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Abstract 
 
A quasi-2D model for two channel helium flow in CICC has been developed. This model is 

derived from fundamental thermohydraulic equations, and implicitly analyzes the mass, moment 

and energy exchange between two channels. The helium flow rates between two channels are 

treated as independent variables,  and are solved in parallel with other independent variables 

such as pressures, temperatures and velocities. This new model may provide more in-depth 

understanding of thermohydraulic performance of helium flow in two channel superconducting 

coils.   
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1. Introduction 
 
CSMC and CSIC are all made of two-channel superconductor cable s.  Therefore, a sophisticated 
two-channel model becomes necessary for simulating thermohydraulic and quenching behavior 
of the CSMC/CSIC. 
 
Several researchers 1,2,3 have analyzed this problem in detail.  Bottura1 developed a one 
dimensional model, in which he assumed that the helium temperature and pressure in both 
bundle and central hole are the same. Bottura’s model also sets helium pressure as one of the 
independent variables,  and therefore all codes based on his model show excellent stability even 
as the pressure different between inlet and outlet is very small.  However, Bottura’s 1D model 
neglects the mass, moment and energy exchange between the two channels.  The effect of such 
simplification on all over results is unknown. 
 
Zanino et al.2 further developed Bottura’s 1D model by incorporating mass, moment and energy 
exchange between two channels into his new 1D model.  He simply assumed that the helium 
flow rate ⊥v   between two channels is proportional to the square root of pressure difference 

pδ between two channels : 
 

p
pp

v
δ
δ

κρ
δ2

=⊥  ,         (1.1) 

 
where:  κ  is loss coefficient due to flow resistance between two channels.  This assumption was 
then applied to explicitly define, in Buttura’s 1D model,  all extra terms which represent the 
mass,  moment and energy exchanges between two channels.  Equation 1.1 is based on Bernoulli 
equation in static flow, and without considering any dynamic variables.  The effect of such 
simplification may need further exploration. 
 
A new model for two channel helium flow in CICC has been developed, and reported below.  
This model is derived from fundamental thermohydraulic equations, and implicitly analyzes the 
mass, moment and energy exchange between two channels. The helium flow rates between two 
channels are treated as independent variables,  and are solved in parallel with other independent 
variables such as pressures, temperatures and velocities. This new model may provide more in-
depth understanding of thermohydraulic performance of helium flow in two channel 
superconducting coils.   
 
The following sections will first discuss a set of general thermohydraulic equations, which are 
then applied to CICC for a 2D thermohydraulic model.  Finally, the approach of a quasi-2D 
model to use 1D method for solution of a 2D problem will be reported.  
 
 
2. Development of a 2D model for two-channel helium flow in CICC 
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As further development of Bottura’s 1D formulations,1  the following derivations lead to a set of  
corresponding 3D formulations, which are then applied for the 2D application in two-channel 
helium flow. 
 
2.1   Derivation of a pressure-based energy balance equation 
 
The general governing equations of mass, momentum and energy balance for helium flow in 
CICC are respectively:4 
 

( ) 0=⋅∇+
∂
∂

v
t

r
ρ

ρ
,         (2.1.1) 

 

( ) Fpvvv
t

rrrr
ρρρ −−∇=⋅∇+

∂
∂

,       (2.1.2) 

 

( ) ( )
A
Q

vpee
t

=+⋅∇+
∂
∂ r

ρρ ,        (2.1.3) 

 
where:   the viscosity effects are neglected,  and the friction force is defined as 
 

hD

vv
fF

rrr
2=  .           (2.1.4) 

 
The total specific energy e  and specific enthalpy h  are defined respectively as 
 

2

2v
ie +=  ,          (2.1.5) 

 
 and    
 

ρ
p

ih += ,          (2.1.6) 

 
where:  i  is the specific internal energy. 
 
The momentum balance equation 2.1.2 can be expressed alternatively as: 
 

( ) Fpvv
t
v rrr
r

ρρρ −−∇=∇⋅+
∂
∂

.       (2.1.7) 

 
Substituting Eqs. 2.1.5 and 2.1.6 into Eq. 2.1.3 gives 
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A
Q

v
v

vh
v

ph
t

=







+⋅∇+








+−

∂
∂ rr

ρρρρ
22

22

  .     (2.1.8) 

 
Further expanding Eq. 2.1.8 results in: 
 

( ) ( )
A
Q

v
vv

vh
vv

tt
p

h
t

=





 ⋅

⋅∇+⋅∇+





 ⋅

∂
∂

+
∂
∂

−
∂
∂ r

rr
r

rr
ρρρρ

22
 .    (2.1.9) 

 
By applying the following rules of vector operator:5 
 

( ) ( ) hvvhvh ∇⋅+⋅∇=⋅∇
rrr

ρρρ        (2.1.10) 
 
and 
 

( )
222

vv
vv

vv
v

vv
rr

rr
rr

r
rr

⋅
∇⋅+⋅∇

⋅
=






 ⋅

⋅∇ ρρρ ,      (2.1.11) 

 
Eq. 2.1.9 becomes 
 

( ) ( )
A
Q

v
t

vvvv
v

vv
tt

p
v

t
hhv

t
h

=





 ⋅∇+

∂
∂⋅

+
⋅

∇⋅+





 ⋅

∂
∂

+
∂
∂

−





 ⋅∇+

∂
∂

+∇⋅+
∂
∂ r

rrrr
r

rr
rr

ρ
ρ

ρρρ
ρ

ρρ
222

. 

 
           (2.1.12) 
 
Applying mass balance equation 2.1.1 reduces Eq. 2.1.12 to 
 

A
Qvv

v
t
v

v
t
p

hv
t
h

=
⋅

∇⋅+
∂
∂

⋅+
∂
∂

−∇⋅+
∂
∂

2

rr
r

r
rr

ρρρρ  .     (2.1.13) 

 
 
The 1st and 2nd terms of the left side of Eq. 2.1.13 involve the enthalpy,  which is related to 
pressure and density by  the following thermodynamics relation:1 
 

dh
c

dp
c

d
22

1 ρφϕ
ρ −

+
= .          (2.1.14) 

 
where:  c  is the isotropic speed of sound in helium,   and φ  is the Gruneisen parameter, 
 

S

T
T 








∂
∂

=
ρ

ρ
φ .          (2.1.15) 

 
Manipulation of Eq. 2.1.14 leads to:   
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( )
t

c
t
p

t
h

∂
∂

−
∂
∂

+=
∂
∂ ρ

φρφ 21 ,        (2.1.16) 

 
and 
 

( ) ρφρφ ∇−∇+=∇ 21 cph .        (2.1.17) 
 
Let’s examine the 4th and 5th terms involving kinetic energy in the left side of Eq. 2.1.13. 
The following rules of vector operator are applied:5 
 

( )vvvv
vv rrrr
rr

∇⋅+×∇×=
⋅

∇
2

,        (2.1.18) 

 
and 
 

0=×∇×⋅ vvv
rrr

.         (2.1.19) 
 
 The sum of the 4th and 5th terms then becomes: 
 

( ) 





 ∇⋅+

∂
∂

⋅=
⋅

∇⋅+
∂
∂

⋅ vv
t
v

v
vv

v
t
v

v
rr

r
r

rr
r

r
r

ρρρρ
2

 .     (2.1.20) 

 
Substituting momentum balance equation 2.1.7 into Eq. 2.1.20 gives 
 

Fvpv
vv

v
t
v

v
rrr

rr
r

r
r

⋅−∇⋅−=
⋅

∇⋅+
∂
∂

⋅ ρρρ
2

.       (2.1.21) 

 
The 1st, 2nd, 4th, and 5th terms of Eq. 2.1.13 are replaced with new expressions in 2.1.16, 2.1.17 
and 2.1.21,  and Eq. 2.1.13 becomes 
 

A
Q

Fvpvv
t

c
t
p

=⋅−∇⋅+





 ∇⋅+

∂
∂

−
∂
∂ rrrr

ρ
φ

ρ
ρ

φφ
11 2

.     (2.1.22) 

 
Applying mass balance Eq. 2.1.1 in Eq. 2.1.22,   we then have the final form of the general 
pressure-based energy balance equation as: 
 







 ⋅+=⋅∇+∇⋅+

∂
∂

Fv
A
Q

vcpv
t
p rrr

ρφρ 2 .      (2.1.23) 

 
Eq. 2.1.23  can be reduced to Bottura’s 1D equation1 for 1D modeling as: 
 







 +=

∂
∂

+
∂
∂

+
∂
∂

xx
x

x Fv
A
Q

x
v

c
x
p

v
t
p

ρφρ 2 .      (2.1.24) 
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2.2 Derivation of a temperature-based energy balance equation 
 
Again, start from the general energy balance equation 2.1.3: 
 

( ) ( )
A
Q

vpee
t

=+⋅∇+
∂
∂ r

ρρ .        (2.1.3) 

 

Substituting Eq.  2.1.5:  
2

2v
ie +=  into  Eq. 2.1.3 gives 

( ) ( ) ( )
A
Q

vpv
v

vi
v

t
i

t
=⋅∇+








⋅∇+⋅∇+








∂
∂

+
∂
∂ rrr

ρρρρ
22

22

.    (2.2.1) 

 
Manipulation of  Eq. 2.2.1 and using vector operators as same as in the last section result in: 
 

( ) ( ) ( )
A
Q

vpv
t

vvvv
v

vv
t

v
t

iiv
t
i

=⋅∇+





 ⋅∇+

∂
∂⋅

+





 ⋅

∇⋅+





 ⋅

∂
∂

+





 ⋅∇+

∂
∂

+∇⋅+
∂
∂ rr

rrrr
r

rr
rr

ρ
ρ

ρρρ
ρ

ρρ
222

. 

           (2.2.2) 
 
Applying mass balance equation 2.1.1 reduces Eq. 2.2.2 to 
 

( )
A
Q

vp
vv

v
t
v

viv
t
i

=⋅∇+





 ⋅

∇⋅+
∂
∂

⋅+∇⋅+
∂
∂ r

rr
r

r
rr

2
ρρρρ .    (2.2.3) 

 
The 1st and 2nd terms of the left side in Eq. 2.2.3 involve specific internal energy i , which can be 
related to density and temperature by the following thermodynamics relation:1 
 

dTC
d

TC
p

di vv +







−=

ρ
ρ

φ
ρ

,        (2.2.4) 

 
where: vC  is the specific heat at constant volume. 
 
Eq. 2.2.4 can be expressed alternatively by: 
 

t
T

C
t

TC
p

t
i

vv ∂
∂

+
∂
∂









−=

∂
∂

ρ
ρ

φ
ρ

ρ ,       (2.2.5) 

 
and  
 

TCTC
p

i vv ∇+∇







−=∇ ρρφ

ρ
ρ .       (2.2.6) 
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The 3rd, 4th and 5th terms of the left side in Eq. 2.2.3 involve kinetic energy and work done by 
pressure.  Again using vector operators and momentum balance equation 2.1.7,  we have:  
 

( ) Fvvpvp
vv

v
t
v

v
rrrr

rr
r

r
r

⋅−⋅∇=⋅∇+





 ⋅

∇⋅+
∂
∂

⋅ ρρρ
2

.      (2.2.7) 

 
Substituting Eqs. 2.2.5, 2.2.6 and 2.2.7 into Eq. 2.2.3 gives 
 

Fv
A
Q

vpTvCvTC
p

t
T

C
t

TC
p

vvvv

rrrrr
⋅+=⋅∇+∇⋅+∇⋅








−+

∂
∂

+
∂
∂









− ρρρφ

ρ
ρ

ρ
φ

ρ
. 

           (2.2.8) 
 
Appling mass balance equation 2.1.1 reduces Eq. 2.2.8  to the final form of the general 
temperature-based energy balance equation: 
 







 ⋅+=∇⋅+⋅∇+

∂
∂

Fv
A
Q

C
TvvT

t
T

v

rrrr
ρ

ρ
φ

1
.      (2.2.9) 

 
Eq. 2.2.9 can be reduced to Bottura’s 1D equation1 for 1D modeling as: 
 







 +=

∂
∂

+
∂
∂

+
∂
∂

xx
v

x
x Fv

A
Q

Cx
T

v
x
v

T
t
T

ρ
ρ

φ
1

. (2.2.10) 

 
In summary,  a set of general equations for 3D thermohydraulic analysis of helium flow in CICC 
is listed as the following: 
 

( ) 0=⋅∇+
∂
∂

v
t

r
ρ

ρ
,         (2.1.1) 

 

( ) Fpvv
t
v rrr
r

ρρρ −−∇=∇⋅+
∂
∂

,       (2.1.7) 

 







 ⋅+=⋅∇+∇⋅+

∂
∂

Fv
A
Q

vcpv
t
p rrrr

ρφρ 2 , (2.1.23) 

 







 ⋅+=⋅∇+∇⋅+

∂
∂

Fv
A
Q

C
vTTv

t
T

v

rrrr
ρ

ρ
φ

1
.      (2.2.9) 

 
 
2.3 A 2D model for two-channel helium flow 
 
Applying the general equations listed in the last section for 2D application gives a set of mass, 
momentum and energy balance equations for 2D helium flow in two-channel CICC: 
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( ) 0
1

=







∂
∂

+
∂
∂

+







∂
∂

+
∂
∂

+
∂
∂

r
v

x
vrv

rrx
v

t rxr
x ρρ

ρ
ρ

,     (2.3.1) 

 

x
x

r
x

x
x F

x
p

r
v

v
x

v
v

t
v

−
∂
∂

−=
∂
∂

+
∂

∂
+

∂
∂

ρ
1

,       (2.3.2) 

 

r
r

r
r

x
r F

r
p

r
v

v
x

v
v

t
v

−
∂
∂

−=
∂

∂
+

∂
∂

+
∂

∂
ρ
1

,       (2.3.3) 

 

( ) 





 ++=








∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

rrxxr
x

rx FvFv
A
Q

rv
rrx

v
c

r
p

v
x
p

v
t
p

ρρφρ
12 ,  (2.3.4) 

 

( ) 





 ++=








∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

rrxx
v

r
x

rx FvFv
A
Q

C
rv

rrx
v

T
r
T

v
x
T

v
t
T

ρρ
ρ

φ
11

.  (2.3.5) 

 
 
 
3. Development of a quasi-2D model for two-channel helium flow in CICC 
 
Solving the above equations Eqs. 2.3.1 to 2.3.5 will give accurate results for a 2D helium flow of 
CICC.  However, the CPU time may be expensive for a 2D/3D code.  Therefore,  a quasi-2D 
model using 1D method to solve a 2D problem has been developed, and will be reported below. 
 
3.1 Model assumptions 
 
a. Since the axial dimension is much greater than the radial direction in the two-channel CICC,  
it is reasonable to assume that  the pressure, temperature, density and axial velocity in each 
channel (i.e., bundle and central hole) are only functions of axial coordinates x; 
 
b. The radial velocities in both channels only exist around the interface between 2 channels with 
effective distance in the order of the spring thickness. Other reasonable distribution functions of 
the radial velocities could be assumed (e.g., linear or exponential decrease from the interface 
etc.),  but these different distribution functions only affect the radial momentum balance ,  and 
the preliminary analyses show that their effect on final results is very small. 
  
3.2 Quasi-2D mass balance equations 
 
The mass balance is controlled by Eq. 2.3.1.  Integration of Eq. 2.3.1 over radial and angle 
coordinates can be performed by: 
 

( ) ( ) ( )∫ ∫∫ ∫∫∫ +⇒
ππ

εφεφφε
2

0

2

0 0

1.3.2.1.3.2.1.3.2.
B

H

H r

r
B

r

H rdrEqdrdrEqdrdrdEq ,  (3.2.1) 
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where:   Br  and Hr   are the outside radius of the bundle annulus  and central hole respectively.  

Bε  and Hε  are the percentage of helium space in the bundle and hole respectively.   Apparently,  
in the current CICC cable design:  
 

( )22
HB

B
B rr

A
−

=
π

ε     and     1=Hε .            (3.2.2) 

 
Implementation of Eq. 3.2.1 results in 
 

x
v

A
x
v

A
x

vA
x

vA
t

A
t

A H
HH

B
BB

H
HH

B
BB

H
H

B
B ∂

∂
+

∂
∂

+
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂

ρρ
ρρρρ

 

 
( ) 02 =−+ rBBBrHHH vvr ρερπ  ,       (3.2.3) 

 
where:  rBv  and rHv   are the radial velocities of helium in the bundle and hole respectively. 
 
To replace density with pressure and temperature, by using the state equation    
 

( )Tp,ρρ =  ,          (3.2.4)  
 
Eq. 3.2.3 can be converted into 
 

t
T

T
A

t
p

p
A

t
T

T
A

t
p

p
A H

H

H
H

H

H

H
H

B

B

B
B

B

B

B
B ∂

∂
∂
∂

+
∂

∂
∂
∂

+
∂

∂
∂
∂

+
∂

∂
∂
∂ ρρρρ

 

 

x
T

T
vA

x
p

p
vA

x
T

T
vA

x
p

p
vA H

H

H
HH

H

H

H
HH

B

B

B
BB

B

B

B
BB ∂

∂
∂
∂

+
∂

∂
∂
∂

+
∂

∂
∂
∂

+
∂

∂
∂
∂

+
ρρρρ

 

 

( ) 02 =−+
∂

∂
+

∂
∂

+ rBBBrHHH
H

HH
B

BB vvr
x

v
A

x
v

A ρερπρρ .    (3.2.5) 

 
For first order approximation,  assume that mass balance is established at the interface between 
the two channels,  Eq. 3.2.5 can be simplified as: 
 

rBBBrHH vv ρερ = .         (3.2.6)  
      
 
3.3 Quasi-2D momentum balance equations 
 
The momentum balance along x axis is controlled by Eq. 2.3.2 for both channels. Integration of 
Eq. 2.3.2 over radial and angle coordinates for each channel gives 
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B
B

B

B
B

B F
x

p
x
v

v
t

v
−

∂
∂

−=
∂
∂

+
∂

∂
ρ
1

 ,       (3.3.1) 

 
and 
 

H
H

H

H
H

H F
x

p
x

v
v

t
v

−
∂

∂
−=

∂
∂

+
∂

∂
ρ
1

 .       (3.3.2) 

 
The friction forces BF  and HF  are defined respectively for bundle and hole as: 
 

hB

BB
BB D

vv
fF 2= ,         (3.3.3) 

 
and 
 

hH

HH
HH D

vv
fF 2= , (3.3.4) 

 
where:  Bf , Hf   and hBD , hHD  are friction factors and hydraulic diameters for the bundle and 
hole respectively. 
 
The momentum balance along the radial direction is controlled by Eq. 2.3.3.  Integration of Eq. 
2.3.3 over radial and angle coordinates can be performed by 
 

( ) ( )∫ ∫∫∫ ⇒
π

φφ
2

0 0

3.3.2.3.3.2.
Br

drEqddrdEq . (3.3.5) 

 
Note that, by assumption,  the helium radial velocities rBv  and rHv  only exist around the 
interface between the two channels over effective distances pBrδ  and pHrδ  for bundle and hole 

respectively. pBrδ  and pHrδ  are actually determined by the effective distance of the pressure 
difference between the two channels, and should be in the same order of the spring thickness.  
Implementation of the above integration gives 
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The last term of Eq. 3.3.6 represents the radial interface resistance as helium flows from one 
channel to ano ther.  It is expressed in a form of friction force here.  ρ , frδ  and rF  are helium 
density at the interface, effective friction distance,  and radial friction force respectively. ρ  is 
about the average helium density of the two channels.  frδ  is in the order of the spring thickness. 

rF  can be expressed as the same form as in Eq. 2.1.4 as: 
 

hr

rr
rr D

vv
fF 2= ,   (3.3.7) 

 
where:  the radial hydraulic diameter hrD  is approximately twice the gap between turns of the 
spring.  If the spring gap is zero (i.e., the interface is sealed), the radial interface resistance 
becomes infinite, and the radial helium flow reduces to zero. For coding simplicity,  this term 
can be approximately written as: 
 

( )BHf ppFr −= κδρ ,        (3.3.8) 
 
where:  κ is defined as the flow resistance coefficient at interface, and ranges from 0 to 1.  1=κ  
if the interface is sealed, and the radial helium flow reduces to zero. 0=κ  if there is no flow 
resistance.  In current CICC design, the interfacial spring is open up, and the radial flow velocity 

rv  is very small  ( in order of 10-6 m/s),  we assume a zero flow resistance, i.e. 0=κ . 
 
 
3.4 Quasi-2D energy balance equations 
 
The energy balance is controlled by Eqs. 2.3.4 and 2.3.5 for both channels.  Integration of Eq. 
2.3.4 over radial and angle coordinates for each of bundle and hole channel gives 
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Integration of Eq. 2.3.5 over radial and angle coordinates for each of bundle and hole channel 
gives 
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where:  BQ  and HQ  represent the heat input/output in bundle and hole respectively, including 
the heat transfer between helium, strands and jacket.  The last terms in the left sides of above 4 
equations represent the energy exchange between the two channels.   BQ  and  HQ  can be 
expressed as:   
 

( ) ( ) ( )BjkjkbjkbBststbstbBHhbhbB TThpTThpTThpQ −+−+−= ,   (3.4.5) 
 

( )HBhbhbH TThpQ −= ,        (3.4.6) 
 
where:  hbp  and hbh  are the wetted perimeter and heat transfer coefficient between hole and 
bundle, and so on. 
 
Two additional energy balance equations for superconductor strands and cable jacket must be 
added for a completed set of equations:  
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where:  stQ  and  jkQ  represent the heat input/out in strands and jacket respectively,  including 

AC loss and heat exchange between helium, strands and jacket.  stQ  and  jkQ  can be expressed 
as: 
 

( ) ( )stjkstjkstjkstBstbstb
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jkjk TThpTThpQQQ −+−++= ,    (3.4.10) 

 
where: ac

stQ , ac
jkQ , and coup

jkQ  are AC loss in strand, AC loss in jacket and the 3D coupling heat 
transfer between adjacent cables respectively. 
 
 
3.5 Summary of quasi-2D formulation 
 
A set of equations for a quasi-2D model can be summarized as the following: 
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4. Example and results 
 
A new code “Solxport3d.for” has been developed based on the above equations by updating 
existing codes: “TOKSCPF.FOR” and “SAITOKPF.FOR”.  Using CSIC as an example,  a 
current pulse is applied in the insert coil from around 20 to 40 seconds.  The resulted AC loss has 
peak values in the same time period.  Figs. 4.1 to 4.5 show that all the results including 
temperatures, velocities, pressures, and densities agree well with the expectation. 
 
The pressure for both bundle and hole is almost identical as expected because a fast mass, 
momentum and energy exchange between two channels by the radial helium velocity.  The 
temperature difference between two channels are relative ly large.  The superconductor strands 
have the highest temperature and the helium in hole has the lowest temperature.  The radial 
velocity is very small on the order of 10-6 m/s.  Its distribution as a function of time and along the 
x axis well agrees with the temperature behavior in two channels.  In the peak period of the 
applied current pulse,  helium flows from the bundle to hole driven by the tiny pressure 
difference between the two channels. 
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Temperature vs. Time (x=69.8m)
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Fig. 4.1a  Temperatures vs. time at x=69.8m (Tb: bundle helium temperature, Th: hole helium 
temperature, Tc: strands temperature, Tw: jacket temperature) 
 

Temperature vs. X at t=25s
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Fig. 4.1b  Temperatures vs. x at t=25second. As expected, the strands have the highest temperature, the 
helium at hole has the lowest. 
 
 



 
 

18 

Axial Velocity vs. Time (x=69.8m)
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Fig. 4.2a  axial velocity vs. time at x=69.8m (vb: helium velocity at bundle, vh: helium velocity at hole). 
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Fig. 4.2b  Axial velocity vs. x at t=25second. 
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Radial Velociy vs. Time (x=69.8m)
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Fig. 4.3a  Radial he lium velocity vs. time at x=69.8m (vrb: radial velocity at bundle, vrh: radial velocity 
at hole),  the negative values at the peak of applied current change indicate a helium flow from bundle to 
hole, which is expected as the helium temperature at bundle is higher than at hole. 
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Fig. 4.3b  Radial helium velocity vs. x at t=25second.  The distribution curves of the radial velocity agree 
well with those of temperatures.
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Helilum Pressure vs. Time (x=69.8m)
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Fig.  4.4a  Helium pressures vs. time at x=69.8m. The pressures at bundle and hole are almost overlapped. 
 
 

Helium Pressure vs. x at t=25s
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Fig. 4.4b Helium pressure vs. x at t=25second.  Both pressures at bundle and hole are almost overlapped. 
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Helium Density vs. Time (x=69.8m)

130

132

134

136

138

140

0 50 100 150 200

Time (s)

H
el

iu
m

 d
en

si
ty

 (
kg

/m
^3

) Db

Dh

 
Fig. 4.5a  Helium density vs. time at x=69.8m (Db: density at bundle, Dh: density at hole) 
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Fig. 4.5b  Helium density vs. x at t=25second. 
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5.   Calibration  
 
The code and the simulation data have been calibrated based on mass and energy balance by 
using the above example.  The following sections will report the results. 
 
5.1   Mass balance calibration 
 
Integration of the general mass balance equation 2.1.1 over the system gives the system mass 
balance equation: 
 

∫ ⋅=−
L

outletinlet Adxmm
0

ρ&&& ,        (5.1.1) 

 
where:  inletm& , outletm&  (kg/s) are mass flow rates at the inlet and outlet respectively.  The left side 
of Eq. 5.1.1 is the difference of mass flow rate between the inlet and  the outlet,  and the right 
side is the mass accumulation in this system per second.   
 
The error ∆ (kg/s)  and relative error ∆relative   are defined respectively as: 
 

∫ ⋅−−=∆
L

outletinlet Adxmm
0

)( ρ&&&        (5.1.2) 

( )outletinlet mm
relative

&& +
∆

=∆
5.0

       (5.1.3) 

 
 
The results based on the above example are shown in Figs 5.1.1 and 5.1.2.  The obtained relative 
mass balance error is less than 2.8%.  The maximum error appears at the peak of applied current 
change. This simulation uses 700 elements with time step of 0.05 second.  The error could be 
improved if refining the space mesh and time step.  The first order approximation of Eq. 3.2.6 
may also contribute to these errors. 
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Mass Balance
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Fig.  5.1.1   Mass balance results based on Eq. 5.1.2 (time step =0.05s).  
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Fig. 5.1.2   Relative mass balance errors vs. time.  The maximum relative error of 2.8% appears at the 
peak of applied current change. 
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5.2 Energy balance calibration 

 
Integration of the general ene rgy balance equation 2.2.9 over the system gives the system energy 
balance equation: 
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where:   hbwc AAAA ,,, (m2) are cross sections;  hbwc ρρρρ ,,, (kg/m3) are densities; 

hbwc CCCC ,,, (J/kg-K) are specific heat; wc KK , (W/m-K) are thermal conductivity; 
ac
w

ac
c QQ , (W/m) are  AC losses. The subscripts c, w, b, h represent conductor, wall, helium in 

bundle and helium in hole respectively.  
 
The 1st term of the left side represents energy increase due to rising temperature.  The 2nd to 5th  
terms of the left side represent the effect due to axial convection.  The last term of the left side 
represents the effect due to radial convection.  The first 2 terms of the right side represent the 
thermal conduction at inlet and outlet, and they are neglected in the current model.   The third 
term of the right side represents the friction effect.  The last term of the right side represents the 
AC loss.  The 3D coupling heat exchange between adjacent cables is not considered in this 
example. 
 
The errors ∆  of energy balance is defined as the differences between both sides of the Eq. 5.2.1: 
 

siderightsideleft __ −=∆ .        (5.2.2) 
 
The relative error is defined as the ratio of  the errors against the inputted energy (AC loss + 
friction term): 
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The results based on the above example are shown in Figs. 5.2.1 and 5.2.2  The relative errors of 
the energy balance are less than 1.3%.  It also could be improved by refining the space mesh and 
time step. Further work is needed. 
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Fig. 5.2.1  Energy balance results,  showing that energy term with radial convection is very small and the  
errors are very small (time step =0.05s). 
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Fig. 5.2.2  The relative energy balance errors vs.  time.  The maximum relative error is less than 1.3%.  
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 6.   Conclusions  

 
A quasi-2D model has been developed. The results agree well with the expectations. The 
pressure difference between the two channels is very small.  It is due to fast mass, momentum 
and energy exchange between the two channels. The temperature difference between the two 
channels is relatively larger.  It is interesting to see that the variation of radial helium velocity 
between the two channels is consistent with those temperatures. The radial velocity is very small 
on the order of 10-6 m/s, but plays a very important role in pressure balance and energy transfer 
between the two channels. 
 
The relative errors for mass and energy are less than 2.8% and 1.3% respectively, indicating an 
acceptable accuracy of the calculated results.  These errors could be improved if refining space 
mesh and time step. 
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