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Abstract

A simple numerical algorithm has been written in IDL[1] to compute the hydrogen or
deuterium atomic neutral distribution function, f, in a slab geometry for inputted plasma profiles
(density, ion and electron temperature). The distribution function is described in terms of two velocity
components (making use of the rotational symmetry in velocity space about the x-axis) and one spatial
component (x). The velocity distribution of neutrals entering the slab (positive velocity) and the
neutral density at the edge of the slab are prescribed boundary conditions. The algorithm constructs f,,
by summing up successive generations of charge-exchange neutrals. Rates for electron impact
ionization and charge exchange of hydrogen or deuterium atoms are computed using data compiled by
Janev [2]. The output of the computation isf_(V,,V,,X ) and velocity moments of f, including

neutral density, fluid velocity, temperature, pressure, diagonal elements of the stress tensor, and heat
fluxes. In addition, the spatial profiles of the net rate of energy and x-directed momentum transfer
between the ion and neutral species are outputted. A number of numerical consistency checks are
performed in the code involving mesh size limitations and errors associated with discrete
representation of ion and neutral distribution functions. The source code is entirely written in IDL and
isfreely available to the community.

1. Method
1.1 Computational Domain, Inputted Conditions

The parameter to be computed is the atomic neutral distribution function, f,, over spatial
region [X,, X,]. It is assumed that f, has rotational symmetry about the v, axis so that it can be

described in terms of two velocity coordinates and one spatial coordinate, f, = f,(v,,V,,X ), with
Vi =V Vs
The computational domain is specified by input parameters as

~V, e SVy SV Ve min SV, SV, X, S X< X,

X,max — X,max ! r,min r,max?’

The boundary conditions and constraints on the neutral distribution function are:
f, (v, >0,V,, X, )- specified (input)
f.(v, <Ov,,Xx,) =0
X, _ .
X(VX =0,Vv,,X) - finite
Background plasma conditions are inputted over spatial region [Xa, Xb] :
N(X) - plasma density profile
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Te(X) - electron temperature profile
T. (X) - ion temperature profile

1.2 Atomic Physics
Only ionization and charge exchange processes from the ground state of atomic hydrogen or
deuterium in respective hydrogen or deuterium plasmas are considered.

1.3 Overview of Computational Method
The background plasma profiles of density, electron temperature and ion temperature is
specified. The incident distribution function of atomic neutrals, f,(v, >0,V,,X,), attacking plasma

is also specified:

Specified Plasma
Profiles

Specified  _ _
f (V> 0V, Xg) > f (V< OV, xpy)=0

Xa Xb

First, the portion of the neutral distribution function which continues to penetrate the plasma
without ionization or charge exchange is computed. This is designated as (Vy,V,,X ), or the ‘0"

generation’.

fno (vX AV X)

/

fnl (VX> O’Vr , Xa):O fnl (VX< O,Vr y Xb ):0
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Then the neutral distribution function arising from ‘1% generation’ charge exchange,
fa(Vy,V,,X ), is computed by considering the three cases of (A) Vv, >0, (B) v, <0 and (C)
v, =0.

A. f,(v,,V.,X) for v, >0 is determined by integrating the Boltzmann equation over [X,, X]
and applying the boundary condition of fnl(vx >0,v,, Xa) = 0. Here the charge exchange
‘source’ term only includes the contribution from the previous generation (0™ generation).

B. f(V,,V,,X ) for v, <O is determined by integrating the Boltzmann equation over [X, X, ]

and applying the boundary condition of fnl(vx <0,v,, Xb) = 0. Again the charge exchange
‘source’ term only includes the contribution from the previous generation (0™ generation).

C. f(v,v,,x ) for v, =0 is computed from the Boltzmann equation for the special case of
. ¢ - . ) ﬁn . .
Vv, =0, making use of the ‘regularity condition X(VX =0,Vv,,X) - finite

The above calculations are repeated for subsequent charge exchange generations,
fo(Vy, Ve, X ), f3(Vy,V,,X ), ...The total neutral distribution function in the plasma is then

computed by summing over afinite number of charge-exchange generations:
fn(Vx’Vr’X ) = Z fnj (Vx’vr’X )

]
(Note: now f, (v, <0,v,,X,) and f (v, >0,V,,X;) isaso known, i.e. the albedo of the plasma
has been determined.)

2. Formulation

A. Boltzmann Equation
The neutral distribution function satisfies the Boltzmann equation:

of ~

Voot = fin [ f,(V, 0N - Vo (v —v) IV

= I Ly -viou e .
- fnnij fi(V,X) |\—/ _\L| O cx (|\—/ _\LD o’V - 1:nne<ov>ion

. . . ﬂn ﬁn . -
which makes use of the assumed spatial symmetries, —* = 0 and —™ = 0. Integration is over all

velocity space. ﬂ(\_/, X) is the velocity space distribution function of ions normalized so that
Ifi (V,X) @* =1. For ionization, we have made use of the fact that the neutrals are nearly
stationary relative to the electrons, v, <<V,, replacing the velocity-space integral with the ionization
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rate, N(OV),,,- Figure 1 shows (0V), , evaluated for arange of electron temperatures (from Janev
[2]).
e+H(ls)->e+H +e
10-7: T T TTTTT T T TTTTT T T TTTTT T T TTTTT T T TTTTT —
— output from idl function SIGMAV_ION_HO0.PRO which evaluates the reagtion rates using -
— data from JANEV et al.,"Elementary Processes in Hydrogen-Helium Plasmas"”, p 258. m
L \ |
10-8 = |
= I~
m L Bl
& L _
<
E — —
= 9
8 107 E
[ = -
S C 7
2
& L |
\Y; | |
10-10 L |
10-11 Ll | | | Ll | Ll
0.1 1.0 10.0 100.0 1000.0 10000.0
Te (eV)
Fig. 1- (oV),,,, asa function of Te.

The second integral on the right hand side of Eq. (1) depends on the ion temperature and the
energy of the neutral species and can be written in the form

T, Bl (2

ol

[fi( )N =V]ag(v-Vv)a*V =(ov)

where (0OV) CX[Ti , Eo] is the hydrogen charge exchange cross-section averaged over a Maxwellian

hydrogen ion distribution (temperature, T;), accounting for the energy of the hydrogen neutral species,
1

E,, which for a specified neutral velocity, (VX,Vr ) isky = > my, (vf + Vrz) Figure 2 shows values

of (V). [ Ti, Ey] and Fig.3 shows values of 0, [E,], also tabulated by Janev [2].
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p + H(1s) -> H(1s) + p

T \\\HH‘ T T T TTTTT T T T TTTTT T T T TTTTT T T T TTTIT
|
106 E0-=1000.0p .
- EO =100.000 -
B EO = 10.0000 7
| EO =1.00000 |
| EO0=0.100000 |
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10-8 / ]
t output from idl function SIGMAV_GX_HO0.PRO which evaluates the reaction rates using —
9 data from JANEV et aI.,"EIementalF/ Processes in Hydrogen-Helium PIaTmas", p272.
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Fig. 2 — Proton charge exchange rate as a function of ion temperature and neutral energy.

p + H(1s) -> H(1s) + p
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output from idl function SIGMA_CX_H0.PRO which ejaluates the CX Cioss-Section using
polynomial fit frgm JANEYV et al.,"Hlementary Procesges in Hydrogen-HTium Plasmas", p 450.
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Fig. 3 — Proton charge exchange cross section as a function of neutral energy (evaluated using
relative proton and neutral velocities).
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The first integral on the right hand side of Eq. (1) is not so readily evaluated in terms of
tabulated values. It requires a velocity-space integral to be performed over (Vi,V;) for each

combination of (V,,V,), weighted by f (V,,V;,X). This integral computes the charge exchange

frequency for a specified combination of (VX, r) For large velocity space meshes, this computation

can take some time. Therefore two options for computing this integral are included in this algorithm:
(A) an ‘exact’ integration and (B) an approximation of the integral. For option (B) the approximation,

fin [ (V0N = V]og (v - V)% =

i (0N Vo (v VDoV V' = o
iy [ 3 (V. X)(0V)o [T E51 0%V

is made, replacing the charge exchange frequency for a specified combination of (VX, r) with the
velocity-spaced average charge exchange frequency [which is independent of (VX, r)]. In effect,

this option assumes that all charge exchange neutrals are ‘born’ with a distribution that is the same as
the ion distribution function. As a result, distortions in this source distribution function due to the
charge exchange rate being different at different values of relative ion-neutral velocities are not taken
into account.

We are interested in using the data from Fig. 2 to compute the charge exchange rate both for
hydrogen neutrals in a hydrogen plasma and deuterium neutrals in a deuterium plasma. The charge
exchange cross-sections, 0, , are virtually identical for hydrogen and deuterium and depend only on

the relative velocities of the interacting ions and atoms. The Maxwellian-averaged deuterium cross
sections can therefore be related to the hydrogen case by accounting for the mass of the deuterium
nuclei relative to the mass of hydrogen,

(V)T Eo] — | >CX[%,§mH(v§+vf)] . @

Here T; is still the temperature of the ion species and (VX,Vr ) the neutral velocities but the factor, U,

(=1 for hydrogen and 2 for deuterium) appropriately scales the ion velocities. Similarly, for direct
evaluation of O cx[EO] using tabulated hydrogen data, the relative energy is evaluated using the

proton mass for both hydrogen and deuterium cases.

It is useful to define the following two quantities which can be evaluated directly for all
(VX, r,X) mesh locations using the inputted plasma density and temperature profiles with

n=n =ng
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Charge exchange sink rate (option A - direct evaluation from O, ( E, )

0 (Vs Ve, ) =0 [[ £ (Vi v, X[ [ vV = Voo (v = V08" |vi v v, 5
a,

= N[ £ (Vi Ve 0 Z g (Vi Ve VoV, )V,

with

O (v-V

Zcx(vx,vr,v;,v’r)zv;_ﬂ\_/—\i )06 . (5a)

Charge exchange sink rate (option B - using (0V)_., )

T 1
ey Y 2) = MOV 5, (v +v7)1 (50)

Total sink rate

Ao (Vi Vi X) 0 (Vi Vi, X) + (V)

ion [Te] (6)

It is also useful to define:

Charge exchange source rate (option A)

BacWies Ve s X) = i [ (Voo Ve XV Z g (Ve Vy ViV YO, B, (72

Charge exchange source rate (option B)

BV X) = i [[f £ (Ve XV =V o, (v = V), B, 8,96
(70)

= 271, [ £, (Vi Vi X) O (Vo Vi, X0V, B

Now the Boltzmann equation becomes

it
Vy & = :ch —a; fn- (8)
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2.2 Expanding f,, asa Seriesof Neutral Charge Exchange ‘ Generations

We now consider the neutral distribution function to be composed of a sum of sub-distribution
functions of neutrals which have undergone j charge exchange collisions

f (v, V,,X) = an](vx, V,, X)

(9)
Box (Vy, Vi, X) = Zﬁcx,(vx, 0 X)

With the above definitions, Eq. (1) can be written as a series of separate Boltzmann equations, each
representing the kinetic balance for that charge-exchange population of neutrals:

vV, d;;‘(‘) = a.fo
Vx ﬁ:{l = Bexo ~acfy
Vi &;:(2 = Boa ~Ac oo
V, EY = ,lS’CXj 4 —ag fnj (10)

2.3 Numerical Grid & Scheme
The spatial and velocity grid coordinates are specified with arbitrary spacing:

Voo = [Vimacr Vaar -1 0oy Viges Vigests oo Viemad )
Vr :[Vrmin’v7 " rl’VX|+11"'1Vrmax]
X = [Xgs Xg ooy Xirys Xy s o0 Xp |

We will be integrating Egs. (10) along the X coordinate to obtain values for fnj at each grid location.

Therefore we need to approximate the RHS of Egs. (10) between grid points. For integration along the
X coordinate between X, and X we will replace the integrand with the average of its values

evauated at X, and X1

m+1’

2.3.1 Mesh Equation - 0" Generation
In this scheme, the mesh equation for the 0" generation (with v, > 0) becomes

f

no,m+1
X

_ = (ac,m+1 an,m+1 +ac,m an,m)
m+1
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X - X X -
an,m+1(1 + Mac,mﬂ) = an,m (1 - Mac,m)

2V 2V

X

f =f

2V, = (Xt = X ) em | )

n0O,m+1 no,m
2Vx + (Xm+1 - Xm)ac,m+1

With the definition,

2V, = (Xt = Xm) e

2V +( Xm+1 — Xm)ac,m+1

A =

, (12)

the mesh equation for the 0™ generation becomes

an m+1 nO mAn (13)

With the boundary condition, f (v, >0,v,,%,) = f (v, >0,v,,X,) -> specified, this equation
yields the 0" generation distribution function over the mesh. Note that Eq. (11) [and Eq.(18) below]

indicates that the X mesh spacing must be small enough to avoid nonsensical negative distribution
functions. The mesh spacing must satisfy

2v,
max[a

(Xmet = Xm) < (14)

c,m? cm+1]

Thus the maximum allowed X grid spacing is related to the magnitude of the smallest non-zero grid
element in the Vv, axis.

2.3.1 Mesh Equation - j" Generation (j > 0) for v, # 0
In this scheme, the mesh equation for the j* generation (with v, # 0) becomes

f f

nj,m+1 ~ 'nj,m —
Xme1 — Xm
(BCXJ -1,m+1 ﬁCXj -1, m) ( cm+1fnj m+1 +ac,mfnj,m)
x
X - X
fnj,m+1(1+ %ac,mﬂ) =

X

X - X X - X
1:nj,m(l_ m+21V . ac,m) + m+21V " (ﬁcxj ama T chj —1,m)
X X
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2V, — (Xm+l - Xm)ac,m + (Xm+1 - Xm)(:chj ama T :chj —l,m) .

f. a= f. (15)
e e 2Vx + (Xm+l - Xm)ac,m+l 2Vx + (Xm+l - Xm)ac,m+l
With the definition,
_ (Xt = %m) (16)
" 2v, + (Xm+1 - Xm)ac,m+1
the mesh equation for the j" generation (V, > 0) becomes
fnj,m+1 = fnj,m'Ah1 + Bm(:chj—l,m+1 +:chj —1,m) (17)

For the case of V, >0, the boundary condition f,; (v, >0,V,,X,) = Ois employed and arecursive
use of Eq. (17) yields f; (v, >0,v,,X.,)for al m.

A useful recursion formula for the case of Vv, <0 can be obtained from Eq. (15) by replacing
m+lwith m—1,

_2Vx - (Xm - Xm—l)ac,m + (Xm - Xm—l)(ﬁcxj am-1 T chj —1,m)

. =f. 18
fnJ,m—l fnj,m _2Vx + (Xm _Xm—l)ac,m—l _2Vx + (Xm _Xm—l)ac,m—l (9
With the definitions,
C = _2Vx - (Xm - Xm—l)ac,m
K —2v, + (Xm - Xm—l)ac,m—l
Dy = n=Xnt) (19)
" _2Vx + (Xm - Xm—l)ac,m—l

the mesh equation for the j" generation (V, < 0) becomes

fnj,m—l = 1:nj,mCm + Dm(ﬁcxj—l,m—l +chj —1,m) ' (20)

Now, applying the boundary condition fnj (v, <0O,v,, Xb) =0, arecursive use of Eq. (20) yields
foi (Vi <OV, X, )for al m.

2.2.2 Mesh Equation - j" Generation (j > 0) for v, =0
For v, =0, Egs. (10) yield the direct relationships,
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ﬁcxj —1,m(0’ ro Xm)

Fo (O,V; s %) =
a

(21)

c,m

3. Total Neutral Distribution Function
The procedure for computing the neutral distribution function can now be outlined as follows:

A. If option A is used, then compute %, (V,,V,,V,, V) from Eq. (5a)

B. Compute o' .(V,,V,,X) and O (VX, V,, X) from inputted data using Egs. (5 a/b) and (6 a/b).

C. Test X grid spau ng using Eq. (14).

D. Compute A, B,,C,,, and D,, from Egs. (12), (16) and (19)

E. Compute fno(vx, r,X)for V, >Ofrom Eq. (13). Note: f,(V,,V,,X) =0 for v, < 0.

F. Compute B from f o (V,,V,,X) and a, (V,,V,, X)using Eq. (7 ab)

G. Computef (V,V,, X)for the next generation using Eq. (17) for v, >0, Eq. (20) for v, <0,
and Eq. (21) for v, = 0.

H. Compute 3, from f; (v,,V;,X) using Eq. (7 alb)

Repeat G and H for anumber of generations until max(n; (x))/ n,, < aspecified value
J.  Compute the total neutral distribution function from the summation:

%) = 3y ().

4. Numerical Algorithm
An DL procedure, Ki neti c_Neutral s. pr o, has been written to perform the solution algorithm:
,+
Kinetic_Neutral s.pro

Solves a 1-D spatial, 2-D velocity kinetic neutral transport
probl em for atomi c hydrogen or deuterium by conputing successive generations of
charge exchange neutrals. Rates for charge exchange and
el ectron inpact ionization of atomi c hydrogen are used.

The positive vx half of the neutral distribution function is
inputted at x(0). Profiles of Ti(x), Te(x), and n(x) are inputed. The code
returns the neutral distribution function, fn(vr,vx,x) for all vx, vr, and X
of the specified vr,vx,x grid.

Since the probleminvolves only the x spatial dinension, the distribution
function has rotational synetry about the vx axis. Consequently, the
distribution function only depends on x, vx and vr where vr =sqrt(vy”"2+vz"2)

Hi story:

B. LaBonbard First coding based on 1-D, 2-V nodel 11/3/2000
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; For nore infornmation, see wite-up: "A 1-D Space, 2-D Velocity,
; Kinetic Neutral Transport Al gorithnt, B. LaBonbard

pro Kinetic_Neutrals, vx, vr, x, Tnorm nu, Ti, Te, n, f nBC, nOBC, $
fn, n0, gammaxO0, vx0, p0, pi 0_xx, pi 0_yy, pi0_zz,$
TO, gx0, gx0_total, Sion, @ n,Rxin, Q@ n_total, Al bedo, truncate=truncate, $
Si mpl e_CX=Si npl e_CX, max_gen=nmax_gen, Max_dx=Max_dx, $
error=error, conpute_errors=conpute_errors, $
vbar _error=vbar_error, nesh_error=nesh_error, max_nesh_error=max_nesh_error, $
ave_mnesh_error=ave_nesh_error, nonent _error=nonent _error, $
max_noment _error =max_noment _error, gx0_total _error=qx0_total _error, $
Qn_total _error=Q n_total _error,Sion_Error=Sion_Error,$
pl ot =pl ot , debug=debug, debri ef =debri ef

;I nput:

; vX(*) - fltarr(nvx), nornalized x velocity coordinate

; [ negative values, 0 , positive values],

; nonot oni cal |y i ncreasing. Note: a nonuniform nesh can

; be used. Dinensional velocity

; isv =Vth * vx where Vth=sqrt(2 k Tnorni (nH nu))

; Not e: nvx nmust be odd and vx(*) symmetric about

; 0 and contain a zero el enent

; vr(*) - fltarr(nvr), normalized radial velocity coordinate

; [ positive values], nmonotonically increasing. Note: a

; non- uni form nesh can be used.

; Di mensi onal velocity is v = Vth * vr where

; Vt h=sqrt (2 k Tnorn (mH* nu))

; Note: vr must not contain a zero el ement

; x(*) - fltarr(nx), spatial coordinate (neters),

; positive, nonontonically increasing. Note: a

; non-uni form nesh can be used.

; Tnorm - Float, tenperature corresponding to the thernmal speed

; (see vx and vr above) (eV)

; mu - Float, 1=hydrogen, 2=deuterium

; Ti - fltarr(nx), lon tenperature profile (eV)

; Te - fltarr(nx), electron tenmperature profile (eV)

; n - fltarr(nx), plasma density profile (nt-3)

; fnBC - fltarr(nvr,nvx), this is an input boundary condition

; speci fying the shape of the neutral velocity

; di stribution function at |ocation x(0). Normalization ;
is arbitrary. Only values with positive vx,

; fnBC(*, (nvx-1)/2:*) are used by the code.

; n0OBC - float, desired neutral density at |ocation x(0) (m-3)

; On output, fnis scaled to correspond to this density

; (see bel ow).

; Qutput:

; fn - fltarr(nvr,nvx,nx), neutral velocity distribution

; function. fn is normalized so that the

12
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n0
gamax0
vx0

pO

pi 0_XxX
pi O_yy
pi0_zz

TO
gx0
gx0_t ot al

neutral density, nO(k), is defined as the velocity
space integration
nO( k) =vt h3*total (Vr2pi dVr*(fn(*,*, k) #dVx))

fnis scaled so that n0O(0) is equal to nOBC, the

desired neutral density at x(0).
- fltarr(nx), neutral density profile (nt-3)
- fltarr(nx), neutral flux profile (# nt-2 s”-1)
- fltarr(nx), neutral velocity profile (ms~-1)
- fltarr(nx), neutral pressure (eV nt-2)
- fltarr(nx), xx elenent of stress tensor (eV m-2)
- fltarr(nx), yy elenent of stress tensor (eV m-2)
- fltarr(nx), zz elenent of stress tensor (eV m-2)

= pi O_yy

Note: cylindrical systemrelates r"2 = y"2 + z"2
Al'l other stress tensor elenents are zero.
fltarr(nx), neutral tenperature profile (eV)
fltarr(nx), neutral random heat flux profile (Wnt-2)
- fltarr(nx), total neutral heat flux profile (Wmt-2)
This is the total heat flux transported by the neutrals:

gx0_total =(0. 5*n0* ( nu*mH) *vx0*vx0 + 2.5*p0*q)*vx0 + pi 0_xx*vx0 + gxO0

KEYWORDS
I nput :

Si on

Qn

Rxi n

- fltarr(nx), ionization rate (# m-3)

- fltarr(nx), rate of net thernmal energy transfer from
the ion to neutral species(watts nt-3)

- fltarr(nx), rate of x nomentumtransfer fromthe ion
to neutral species (=force, N nt-2).

Qn_total- fltarr(nx), net rate of total energy transfer from

Al bedo

the ion to neutral species
= Qn + RXin*vx0 - 0.5*(nu*nH) *Si on*vx0*vx0 (W nt-3)
- float, fraction of incident flux of neutrals (at
x=x(0)) that is reflected back towards x < x(0)

truncate- float, stop conputation when the naxi num

i ncrement of neutral density normalized to
i nputed neutral density is less than this
value in a subsequent charge exchange
generation. Default value is 1.0e-4

Sinple_CX - if set, then use CX source option (B): Neutrals are

born in velocity with a distribution proportional to
the local ion distribution function. Sinple_ CX=1 is
defaul t.

if not set, then use CX source option (A): The CX
source neutral distribution function is conputed by
eval uating the the CX cross section for each

conbi nation of (vr,vx,vr',vx') and convolving it with
the neutral distribution function.

This option requires much nore CPU tinme and nenory.
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; Max_gen - integer, nmaxi mum nunber of charge exchange
; generations to try including before giving up.
; Default is 20.

; Conpute_FErrors - if set, then return error estinmates bel ow

;  KEYWORDS

; Cut put :

; Vbar _error - float(nx), returns numerical error in conputing

; t he speed of ions averged over Maxwellian

; di stribution.

; The average speed shoul d be

; vbar _exact=2*Vth*sqrt (Ti (*)/ Tnorm/sqrt(!pi)
; Vbar _error returns: abs(vbar-vbar_exact)/vbar_exact
; where vbar is the nunerically conputed val ue.

; Max_dx - float(nx), Max_dx(k) for k=0:nx-2 returns nmaximm
; al  owed x(k+1)-x(k) that avoi ds unphysical negative
; contributions to fn

: error - Returns error status: 0=no error, solution returned
; l1=error, no solution returned

; i f COMPUTE_ERRORS keyword is set then the following is returned

; mesh_error - fltarr(nvr,nvx,nx), normalized error of solution

; based on substitution into Boltzmann equati on.

; max_mesh_error - float, nmax(nesh_error)

; m n_mesh_error - float, mn(nesh_error)

; morment _error - fltarr(nx,m, normalized error of solution

; based on substitution into velocity space

; momrents (vAm) of Boltzmann equation, nme[0, 1, 2, 3, 4]

; max_mnonent _error - fltarr(5), max(nmonment_error(*,n))

; gx0_total _error - fltarr(nx), normalized error estimate in conputation
; of gx0O_tota

; Qn_total __error - fltarr(nx), nornalized error estinmate in conputation
; of Qn_total

; Sion_error - fltarr(nx), normalized error in charge exchange

; col l'i sion operator

; This is a nmeasure of how well the charge exchange

; collision operator conserves particles.

5. Validation of Numerics

The total neutral distribution function, f (V,,V,,X), computed from the numerical algorithm
should satisfy the Boltzmann eguation,
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Ut
Vy & = :ch —a; fn’ (22)

at every location on the mesh. According to the numerical scheme outlined in section 3, this equation
can be written as the mesh equation,

fo —f
2Vx s M= cx,m+1 + ﬁcx,m _(ac,m+1 fn,m+1 +ac,m 1:n,m) . (23)
Xmet ~ X
5.1 Mesh Point Error
By defining the three termsin Eq. (23) as
f - f
Tl =2v, M
Xm+1 ~ Xm
T2m = ch,m+l + ﬁcx,m’
T3m = ac,m+1 fn,m+1 +ac,m fn,m (24)

anormalized error parameter can be defined for spatial mesh points with X, < X < X, and all
velocity mesh points as

Eim = Thim = T2 m +T3k,|,m‘/max(‘le,I,m"‘Tzk,l,m‘!‘Tgk,l,m‘)- (25)

Vauesof & , arereturned in parameter mesh_error . The average value of €, | and the maximum
valueof &, ., over the meshisreturned in parameters ave_mesh_error and max_mesh_error.

5.2 Velocity Moment Error

f(V,,V,,X) should also satisfy velocity moments (M) of the Boltzmann equation,
II %vﬂ" ov v, ov, = [[ac fngvMav,v.dv, — ffa. f v¥ov,vov. . (26)
Making use of Egs. (23) and (24), this can be expressed as
HTlva” N, V. N, = Hszvy N, V. N, — J’IT3mv)'}" N, V.0V, .
Defining
Ty m = [[ TInVy VY, 0V,

T2m = [[T2mVy MV OV,
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T3M,m =J]’T3mv>':/ld\/xvrwr 1 (27)
anormalized ‘velocity moment error’ for spatial mesh pointswith X, < X < X, can be constructed as
M =[Thum = T20m + T3y ml/ MaX(TLy o [T20 . [T3um])- (28)

Values of ), are returned in parameter moment _error. The maximum errors for moments
0 < M < 4 arereturned in parameter max_roment _error.

5.3 Error Associated with Digital Representation of Distribution Functions

Discretization introduces errors in evaluating moments of the distribution functions. If the
velocity space mesh is too coarse such that f varies strongly between mesh points or if the mesh does
not cover a sufficient range such that f is has a significant component outside the mesh, then
numerically evaluated moments of f will not be accurate. As a test of the numerical accuracy in the
digital representation of f, ki netic_Neutral s. pro computes the average speed of the Maxwellian

plasmaions ( f;) at each X, location and comparesit to the theoretical value:

vcode = Znﬂ.\/mﬁ d/xvr d/r
_ _ : _ A Y/
Voo = [Mf; 0%V =4n[ fv’ —TIL;

The parameter Vbar _error inkKinetic_Neutral s. pro returnsanormalized error defined as

Verror,m = ‘Vc

ode,m _vexact,m‘/\_/exact,m .
Values of vbar _error = 0.01 or less indicate that ﬁ (and by inference, ) are reasonably well

represented by their digital expressions and that the choice of velocity mesh size and spacing is
appropriate. For the case when T, (X) varies significantly across the mesh, a non-uniform velocity

space mesh can be used to more evenly distribute Vbar _err or over the mesh.

[Note: See author for IDL procedure Cr eat e_Vr VxMesh. pr o, which can be used to generate a
(V,,V,) meshwhich is close to the optimum for a specified T; (X) profile]

References
[1] Research SystemsInc., Interactive Data Language (IDL®).

[2] Janev, R.K., Elementary processes in hydrogen-helium plasmas : cross sections and reaction rate
coefficients (Springer-Verlag, Berlin ; New Y ork, 1987).

16

"A 1-D Space, 2-D Velocity, Kinetic Neutral Transport Algorithm", B. LaBombard



