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Abstract

A quasi-2D model for two channel helium flow in CICC has been developed. This model is
derived from fundamental thermohydraulic equations, and implicitly analyzes the mass, moment
and energy exchange between two channels. The helium flow rates between two channels are
treated as independent variables, and are solved in parallel with other independent variables
such as pressures, temperatures and velocities. This new model may provide more in-depth
understanding of thermohydraulic performance of helium flow in two channel superconducting
coils.



1. Introduction

CSMC and CSIC are all made of two-channel superconductor cables. Therefore, a sophisticated
two-channel model becomes necessary for simulating thermohydraulic and quenching behavior
of the CSMC/CSIC.

Several researchers 1?2 have analyzed this problemin detail. Bottura® developed aone
dimensional model, in which he assumed that the helium temperature and pressure in both
bundle and central hole are the same. Bottura’s model also sets helium pressure as one of the
independent variables, and therefore al codes based on his model show excellent stability even
as the pressure different between inlet and outlet is very small. However, Bottura’s 1D model
neglects the mass, moment and energy exchange between the two channels. The effect of such
simplification on al over results is unknown.

Zanino et d.? further developed Bottura's 1D model by incorporating mass, moment and energy
exchange between two channels into his new 1D model. He simply assumed that the helium
flow rate v. between two channelsis proportional to the square root of pressure difference

dp between two channels:

kr |dp|

where: k isloss coefficient due to flow resistance between two channels. This assumption was
then applied to explicitly define, in Buttura's 1D model, all extraterms which represent the
mass, moment and energy exchanges between two channels. Equation 1.1 is based on Bernoulli
equation in static flow, and without considering any dynamic variables. The effect of such
simplification may need further exploration.

A new model for two channel helium flow in CICC has been developed, and reported below.
Thismode isderived from fundamental thermohydraulic equations, and implicitly analyzes the
mass, moment and energy exchange between two channels. The helium flow rates between two
channels are treated as independent variables, and are solved in parallel with other independent
variables such as pressures, temperatures and velocities. This new model may provide more in
depth understanding of thermohydraulic performance of helium flow in two channel
superconducting coils.

The following sections will first discuss a set of general thermohydraulic equations, which are

then applied to CICC for a 2D thermohydraulic model. Finaly, the approach of a quasi-2D
model to use 1D method for solution of a 2D problem will be reported.

2. Development of a 2D model for two-channel helium flow in CICC



As further development of Bottura's 1D formulations,* the following derivations lead to a set of
corresponding 3D formulations, which are then applied for the 2D application in two-channel
helium flow.

2.1 Derivation of apressure-based enerqy balance eguation

The general governing equations of mass, momentum and energy balance for helium flow in
CICC are respectively?

I+ Rixrv)=0, 21.1)
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where: the viscosity effects are neglected, and the friction force is defined as

Y

F=2f (2.1.9)

h
Thetotal specific energy € and specific enthalpy h are defined respectively as
VA

e=i+—, 2.15
5 (2.1.5)

and

h=i+2, (2.1.6)
r

where: i isthe specific internal energy.

The momentum balance equation 2.1.2 can be expressed alternatively as:

r%+(r\7>ﬂ)\7=-|§|p- rF. (2.1.7)

Substituting Egs. 2.1.5 and 2.1.6 into Eq. 2.1.3 gives



igh- p+r V—%+N >§?1r\7+"—r\78:9 . (2.1.8)
it 2 5 2 5 A
Further expanding EQ. 2.1.8 resultsin:
1 fp, Tee VWO o NV 6 Q
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By applying the following rules of vector operator?
N xhr v) = hK r v)+ r v>h (2.1.10)
and
R Y 15 0= YV R o)+ rvom Y 2.1.12)
e 2 g 2 2
Eq. 2.1.9 becomes
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(21.12)
Applying mass balance equation 2.1.1 reduces Eq. 2.1.12 to
ASLLEAFRY TR SR AN VA i (2.1.13)
It it [ 2 A

The 1% and 2" terms of the left side of Eq. 2.1.13 involve the enthalpy, whichis related to
pressure and density by the following thermodynamics relation?

dr :1;’21 dp- rc—fzdh. (2.1.14)

where: ¢ istheisotropic speed of sound in helium, and f isthe Gruneisen parameter,

_a& fTo (2.1.15)

gT T o

Manipulation of Eq. 2.1.14 leads to:
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rfNh=(1+f )Np- c*r .
Let's examine the 4™ and 5" terms involving kinetic energy in the left side of Eq. 2.1.13
The following rules of vector operator are applied:

NV—;’=\7' R v+ R, (2.1.18)
and
v:v' N v=0. (2.1.19)
The sum of the 4™ and 5" terms then becomes:

v VY e WV - -0
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Substituting momentum balance equation 2.1.7 into Eq. 2.1.20 gives
rvx‘l%—\:+ VW%=-\7>Np- FUXE (2.1.21)

The 1%, 2", 4™ and 5™ terms of Eq. 2.1.13 are replaced with new expressions in 2.1.16, 2.1.17
and 2.1.21, and Eq. 2.1.13 becomes
(2.1.22)
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Applying mass balance Eq. 2.1.1in Eq. 2.1.22, we then have the final form of the general
pressure-based energy balance equation as:
(2.1.23)

mt)+v><Np+rc N = fgg+rv><F—
2

Eq. 2.1.23 can be reduced to Bottura’s 1D equation® for 1D modeling as:

E+v P e M —fcaf%ﬂvxeg. (2.1.24)
é 2

qt X X



2.2 Derivation of atemperature-based energy bal ance equation

Again, start fromthe general energy balance equation2.1.3:

\l < __Q
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Substituting Eq. 2.1.5: e =i +V? into Eq. 2.1.3 gives
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Manipulation of EQ. 2.2.1 and using vector operators as same as in the last sectionresult in:
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Applying mass balance equation 2.1.1 reduces Eq. 2.2.2 to
rE+r\7>&|i+r\7xﬂ—v+r\7>4§|€eﬂ9+ﬂl>‘(p\7):g. (2.2.3)
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The 1% and 2"% terms of the | eft side in Eq. 2.2.3 involve specific internal energy i, which can be
related to density and temperature by the following thermodynamics relation:*

di = Ee—p e T LT, (2.2.4)
r

gl
where: C, isthe specific heat at constant volume.

Eq. 2.2.4 can be expressed alternatively by:

L yoN S ALY L (2.2.5)
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and
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The 3% 4" and 5™ terms of the left side in Eq. 2.2.3 involve kinetic energy and work done by
pressure. Again using vector operators and momentum balance equation 2.1.7, we have:

_1
<

—a

ﬁTQ
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Subsgtituting Egs. 2.2.5, 2.2.6 and 2.2.7 into Eq. 2.2.3 gives
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Appling mass balance equation 2.1.1 reduces Eq. 2.2.8 to the fina form of the generd
temperature-based energy bal ance equation:

I TR +oRT = B 4 g @ (2.2.9)
It rC, 6A

Eq. 2.2.9 can be reduced to Bottura’'s 1D equationt for 1D modeling as:

fr v, m_ 1 a0
it ix *“fx rC,éA

+rv,F,2 (2.2.10)
4]

In summary, aset of general equations for 3D thermohydraulic analysis of helium flow in CICC
is listed as the following:

T +Rrv)=o, (21.1)
qit

r%+(r\7>ﬂ)\7=-|§|p- rF, (2.1.7)
E+v><1\|p+rc N> = f8é3+r\7xﬁ9, (2.1.23)
1t eA 7]

I oo +1 TR0 = —— B 4 rye, (2.2.9)
1t rC, eA 2

2.3 A 2D modd for two-channel helium flow

Applying the general equations listed in the last section for 2D application gives a set of mass,
momentum and energy balarce equations for 2D helium flow in two-channel CICC:

9
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3. Development of a quasi-2D model for two-channel helium flow in CICC

Solving the above equations Egs. 2.3.1 to 2.3.5 will give accurate results for a 2D helium flow of
CICC. However, the CPU time may be expensive for a 2D/3D code. Therefore, aquasi-2D
model using 1D method to solve a 2D problem has been developed, and will be reported below.

3.1 Modd assumptions

a. Sincetheaxial dimension is much greater than the radia direction in the two-channel CICC,
it is reasonable to assume that the pressure, temperature, density and axia velocity in each
channel (i.e., bundle and central hole) are only functions of axial coordinates X;

b. Theradia velocitiesin both channels only exist around the interface between 2 channels with
effective distance in the order of the spring thickness. Other reasonable distribution functions of
the radial velocities could be assumed (e.g., linear or exponential decrease from the interface
etc.), but these different distribution functions only affect the radial momentum balance, and
the preliminary analyses show that their effect on final resultsis very small.

3.2 Quasi-2D mass balance eguations

The mass balance is controlled by Eq. 2.3.1. Integration of Eq. 2.3.1 over radial and angle
coordinates canbe performed by:

@jEa2.3.1)erdrdf b djf qu231e rr + Oalf JEq2.3.1e,rdr, (3.2.1)

0 '
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where: 1, and r, arethe outside radius of the bundle annulus and central hole respectively.

ep and e, arethe percentage of helium space in the bundle and hole respectively. Apparently,
in the current CICC cable design:

A
e :—(—) and e, =1. 3.2.2
B p rBz_ rﬁ H ( )

Implementation of Eq. 3.2.1 results in

Moo p T py Mo py oy My, T
As qt + A, Tt + AgVg ® + AV x + Al g x + AT ®
+ 201, (r Vi - €gl BvrB) =0, (3.2.3)

where: v,z and v, aretheradia velocities of helium in the bundle and hole respectively.
To replace density with pressure and temperature, by using the state equation
P (p,T) ’ (3.24)

Eg. 3.2.3 can be converted into

1-[rBﬂpB_'_ABT[I.BTrl—B_'_'AHﬂrH 1-[pH +AHﬂrHﬂTH

% p, it ity 1t p,, 1t fir, Tt

frs ﬂpB+ABV fre ﬂTB+AHV Iy Ty + AV Ty T,
B H H

+
Ao o I T, ., T,

e Ay L +2pr, (r HVrn - €sl BVrB) =0. (3.25)

AT . i

For first order approximation, assume that mass balance is established at the interface between
the two channels, Eq. 3.2.5 can be simplified as:

Vg =€gl gVig. (3.2.6)

3.3 Quasi-2D momentum balance eguations

The momentum balance along x axisis controlled by Eq. 2.3.2 for both channels. Integration of
Eq. 2.3.2 over radial and angle coordinates for each channel gives

11



o, Wa_ 1T
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The friction forces F; and F,, are defined respectively for bundle and hole as:
VgV
F, =2f, _B| B| , (3.3.3)
D
hB
and
vy, v
F, =2f, _H| H| , (3.3.4)
DhH

where: f;, f, and D,;, D,, arefriction factors and hydraulic diameters for the bundle and
hole respectively.

The momentum balance along the radial direction is controlled by Eq. 2.3.3. Integration of EQ.
2.3.3 over radia and angle coordinates can be performed by

il s
a@jEq2.33)drdf b (yf JEq.2.3.3)dr . (3.3.5)

0 0

Note that, by assumption, the helium radial velocities v,; and v,,, only exist around the
interface between the two channels over effective distances dr , and dr,, for bundle and hole
respectively. dr ; and dr,, areactually determined by the effective distance of the pressure

difference between the two channels, and should be in the same order of the spring thickness.
Implementation of the above integration gives

T[\/r T[\/r ﬂvr 1-[VI'
r BdrpBTEW rdr, —=-+r BdrpBVBﬂ—XB+ rydr, vy ‘ﬂ—xH
& Vi . Vil -
HETu g Tey = (- P TN, (336)
g



The last term of EQ. 3.3.6 represents the radial interface resistance as helium flows from one
channel to another. It is expressed in aform of friction force here. 7, dr; and F, are helium

density at the interface, effective friction distance, and radia friction force respectively. i is
about the average helium density of the two channels. dr, isin the order of the spring thickness.

F. can be expressed as the same form asin Eq. 2.1.4 as:

(3.3.7)

where: theradial hydraulic diameter D, isapproximately twice the gap between turns of the

spring. If the spring gap is zero (i.e., the interface is sealed), the radial interface resistance
becomes infinite, and the radial helium flow reduces to zero. For coding simplicity, thisterm
can be approximately written as:

FdrF =k(pH - pB)’ (338)
where: k is defined as the flow resistance coefficient at interface, and rangesfromOto 1. k =1
if the interface is sedled, and the radia helium flow reduces to zero. k =0 if thereis no flow

resistance. In current CICC design, the interfacial spring is open up, and the radial flow velocity
v, isvery small (inorder of 10° m/s), we assume a zero flow resistance, i.e. k =0.

3.4 Quasi-2D energy balance equations

The energy balance is controlled by Egs. 2.3.4 and 2.3.5 for both channels. Integration of EQ.
2.3.4 over radia and angle coordinates for each of bundle and hole channel gives

ﬂpB T[pB ZﬂVB 2r|_| 2 @B 0

+Vg——+ 11 ,C" — - ——— 1 zCz Vv, =f g—+r V. F, =, 34.1
ﬂpH ﬂpH ZWH 2 2 aQH 0

+v,——+r,C +—r,C, v, =f +r,v,F, = 34.2
qit H x H“H Ix r, H¥H VrH H HVH Hb ( )

Integration of Eq. 2.3.5 over radial and angle coordinates for each of bundle and hole channel
gives

T 2 1 0

& +VBﬂ_B +f T, ﬂv_B - %f sTaVg = an_B +1 gVFp I, (3.4.3
fit fix ix rg-r reCue 84 2
T 2 1 0

LI +VH‘"—H+fHTH My +—f TV, = ?ﬁHHVHFH I, (3.4.49)
it fix fix 'y r HCVH AH (%]
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where: Qg and Q,, represent the heat input/output in bundle and hole respectively, including
the heat transfer between helium, strands and jacket. The last terms in the left sides of above 4
equations represent the energy exchange between the two channels. Qg and Q,, canbe
expressed as:

Qs = phbhhb(TH - TB)+ pstbhstb(Tst - TB)+ pjkbhjkb(Tjk - TB)’ (3.4.5)
Q= phbhhb(TB - Ty )’ (3.4.6)

where: p,, and h,, arethe wetted perimeter and heat transfer coefficient between hole and
bundle, and so on.

Two additiona energy balance equations for superconductor strands and cable jacket must be
added for a completed set of equations:

L | My 0
C - K == , 3.4.7
At 4Cy it ﬂxgnﬂt v Qq (34.7)

TlTjk ﬂ x K TlTjk 0

A,.r. C -—CA K, ——=Z=Q,, . 34.8
k' k™ jk ﬂt ﬂxg k'Y jk ﬂX g ij ( )

where: Qg and Q,, represent the heat input/out in strands and jacket respectively, including

AC loss and heat exchange between helium, strands and jacket. Qg and Q;, can be expressed
as:

Qy = Qg * PusNsy (TB - Tst) + pstjkhstjk(Tjk - Tst), (3.4.9
ij - (gjakC + QCOUD + pstjk stjk(T Tjk)+ p]kbh]kb(T T ) (3410)

where: QF,Qjy, and Q™" are AC lossin strand, AC loss in jacket and the 3D coupling heat
transfer between adjacent cables respectively.

3.5 Summary of quasi-2D formulation

A set of equations for a quasi-2D model can be summarized as the following:

- 2f, ValVe| : (3.5.1)
X rg 9x Dis

We oy Tve 1 TP
Tt °

14
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ﬂVH +VH ﬂVH - 1 1-[pH _ 2fH H| H| , (352)
It X r, x D,y
v, v, v, v,
rgdrg ——+r ,dr, ‘HtH +1 gdr gVg xB +r,dr vy ‘ﬂxH
& vy o Vvp0
*eru g Temy= -k pu - pe). (353
1)
ryViy =€gl 5V,g » (3.2.6)
2r VgV
1kﬁ"'vs TP +rBC82M- 2 : 2 rBCBzvrB =2r gf Ve fy B| B|
i X T re - 1 e (35.4)

f f f
+A_B phbhhb(TH - TB)+Ki pstbhstb(Tst - TB) +Ki pjkbhjkb(Tjk - TB)

B

VvV, |V
ﬂpH +VH ﬂpH +I,.H HZT[VH +_r CHZVrH :2er HVH .I:H H| H|
n T e n D (35.5)
+ phbhhb (TB - TH )
H
Mg YA 2r,
r BABCVB BABCVB < tr BABCVBf T BABCVB 2 f T sVie
it > re-re (356)
_ AN o
=T BABVB ><2fB D + phbhhb(TH - TB)+ pstbhslb(Tst - TB)+ pjkbhjkb(Tjk - TB)
hB
M, Vi
rHAHCVHT-l_rHA-IC\/HVH qx HA—ICVHf T HAHC\/H r f THVrH
" ; (35.7)
=14 AV Xf, B : * Pro hb(T T, )
hH
1T, =3 « O
Astrstcst TtSt - ﬁgpﬁKst ;_Qst * Pso stb(TB - Tst)+ pstjkhstjk(Tjk - Tst) )

(3.5.8)

AT C. TlTjk ﬂ& TlTjkO

k' jk JKT' WgAijjk ﬂX £ Qﬁf +Qcoup + ps’[jkhstjk(Ts’[ - Tjk)+ pjkbhjkb(TB - Tjk) .

(35.9)
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4. Example and results

A new code “ Solxport3d.for” has been developed based on the above equations by updating
existing codes: “TOKSCPF.FOR’ and “SAITOKPF.FOR’. Using CSIC asan example, a
current pulse is applied in the insert coil from around 20 to 40 seconds. The resulted AC loss has
peak values in the sametime period. Figs. 4.1 to 4.5 show that all the results including
temperatures, velocities, pressures, and densities agree well with the expectation.

The pressure for both bundle and hole is ailmost identical as expected because a fast mass,
momentum and energy exchange between two channels by the radial helium velocity. The
temperature difference between two channels are relatively large. The superconductor strands
have the highest temperature and the helium in hole has the lowest temperature. The radial
velocity is very small on the order of 10°® m/s. Its distribution as a function of time and along the
x axis well agrees with the temperature behavior in two channels. In the peak period of the
applied current pulse, helium flows from the bundle to hole driven by the tiny pressure
difference between the two channels.

16



Temperature vs. Time (x=69.8m)

4.75

e
\‘

N
o
o1

Temperature (K)
N

3] N

ol (]

—Tb —
C / —Th
45 [ —— T TC —
C Tw
4.45 L L L L L 1 L L L L 1 L L L L 1 L L L L
0 50 100 150 200

Time (s)

Fig. 4.1a Temperaturesvs. time at x=69.8m (Tb: bundle helium temperature, Th: hole helium
temperature, Tc: strands temperature, Tw: jacket temperature)

Temperature vs. X at t=25s
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Fig. 41b Temperaturesvs. x at t=25second. As expected, the strands have the highest temperature, the
helium at hole has the lowest.
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Axial Velocity vs. Time (x=69.8m)
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Fig. 42a axia velocity vs. time at x=69.8m (vb: helium velocity at bundle, vh: helium velocity at hole).

Axial Helium Velocity at t=25s
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Fig. 42b Axid velocity vs. x at t=25second.
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Radial Velociy vs. Time (x=69.8m)
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Fig. 4.3a Radid helium velocity vs. time at x=69.8m (vrb: radia velocity at bundle, vrh: radia velocity
at hole), the negative values at the peak of applied current change indicate a helium flow from bundle to
hole, which is expected as the helium temperature at bundle is higher than at hole.

Radial Velocity vs. x at t=25s
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Fig. 43b Radia helium velocity vs. x at t=25second. The distribution curves of the radial velocity agree
well with those of temperatures.
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Helilum Pressure vs. Time (x=69.8m)
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Fig. 4.4a Helium pressuresvs. time at x=69.8m. The pressures at bundle and hole are amost overlapped.

Helium Pressure vs. x at t=25s
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Fig. 4.4b Helium pressure vs. x at t=25second. Both pressures at bundle and hole are aimost overlapped.
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Helium Density vs. Time (x=69.8m)

140 ¢
_138 [ — Db ___ ]
ok —on
> :
= 136 F
O w
= :
< 3
2134 [
° 3
= F
£ 132
130 b v
0 50 100 150 200
Time (s)

Fig. 45a Helium density vs. time at x=69.8m (Db: density at bundle, Dh: density at hole)

Helium density vs. x at t=25s
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Fig. 4.5b Helium density vs. x at t=25second.
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5. Calibration

The code and the ssimulation data have been calibrated based onmass and energy balance by
using the above example. The following sections will report the results.

5.1 Mass balance calibration

Integration of the general mass balance equation 2.1.1 over the system gives the system mass
bal ance equation:

L

n.’]inlet - I’?‘l)utlet = c‘f XAdX, (511)

0

where: m,,,, M . (ka/s) are mass flow rates at the inlet and outlet respectively. Theleft side

of Eq. 5.1.1 is the difference of mass flow rate between the inlet and the outlet, and the right
side is the mass accumulation in this system per second.

Theerror D(kg/s) and relative error relativeD are defined respectively as.
L

D = (M = Moye) - QO XAdX (5.1.2)
0

D
dativeD |
O S e + M)

(5.1.3)

The results based on the above example are shown in Figs5.1.1 and 5.1.2. The obtained relative
mass balance error is less than 2.8%. The maximum error appears at the peak of applied current
change. This simulation uses 700 elements with time step of 0.05 second. The error could be
improved if refining the space mesh and time step. The first order approximation of Eq. 3.2.6
may also contribute to these errors.
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Fig. 5.1.1 Mass balance results based on Eq. 5.1.2 (time step =0.05s).
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Fig.5.1.2 Relative mass balance errorsvs. time. The maximum relative error of 2.8% appears at the
peak of applied current change.
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5.2

Enerqy balance calibration

Integration of the general energy balance equation 2.2.9 over the system gives the systemenergy
balance equation:

LA T, , LY
&rcCc ﬂt +ANrWCW ﬂt +A\erCb ﬂt +A1rhCh ﬂt iD(
('Abr beVb)Tb );+D( + é. (Ahr hCth )Th
('Abr bef bTb)Vb

Y+ (AT G LTV,
2prh(r hChf hTthh =T beebf bTerb)D(
outlet outlet
K T, j +EA K, &j
€ ™ e € X Fine
+Q (A V,F, + ATV, F, DX (5.2.1)
+ & (Q +Qiepx

Qo

X+Dx
+

X

X+Dx
+

X

+

:
a
a
a

I
':)1?6

where: A, A,, A, A, (nf) are cross sections; r,r,,r ", (kg/nT) are densities;
C..C,.C,.C, (JkgK) are specific heat; K K, (W/m-K) are thermal conductivity;

Q%,Q (WIm) are AC losses. The subscripts ¢, w, b, h represent conductor, wall, helium in
bundle and helium in hole respectively.

The 1 term of the left side represents energy increase due to rising temperature. The 2" to 5™
terms of the left side represent the effect due to axia convection. The last term of the left side
represents the effect due to radia convection. The first 2 terms of the right side represent the
thermal conduction at inlet and outlet, and they are neglected in the current model. The third
term of the right side represents the friction effect. The last term of the right side represents the
AC loss. The 3D coupling heat exchange between adjacent cables is not considered in this
example.

Theerrors D of energy balance is defined as the differences between both sides of the Eq. 5.2.1:
D =left _side- right _side. (5.2.2

The relative error is defined as the ratio of the errors against the inputted energy (AC loss +
friction term):

D |
AT oV Fy + ATV, F)Dx + Q (Q +Q;°)3x|'

relativeD = Ié. ( (5.2.3
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The results based on the above example are shown in Figs. 5.2.1 and 5.2.2 The relative errors of
the energy balance areless than 1.3%. It also could be improved by refining the space mesh and
time step. Further work is needed.

Energy Balance
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Fig. 5.21 Energy balance results, showing that energy term with radia convection is very small and the
errors are very smal (time step =0.05s).
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Fig. 5.2.2 Therelative energy balance errorsvs. time. The maximum relative error isless than 1.3%.
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6. Conclusions

A quasi-2D model has been developed. The results agree well with the expectations. The
pressure difference betweenthe two channelsis very small. It is due to fast mass, momentum
and energy exchange between the two channels. The temperature difference between the two
channelsisrelatively larger. It isinteresting to see that the variation of radia helium velocity
between the two channels is consistent with those temperatures. The radial velocity is very small
on the order of 10°® m/s, but plays a very important role in pressure balance and energy transfer
between the two channels.

The relative errors for mass and energy are less than 2.8% and 1.3% respectively, indicating an
acceptable accuracy of the calculated results. These errors could be improved if refining space
mesh and time step.
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