i -

E

CTRHEATFLUX was coded to calculate q''' using the flux from ANISN and

the kerma factors from the dataset DISKERMA discussed earlier in Appendix

B.l.

B.4 SAMPLE PROBLEM AND OUTPUT

The aforementioned procedures were tested in the sample calculation

of a blanket of 40 cm of carbon sandwiched between two 30 cm layers of lithium.

This blanket is represented as Figure B-1 where the composition of zones 3

and 5 designates natural lithium. In the ANISN transport calculation,

the P3-S4 configuration was used with the ORNL 73-groups coupled cross

section dataset DLC-28(B9 ]. This procedure was checked out by repeating

the Steiner benchmark calculation [B12) for a CTR blanket, though, in this

case, a 100-groups neutron cross section dataset DLC-2[B1
3land a 100-groups

rB14]
,reaction cross section dataset DLC-24 were used.
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With the kerma factors from the dataset DISKERMA created in Appendix 

and the neutron/gamma flux calculated/punched by ANISN for the sample

blanket, CTRIIEATFLUX was executed to calculate the q'''. It should be

pointed out that in the sample blanket there is one interval each in Zones

1 and 2, 50 equal intervals of 2 cm in zones 3 to.5. CTRHEATFLUX also

plots the neutron flux, the gamma flux and the volumetric heat rate which

are included as Figures B-2, B-3 and B-4. In Figure B-2, the conventional

energy unit of lethargy is adopted and is defined as the natural logarithm

of the inverse of the energy in units of 10 Mev. Curve B of Figure B-2 shoms

the moderating effect of the carbon on neutrons whereas curve C reflects the J',

6
cross section of Li (n,t) reaction causing a depletion of low energy neutron$.

[B-15]
In Figure B-4, the results calculated by Santoro of ORNL using ANISN

is included showing favorable agreement with the results calculated by

CTRHEATFLUX. The steep rise in-heat generation, both before and after

the carbon region is primarily due to the moderation of neutron energy

by carbon. The carbon in zone 4 reflects a portion of the incoming neutrons

back in zone 3 creating a high neutron population just before the graphite

and therefore increasing the chance of energy released in that region. Also,

because of the moderation of neutrons through zone 4, the frequency of the

1/v exothermic 6 i (n, at) reaction increases with the availability of the

low energy neutrons at the beginning of zone 5 causing the increase -in

heat generation. Similarly, the procedures developed here were used to

calculate the q''' for the blanket discussed in Chapter 2 with the final

result from CTRHEATFLUX presented as Figure 5.

A complete listing of the codes used along with sample outputs and

user instructions is contained in F. Chen's Thesis.[21]
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TABLE B-1

CONTENTS OF DATASET DISKERMA

NEUTRON KERMAS
(Groups 1-100)

yes

no

no

yes
of

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Ni

Cr

Fi
5 5 

n

59co

Cu
4 He

C

0

Al

Pb
6 Li
7 Li

10 B

H

9 Be

Nb

Ti

F

Si

Mg

K

Na

w

no
It

it

Yes

no

GAMMA KERMAS
(groups 101-121)

yes

I,

"t

It

to

is

of

IV

'o

it

of

It

91

to

yes
it

it

o'

it

It

MAT. NO. MATERIAL

'I

'I

I'

I,
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APPENDIX C

PERMEABILITY OF THE BREEDER ROD

The permeability of the niobium breeder rod is so high that it

appears as a sieve to tritium. A simple calculation will illustrate

this fact

PF = tritium permeation in

Ci/sec leaking through the module

P0 c(STP)mm (/P - /2)atml/ 2 WA cm2

PF = F 2 .L/2 d mm
cm hr atm

where

F = 323.6 Ci/cc (STP)

P =.2000 ecp (-5200/RT) Cc(STP) mm

e (3( - cm2 hr atm
1 /2

p = inside pressure, atm

p = outside pressure, atm22
WA = wall area, cm2

d = wall thickness, mm

Given

-4
p = 10 torr

P= 0.0 torr

T = 400 0 C = 673*K

WA = 45.24 cm2

d = 2 mm
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PF Ci/sec leakage = .017 Ci/sec

Now 10 4 torr = 1.395x~ 7 Ci./CM3 and 1 segment = 43.676 cm3

Therefore 1 segment contains 6.09x10-6 Ci.

Thus, 1 segment full of tritium will leakout in

3.6x10~4 sec = T . The coolant transit time through the

module is Tm = 1.33 sec. Since T << TM the wall appears

as a sieve to tritium.
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APPENDIX D

COOLANT LEAKS TO THE PLASHA

The following is a rough estimate of the minimum size of a coolant

leak into the plasma which would begin to be of concern.

Consider all the He leaking from a hole to enter the plasma where the

He ions are then confined for an average time equal to the particle

confinement time.

Let

S = number of He atoms leaking per second

V. = plasma volume
p

T = particle confinement time

A rate balance on helium ions ignoring the production by fusion yields

cgn n
He S '_He
dt V T

p

Integrating and applying the boundary conditio.. n He/t=O = 0 yields

'He V
p

for t >> T

n T S
He V

p

As an arbitrary guide assume that the minimum size leak of concern

is one that changes Z, the average plasma ion charge, by 5%.

1.05 = + D + 2 .He or
~~D+ 'He
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He . 0 5 2 6 (ni + n.D)

For the reference design the fusion power is 1740 Mw . For a

uniform density profile at 15 kev n = nD = 3.5 x 10 9 m-3

Assuming T 10 sec and a plasma radius of 3 m we have

S =

(1.86 x 10 3)(.0526)(7.07 x 10 )
10

= 6.94 x 10 20 atoms/sec

-3
S 4.61 x 10 gms/sec
MIN

This is then the size-leak which begins to be important. It is nearly

equal to the a-particle production rate. To estimate the size hole consider-

the leak to be from a tube under choke flow conditions. For this case

the maximum mass flow is[ 63 1

k 2 o
() - (-)k-1

MAY k+l

0

where

W = mass flow rate

A = cross sectional area

k = 1.66 for He

R - 2.08 J/gm-K for He

P = pressure

T = temperature

0
for P = 800 Psi

T = 6000C0

W = 2.97 x 10 A(cm ) gm/sec

-5 2 -3
For W = SMIN, A = 1.55 x 10 cm , or for a circular hole D = 4.4 x 10 cm.

I
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APPENDIX E

SOLUTION OF THE TRIPORT DIFFERENTIAL EQUATION

The time dependent inhomogeneous concentration is

given as follows

aC(rt). = D(2 + Bat +r2 rDar

Setting u=C-r we have

= c a + B
Dt Dr2 D

ar

with boundary condition

u(0,r) = 0

(o,t) = 0

u(t,a) = aCa

Physically u(r,t) can be separated into two functions

u(r,t) = *(r,t) + p(r)

where

*(r) represents the steady state solution and

$(r,t) represents the transient solution.

Thus we have,

= (r ) = with B.C. a) " (0) = 0
r )r ar D Ca

b) O(a) =Ca

(E. 1)

(E.2)

(E.3)

(E.4)
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2
= D a with B.C. c) iP(r,O) = -r$(r) (E.5)

at ar 2d) 
ap(O,t) =0

ar

e) (a,t) = 0

Solving Eq. (E.4);

1 a (r 2 a) -B
(r ) = Dr

Cr2 (r .) = -B r 2
(r D

r2 a - -Br3 + K
ar 3D

__-Br _ K1
ar 3D r 2

$()=-Br - +_K2 (E.6)
r

B.C. a) WO(0) - 0 gives K = 0Dr1

B.C. b) O(a) = Ca gives K = Ca +a2 a 96D

Therefore

B r2 + B a2 + C
-6D ODa +a

B 2 2
6(r) = $ (a _ r2) + C a (E.7)

r4(r) = 6 (a2r - r3) + Car (E.8)

Solving Eq. (E.5)

D at



242.

Using separation of variables (r,t) = R (r)T (t)
t t

BT 32R3 T a 2R
R -=te
t t r

21 __ _ 2R 2

DTt at R 3r

DT 2 DXT.t = 0 
(E.9)at DTt=

2R
+ ARt =0 (E.10)

Solving Eq. (E.9) gives

T = C e-DX 2t (E.11)

Solving Eq. (E.10) gives

t P cos Ar + Q sin Ar (E.12)

DR
Applying B.C. d) t (o,t) = 0 we have P=0 and

B.C. e) V(a,t) 0 gives A..= An =n a

therefore

R (r) = Q sin Xnr
nn

T-(t) Cn e n
tn

Now

ip(r,t) = R.(r) T (t)
t t

$(rt) = n- a eD nt sin Anr
nion
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The initial condition (B.C. d) is used to determine an

P(r,0) = a sin X r = -rp(r) = (r3
n=O n n6

- ra 2) - rCa

Thus.,

an -r(r) sin arn=a f

2 ja B 3  nira =-( -r sin-
n aj 0 Da

Bra 2  n'ffr 7

B 2-sin a - rCa sin E _ )dr

(E.14)
Integration gives

an n [C + ( )2]

Thus,

(E. 15)

$(r,t) =
n=0 ( n [ + ( 2 -DA t nrDXn n

u(r,t) = (r,t) + O(r) = (a 2r-r3) + Ca

+ 2 Ca r
n=0 n L

+ -DX 2r
D.2I sin X nrn

Finally C(r,t) = u(r,t)/r

or

(E.13)

(E. 16)

(E. 17)

2 22 00 n C
C(r,t) (a -r ) +Ca +Z 7 }l (Ca + B)e-DXn sin n r

n=1 n D)n
(E.18)

where X nnr/an.
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