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ABSTRACT

The systemic structure of TCP/IP is outdated; a new scheme for data
transportation is needed in order to make the internet more adaptive to modern
demands of mobility, information-driven demand, ever-increasing quantity of
users and data, and performance requirements. While an information centric
networking system addresses these issues, one required component for publish
subscribe or content-addressed internet networking systems to work properly is
an improved caching system. This allows the publish subscribe internet
networking to dynamically route packets to mobile users, as an improvement
over pure hierarchical or pure distributed caching systems, To this end, I
proposed, implemented, and analyzed the workings of a superdomain caching
system. The superdomain caching system is a hybrid of hierarchical and
dynamic caching systems designed to continue reaping the benefits of the
caching system for mobile users (who may move between neighboring domains
in the midst of a network transaction) while minimizing the latency inherent in
any distributed caching system to improve upon the content-addressed system.
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1 Introduction

In the design of networks, traditionally local network storage has been rather

limited in both capacity and utility. In the current Internet design, small

amounts of storage are used for routing information and to provide extremely

short-term buffering of packets, in support of reliable delivery. Long term and

larger scale local storage as a network resource is one of the enabling concepts

for the ideas now called ”Information Centric Networking” (ICN). In this

project we propose and evaluate a design for regional cooperative storage or

cache management as an enhancement to the local cache models currently

enabling ICN designs.

The packet architecture of the internet was designed in the 1960s and ’70s in

order to solve the problem of sharing computing resources of a few large

supercomputers.

The unifying and common layer in the protocol stack is the Internet Protocol

(IP). It provides best effort delivery of packets from one location to another.

The most commonly used protocol that sits on top if IP is the Transmission

Control Protocol (TCP), which layers ordered and reliable delivery of packets

from a source to a destination, on top of IP. Another protocol that also sits on

top of IP is UDP, which supports streams of packets, but without the ordering

and reliability of TCP. The point that is central to our current work is that all

these protocols have as a central tenet that communications traffic flows

between a sender’s and receiver’s location or address, without any reference to

what is being transported, only where it is coming from and where it is going.

Current network technology is defined on a point-to-point basis, using the

physical location of the hosts as the fundamental unit. However, this does not

coincide with modern usage of the technology, which is more concerned with the
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data in question than where it is located. Large companies have many servers

masquerading behind the same IP address to deal with millions of requests.

Users have multiple devices, and they want their information to be available

with equal ease on all of them; users also have mobile devices, laptops and

PDAs and smartphones, and expect uninterrupted network access as they cross

boundaries, whether of domain or of connection type.

There is a paradigm shift in the works, an emphasis on the what of network

data instead of the where. This makes the content, the data, the fundamental

unit of network transactions, without the user knowing the physical address for

where it is stored. The common term for this set of ideas is ”Information

Centric Networking,” or ICN. This content-based networking, paired by some

designs with the publish/subscribe model of networking, is currently being

designed to be a low-overhead network protocol. The publish/subscribe model

will theoretically allow multiple distributed sources of a piece of content to be

accessed equally, users to continue receiving data even if their mobile device

changes transmission styles or crosses domain boundaries, and popular data to

be cached around the world to minimize the needed bandwidth of its original

source.

One aspect common to all publish/subscribe and content-addressed systems is

the existence of a sophisticated caching system. They range from small caches

attached to every router or node on the network to very large regional caches

run by the local Internet Service Provider (ISP). All these systems provide

authentication, integrity, and in most cases authorization control inherent in the

objects themselves, thus relieving the system from having to depend on the

original source of the information for those capabilities. Because if this, these

systems can take advantage of widespread caching and in-network storage.

These systems can utilize caching strategies to simultaneously minimize the
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bandwidth used by the source of a popular piece of data and to decrease the

time between a request for the data and the data delivery by storing a cached

copy of the data within a few hops of the requester.

Information centric networking systems can utilize caching much more

effectively and naturally than the current IP-based internet paradigm. The

reason for this is that in the current internet, a source of a given piece of

information can be sending it to two users proximal to each other at the same

time, yet IP-routing metadata (session ID, packet number, etc.) does not label

the contained information, meaning that the source has to separately send the

packet to both of the users. However, in content-oriented internet architectures,

this traffic need not be duplicated.

The specific question that I answer is the following. Assuming a futuristic

information centric, publish/subscribe networking system, including a basic

assumed system of local-area caching, how can the caching system be improved

to increase performance?

This project evolved from the observation that cooperation and sharing of

caches could provide enhanced performance when that cooperation remained

reasonably local. My proposed solution to this question involves the creation of

a concept that I call superdomains. A superdomain is a cooperative system of

geographically proximal domains, each with their own rendezvous node (which

handles routing of requests to nodes not in its domain) and local cache. In my

system, all caches in a superdomain cooperate to effectively increase the cache

hit rate for all of their proponent nodes’ requests, without the increased lag

from a fully distributed or hierarchical caching scheme. The geographical

proximity of the domains minimizes the round-trip time of querying neighbor

caches, and the geostationary nature of a superdomain makes it an easy

location-based routing target, while not requiring users to stay put. The
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challenge in this effort was, within the context of information centric

networking, to improve upon traditional caching methods.

The rest of the thesis begins with a Background section, which serves as an

overview of the information centric and caching technologies. Next, the

Related Works section goes into more detail about many of the specific

similar systems which have informed my thinking about the problem space. The

Design section describes the systemic design of my superdomain system.

Following that section, the Experimentation section describes the software I

wrote as a proof of concept of the superdomain system. It also shows the direct

results obtained from the experiment. The thesis concludes with some thoughts

and overview in the Conclusion section; then the Future Work section

describes some next steps to extend the work herein described.

The contribution of this work is a modular system for cache cooperation which

can be added onto many different networking systems. This design improves

user experience with response times in the majority of cases, at

user-imperceptible overhead in response times.
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2 Background

This chapter will elaborate on the high-level overview of the publish/subscribe

and caching technology from Chapter 1. This chapter provides the reader with

the necessary background in the two main research fields necessary to this

thesis: caching and information centric networking.

2.1 Publish/Subscribe Technology

There are two leading designs of content-oriented networking technology in

progress, Content-Centric Networking (CCN) and PURSUIT:

Publish/Subscribe Internet Technology. They are competing possible future

replacements for TCP/IP.

Both CCN and PURSUIT, as well as other proposed publish/subscribe variants,

adhere to similar principles. Central to these efforts is that information or

content of potential interest is named within the architecture. These names in

turn allow for the separable announcement or publication of the information

from the interest or request for the information by name. This, in turn, has led

to these systems supporting their variants on publish/subscribe. Importantly,

this allows for the decoupling of publishers from subscribers in space, time, and

synchronization. Decoupling in space allows publishers and subscribers to know

nothing about each other nor need to keep references to each other. Decoupling

in time allows publishing, subscribing and data delivery to happen without

requiring both publisher and subscriber to be simultaneously connected to the

network. Decoupling in synchronization allows publishing and subscribing to

happen concurrently and asynchronously without blocking on a response [11].

Eugster et al. wrote a survey paper which summarizes the common challenges
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and approaches of publish/subscribe networking systems in current research[11].

This paper proposes that the common underpinning of the publish/subscribe

variants is the full asynchronistic decoupling of publishers (content providers)

and subscribers (content consumers) in time and space.

The basic interaction architecture in any publish/subscribe system is as follows:

subscribers express interest in something (an event or a pattern of events), then

a publisher causing an event (with the publish operation) that matches the

subscriber’s registered interest causes a notification to be sent to the subscriber.

This requires the existence of a neutral third-party system which handles

subscription requests and distributes information upon events occurring.

The three primary types of publish/subscribe systems are topic-based,

content-based, and type-based. Topic-based publish/subscribe systems are

distinguished by the use of keyword-identified groups, and users subscribe to a

topic(i.e. the topic stock quotes), with implied subscriptions to all of its

subtopics. Content-based publish/subscribe systems are distinguished by

subscriptions based on the actual content (e.g. a specific picture or article).

Type-based publish/subscribe systems are distinguished by subscriptions based

on the content and also the structure of the information (i.e. information with

content about stock quotes which has a structure of stock requests, which

brokers use to express interest in buying stock).

According to Carzaniga et al.[4], the two critical parts of content-based

internetworking are information-centric addressing and a publish/subscribe

event notification system. Both pieces are integral to a true content-addressed

networking paradigm. They classify publish/subscribe event notifications as a

form of content-based communication, neatly fitting the two models together.

Furthermore, they contend that on-demand content delivery is the most

important (and sometimes only) primitive in these systems; alternate systems
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use producer-initiated transmission, wherein the publisher of some information

sends an interest packet, complete with call-back prefix, to effectively poll

potential consumers, however this system in inefficient in network resource usage.

Carzaniga also touches upon the problem of accommodating both short-term

and long-lived ”interests” of the consumers. Most current content-based and

publish/subscribe networks focus primarily on only one of those two.

2.1.1 CCN: Content-Centric Networking

CCN, also known as Named Data Networking (NDN), finds published items

through transmission packets that are named ”objects.” Every request begins

with an Interest packet. The user’s node sends the Interest packet to the nearest

node(s) of the network. Each node of the network has three data structures: the

content store, the Pending Interest Table (or PIT), and the Forwarding

Information Buffer (FIB). The content store contains storage for locally

published data and a cache of seen data, stored by the name of the data. The

PIT stores information about all Interest packets that are not yet resolved nor

timed out. The FIB contains forwarding information about the many ”faces,”

or connections to other network nodes; a local ”strategy” determines how these

multiple ”faces” will be used for each Interest packet, defaulting to blanket

multicast if needed. A node which receives an Interest packet will reply with a

data packet if the named content is present in the content store, or log the

Interest (and requesting network face) in its PIT and forward the Interest

packet to other nodes it is connected to.

The nodes of the network which have seen this Interest packet blooms outwards

until each either finds a dead end (in which case the Interest packets will time

out after a set period of time) or a source of the requested data. Any Interest
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packet which reaches the originator of the data or a cached copy of the data is

successful. The publisher then sends the data back over the network by the

same path, using the Pending Interest Table (which lists the request and the

interface(s) from which the node received the Interest) as a trail of breadcrumbs

back to the interested host.

Moreover, CCN ubiquitously caches Data packets. Any Data packet that arrives

at any node which fits an entry in that node’s Pending Interest Table is

immediately stored in that node’s Content Store. Items in the Content Store

are replaced by new ones in either LRU (Least Recently Used) or LFU (Least

Frequently Used) basis.

This strategy allows the most popular items on the network to be delivered to

the requester very quickly but introduces a high rate of churn into the system.

Since every node on the network behaves in this exact same fashion, less-popular

items do not remain in any cache for very long and are quickly replaced while

other items will be stored in an overabundance of caches all at once.

A benefit of CCN is the uncoordinated nature of decisions. Publishing and

subscribing are decoupled in time and space. Nodes do not cooperate, so there

is a minimum of network management overhead.

CCN would be greatly improved by the addition of more sophisticated caching

strategies than simple LRU or LFU replacement. [17] [44]

2.1.2 PURSUIT: Publish/Subscribe Internet Technology

Some of the critical component parts of PURSUIT are described here.

PURSUIT is a publish/subscribe internet technology built on the older PSIRP

project. It is a content-oriented networking variant primarily differentiated by

its use of a rendezvous system and scoping. The rendezvous system uses the
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scopes to forward subscription requests to a publisher of that information using

only identifiers on the data. The scope system is a recursive set of data objects

which have rendezvous information for the published items. As published data

objects themselves, scopes are treated just like information objects, but the

data contained therein has rendezvous information for other data objects (some

of which can be other scopes).

PURSUIT also is based on named objects that are made available independently

of requests or interest, but is different from CCN in several key ways. First, the

objects it is designed to support can be more abstract and complex than single

packets. Its objects can be the kinds of objects of interest to humans and

applications. Second, it separates the discovery of an object, or rendezvous,

from the responding data delivery or ”forwarding”. Finally, the architecture

includes the concept of scopes, domains within which objects are published.

2.1.2.1 Rendezvous System In the PURSUIT system, requests for data

are forwarded to the local Rendezvous Node (RN), which is a component of a

network-wide Rendezvous System. The goal of the Rendezvous System is to

track where all data resides in the network through publishing of Scopes,

specialized data items which list which data items are published and known

about by a certain RN. The Rendezvous System finds which RNs have Scopes

containing the requested data, then pass this information to the nearest

(modularly separated) dedicated network authority, a Topology Manager (TM).

Each TM is a dedicated node of the network which tracks the connectivity of

the network. Requests for a path from the Rendezvous System are phrased in

the form of a graph search request (using the igraph module) from any of the

sources of the published data to the requester, returning the shortest path

across the network.
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Most likely, if this system becomes implemented, the Internet Service Providers

would be responsible for providing the TM and rendezvous services for the

PURSUIT system. Caching would likely be handled by either the ISPs or by

third-party entities, similar to how current CDNs function.

Another specialized server employed by the ISP in each domain, or local

network, is a cache server with large amounts of storage capacity. Each cache

server has full agency as a machine on the network, able to subscribe to data

and to publish data items or scopes via its local RN. The cache servers can also

pre-cache any new releases from popular publishers for minimal network impact

upon the software release date. In addition, they can opportunistically cache

data requested by nearby users. These cache servers will be able to utilize more

sophisticated cache replacement strategies than simple LRU or LFU

replacement in order to efficiently manage hundreds of terabytes of storage and

anticipate their domain’s users’ needs.

One advantage of the PURSUIT system is separating these functions into

modular groups handling communication (Rendezvous), the graph structure of

the network (Topology Management), and data storage (Caching). However, the

caching system is underdeveloped despite being an integral part of this

triumverate. We have defined some goals of this caching system next, and later

will suggest some strategies which will improve caching in PURSUIT and other

publish/subscribe networking systems. [18] [39]

2.1.2.2 Scopes Scopes in PURSUIT are essentially abbreviated

advertisements for information items that a given Topology Manager knows

about, higher abstraction level and more complex rendezvous information.

Scopes themselves are information items, and therefore scopes may list other

scopes as information items to which the scope’s host TM can route requests.
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By each TM advertising its scope(s) to neighbors in the network, requests can

be routed by following the trail of scopes back to a source of the information.[26]

2.2 Caching Terminology and Background

Caching is very important to any networking system. Caching allows network

traffic for popular items to use only edge networks, clearing some traffic from

the congested core and keeping servers of popular information from overloading.

Caching also provides some duplication of data and resiliency to network failure

on the part of the data originator.

Here is some basic caching-related terminology that are useful reminders, as

these will be used freely hereafter.

• Collaborative caching system: a system by which multiple

individual cache servers communicate with each other to increase caching

potential, yet appear to the user/requester as if it were a single cache.

• Cache hit: a request to a cache server which can be fulfilled by the

cache server (in the case of collaborative caching systems, a request which

can be fulfilled by any machine within the caching system, not just one

server).

• Cache miss: a request to the cache server which cannot be fulfilled by

the cache server and must be requested from the original source (in the

case of collaborative caching systems, a request which cannot be fulfilled

by any machine in the caching system).

• Cache hit ratio: the ratio of cache hits to cache misses, a standard

indicator of quality for a caching system.

• LRU: “least recently used,” a cache replacement policy which deletes the
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least recently requested cache entries when memory must be freed.

• LFU: “least frequently used,” a cache replacement policy which deletes

the cache entries requested the fewest times per period.

2.2.1 Initial Cache Seeding

With sufficient prior request data, a cache can be seeded with the most

commonly requested items in the training set, which is more effective at

predicting users’ needs and generating a higher rate of cache hits than a cache

which starts empty, or only seeded with a few specific items chosen by the

system administrator. However, this strategy for initially filling a cache works

on a training set of data, which is difficult to impossible to acquire for the

internet packets requested by a specific campus or neighborhood. Initial cache

seeding improves latency for many predictable queries, such as to the newspaper

or popular search results, but would likely not be tailored to the neighborhood’s

specific interests.

In addition, the decision unit may mark items for deletion or re-subscription

based on the time of day, release cycle for a specific publisher of data, or other

criteria. This is an extension of the pre-caching discussed in Trossen’s

Conceptual Architecture document [39]. That pre-caching strategy only allows

for soon-to-be-released large, popular software to have caches around the world

to ease the burden on global internet traffic right when it is released; their

pre-caching allows the majority of user requests to be routed to a nearby cache

server instead of requiring all data packets to be sent from the far-away

authoritative server.

Trossen’s Conceptual Architecture[39] is concerned primarily with pre-loading

the cache at its initial startup. However, this pre-caching strategy can be
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extended to the notion of dynamically pre-loading into each cache server

information items for anticipated requests. This processing is done by a decision

unit which watches network traffic and strategically precaches information items

in caches all around the network (or a subsection of the network). Centralizing

the strategic caching decision-making unit has the advantage of coordinating

cache efforts and preventing unnecessary duplication of cached copies.

2.2.2 Opportunistic Caching Versus Pre-Caching

There are two types of cache decision-making which can benefit a

publish/subscribe information networking system, opportunistic caching and

pre-caching.

Opportunistic caching is the standard method for filling caches. In

opportunistic caching, the cache software intercepts data requested by a user,

choosing whether or not to cache that data locally. Opportunistic caching

decision-making systems do not choose whether or not to cache an item until

and unless a user request prompts it to do so.

Pre-caching is a technique where caches are loaded with certain data before it is

requested by any users. Some instances of pre-caching require human

intervention to accomplish, while others[12] are under development to

automaticaly predict requests and cache them. A sample use of pre-caching is to

pre-warm caches around the world with a new Microsoft Windows Service Pack

release shortly before the release goes public in expectation of heavy load. Doing

so would noticeably decrease the impact of the release on the worldwide internet.
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2.2.3 Cache Filling Strategies

Using caching in information centric systems is critical to system functionality.

These systems’ efficiency hinges on not needing to request data from the original

source every time. Since publish/subscribe systems are content-based rather

than location-based, caching of raw data, in the form of individual packets or

information items, can become an integral and fundamental part of the system.

In the current internet, some companies (such as Content Delivery Networks, or

CDNs, see subsubsection 3.3.2) have servers around the world or cache their

own data, such as the responses to common web search queries. However, these

cases usually cache an entire web page, the full list of top search results for that

query, data for one specific user, or otherwise do not fully utilize the flexibility

that caching on the level of an individual packet or information item would

afford. This happens because the current internet is strongly location-based and

packets are classified by what location they are being sent to rather than by

what information they contain.

Content-oriented internet systems, however, are content-based systems instead

of location-based. This has the benefit of all data being labelled as part of a

certain piece of information, which can be more easily reused for multiple users

or applications of the same information. In order for this to be optimally useful,

the cache should be seeded with a reasonable set of information items before

startup, and also the decision unit must dynamically choose items to cache

based on incoming requests and some minimal available external information.

The PURSUIT system has in place a mechanism for intentionally pre-caching

large popular downloads, as well as a mechanism for cooperative dynamic

caching, which are discussed next.
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2.2.4 Existing Cache Replacement Strategies

Understanding how an individual cache functions, and how it chooses which

items to store or replace, informs our decision-making about how caches should

communicate with each other. There are many excellent references for the

current state of research on cache replacement strategies, including [20], [21],

[22], and [26].

The two common cache replacement strategies proposed for existing

publish/subscribe architectures (namely, PURSUIT and CCN) are LRU and

LFU. Each of LRU and LFU has many variations in the literature. Each has its

limitations; the variants are designed to address those.

LRU, or Least Recently Used replacement, maintains age bits on the data and

when a new item needs to be added to a full cache, it replaces the least recently

used information item. The main limitation of LRU is that it does not account

for the volume of queries to a target. Sites visited regularly but not frequently

fall out of the cache, while one-off requests stay in the cache for much longer

than they should (for example, a user downloading a large quantity of personal

files would cause the cache to be flooded with useless entries).

There are many LRU variants, including the following few. These show us the

variety of potential lower-level caching strategies which might be used as

components of a larger caching system. In LRU/2, the penultimate access times

are used to run LRU, and the item with the least recent second-to-last access

time is replaced. LRU/2 extends to an arbitrary number of accesses before the

most recent, and this collection of strategies is called LRU/K, each replacing

the kth most recent information item. In SLRU (segmented LRU), new items

are placed on a probationary cache ordered from most to least recently accessed;

if an item is accessed again while still in this cache, then it is placed in the
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protected cache. When necessary, the least recently accessed in the protected

cache is downgraded to the most recently accessed slot of the probationary

queue. Items are purged when they are at the least recently accessed end of the

probationary queue and a new item is added to the cache. FBR incorporates

elements of LFU (below) by separating the cache into new, middle, and old

sections and, when an item is accessed and it is not in the new (most recently

used) section, then incrementing a reference count for the item. When

replacement needs to happen, the block in the old section with the smallest

reference count is purged.

LFU, or Least Frequently Used replacement, maintains a counter on the data of

number of access times for each item. When a new item needs to be added to a

full cache, in replaces the item with the fewest accesses. One main limitations of

LFU are the additional complexity (logarithmic) to add or remove an entry or

to reorder entries in the heap. The other main limitation of LFU is that recent

pages are not given priority. Stale entries which received many hits some time

ago are kept in the cache over those which received a few hits very recently.

Adaptive Replacement caching uses a LRU cache and a LFU cache on the same

data, each with a ghost list tracking recently evicted entries. Cache misses

which are in a ghost entry will increase the size of the ghost entry’s associated

cache and evict an item from the other cache.

Depending on the needs of the network, different caching strategies may be

more or less successful. According to Rajahalme et al., internet packets have an

optimal 15 minute time to live (TTL) in a cache – packets which are highly

requested are likely to have already been requested again in that time span

within the service domain, and packets which have not been requested again in

that time span are likely candidates for replacement. This temporal locality

property indicates that most queries previously submitted will be submitted
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again in a short time frame. Using this expectation, a few modifications to

these caching strategies emerge as potential improvements on LRU or LFU

performance. [26]

2.2.5 Dynamic Caching

While most simple caches replace items based on simple frequency or recency

criteria, cost-based criteria can be a beneficial addition to a more advanced

cache[22].

With a basic LRU cache, each request inserts at the front of the queue (cache

hits moved up from further back in the queue, cache misses inserted at the front

of the queue). With a basic LFU cache, a separate list is kept of the candidate

items for the queue and the number of requests for them. When one of these

candidate items is requested as many times as the least-requested item that is

cached, it gets inserted into the cache.

According to Ozcan, when miss costs are not necessarily uniform, cost-based

caching methods are very effective. These methods frequently extend LRU such

that items which have a high cost to cache misses are less likely to be replaced

than low cost items. Cost-aware caching can take into account latency, power,

or bandwidth consumed by cache misses as well as penalize the replacement of

selected items or categories.

Miss costs in packet caching could increase based on a long delay to the source

server, downtime for the source server or authoritative rendezvous node, or size

of files or packets. [22]

A system for cooperative dynamic caching for PURSUIT has already been

developed [12]. The decision-making algorithm for this system intelligently

precaches information items in chosen caches around the network based on
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request patterns and expected user interests in various sections of the network.

In most cases, dynamic caching would be a threat to the security of the

information. Security and naming of information items in publish/subscribe

systems is the focus of much research. The common belief, embodied in Zooko’s

Triangle, is that names can be no more than two of: human-understandable,

secure, and unique. While self-authenticating names, created from a hash of the

document’s contents, name, and/or other identifying information, are commonly

held to be a standard of the publish/subscribe systems, they are not

human-understandable. However, this may be a benefit, as network architects

cannot guarantee any structure of human-understandable naming that will

remain constant in the long term; if we insist on that structure with the

introduction of our new publish/subscribe paradigm, it is likely to need to

change, which will upset internet functionality [34].

Another important problem that our content-oriented caching model can help

with is network management. Network management is another important

problem in the current internet structure, as only local domains have human

maintainers. Problems in the global internet, such as widespread congestion,

cycles in routing tables which cross ISPs, and non-localized related failures can

rarely be detected, let alone be fixed. Yet keeping vast quantities of data for

network management, and having it be available non-locally in case of network

failure, is a great challenge for network architects [35], but they might be able

to improve their strategies with the cooperative caching model able to store

more data about the network in the area.

Distributed Hash Tables (DHTs) are efficient structures for cataloging and

retrieving information by name, with requirements similar to the caching

requirements of publish/subscribe internet. DHTs are typically used for a hash

table instead of as a routing guide across the internet, but many of the lessons
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learned by the engineers working on DHTs are relevant to publish/subscribe

caching strategies. Data management in a DHT is discussed in [5]. Churn, and

the associated problems caused in DHTs by hosts frequently joining and leaving

the network, is discussed in [28], with particular attention to methods for

re-balancing cached copies to accommodate cache servers which enter and leave

the network periodically instead of expecting constant uptime.

2.2.6 Collaborative Caching Systems

A collaborative caching system is a system in which multiple caches cooperate

to improve cache hit rates. Elements of a collaborative caching system include

storage management and coordination overhead. Caches in a collabrative

caching system cannot make independent decisions, since these decisions affect

the other caches in the system. The most important caching decisions are what

to store and what to throw out when the cache is full and also how to optimize

and organize across the collaborating caches.

The two main types of organization for collaborative caching are hierarchical

caching and distributed caching. These have been covered in

subsubsection 2.2.5, but both are briefly defined below.

Hierarchical caching is a cache system which has a tree structure. All user

requests are first sent to the local cache (leaf node of the hierarchical cache

tree). Any requests that cannot be answered by that cache are passed to the

parent node’s cache. This continues until either there is a cache hit or until the

cache at the root node has a cache miss. While this system provides a high rate

of cache hits, latency for unusual requests is very long as each subsequent cache

miss passes the request up the tree.

Distributed caching is a cache system in which every cache communicates with
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every other cache in the system whenever it fields a request that it cannot

answer. While this system provides a high rate of cache hits, worst-case latency

is determined by the slowest intra-cache RTT (round trip time), as the requestor

cache must wait for every reply before informing the user of a hit or miss[30].

This chapter has provided an overview of critical terms and concepts, within the

fields of caching and publish/subscribe or information centric networking. The

next chapter will go into more detail about specific systems and projects.
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3 Related Work

The problem space that this thesis operates within is that of caching in

information centric and publish/subscribe networking systems. This section will

briefly describe some of the research projects in similar problem spaces. First,

the specifics of individual information centric or publish/subscribe networking

systems will be described, since those represent the general space of options and

alternatives for working within content-oriented networking systems. Next is

selected other projects which are working on other pieces of the information

centric networking space. The next major component of my project is caching,

so some overviews of works on caching are discussed in Section 3.3, both in

TCP/IP and in information centric systems. The last section covers

miscellaneous projects, such as distributed hash tables, routing, and network

management. While these miscellaneous projects affect this research less, they

are still useful works for any network engineering project.

3.1 Specific Content-Oriented and Publish/Subscribe

Networking Systems

3.1.1 PSIRP, PURSUIT, and COSMON

PSIRP, the predecessor of PURSUIT, uses a similar rendezvous architecture[26].

This report documents the design for registering and locating network objects

within a flat space for identifiers, the rendezvous service model. The rendezvous

service model involves object owners registering (publishing) their objects in

any rendezvous node; then these objects are requested by users and found

through lookup in the Rendezvous Overlay Structure, wherein rendezvous nodes

have overlay links to other rendezvous nodes (which later become scopes in
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PURSUIT). Global lookup prioritizes locality, attempting to route traffic

between nearby edge networks without adding load to the high-traffic core of

the system.

Deliverable D2.2: Conceptual Architecture

The full conceptual architecture behind the PURSUIT project is described in

[39]. One key architectural element is the idea of scopes. A scope is an

information item in the PURSUIT system which consists of a list of information

items that a certain rendezvous node (administrative node) knows how to find

in the system. Since scopes themselves are information items, a scope can

include other scopes in its list. Scopes get advertised to other rendezvous nodes

just like any other named data item.

PURSUIT is both a content-oriented networking system and a publish/subscribe

networking system. Addressing is done on information items (including scopes),

and nodes can subscribe to published information items, which will update the

subscribers’ copies of the information items whenever they change. Publishing

an information item allows nodes to begin subscribing to it; advertising a

published information item tells other rendezvous nodes where to find it.

Network traffic in PURSUIT first uses Domain-local Rendezvous of traffic to

and through the user’s local rendezvous node. If the local rendezvous node

knows the location of the sought information item, it handles the forwarding of

the request. If not, then the traffic gets routed through the Global Rendezvous

system.

Section 5.2 of [39] addresses the conceptual architecture behind the use of

caching in PURSUIT. One component is Storage Replication, a mechanism to

select information items to store in various nodes of the network to improve

forwarding traffic. The implementation of this is covered in more detail in [12].
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The other component to caching in PURSUIT is the In-Network Opportunistic

Caching, which allows a local rendezvous node to cache information items as

users request them. While [12] is a start, it is insufficient, as that work primarily

deals with a high-level algorithm for where in the network should replicate

storage of very popular items; it does not handle the opportunistic caching angle.

COntent-Switched MObile and access Networks (COSMON)

Proposal

COSMON is a proposed project which is a spin-off of PURSUIT, focused on

mobility concerns[19]. COSMON proposed to use a content-switching

architecture to natively and seamlessly support the modern mobile users using

in-network caching. Caching is a core component of any content-oriented

architecture which attempts to support migratory users. In this proposal, their

ideas for in-network caching are informed by the success of Content Distribution

(or Delivery) Networks, commonly called CDNs, over the past decade by

bringing content closer to the end users, reducing latency of delivery to the end

user and minimizing traffic concentration near popular content providers.

3.1.2 CCN and NDN

A different take on content-centric networking was developed by the Palo Alto

Research Center. While both CCN and NDN started from this project and

share a code base, the two projects have recently been focusing on different

ideas and improvements. For my purposes, these two projects can be considered

one and the same.

A Reality Check for Content Centric Networking

While applauding the paradigm shift from host-centric to content-centric

networking and interesting systemic designs, in this paper, the researchers
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analyzed the hardware requirements for deploying a large-scale CCN system[23].

However, the practical impact of large-scale deployment of CCN would be

insupportable by today’s routing technology. Small-scale deployments are

feasible, but more study must be done on the interconnection of multiple

routers and experiments on them using realistic network traffic. Large-scale

deployments will be more feasible in the future, once the router hardware has

improved.

Named Data Networking (NDN) Project

The Named Data Networking Project (NDN) is identical in architecture to that

of CCN, employing interest packets from the subscribers, and the triadic

structure of the Forwarding Information Base, Pending Interest Table, and

Content Store to handle forwarding of requests, retracing data packets back to

the requester, and caching[44]. One key feature of this project is that it has

security features built into the data, as each transmitted piece of data is signed,

together with its name, ensuring a secure binding. Another key feature is the

hierarchical naming scheme, which results in fast name lookup.

Routing Policies in Named Data Networking

In the current internet, the Border Gateway Protocol (BGP) routes traffic

between domains based on policies rather than shortest path or lowest cost

algorithms. Due to competing internet service providers, the internet is grouped

into sets of routers which employ an internally consistent set of policies and

which each are under a single administrative entity. These entities are called

Autonomous Systems (AS).

With the future paradigm shift to content-addressed networking, there is likely

to be a corresponding shift in the administrative organizations. While there is

likely to be some form of groups of routers forming ASes, how they interact
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with each other is yet to be determined. DiBenedetto et al. explore some

possible ways that BGP and ASes might evolve come the paradigm shift to

content-centric internet[9].

3.1.3 HTTP System

HTTP as the Narrow Waist of the Future Internet

Rather than a complete overhaul of the fundamental building blocks of the

internet, some researchers are extending the existing internet protocols, with a

focus on HTTP, to provide support for publish/subscribe systems within the

existing internet structure[25]. In this model, HTTP takes over the middle

layers of the current communication protocol (the ”narrow waist”) while

allowing users to subscribe to content natively. Given the present existence of a

massive and ubiquitous HTTP infrastructure, as well as the recent surge in

HTTP traffic, modifications to HTTP for publish/subscribe capability would

require minimal infrastructure changes compared to other potential

publish/subscribe architectures. Since this approach involves few changes from

the way the modern internet works, any caching systems would be those that

can work in TCP/IP.

3.2 Other Projects in Content-Oriented Networking

Systems

Naming in Content-Oriented Architectures

The three characteristics of an entity in naming schemes in content-oriented

architectures are: its name in the scheme, its real-world identity, and its public

key[13]. The various proposed naming schemes do not connect all three of these
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together. Human-readable naming schemes connect the name to the real-world

identity of the entity but require an external authority to match those to the

public key of the entity, for cryptographic security. An alternate naming scheme

is to use self-certifying, cryptographically secure names. This binds the name of

the entity to the public key, but an external authority is needed to connect this

to the real-world identity. While some schemes attempt to bind an entity’s name

to both its real-world identity and its key, this leaves a security hole without

augmentation by third parties for the name to real-world identity binding.

VoCCN: Voice-over Content-Centric Networks

The problems surrounding streaming media in publish/subscribe internet,

including the necessity and ability to drop slow packets while using Voice-over

CCN for streaming audio is shown in [16]. Live streaming of audio, including

the flexibility to ignore dropped packets and continue transmitting and

receiving, is one key type of information request which content-centric networks

need to handle.

3.3 Caching

Analysis of Web Caching Architectures: Hierarchical and

Distributed Caching

The caching problems in the current internet are surveyed in [30], comparing

the strengths and weaknesses of hierarchical versus distributed caching systems.

In these cases, the caching systems compared are structured, fully hierarchical

and fully distributed cache systems.

In fully hierarchical caching, with three levels of caching, in the case of a cache

miss at the local cache, the request is forwarded to the state level cache. In the

case of another cache miss, the request is forwarded to the regional level cache.
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In the case of another cache miss, the reuqest is forwarded to the national cache

server. At this point, if another cache miss takes place, the request is forwarded

to the original source of the item.

In fully distributed caching, all caches are predetermined (not ad-hoc) and

mutually peers, but there is no central organization (such as in a DHT or the

Chord system). Each cache fills its buffer opportunistically based on requests

from users in its local region, so there is no collaborative assignment of data to

each cache. In the case of a cache miss at the local cache, the local cache

queries every single other peer. It must wait to hear from all peer caches before

forwarding the request to the original source, if all caches report a cache miss.

Hierarchical caching has lower connection times than distributed caching.

Distributed caching, however, has lower transmission times than hierarchical

caching. This is hypothesized to be because most of the network traffic is on the

less-congested edges of the network. Since total latency is the sum of the

connection and transmission times, both hierarchical and distributed caching

systems can be subject to high latency.

Hierarchical caching architectures reduce the expected network distance to

retrieve a file, effectively implements multicast at the application level, and has

minimal administrative overhead compared to distributed caching. However,

hierarchical caching systems also have problems with hot spots and high peaks

of load. Distributed caching architectures perform very well in

highly-interconnected areas. In addition, distributed caching also has smaller

disk requirements than top-level caches in hierarchical caching; also, it shares

load well for the system as a whole, as opposed to the hot spots that can be

created by a hierarchical caching system. However, distributed caching systems

cannot be effectively modified to be large-scale, due to large network distances

and bandwidth and administrative overhead.
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Caching Techniques for Large Scale Web Search Engines

While cache requests for large scale web search engines (Google, Yahoo!, Bing,

etc.) and cache requests for objects a user is interested in are different problems,

they exhibit similar characteristics. Both are complex caching problems which

need to efficiently access data from a very large possibility space of requests.

Many different cache filling, replacement, and eviction mechanisms, as well as

metrics for evaluating them, are discussed in this paper[22]. Some of these are

summarized in subsubsection 2.2.5. Also discussed is cache freshness, or

mechanisms for ensuring that the items stored in a cache are still correct. The

primary focus is on various cost-based algorithms. These cost-aware

mechanisms are extended to cost-aware caching policies.

On Caching Search Engine Query Results

One major caching problem in the current internet is the problem of caching

search engine query results, as popular queries can be requested frequently by

different users and recomputing the results every time would be wasteful of

computing resources[20]. From analyses of popular search engines, patterns of

use of internet computing resources can be seen. There is a strong locality of

queries, as approximately one third of search queries are duplicates (from other

users or even from the same user). In their study, 1,639 out of 927,010 queries

followed within 100 queries after an identical query. Additionally, 14,075 queries

followed within 1,000 queries after an identical query, and in 68,618 instances,

the time between identical queries was less than 10,000 queries. Even a single,

non-cooperative, small cache that holds only the previous 10,000 queries (using

LRU replacement) would have a hit rate greater than 7%.
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3.3.1 Caching in Content-Oriented and Publish/Subscribe

Networking Systems

Caching in content-based publish/subscribe systems

Performance evaluations for certain caching mechanisms in publish/subscribe

internet technology are described in [36], focusing on planned prior caching

using an intelligent decision-making network-wide program to place caches

rather than opportunistic caching. While information delivery for active

subscribers at the time of a publish operation is guaranteed, subscribers can

also request information that was published prior to the subscription event. In

these cases, caching may be utilized to increase performance.

The two caching policies discussed are basic caching, in which every candidate

node along the network may choose to opportunistically cache an information

item which it receives, and leaf caching, in which only leaf brokers can cache

requests when they have multiple users subscribing to the same item.

3.3.2 Content Distribution Networks

A Content Propagation Metric for Efficient Content Distribution

Content Distribution Networks are the closest thing the current internet has to

a widely available caching system of popular data. This paper proposes a novel

metric by which to judge how effective CDNs are at information management in

distributing content to competing consumers[24]. The three sources of

bandwidth in the network are (a) the original content publisher/distributor, (b)

other clients/peers, and (c) in-network caches. Any networking protocol needs

to consider all three sources of information and network traffic, due to the

highly varying needs of different kinds of traffic (for instance, streaming video
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from official YouTube servers and ad-hoc peer-to-peer protocols, which have

greatly differing bandwidth requirements).

The researchers found that a hybrid, peer-assisted architecture for content

distribution maximizes system-wide available bandwidth by routing some traffic

along the edges of the network.
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4 Design

The goal of this project was to design, implement, and test a new strategy for

utilizing the principles of caching more efficiently in a information centric

information networking system. To this end, I created a superdomain system to

utilize multiple regional caches to increase hit rates while not being penalized by

the greatly increased lag caused by fully distributive or fully hierarchical. This

project is designed specifically within the context of the PURSUIT architecture,

but the superdomain system is designed to be a module which could benefit a

variety of networking systems.

The details of the design are explained in this section. First is a description of

many of my goals for designing a caching system, many of which informed the

superdomain system. Next is a discussion of caching’s role in a system with

many mobile users. Native support of user mobility is a strength of information

centric caching systems. Following that, I briefly describe the existing research

being done for PURSUIT for intelligent pre-caching. The rest of the chapter is

specifically on the superdomain system design.

4.1 Caching Goals

When designing a caching system for publish/subscribe internet technology, the

goals for the system fall into the following categories:

• Availability of data

• Network performance (high throughput, high speed, low latency)

• Reliability and resiliency to failures

• Security (confidentiality, availability, integrity of data)
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• Differentiation of systemic failures from intentional deletion

I will now elaborate on each category, as well at the bearing each has on this

project.

4.1.1 Availability of data

The main goal for the availability of data is for any published data to be able to

be found in the network and transmitted back to the requester, including in

cases where the original source has unexpectedly gone offline. An additional

specific concern is for network management information to be available for a

network which has gone down in order for the managing networks and ISPs to

diagnose the problem.

Caching greatly helps availability of data by providing additional distributed

sources of the information items. Intelligent caching systems can utilize network

management data to predict users’ information wishes and cache those

information items in advance of the users’ requests. If this happens, and the

original source experiences downtime, the users may experience uninterrupted

service from the cached copies.

4.1.2 Network performance

One of the incentives to switch to publish/subscribe internetworking is an

expectation of improved performance, eliminating much of the excess traffic,

duplicate traffic for popular items, and suboptimal routing pathing. Among the

performance-oriented goals for publish/subscribe internet, we desire that

popular data is not taxing on the network, that there is a good response rate for

items new to the network (and especially that soon-to-be-released popular items

are ready for the demand by being pre-cached), that cache servers avoid wasting
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much cache space with spam, trash, or unnecessary copies, and that cache

servers vary their strategies statistically (much like ethernet cool-off times vary

statistically by machine so not all machines will attempt to re-send

simultaneously after a network blockage). In addition, an important overarching

goal is for this sytem to be reasonably self-organizing without constant

communication.

4.1.3 Reliability and resilience to failures

Reliability and resilience to failures is an important quality of publish/subscribe

internet technology. Related goals include that data is still available when the

authoritative source is down, and that original sources have enough information

about the external published copies of their data to have a “second,” a trusted

authoritative source if the original goes down or for the remaining copies to be

able to elect one.

Although reliability and resilience to failures can be addressed by other means,

a good caching system does provide better reliability and resilience to failures.

If a popular information item is cached, then if the publishing server is under

heavy load or experiencing downtime, the data remains available.

4.1.4 Security

Publish/subscribe internet technology has many security concerns in attempting

to address the privacy and integrity of information streaming to every

subscriber. Some, but not all, of these concerns apply to storing the data in

caches midway between the source and the subscriber. Various sources can be

differentiated by the signature of the source.

Caches would only hamper the network if filled with junk and malicious
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information. Ideally, cache servers can differentiate, blacklist, and/or delete

malicious data and that no more than a small (set) percentage of a cache comes

from any one source. This is rarely, if ever, done in current caching systems.

Most publish/subscribe systems utilize the fact that modern processors are fast

enough to do packet-level signatures or encryption. This allows for source

certification and increased security. Packet-level encryption and data signatures

are an expectation of the system as a whole, including the data caches and

useful for the caches to enact self-defense mechanisms.

However, opportunistic caching inherently fills caches based on the demands of

subscribers, so limiting caching based on publishers is a bit backwards. Security

is an ongoing, extremely complex problem, and this merits more investigation in

the future.

4.1.5 Differentiate systemic failures from intentional deletion

In order to differentiate systemic failures from intentional deletions, all copies

must get deleted when the authoritative source deletes yet at the same time the

item must remain available while facing censorship or other forms of malicious

takedown.

This is a difficult problem and beyond the scope of this project, but it makes for

interesting future work.

4.1.6 Miscellaneous

Other goals for creating publish/subscribe networking which do not fit into the

above categories include the following. These are beyond the scope of this

project, but may be considered for future work.
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First, how the cache servers handle data must be tailored to the type of data

(i.e. streaming media, aggregating feed, or published text unlikely to change).

For instance, certain types of data are expected to change frequently, such as

stock market prices, news headlines, and twitter feeds; other types of data are

expected to never be modified, such as major software releases, pictures, and

ebooks. Data expected to change frequently could benefit from push

notifications which alert subscribers to new modifications and updates, but this

is unnecessary for static data.

In addition, the timeliness of the delivery of data is always critical in discussions

of network architectures. Users demand low latency and high throughput.

Intelligent caching could potentially provide fast and seamless service to users.

Since users’ perception of network latency and throughput is the most

important qualitative properties of a network, this is always kept in mind while

designing networking systems.

Also, cache servers should be able to pre-warm caches around the world tracking

the sleep/work/play cycle of a time zone or to use time-based subscriptions to

an item (either duration or refresh), and for the cache servers to have low power

usage and cheap energy usage (for instance, Google dynamically moves

computations around the country or around the world depending on the price of

energy at that particular moment in each location).

Another way to improve caching will be to define a set of strategies for

individual pieces of data, for them to choose if it gets cached outside of the

original source, in a few places (either locally or widely distributed), or in as

many places as possible. Combinations of the strategies are also possible.

Different types of data will necessitate the use of different choices of how

widespread the caching strategies should be. For instance, private data which

will not need to be publicly accessed (and should not be) need not be stored
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externally to the original publisher unless the user still requires access to the

data if the original source unexpectedly crashes. Alternatively, most websites,

videos, and other data items which are available to anyone should be able to be

cached widely in case of the vast demand of popularity.

Additionally, updates to an already-released item should be atomic, i.e. updates

appear in none or all copies. In some publish/subscribe systems, this is a mere

option, a design choice that can be made. However, since the advent of

publish/subscribe is tightly coupled with the networking architectural support

for our multitudinous mobile devices, the atomicity of updates becomes

important. However, atomicity is a great challenge, and require design

trade-offs in space and time.

As an example, a user on their smartphone crosses wireless domain boundaries

frequently, including while downloading an item. If multiple different sets of bits

are available under the same unique identifier name (some with an update, some

without), then the user may receive bits from conflicting versions of the

information item when crossing wireless domain boundaries due to the different

routers having conflicting local sources, some updated and some not. Therefore,

atomic updates are important for supporting the mobile users.

4.2 Caching and Mobility

One of the major goals of any publish/subscribe system is for the system to

seamlessly support mobile and wireless devices. Mobile devices are everywhere

in today’s networking environment and becoming more so; any new networking

paradigm must handle them specifically.

Caching could become a great boon to publish/subscribe systems when a client

is mobile. Requested data gets cached locally in response to any mobile device’s
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request. This easily handles the common case of multiple requests for the same

data from the local network because the cached copy can be delivered quickly

and efficiently. If the mobile device changes internet connectivity and domain

before receiving the data, the data can no longer be delivered along its specified

path. However, the cached copy remains in the local cache.

Using standard internet protocols, the mobile device would then request the

same data item again, this time from its new local network. However, since

there is a cached copy in an adjacent network (the previous local network for

the mobile device), smart caching strategies can utilize the proximity of the

other local networks in the network topology and can find this just-cached copy

to send it to the mobile device in the new domain, while retaining efficiency

very similar to if the mobile device had not switched domains. This would

improve the standards of mobile computing greatly. The seamless switching of

wireless domains for a mobile user is one of the strengths of my superdomain

system explained in subsection 4.4.

Current caching systems do not have any built-in means to find data cached in

adjacent domains (either to correlate data from a larger set of users to pre-cache

likely requests, or to seamlessly support a mobile user roaming across a set of

proximal domains). This is partially due to limitations placed by rivalries

between ISPs.

What makes this work unique and particularly valuable is the fact that data can

be found and delivered to the requestor from adjacent domains, without any

additional effort on the mobile requestor’s part.
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4.3 Improving Caching and Storage Strategies

The purpose of my work in the field of caching and network architecture,

specifically within the bounds of the publish/subscribe systems, is to improve

caching and storage systems in PURSUIT system, although most internet

architectures could benefit by the addition of my modular system. The goal of

my system is to better support mobile users roaming across multiple domains

(which are, by necessity, adjacent) and to provide a higher cache hit ratio than a

single cache without adding the latency problems inherent in traditional

distributed caching or hierarchical caching systems[30].

In the CCN architecture, intelligent precaching decision-making algorithms are

difficult due to the inherent nature of the widely distributed small caches. The

caches in CCN also have little to no cooperation. Additionally, in CCN, data is

only sent in response to an interest, so in order to precache, the network must

have drones at many edge points in the network which demand data based on

the predictions of what to precache. This is not an effective way to use caching

to benefit information-centric networking in a thoughtful manner which allows

for planning and pre-caching of items which are expected to be requested.

Therefore, I focus on the large caching facilities, especially in the PURSUIT

system, but that could be used in other publish/subscribe systems or with the

current networking standard of TCP/IP.

4.4 Superdomain Caching Design

4.4.1 Superdomains

“Superdomain” is a term I use to describe my hybrid system between distributed

and hierarchical caching systems. I use the term superdomain to indicate a

43



Figure 1: These three domains shown comprise a superdomain. Each rendezvous node
(RN) is connected to each user and a cache. From the perspective of the users and RN,
the three separate caches in the different domains appear as one coherent, large cache
server.

small, geographically linked, set of domains, each of which includes a cache

server. The cache servers within the superdomain behave as a distributed

caching system, but since they are guaranteed to be all within a small

geographical region (such as the Cambridge/Somerville area), there is only a

short latency waiting for replies from other caches.

Opportunistic caching of information items in PURSUIT manifests as storage of

a copy of the items in a local machine which receives all cacheable local requests

for those items. Opportunistic in-network caching greatly increases performance

for popular or recently requested items by redirecting the network request to

the locally stored copy, eliminating the propagation time to and from the

(non-local) authoritative source for the item as well as by avoiding the

duplication of network traffic along that route.

Which items should be opportunistically cached are chosen by the

decision-making units presented by Flegkas[12]. These cache servers then

subscribe to the information item and republish it within their own scope.

The architecture where caches are subscribed to their cached information items

allows any updates to the information items to be passed down to all copies, as
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each publisher keeps a list of its subscribers and any update would get pushed

down the subscription tree. This also minimizes duplication of updates to a

common information item (such as software patches) and automates distribution.

In order to keep each cache server manageably sized but to provide to the users

with the illusion of a far larger cache while maintaining low cache check latency,

we divide the world into superdomains, each of which has its own distributed

cache system, treated by the users as a single cache. These superdomains

contain an intermediate number of individual domains1, all under the control of

a single ISP. Individual domains each need to have at least one cache server,

even if it is only a placeholder. (Note that a house or apartment is viewed as

one or a few nodes in a larger domain, not a domain in itself. All subscribers to

a certain ISP in a city could define a domain, for example.) Each user treats all

cached items in any cache in her superdomain as locally cached, see Figure 1.

Many modern networking systems, including information centric ones, aim to

support widespread user mobility. Superdomain caching systems support this

aim for two main reasons. First, mobile users moving between various domains

must be supported by complex handovers between hotspots. Having fixed server

locations which are richly interconnected with low latency eases these

transitions. Second, while users are mobile, their mobility is limited and

comparatively slow. Users walking or biking would take a long time to move

from one superdomain to another; even users travelling via rapid transit (i.e.

trains, planes, automobiles) would spend at least several minutes at a time

within the realm of a given superdomain. In addition, recent research into cell

phone use patterns shows that users, despite mobility, are often stationary.

Fully 60% of a given user’s mobile device activity is associated with the top two
1For example, a superdomain could consist of 3 individual domains or 10 individual domains

(although this can vary based on the needs for a given situation as well as performance
optimizations), allowing utilization of multiple cache servers without adding too much latency,
but exact conditions will be discussed under experimentation.
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cell phone towers that device is associated with[14].

As an example, if a non-local information item is requested from a cache by a

user, this will cause a subscription event at the cache server. Then, even if the

user moves between hotspots or domains inside the superdomain, the user’s

request will still be routed to that cache server’s copy of the item.

We wish to distribute the burden of in-network caching within the bounds of

the PURSUIT publish/subscribe system, yet give users and applications control

over which information items are appropriate to cache. Towards this, the users

can request an information item in two different ways. One way is (without

caching) from the information item’s home scope, i.e. /scope1/scope3/item1.

The other way, with caching, would be to request the item directly from its

domain’s local cache’s scope by prefixing a reserved scope in which only a local

cache server is allowed to publish/advertise, i.e. /cache/scope1/scope3/item1.

This base scope /cache would be reserved much like the current 10.x.x.x in IPv4

internet addressing. (Additionally, the base scope /local would be reserved for

requests that should only be filled from within the local domain. These can be

either served or rejected quickly, as the local rendezvous node only need check

anything that was published to it by one of its users. The scope /local is

required to be checked for any information item before the scope /cache.)

In the case of a request under the scope /cache, the local rendezvous node will

direct the request to its local cache. If the requested object is not stored locally

in the cache, the cache will use flood routing to check for the requested object

in all peer caches in its superdomain. The caches must communicate with each

other. This communication can happen via any networking means, including

long-term publication/subscription relationships or an out-of-band, separate

network. As long as superdomains contain a small number of domains which are

geographically and topologically close to each other, this flood routing request
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Figure 2: The user requests 4 information items, the locations of which are shown by
the color-coded circles. The requests are shown by arrows of the same color, with dotted
lines for the outgoing requests and solid lines for the return path of the information
items. The user first queries the /local scope for the items, the rendezvous node directs
the request for the green object and it is delivered to the user with no intervention from
the cache. None of the other three objects are found in the local domain’s cache, so that
cache uses flood routing to query its two peer caches for the objects (via the inter-cache
communication system). A peer cache returns the information about the orange object
to the cache, which sends it to the user. The other two objects are not found, and must
be requested under the original rendezvous ID from the local rendezvous node for the
request to be forwarded to the external network.

will add only a small amount of latency to the system. If any peer caches in the

superdomain have a copy of the requested information item, it is sent to the

subscriber.

If no peer caches in the superdomain have a copy, the cache can either respond

to the user with a failure notice (and then the user can rerequest the object

using the original rendezvous ID, without the /cache prefix) or the cache can

send a subscription request to its local rendezvous node for the same item,

stripping the /cache prefix off of the rendezvous ID. The information item is

delivered to the cache server and stored there, and then the cache server

delivers the object, in turn, to the user.

In summary, superdomain caching answers my goals for a caching system,

within the space of tradeoffs. Data availability is greatly improved by the

distributed duplication that caching provides. Superdomain data availability is
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improved over simple local caching, also, since caches near each other won’t

duplicate items that each other has cached. The idea behind creating

superdomains was to improve network performance within the ability of a user

to perceive it, where the average user cannot detect sufficiently low delay (thus

the slight additional time for checking geographically nearby caches will not

hamper the user’s perception of network speed and latency).

Reliability and resiliency to failures is not greatly changed by this system,

although the additional duplication of data does help provide some resiliency

against nodes publishing data which are prone to have significant downtime.

While security and differentiation of systemic failures from intentional deletion

are not particularly affected by the superdomain caching system, they both

provide significant and interesting avenues for future investigation.

The details of the design, from goals, through the choice of the information

centric system and other current research in caching for the PURSUIT system,

to the exact details of my system, have been described in this section. I built a

simulation to test my concepts, to compare a system with only local

opportunistic caching to my system with cooperative superdomain caching.

48



5 Experimentation

This chapter will describe the specific experiments that I ran to test my system.

The system is ostensibly designed to fit into the PURSUIT system; it is being

examined through that perspective. The code, however, is run in a simulation of

the PURSUIT system. By abstracting away the lowest-level details of the exact

networking protocol, I was better able to simulate wide distribution by

simulating different delays in delivery.

The first simplification inherent in my simulation is that of data transit times

and lag times. While the simulation I built does not run on many machines

across the world, such as in Planetlab, response times are highly dependent on

simulated distance between nodes and somewhat dependent on randomized lag.

Since distance between machines is the primary determining factor in response

time, this is an acceptable approximation.

The second simplification is a modification of the PURSUIT system - the use of

an external, oracle routing system for names of objects. The current version of

the PURSUIT code has not fully resolved dynamic rendezvous for requests

among multiple domains. This was a key incentive to use a simulation. While

the PURSUIT system is unlikely to ever have a routing system equal to that of

an oracle system, I expect further research into the PURSUIT rendevous system

to yield a good rendezvous system not much worse than an all-knowing oracle

system. Furthermore, I expect the added time cost of routing algorithms and

heuristic pathing to be small compared to response times and well within the

margin of error from my randomized additional lag cost.

The third simplification is having each ”node” of the network represent a

domain, complete with multiple users and a local caching/rendezvous node.

That each domain has a local cache server is an acceptable assumption, as
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domains without a cache server are unaffected by my system - they do not reap

the benefits of the superdomain caching system, but their behavior is essentially

unchanged. Also, a domain can be represented as a single node if

internally-filled requests are accounted for. Requests which can be filled by a

local publisher or cached copy are filled in response time determined solely by

the randomized lag, giving times in the tens of milliseconds.

The fourth simplification is a modification of the PURSUIT system. One

distinctive feature of PURSUIT, compared to other publish/subscribe systems,

is that it has the notion of active, long-term ”subscriptions.” Updates to the

subscribed data are automatically sent to all subscribers, without need for a

separate request. However, in the case of updates to data, the update would not

be cached anywhere, so this sheds no light on the question of whether

superdomain caching improves the caching system within the system. While the

caches would update previous publications of cached objects, this might not

affect the speed of the update delivery to end users. Currently, my system does

not properly handle update publications.

Next, I explain the simulation I created and the scenarios I designed to test the

superdomain caching system compared to a local-network-only caching system.

My results and analysis of the data follow after that.

5.1 Experiment Design

The design of the experiment to test my system has two key parts - the

architecture of the ICN simulation and the scenarios crafted to test the system.
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5.1.1 Simulation Architecture

At the core of the simulated system are two key concepts, the ”named”

information object or InfoItem, and the node which has a location and

communicates with its neighboring nodes.

The system I built is a information centric architecture, where the primary

addressing scheme is on the InfoItem. However, I allowed nodes (caches) to also

have purely local addresses, for the express purpose of allowing neighbor nodes

to query caches while under superdomain caching. Since these local addresses

are only shared with sister caches with a direct, local connection, and the names

can be reused in other superdomains, this still fulfills one fundamental goal of

the content-oriented architectures, location independence. The names are

merely a shared moniker for a particular local connection and are merely used

for convenience. This is the only instance in which node names are used by any

nodes other than the rendezvous nodes (RNs). The issue of RN forwarding via

purely InfoItem names is beyond the scope of this simulation, but that should

minimally affect the behavior of the caching in the network.

Each node object (representative of a whole domain) keeps track of the list of

items in its local publications and cache, its node ID and that of its local RN,

and its list of neighbor node IDs. The two outward-facing functions that a node

object has, by which the rest of the network can interact with it, are request

and subscribe. Nodes may only request subscriptions to published objects.

request automatically generates a subscription request from a simulated end

user in the domain of that node, based on the probability densities of requests

in the current world object. If the RN can then have the user subscribed to its

cached copy of the information item (or a neighbor cache’s copy, when using

superdomain caching), it will do so. Therefore, any updates to the item will get
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to the user via the chained subscription links. If the RN does not find a cached

copy to use, subscribe is called by the RN, since one of its nodes has a request

which cannot be filled by its cache or, only in the case of superdomain caching

being on, neighbor caches. This will subscribe the RN’s local cache to the

original published object and subscribe the user to the local cache’s copy of the

object.

In this setup, any two nodes can talk to each other, as this represents the

rendezvous servers of two independent domains talking to each other. When a

request is generated, the following node transactions take place in the

simulation:

1. The system randomly decides which node (representing a domain) will

make the request.

2. The chosen node generates which information item will be requested

according to the popularity distribution of InfoItems.

3. The chosen node requests the named data from itself, adding a local

request round-trip time (RTT) to the cumulative request time. This

represents the requesting user querying the local rendezvous node.

4. If the node finds the requested data item in the local domain, either in the

list of local publications or in the local domain cache, the item is found

and the request completed. Control goes back to the simulator to make a

new request.

5. If the node does not find the requested data item locally, then the node

must find an external copy. If superdomain caching is in use, the other

nodes in the superdomain are sent a request for that item, and a

within-superdomain RTT is added to the cumulative request time. If any

node within the superdomain has the item on its locally published list or
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in its local cache, the information item is found and the request completed.

Control goes back to the simulator to make a new request.

6. If superdomain caching is not in use, or fails to find a copy of the InfoItem

within the superdomain, then the original publisher of the data must be

queried. The publisher of the information is queried in a global routing

table. This is an approximation, as a perfect oracle routing system is not

possible, but should not have a great effect on the total response time of

the data.

7. The node sends a request for the data to the original publisher, and a

request RTT related to the heuristic distance between the two domains is

added to the cumulative request time. The item has now been found and

the request completed. Control goes back to the simulator to make a new

request.

The world object keeps track of a few global settings (such as the number of

requestable items in its universe, number of nodes in the world object, and the

max cache size). It also contains pointers to all contained node objects and the

array of probabilities for each possible request, determined by my

implementation of Zipf’s Law or modified Zipf’s Law.

One of the important elements of the design of the experiments is the pattern of

subscriptions. InfoItems’ popularity was chosen by Zipf’s Law and a modified

Zipf’s Law.

Zipf’s Law states that, for many types of data from social studies on human

behavior, for any item in that occurs with probability p, the next-most popular

item in+1 occurs approximately half as often, with probability p/2. Some

studies have shown the application of Zipf’s Law to human behavioral patterns

for internet requests.[31] However, other studies show that a heavy-tailed
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distribution are more applicable to human behavioral patterns for internet

requests.[6]

In light of this, and since Zipf’s Law original allows a single node’s cache (of

only 10 items) to cover more than 99% of requests in the simulations, I also

used a variation on Zipf’s Law for two experimental scenarios, in which clusters

of four same-probability items are at every level of Zipf’s Law, which functions

as a rough approximation of a middle ground between Zipf’s Law and a

heavy-tailed power-law distribution.

5.1.2 Tested Scenarios

The topology of the simulated network in all scenarios is a linear connection of

five superdomains. Each node represents a domain, and each superdomain

consists of a few nodes (domains) which are geographically close together. This

represents five geographical areas spread out linearly in the topology of the core

internet connections. It is linear to provide a variation in response times.

Response times within a superdomain system are expected to be short, due to

geographical location similarity, with simulated response times ranging from

15ms to 30ms. Response times to farther superdomain systems increase, with

communication between superdomain 0 and superdomain 4 possibly taking up

to 1000ms. Compared to the scale of these response times, an individual node

checking its own cache or list of published items is assumed to be approximately

0. This is a sufficiently general representation of internet topology to be a

reasonable approximation. Furthermore, the primary interest of this work is

finding what percentage of data requests can be served in user-imperceptible

time, so the structure of the network outside of a node’s superdomain does not

affect this query, as any requests which must be served by nodes outside of the

requester’s superdomain all occur in user-perceptible time. (Research suggests
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that data response times below 100ms are undetectable by users[43].)

Four separate experiements were run, with all parameters and setup the same

except for the two independent variables and some initial, controlled,

randomness in the exact topology set up. The two key independent variables

were: the existence of cooperative superdomain caching or not (both cases have

local network caching), and the implementation of Zipf’s Law as stated versus

as applied to small clusters of InfoItems with the same probability of being

requested. The overall response time of the request was the measurement of

primary interest. Requests were also tallied to see what percentage of requests

were served by within the local domain, within the superdomain if superdomain

cache cooperation was in use, and cache system misses.

All scenarios iterate over 1,000,000 requests, 10,000 possible requestable items, a

maximum cache capacity of 10 items, 5 rendezvous/forwarding nodes, 25 total

nodes (4 non-rendezvous nodes per RN, and every node has neighbors of all

other nodes in its rendezvous cluster). In all scenarios, which node publishes

each InfoItem is randomized during initialization.

The first scenario uses the original Zipf’s Law and no superdomain caching. If

Zipf’s Law is a good measure of human behavior for internet requests, this is a

simulation similar to how information-centric networks would work currently.

The second scenario uses the original Zipf’s Law and superdomain caching. If

Zipf’s Law is a good measure of human behavior for internet requests, this is a

simulation similar to how superdomain caching would affect information-centric

networks.

The third scenario uses the modified Zipf’s Law and no superdomain caching. If

Zipf’s Law applies more to groups of items in its popularity model, rather than

individual items, this is a simulation similar to how information-centric
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networks would work currently.

The fourth scenario uses the modified Zipf’s Law and superdomain caching. If

Zipf’s Law applies more to groups of items in its popularity model, rather than

individual items, this is a simulation similar to how superdomain caching would

affect information-centric networks.

Some factors in real-world networking were not handled in the simulation, but

these are factors where variations would leave the results of the analysis almost

entirely unaffected; while they must be considered for any real-world

instantiation of this software, they are tangential to the investigation at hand,

that is, whether superdomain caching systems improve the network over caching

that occurs in the local domain only. Among these factors are the size of

various InfoItems, transient variations in network topology (links going down,

for instance, which are realistically duplicated and resilient to transient failures),

and light traffic versus peak traffic. Other factors in real-world networking were

not handled in the simulation, as they are beyond the scope of this project and

require separate investigation; the assumption I make is that these problems can

be solved

5.2 Experiment Results

I analyzed my raw results by parsing the log files generated during the

simulation and then using the numpy and matplotlib.pyplot libraries for

python. The full analysis script can be found in Appendix B.

While seeing the figures, keep in mind that there are no horizontal or vertical

axis bars - the thick, dark lines are densely packed data points. Near 0 ms

communication time between the nodes, there are two sets of data very near

each other, for requests served via the local cache and those served by a
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neighbor.

With the original Zipf’s Law and no superdomain caching, an immense 99.8% of

requests are served from the local cache. Only 0.2% of requests must come from

subscriptions to the original publisher of the InfoItem. This is incredibly

unbalanced, and if this were an accurate representation of internet traffic, then

no cooperative caching would be necessary. However, with a pure Zipf’s Law

interpretation of request probabilities, the 9 most popular request items make

up the top 99.8% of traffic. Since I believe that it is important to cache more

than the top 9 internet items, I do not believe this model is sufficient. See

Figure 3.

With the original Zipf’s Law and superdomain caching, 22.5% of requests are

served from the local cache, but less than 0.01% of requests must come from

subscriptions to the original publisher of the InfoItem. All other requests are

handled by neighbor caches. In the response time graph, the response times for

local requests and neighbor requests are very close, as evidenced by the dense

packing of dots in a line just barely above the 0 ms marker (representing the

requests served within the local domain) and the dense packing of dots in the

area between the local request times and approximately 50 ms. As the inherent

locality of superdomains guarantees that neighbor domains are geographically

close to each other, such as domains halfway across a city from each other,

response times for a neighbor request are very fast. See Figure 4.

With the modified Zipf’s Law and no superdomain caching, 71.9% of requests

are served from the local cache, and 28.1% must come from subscriptions to the

original publisher of the InfoItem. Since there is such a wide distribution of the

distance that responses must travel to fill requests, every portion of the possible

response times is so densely packed with dots on the scatter plot that all

sections of the possible response times are fully filled with dots. See Figure 5.
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Figure 3: Trial 1: Original Zipf ’s Law request likelihoods with no superdomain caching.
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Figure 4: Trial 2: Original Zipf ’s Law request likelihoods with superdomain caching.
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Figure 5: Trial 3: Modified Zipf’s Law request likelihoods with no superdomain caching.
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Figure 6: Trial 4: Modified Zipf’s Law request likelihoods with superdomain caching.
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With the modified Zipf’s Law and superdomain caching, 24.6% of requests are

served from the local cache. However, this is alleviated by the fact that only

0.06% of requests must come from subscriptions to the original publisher of the

InfoItem. All other requests are handled by neighbor caches. In the response

time graph, the response times for local requests and neighbor requests are very

close, as evidenced by the dense packing of dots in a line just barely above the 0

ms marker (representing the requests served within the local domain) and the

dense packing of dots in the area between the local request times and

approximately 50 ms. As the inherent locality of superdomains guarantees that

neighbor domains are geographically close to each other, such as domains

halfway across a city from each other, response times for a neighbor request are

very fast. See Figure 6.

The first analysis creates a graph of the percentage of requests served by each

category of node: local node, a node within the superdomain system (if in use),

and the node which originally published the InfoItem if a cached copy of the

item is not found. The second analysis creates a scatter plot of the response

times of all requests, over time.

The measurements of primary interest to me were the response time for requests

and the percentage of requests that have response times below the threshold of

human perception. One of the ultimate measures of the success of a networking

architecture is that of qualitative user experience. Having a large percentage of

requests delivered to the user below the threshold of user-perceived delay

substantially affects the perceived quality of the networking architecture. Using

superdomain caching systems decreases the cache hit percentage in the local

cache but greatly increases the cache hit percentage in the geographical region

with a response time below the threshold of what users will perceive as

instantaneous delivery.
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Figure 7: Logarithmic scale comparison of the percentage of the subscription requests
served locally, by superdomain, and by the original publisher.

In order to demonstrate the differences between trials of what percentage of

requests are served from where, I did a logarithmic comparison. Modifying

Zipf’s Law has a direct impact on how many requests must be served from the

original publisher, as a greater variety of items is requested, but otherwise has

minimal impact on the efficacy of the superdomain caching. Having

superdomain caching causes fewer requests to be served locally but almost all

requests to be served within the superdomain (a geographically close area),

therefore response times are still short. With superdomain caching, a very small

percentage of the time (less than 0.1% in both cases here) must the subscription

request be sent all the way to the original publisher of the information, causing

longer response times. See Figure 7.

In this chapter, the architecture of the ICN simulation code and the tested

scenarios were explained. Then, I showed the raw results produced by my

analysis script. These results will be discussed in the following section.
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6 Conclusion

Towards the goal of improving information-centric systems, specifically the

PURSUIT system, I investigated improvements to the associated caching

system. I devised a superdomain caching system to provide the cache hit

benefits of traditional cooperative caching schemes (hierarchical and distributed

caching) without the large associated cost to lag and response time. I built a

simulation to test this theory, and the results supported my key claim, which is

that a superdomain caching system, a small-scale cooperative caching system

strongly tied to nearby geography, will greatly increase cache hit rates within

user-imperceptible response time.

Next, I return to the initial claim that such a system benefits internetworking

systems by providing a greatly increased hit rate without sacrificing

human-perceptible performance.

The two key statistics that the superdomain caching system affects are the

effective cache hit rate and the overall latency cost of the additional system. As

expected, the cache miss rate (the case in which the original source of the

Information Item must receive a subscribe request) decreased substantially

when using cooperative caching.

Traditional forms of cooperative caching, hierarchical and distributed caching,

also both substantially decrease the cache miss rate. However, the problem with

these traditional forms of cooperative caching is the greatly increased latency.

The insight on which this work is based is that geography can be used

advantageously to design locally distributed cooperative caching for significantly

improved performance, as well as improved support for mobility. Furthermore,

this can be achieved with little or no disruption to the current communications

models in ICN. By coordinating cooperative caching with knowledge of the
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geographical network layout, short response times to neighbor caches can be

enforced (and must be, if this system is to function as intended).

On the graphs of response times for the randomly generated requests, in

accordance with Zipf’s Law or a modified heavy-tailed version of Zipf’s Law, it

is immediately apparent that the density of response times greater than 100ms

is far greater in the cases with only local caching, as compared to those with

superdomain caching. However, the density of response times around 50ms is

far greater in the cases with superdomain caching, as compared to those with

local-only caching.

Is this trade-off worthwhile? If, as I claim, users cannot perceive the overhead

for checking neighbor caches, then it is. If not, then local caches should all

optimize for the most popular items, rather than cooperating.

Research into the threshold of human-perceptible computer interactions shows

that ideal latency is less than 100ms.[43] As long as the overhead from the

superdomain system does not cross this threshold, the network of neighbor

caches should be perceived by the user as if they were all the local cache; if this

is the case, then a superdomain caching scheme increases the cache hit rate

without sacrificing perceived latency. The overhead cost of using the

superdomain system would vary in CCN versus in PURSUIT. The objects being

requested and retrieved in PURSUIT are large, complete objects, while the

objects being requested and retrieved in CCN are small fragments of a higher

level objects. This will affect the overhead cost of using the superdomain system.

In all of the simulations, queries to neighbor caches did not cause the overall

latency to become greater than 100ms in the case of a cache hit. In cases of a

cache miss, the latency would already generally be greater than 100ms.

However, the same logic applies - since the portion of the latency due to queries
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to neighbor caches was under 100ms, it is not a perceptibly different lag than

otherwise.

Having analyzed my data, I showed that the latency overhead of a superdomain

caching system is lower than the ability of users to perceive it. Thus my system

is vindicated as a system that provides a much greater cache hit rate without

perceptibly sacrificing performance.
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7 Future Work

In this final section, some possible avenues for future work are described.

However, the problem space surrounding the next generation of networking

technology is vast and these are only a few select steps which could better

inform future research in internetworking. I will discuss some of these avenues

for future research from the high level perspective of networking research

towards the more specific systems that are relevant to the niche of this thesis,

namely caching in publish/subscribe and information centric networks.

One major component of any internetworking technology is security. This thesis

does not handle the complex problems which come with any adequate treatment

of the problem of network security. However, information privacy continues to

grow as a concern, as users put more personal information on the internet.

Security frequently competes with transmission streamlining (for instance,

through caching of Information Items) as a concern in network engineering

design.

Other major components of networking design, such as reliability and resilience

to failures, are important problems for ongoing research, not only in information

centric networking and other futuristic networking research but also in the

current IP-based internet. Improved caching, such as my proposed system, can

make a great contribution to the reliability and resilience to failures of a network.

Two important problems for future research into publish/subscribe systems are

both problems of differentiation. First, how do you differentiate systemic

failures from intentional deletions? Second, how do you differentiate the

different types of traffic on the internet? Publish/subscribe systems could

greatly benefit from some added structure to inform the type of data (is it

expected to change relatively frequently, such as a feed for a social media site,
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or is it relatively static data, such as a photograph?), or the desired distribution

pattern (is this private and/or streaming data not needing to be cached, such as

a VoIP call, or is this expected to be popularly requested, such as a security

update to a widespread piece of software?). This applies to caching in that the

questions of which data items should be preserved in the cache or flushed from

the cache. In the case of intentional deletion, the cached copies should be

flushed as soon as possible. However, in the case of systemic failures, it becomes

much more important that the cached copies be preserved, so that the data is

still available during the failure.

In addition, within publish/subscribe systems, there may be ways of

intelligently improving the operation of caches. For instance, any items which

have expiration times (common in web pages and useful for information items

which expect frequent or important modifications) can be forced to be

immediately deleted from the cache at the expiration time, freeing up more

space in the cache. However, some data items can utilize the stale version in the

cache (even if not quite up to date, it is still useful and better than nothing)

and other data items cannot utilize the stale version in the cache because a stale

version is a waste.

Another way to improve caching will likely be to pre-warm the caches with data

that is expected to be used, based on the day of the week and time zone.

During the work day, business-related data items should be cached, while in the

afternoon and evening data relevant to games, media, and other entertainment

should be the focus of the local cache. During the nighttime hours, most of the

processors serving the cache could be powered down to save on energy costs,

while the cache stores backup data, network management data, and other

similar items that must have a backup but need not take up storage space in

any caches with more active users.
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These, as well as many other problems in the space, must be researched as

internetworking technology moves forward.
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Appendix A: Simulation Code

import random
import math
import os

#These initial declarations change with every experiment run
CACHING = ’ON’
GLOBAL_ITER = 1000000
GLOBAL_LOG = ’thesis/output_caching_2’
GLOBAL_TIMES = ’thesis/time_caching_2’
GLOBAL_PUBS = {}

class World:
def __init__(self):

self.size_of_info_items = 1000
self.num_requestable_items = 10000
self.max_cache_size = 10
self.request_array = list(range(self.num_requestable_items))

#these two lines are for straight Zipf’s Law
#self.request_probs = [0.5**(n+1) for n in self.request_array]
#self.request_probs[-1] *= 2 # to make probabilities sum to 1

#these lines are for modified Zipf’s Law, clusters of 4 items
self.request_probs = [(0.5**((n/4)+1))/4.0

for n in self.request_array]
self.request_probs[-1] *= 2
self.request_probs[-2] *= 2
self.request_probs[-3] *= 2
self.request_probs[-4] *= 2

self.request_cum_probs = [0] * self.num_requestable_items
cumulative = 0
for i in self.request_array:

cumulative += self.request_probs[i]
self.request_cum_probs[i] = cumulative

f = open(GLOBAL_LOG, ’a’)
f.write("\n\n\nWorld initialization complete.\n")
f.close()

def initialize_network(self):
self.num_rns = 5
self.num_nodes = 25
self.num_nodes_per_rn = self.num_nodes / self.num_rns
self.list_of_node_ids = list(range(self.num_nodes +
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self.num_rns))
self.list_of_nodes = []
self.split = self.num_nodes / self.num_rns
temp = -1
for i in range(self.num_nodes):

if i % self.num_nodes_per_rn == 0:
self.list_of_nodes.append(RN(self, i, [], i))
temp = i

else:
neighs = []
for j in range(temp, temp + self.split):

neighs.append(j)
self.list_of_nodes.append(Node(self, i,

neighs, temp))
for i in range(self.num_requestable_items):

ran = random.randint(0, self.num_nodes - 1)
GLOBAL_PUBS[i] = ran
self.list_of_nodes[ran].pub_list.append(i)

f = open(GLOBAL_LOG, ’a’)
f.write("\nNetwork initialization complete.\n")
f.close()

def choose_random_node_to_request(self):
#needs to NOT be a RN
ran = random.randint(0, self.num_nodes - 1)
picked = self.list_of_nodes[ran]
if picked.node_id == picked.local_rn:

return self.choose_random_node_to_request()
else:

return picked
def ping_time(self, n1, n2):

#all in milliseconds
#this will, sadly, have to be mostly hardcoded
node1 = self.list_of_nodes[n1]
node2 = self.list_of_nodes[n2]
temp = (abs(node1.local_rn - node2.local_rn) + 1)
if temp == 1:

m1 = 15
m2 = 30

elif temp == 2:
m1 = 50
m2 = 75

elif temp == 3:
m1 = 100
m2 = 150

elif temp == 4:
m1 = 200
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m2 = 400
else:

m1 = 400
m2 = 1000

r = random.randint(m1, m2)
return r

#every node here is actually a caching node representing a small network
class Node:

def __init__(self, world, node_id, neighbor_list, local_rn):
self.pub_list = []
self.cache_list = []
self.node_id = node_id
self.neighbor_list = neighbor_list
self.local_rn = local_rn

def choose_request(self, world):
#helper function to choose which item you’ll request,
#according to Zipf’s Law
ran = random.random()
req = -1
for i in list(range(w.num_requestable_items)):

if ran <= world.request_cum_probs[i]:
req = i
break

self.log_request(world, req)
return req

def log_request(self, world, req):
# helper function to notate the creation of a request
f = open(GLOBAL_LOG, ’a’)
f.write("Node %(node)d is requesting InfoItem %(item)d\n"

% {’node’: self.node_id, ’item’: req})
f.close()

def check_cache(self, world, request, origin):
if (request in self.pub_list):

if origin == self.node_id:
f = open(GLOBAL_LOG, ’a’)
f.write("Self %d pub_list hit\n" % self.node_id)
f.close()
return 0

else:
f = open(GLOBAL_LOG, ’a’)
f.write("Neighbor %d pub_list hit\n" % self.node_id)
f.close()
return 0

elif (request in self.cache_list):
#since we’re doing LRU caching, need to push to back of list
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#because it got used
self.cache_list.remove(request)
self.cache_list.append(request)
if origin == self.node_id:

f = open(GLOBAL_LOG, ’a’)
f.write("Self %d cache hit\n" % self.node_id)
f.close()

else:
f = open(GLOBAL_LOG, ’a’)
f.write("Neighbor %d cache hit\n" % self.node_id)
f.close()

return 0
else:

#these are unnecessary but possible additions to the log
#f = open(GLOBAL_LOG, ’a’)
#f.write("Node %d pub_list/cache miss\n" % self.node_id)
#f.close()
#print "cache miss at node " + str(self.node_id)
return -1

def request(self, world):
#look up in own publications first, then own cache
#then ask neighbor caches if CACHING == ’ON’
#will eventually return a 0
t = 0
request = self.choose_request(world)
if self.check_cache(world, request, self.node_id) >= 0:

f2 = open(GLOBAL_TIMES, ’a’)
f2.write(str(0) + "\n")
f2.close()
return 0

if CACHING == ’ON’:
t = world.ping_time(self.node_id, self.node_id)
#this is functionally the same as self to neigh
for neigh in self.neighbor_list:

if world.list_of_nodes[neigh].check_cache(
world, request, self.node_id) >= 0:
f2 = open(GLOBAL_TIMES, ’a’)
f2.write(str(t) + "\n")
f2.close()
return 0

val = (world.list_of_nodes[self.local_rn]).forward(
world, request, self.node_id, t)

#sanity checks
if val < 0:

"request error 1: forward passed error"
return val
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elif val !=request:
"request error 2: val not request"
return val

else:
# OPPORTUNISTIC CACHING!
self.cache_list.append(val)
if len(self.cache_list) > world.max_cache_size:

self.cache_list = self.cache_list[1:]
#using LRU

return val
def subscribe(self, world, request, origin):

#no need for long-term subscriptions here
#prior functions have already verified that the node
#contains the request, but let’s double check
if GLOBAL_PUBS[request] != self.node_id:

print "subscribe error 1: self = " + str(self.node_id) +
"; request = " + str(request) + "; origin = " + str(origin)

return -1
if not (request in self.pub_list):

print "subscribe error 2: self = " + str(self.node_id) +
"; request = " + str(request) + "; origin = " + str(origin)

return -1
f = open(GLOBAL_LOG, ’a’)
f.write("Node %(sub)d subscribes to InfoItem %(item)d from" +

" Publisher %(node)d\n"
% {’sub’: origin, ’item’: request, ’node’: self.node_id})

f.close()
return request

#since individual networks are represented by single "nodes,"
#the RN only ever needs to pass missed requests
class RN(Node):

def forward(self, world, request, origin, time):
#look up where the request is hosted in saved forwarding table
#ignore the case where this is not known, irrelevant
#pass on request to the publisher
value = GLOBAL_PUBS[request]
node = world.list_of_nodes[value]
t = world.ping_time(origin, value) + time
f2 = open(GLOBAL_TIMES, ’a’)
f2.write(str(t) + "\n")
f2.close()
return node.subscribe(world, request, origin)

w = World()
w.initialize_network()
for i in list(range(GLOBAL_ITER)): #should increase
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node = w.choose_random_node_to_request()
if (node.request(w) < 0):

print "ERROR"
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Appendix B: Analysis Code

import numpy as np
import matplotlib.pyplot as plt

times_base = range(1000000)
times_caching = []
times_no_caching = []

f_t_caching = open(’thesis/time_caching_2’)
f_t_no_caching = open(’thesis/time_no_caching_2’)

for line_t_caching in f_t_caching:
num = int(line_t_caching)
times_caching.append(num)

for line_t_no_caching in f_t_no_caching:
num = int(line_t_no_caching)
times_no_caching.append(num)

f_t_caching.close()
f_t_no_caching.close()

total_queries = 1000000
self_hit_caching = 0
neigh_hit_caching = 0
miss_caching = 0
self_hit_no_caching = 0
miss_no_caching = 0

f_caching = open(’thesis/output_caching_2’)
f_no_caching = open(’thesis/output_no_caching_2’)

i = 0
for line_caching in f_caching:

if "Self" in line_caching:
self_hit_caching += 1
i += 1

elif "Neighbor" in line_caching:
neigh_hit_caching += 1
i += 1

elif "Publisher" in line_caching:
miss_caching += 1
i += 1

elif "cache hit" in line_caching:
if times_caching[i] == 0:
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self_hit_caching += 1
else:

neigh_hit_caching += 1
i += 1

for line_no_caching in f_no_caching:
if "Self" in line_no_caching:

self_hit_no_caching += 1
elif "Publisher" in line_no_caching:

miss_no_caching += 1
elif "cache hit" in line_no_caching:

self_hit_no_caching +=1

f_caching.close()
f_no_caching.close()

def barplt(self_hit, neigh_hit, miss, filename):
heights = [0, 0, 0]
heights[0] = ( self_hit * 100.0 ) / ( total_queries )
heights[1] = ( neigh_hit * 100.0 ) / ( total_queries )
heights[2] = ( miss * 100.0 ) / ( total_queries )
print heights
if not sum(heights) == 100:

print "ERROR"
print sum(heights)

ind = np.arange(3)
width = 0.35
plt.bar(ind, heights, width)
plt.title(’Percent requests served local/superdomain/original source’)
plt.ylabel(’Percentage’)
plt.xticks(ind+width/2., (’Local Domain’, ’Superdomain’, ’Publisher’) )
plt.yticks(np.arange(0,100,10))
plt.savefig(filename)
return

#then do scatter plot of time and ping time from the time file

def scatterplt(times_array, filename):
plt.scatter(times_base, times_array)
plt.title(’Ping times for requests’)
plt.ylabel(’Ping Time’)
plt.xlabel(’Time’)
plt.savefig(filename)
return

#now make the pretty graphs
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#IMPORTANT - PYPLOT LIKES TO NOT CLEAR ITS MEMORY
#ONLY RUN ONE PLOT COMMAND AT A TIME
#barplt(self_hit_caching, neigh_hit_caching, miss_caching,

#’thesisfigs/bar_caching_2’)
#barplt(self_hit_no_caching, 0, miss_no_caching,

#’thesisfigs/bar_no_caching_2’)
#scatterplt(times_caching, ’thesisfigs/times_caching_2’)
scatterplt(times_no_caching, ’thesisfigs/times_no_caching_2’)
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