of an

ELECTROMAGNETICALLY LAUNCHED MODEL GLIDER

by
Marc Jeffrey Zeitlin
BS. M.I.T.
1979

Submitted in Partial Fulfillment of the Requirements of the

Degree of

Master of Science
at the

Massachusetts Institute of Technology
August 1981
(c)

Massachusetts Institute of Technology 1981
Signature redacted
Signature of Author.
Department of Aero. and Astro........ August 6, 1981
Signature redacted
Rene Miller Thesis supervisor
Signature redacted

DESIGN, CONSTRUCTION, and TESTING
of an
ELECTRO-MAGNETICALLY LAUNCHED ${ }_{\wedge}$ GLIDER

by

Marc Jeffrey Zeitlin

Submitted to the Department of Aeronautical Engineering on August 7,1981 in partial fulfillment of the requirements for the Degree of Master of Science in Aeronautical Engineering

ABSTRACT

A 22 kg . carge glider for launch from an electromagnetic launcher was desired by the Accelerator group at the National Magnet Laboratory. It was to be accelerated cuer a three meter length at an average cf 100 gees tc a velocity of $80 \mathrm{~m} / \mathrm{sec}$.

A preliminary study was done by procuring a commercially available mcdel glider, strengthening it, and then dcing acceleration tests upon it. This glider withstocd 250 gees after modificaticn. It was launched from the electrc-magnetic launcher four times, at peak accelerations ranging from 40 gees to 100 gees and. peak velccities ranging from $30 \mathrm{~m} / \mathrm{sec}$ tc $45 \mathrm{~m} / \mathrm{sec}$.

A half scale carge glider was designed and constructed. It was built of foam, wocd, aluminum tubes and fiberglass-epoxy, and weighed abcut 4 kg . Flight testing was carried cut by conventional launching (Hi-Start) means. Five flights were flown tc cbserve the flight characteristics which were quite satisfactory. The aircraft was stable and docile.

As of this date no electro-magnetic launches have been done with the half scale mcdel, however they are planned for the near future.

II. ACKNOWLEDGEMENTS

As in all research, it has nct been possible for me to accomplish what I have withcut a great deal of help from many pecple. I would like to thank these pecple in the Acceleratcr Group at the Magnet Lab (Peter Mongeau, Fred Williams, Whitney Hamnett, Osa Fitch, and Henry Kclm, for their help in buildiing the gliders and the launching yoke, for their suggesticns in design and constructicn, for the two days they spent dragging the launcher cut to Briggs field to test the gliders, and for the time they spent explaining the rudimentary behavior of the nigh power electrical circuitry and launcher to me. I want to thank Adrian Nye for bringing his expertise and experience in model airplane constructicn to the group, and for his time and effert in the construction and modification of the gliders. I thank my thesis adviscr, Prof. Rene Miller, for always pointing me in the right directicn in the design and analysis part of my work, and for knowing what was necessary for me tc do next.

Mcst of all, I wish to thank Jorge Chavier, manager of Family Hobby on Mass. Ave. in North Cambridge, for the many hours he spent talking to me abcut the project, advising me cn design and constructicn, teaching me tc fly radic contrcl models, flight testing the gliders withcut
and then with the launcher, and being friendly and helpful throughout, taking his cne free day a week to help us cut.

Withcut all these pecple, but especially withcut Jcrge, my task wculd have been virtually impossible.

TABLE OF CONTENTS
Page
2
I. ABSTRACT
II. ACKNOWLEDGEMENTS 3
III. INTRODUCTION 16
A) Motivation 16
B) Sccpe 17
IV. GLIDER - MARK I 21
A) Selection 21
B) Modification and yoke construction 24
C) Stability and Structural analysis - 31 Dynamic Testing

1) Structural Analysis 31
a) Wing Strength
b) Wing Stiffness
2) Stability Analysis 39a) Lengitudinal Static Stabilityb) Longitudinal Dynamic Stabilityc) Lateral Dynamic Stability
D) Conventional Launches 45
E) Electromagnetic Launches 47
V. GLIDER - MARK II DESIGN : CARGO GLIDER 52
A) Preliminary Design and Configuration 52 Determination
B) Final Configuration 55
C) Materials Selection 58
3) Wing 58
4) Fuselage 58
5) Tail and Becms 59
D) Structural Analysis 59
6) Wing Strength 59
7) Wing Stiffness 60
8) Fuselage Strength 61
9) Boom Strength and Stiffness 62
10) Tail Strength 64
E) Stability Analysis 66
11) Longitudinal Static Stability 66
12) Lengitudinal Dynamic Stability 68
13) Lateral Dynamic Stability 72
VI. GLIDER - MARK II CONSTRUCTION 76
A) Wing 76
B) Fuselage 78
C) Tail and Becms 81
D) Contrcl System 83
E) Ycke 84
VII. GLIDER - MARK II FLIGHT TESTING 87
A) Conventional launches 87
B) Electromagnetic launches 88
VIII. CONCLUSIONS and RECOMMENDATIONS 89
A) Conclusions 89
B) Recommendations 90
IX. APPENDICES 91
A) Michael Palucek's Trajectory Analysis 91
B) Wing Mcment Formulation 114
C) Static Stability Determination 116
D) Dynamic Stability Derivative 118 Formulation
E) Dynamic Stability Determination 123
X. BIOGRAPHICAL NOTE 129
XI. BIBLIOGRAPHY 131

LIST OF SYMBOLS


```
L - lift (Nt)
M - moment (Nt-m)
Mg - aircraft mass (kg)
n - load factor
N - cycles tc halve
q - dynamic pressure (Nt)
S - wing surface area (m )
SH - herizental tail surface area (m )
SV - vertical tail surface area (m )
thalf - halving time (sec)
t - wing thickness (m)
t* - characteristic time (sec)
T - pericd (sec)
V
VH - corrected tail vclume ccefficient
V - velccity (m/sec)
w - fuselage width (m)
w, - wing lift distributicn (Nt/m)
\omega - natural frequncy (rad/sec)
Wg - aircraft weight (Nt)
Ww - wing weight (Nt)
X - positicn in X - directicn (m)
Y - positicn in Y - directicn (m)
Z - positicn in Z - directicn (m)
zw - distance of wing-roct quarter chord point below
    fuselage centerline (m)
zf - distance of vertical tail aerodynamic center
    abcve center of gravity (m)
```

```
AR - aspect ratic
S.F.- safety facter
\alpha - angle of attack (rad)
\Gamma ~ - ~ d i h e d r a l ~ a n g l e ~ ( d e g )
\epsilon - downwash induced
\partial\epsilon
\eta - tail incidence angle (rad)
\etaT - tail angle with respect to zero lift line (rad)
\ell - density (kg/m)
\sigma - stress (Pa)
\mu - nen-dimensional mass
} - damping ratic
```

Aerodynamic Coefficients
C_{L} - lift
C_{m} - moment
$C_{D}-\quad d r a g$
$C_{L T}$ - tail lift
$C_{L_{\alpha}}$ - aircraft lift curve slope
$C_{m_{\alpha}}$ - change in moment coefficient with angle of attack
$C_{x_{\alpha}}$ - change in X - direction force with angle of attack
$C_{Z_{\alpha}}$ - change in Z - direction force with angle of attack
$C_{x_{u}}$ - change in X - direction force with velocity change
${ }^{C} z_{q}$ - change in lift with pitching velocity
$C_{m q}$ - change in moment with pitching velocity

$c_{z_{2}}$		change in Z - direction force with rate of angl attack changes
$c_{m_{\alpha}}$		change in moment with rate of angle of attack changes
$c_{y_{\beta}}$	-	change in sideforce due to sideslip angle
$C_{l \beta}$	-	change in rclling moment due to sideslip angle
$c_{n_{\beta}}$	-	change in yawing moment due to sideslip angle
$c_{y p}$	-	change in Y - direction force with roll rate
$c_{n p}$	-	change in yawing moment due to rell
${ }^{\text {cp }}$	-	change in rclling moment with rcll
$C_{y_{r}}$	-	change in Y - direction force due to yaw rate
C_{l}		change in rolling moment due to yaw rate
$c_{n_{r}}$		change in yawing moment due to yaw rate

LIST OF TABLES

Page
Table 1 - Glider - Mark I characteristics 31
Table 2 - fiberglass characteristics 32
Table 3 - static stability data: 39
Glider - Mark I
Table 4 - Elevator trim results: 40
Glider - Mark I
Table 5 - longitudinal dynamic stability 41 derivatives: Glider - Mark I
Table 6 - lateral dynamic stability 43 derivatives: Glider - Mark I
Table 7 - rocts of lateral stability 44 characteristic equaticn: Glider - Mark I
Table 8 - lateral dynamic characteristics: 44 Glider - Mark I
Table 9 - electrcmagnetic launch data: 51
Glider - Mark I
Table 10 - dimensional characteristics: 57 Glider - Mark II
Table 11 - aluminum and bocm properties: 63 Glider - Mark II
Table 12 - static stability data: 67
Glider - Mark II
Table 13 - longitudinal dynamic stability68derivatives: Glider - Mark II

Table 14 - lateral dynamic stability
derivatives: Glider - Mark II

Table 15 - lateral dynamic characteristics: 74 Glider - Mark II

LIST OF FIGURES

		Page
Figure 1	- bucket and helix schematic	17
Figure 2	- launcher schematic	19
Figure 3	Glider - Mark I	22
Figure 4	Kraft radic system	23
Figure 5	- miniature receiver and servos	24
Figure 6	- crientaticn of fiberglass weave	26
Figure 7	interior fuselage laycut: Glider - Mark I	28
Figure 8	beam and yoke interface: Glider - Mark I	29
Figure 9	- front yoke schematic	30
Figure 10	- cantilever beam model of wing	33
Figure 11	- wing model for torsion and divergency	36
Figure 12	- Hi - Start launch	46
Figure 13	- launcher at 20 degrees elevation	49
Figure 14	- launcher at 40 degrees elevation	50
Figure 15	- (L/D) Max vs. Aspect Ratio	53
Figure 16	- Drag Polar	54
Figure 17	Configuration: Glider - Mark II	56
Figure 18	- Wings: Glider - Mark II	78
Figure 19	Fuselage Framework: Glider - Mark II	79

Figure 20-Exploded View of Tail and Bocms: 81 Glider Mark II

Figure 21 - Assembled View: 83

Figure 22 - Yoke: Glider - Mark II 85

III. INTRODUCTION

A) Motivation

Military resupply of scldiers in mcuntaincus terrain, those cnly a few miles cff, those in need of supplies quickly, or those surrcunded by hostile perscnnel is either a difficult and dangercus task or else cne that is time consuming and expensive. For much resupply, helicopters are used to airlift the materials to the scldiers. If they are surrcunded by hostile trocps, this expeses the multimillicn dollar helicopter tc anti-aircraft fire. In mountaincus terrain, the helicopters have a higher accident rate, $s c$ in either of these situations the helicopter is in danger. Helicopters need a crew and support perscnnel, not to mention refueling and a home base.

A low cost, fast, easy, mobile, low risk system of resupply for these scldiers is needed, especially for those close to the supply point. A system that has been proposed by the Accelerator Grcup of the Francis Bitter National Magnet Laboratcries is tc use small remotely pilcted or self-guided carge gliders for the material carrying. These carge gliders would be launched by an electro-magnetic accelerator being develcped by the Accelerator Group. The launcher would be mounted on a truck trailer and powered either by the truck engine or a separate generatcr.

A cargo glider for this purpose needed to be developed, and this development is the subject of this thesis.
B) Scope

The launcher design has been set by the Accelerator Group, and I will give a short explanation of its design and operation. The launcher is a linear Direct Current Brush Motor, a schematic of which is shown in Figure 1. FIGURE 1

HELICAL MOTOR

TO
CAPACITORS

parallel, then through cne set of brushes, and inte the helix. Exiting the helix through the second set of brushes, it then dumps to ground. This creates a magnetic field asscciated with each of the coils, and a third field associated with the activated section of the helix. (that between the brush sets). With this arrangement, cne coil is attracted to the helix and one is repelled by the helix by the interaction of the coil magnetic fields with the helix magnetic field. This creates a push-pull situaticn in which the coils and brushes are accelerated and slide alcng the helix tube. Since the brushes are moving with the coils, the energized section of the helix is always between the coils, keeping the orientation and relation between the magnetic fields the same as the assembly (called the bucket) slides. For as long as current flows there will be a force on the bucket and it will accelerate. If the helix direction on the tube is reversed, the push-pull forces will be reversed and the bucket will decelerate. A bank of capacitors is used to store energy and supply current to the system.

The launcher set up and cperation is shown in Figure 2.

FIGURE 2

LAUNCHER SET UP

The launcher is mounted on a truck trailer, pulled behind a truck which houses the four 350 volt, cne-quarter farad capacitcr banks and all the asscciated electrical equipment. Using a winch and scisscrs jack arrangement on the trailer, the helix and current feedrails assembly is raised to the launch angle of 45 degrees. The bucket gets current from sliding brushes riding on the feedrails, which are copper strips riveted to four inch square aluminum box beams. The first two thirds of the helix are wound as an acceleration section and the final third as a deceleration section. The acceleration section is three meters long,
and the deceleration section is one and a half meters long.

A 22 kg . gross weight cargc glider was envisioned and considered appropriate for the resupply task. A launch velccity of approximately 80 meters per second would be necessary to achieve an eight to sixteen kilometer range with a medium performance glider, and this implies an average acceleration of abcut $1000 \mathrm{~m} / \mathrm{sec} . / \mathrm{sec}$. (or 100 gee's) cver the three meter acceleration length.

I was given the task of developing a glider to meet the demands of a 100 gee, $80 \mathrm{~m} / \mathrm{sec}$. launch, alcng with the asscciated stability and contrcl criteria. I was alsc to interface with the launcher crew in the development of the Glider-Launcher Yoke connection.

Three steps were seen as being necessary. The first involved using an existing medel glider (prcbably medified) as a concept test. The second was te design and build a half scale model of the 22 kg . cargo glider and test it. The third was tc build a full scale 22 kg . glider. The first two steps have been completed and shall be described in the following chapters.
IV. GLIDER - MARK I

A) Selection

Fcr the concept testing, a commercially available model glider that was easy tc build and medify was necessary. To allow for adequate clearance between the glider and the launcher, and provide for the glider-launcher interface, a high wing model was desirable. A stable, easy to fly trainer was preferable, althcugh nct necessary. The glider must be able to hold the radic contrcl system used for contrcliing aircraft maneuvers. A model glider that met these criteria was found and purchased. It was a Mcdel Rectifier Corp. training glider, made of clcsed cell styrcfcam. It was a simple, high wing, radic contrcl glider, shown in Figure 3.

FIGURE 3

The radic control system needed tc be rugged, strong, lightweight, reliable, fast, and available. Kraft has long been the premier radic contrcl manufacturer, and a Kraft 5-channel radic control set was purchased. It had a flying weight of approximately one quarter kilcgram. It consisted of a transmitter capable of transmitting commands tc independent servc-mechanisms cver a three tc five mile range, a receiver capable of receiving and decoding the transmissicns, three heavy duty electrc-mechanical servc-mechanisms, one normal servc, and a nickel-cadmium battery pack to power the receiver and the servos. This
system is shown in Figure 4.

FIGURE 4

The Mark I glider was smaller than the proposed cargo glider, and alsc cnly needed two channels of the radic control set (rudder and elevatcr contrcl), so a miniature receiver and a pair of subminiature servos were borrowed from Jorge Chavier. These are shown in Figure 5 with a heavy duty servc for size compariscn.

FIGURE 5

B) Modifications and Yoke Construction

To allow the simple foam glider tc withstand the acceleration and speed imposed by the launcher, structural strengthening was necessary. By far the simplest and easiest method of structural reinforcement of the foam glider (and the basic reascn a fcam glider was chosen) was to use the foam as a core for a fiberglass-epcxy skin. This would nct appreciably change the aercdynamic characteristics of the glider, which were known. It would
also be useful as practice in methodolcgy, since the wings of the cargo glider were to be fiberglass-epoxy covered foam. The fiberglass-epoxy matrix provides good impact protection of the radio control unit; witness construction of motorcycle helmets.

Fiberglass clcth weighing $6 \mathrm{cz} . / \mathrm{sq} . \mathrm{m}$. and Hebbypoxy epcxy \#2 were used. Each of the airplane parts was coated with a thin layer of epoxy and then a layer of fiberglass cloth, with the weave criented as in Figure 6, at 45 degrees to the major axis of the part.

FIGURE 6

FIBERGLASS CLOTH WEAVE ORIENTATION

The fiberglass was smocthed down so that the epoxy was forced up through the weave. The wing was given twe layers of the cloth, while all other parts had one layer. When the epcxy hardened the glider was assembled and epoxied together. The bottom of the fuselage had another layer of fiberglass added for abrasion protection during landings. Adding the fiberglass-epoxy approximately dcubled the weight of the aircraft, from cne half to cne kilograms. The stock towhook was installed to allow for conventional Hi-Start launches, described later.

The radic control unit was then installed. The battery-pack was installed up inside the nose of the plane, and held in place with a dowel across the fuselage. The receiver was put behind the battery-pack, and restrained in the same manner. The antenna was routed along the side of the fuselage back to the vertical stabilizer, and was held in place with a dab of siliccne RTV glue every inch or sc. One subminiature servo and the normal duty servo were installed behind the receiver on wocden beams epoxied to the flocr of the glider. They were hocked up to the rudder and elevator via the normal pushrods. Because of the distribution of the fiberglass covering, the center of gravity of the aircraft was tco far aft, sc a brass weight was installed next to the receiver to bring the C.G. to the 30% chord position of the wing, within the normal cperating range. The brass weight and the receiver were held dewn with thin aluminum straps attached te beth cross fuselage dowels. The intericr of the fuselage is shown in Figure 7.

FIGURE 7

Fiberglass-epoxy covered wocden beams were attached to the fuselage beneath the wing. The ycke on the launcher bucket would push on these twc beams tc accelerate the glider during the launch phase. The beam and yoke interface is shown in Figure 8.

The yoke consisted of two parts; the front and the rear. The front section positioned the glider above the bucket $s c$ it would clear the launcher assembly upen take-cff and transmitted the accelerative forced from the bucket tc the glider. It had two triangular aluminum supports which attached to the bucket via the bucket's threaded tension rods. At the top front of these supports were two slets which fitted arcund the push beams on the glider. A slctted cross piece was screwed ontc the back of the triangular pieces to allow for spacing of the supports. A schematic is shown in Figure 9.

FIGURE 9

FRONT YOKE

The rear section of the yoke was purely a vertical support piece to support the down load from the rear of the glider fuselage. This down lcad was created by the acceleraticn. Since the C.G. was abcve the push points, there was a moment creating a down load on the rear of the fuselage during acceleration, and the rear yoke transmitted this force to the rear of the bucket.
C) Structural and Stability Analysis - Dynamic Strength Testing

1) Structural Analysis

A simple structural analysis of the wing is carried cut here to determine the cperating limits of the Glider Mark I.

Aircraft dimensicnal characteristics are given in Table 1.

$$
\text { TABLE } 1
$$

$b=1.5 \mathrm{~m}$.	$S=0.18 \mathrm{~m}$
$c=0.12 \mathrm{~m}$	$\mathrm{Wg}=9.8 \mathrm{Nt}$.
$\mathrm{t}=0.02 \mathrm{~m}$	$S_{H}=0.033 \mathrm{~m}$
$A R=12.5$	$S_{V}=0.018 \mathrm{~m}$
$I_{H}=I_{V}=0.43 \mathrm{~m}$	$W W=4.4 \mathrm{Nt}$.

Fiberglass characteristics are given in Table 2.

TABLE 2

a) Wing Strength

Figure 10 shows modeling of the wing as a cantilever beam.

FIGURE 10

CANTILEVER BEAM MODEL OF WING

Equation (1) is a conservative determination of the moment on the wing at the roct due to lift and is derived in Appendix B.

$$
\begin{equation*}
M_{1}=\frac{W_{g}\left(\mathbb{R} / W_{g} / S^{\prime}\right)^{1 / 2}}{8} n_{1} S \cdot F_{1} \tag{1}
\end{equation*}
$$

Equation (2) is a determination of the moment on the wing at the roct due to acceleration, and is also derived in Appendix B.

$$
\begin{equation*}
M_{2}=\frac{W_{w}\left[R W_{g} / W_{g} / s\right]^{1 / 2}}{8} n_{2} S \cdot F_{2} \tag{2}
\end{equation*}
$$

with SF. $_{1}=$ SF. $_{2}=2 ; \quad n_{1}=10$ (10 Gee pullup); $n_{2}=100$ (100 Gee acceleration)
we get

$$
\begin{aligned}
& M_{1}=36.75 \quad \mathrm{Nt}-\mathrm{m} \\
& M_{2}=184 \quad \mathrm{Nt}-\mathrm{m}
\end{aligned}
$$

If $\sigma_{\max }$ and $\sigma_{\alpha_{\text {max }}}$ are the stresses in the fiberglass skin at the rect of the wing due tc M and M respectively, these are given (from simple beam theory) by:

$$
\begin{equation*}
\sigma_{\max }=\frac{M_{1}^{t / 2}}{I_{1}} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{2 \max }=\frac{M_{2} c / 2}{I_{2}} \tag{4}
\end{equation*}
$$

for this wing: $\sigma_{1_{\text {max }}}=44 \mathrm{mPa}$

$$
\sigma_{2_{\max }}=27 \mathrm{mPa}
$$

These are beth well below the allowable 200 MPa . The maximum allowable M is given by:

$$
\begin{equation*}
M_{1_{\text {max }}}=\frac{F_{T u}^{\top} I_{1}}{t / 2} \tag{5}
\end{equation*}
$$

this is: $\quad M_{\text {max }}=170 \mathrm{Nt}-\mathrm{m}$

Since it is unclear what the response of the glider will be when leaving the launcher, it is necessary to
calculate the maximum allowable speed the glider may be launched at if it comes off the launcher at $C_{L}=C_{L_{\max }}$.
since:
$L=1 / 2 \operatorname{Parr} V^{2} C_{L_{\text {max }}} S$
and:

$$
\begin{equation*}
M_{1}=\frac{L / b(b / 2)^{2}}{2} \tag{6}
\end{equation*}
$$

we can combine (6) and (7) to solve for $V_{\text {max }}$ in terms of

$$
M_{I_{\text {max }}} \text {, and get: }
$$

$$
\begin{equation*}
V_{\max }=\left[\frac{8 M_{\text {max }}}{3 \rho_{\text {arr }} C_{l_{\text {max }}} S}\right]^{1 / 2} \tag{8}
\end{equation*}
$$

$$
\mathrm{sc}: \quad \quad V_{\max }=83 \mathrm{~m} / \mathrm{sec}
$$

The torsional moment M_{T} is a combination of that from lift and that from the moment coefficient of the wing. Figure 11 shows the model of the wing to be used.

FIGURE 11

WING TORSION MODEL

$$
\text { with: } \quad \begin{aligned}
& A=0.00144 \mathrm{~m} \quad \text { (cross sectional area) } \\
& C_{m}=-0.1 \\
& h=2 z=0.00036 \mathrm{~m}
\end{aligned}
$$

$$
\begin{equation*}
M_{T_{\text {max }}}=M_{T_{T}}+M_{T_{L}}=1 / 2 \rho_{\text {ar }} V_{\text {max }}^{2}\left(c C_{m}+1 / 4 c C_{L_{\text {max }}}\right) S \tag{9}
\end{equation*}
$$

$$
M_{T_{\max }}=0.0053 \mathrm{~V}_{\text {max }}^{2}
$$

The stress in the wing skin is given by:

$$
\begin{equation*}
\sigma_{12 \max }=\frac{M_{T_{\max }}}{2 A h} \tag{10}
\end{equation*}
$$

Letting $\sigma_{12}=F_{s u}$ and solving for $V_{\max }$ by combining (9) and (10):
or: $\quad V_{\text {max }}=200 \mathrm{~m} / \mathrm{sec}$

This is well above any planned or even reachable velocity.
b) Wing Stiffness

The torsional inertia of the wing is given by:

$$
\begin{equation*}
J=\frac{4 A^{2}}{\oint \frac{d s}{h}} \tag{12}
\end{equation*}
$$

where as is the circumference of the wing in the chord direction.

The maximum angle of twist of the wing is given by:

$$
\begin{equation*}
\theta_{\text {max }}=\frac{M_{T_{\text {max }}} b / 2}{2 E_{12 / 2} J} \tag{13}
\end{equation*}
$$

so at $V=80 \mathrm{~m} / \mathrm{sec}$.

$$
\theta_{\max }=4.3^{\circ}
$$

The divergent dynamic pressure of the wing is given by:

$$
\begin{equation*}
q_{0}=1 / 2 \rho_{\text {air }} V_{D}^{2}=\frac{\pi^{2} E_{12 / 2} J \frac{\partial C_{L}}{\partial \alpha}}{4(b / 2)^{2} c e} \tag{14}
\end{equation*}
$$

where $\frac{\partial C_{L}}{\partial \alpha}=5.4$ and is derived in Appendix D. Then the divergent speed is:

$$
\begin{align*}
& V_{D}=\left[\frac{\pi^{2} E_{1222} J}{2(b / 2)^{2} P_{a, r} c e \frac{\partial C_{L}}{\partial \alpha}}\right]^{1 / 2} \tag{15}\\
& V_{D}=250 \mathrm{~m} / \mathrm{sec} \quad(-550 \mathrm{mph})
\end{align*}
$$

Again, this is well above any planned or reachable velocity.

It has been shown through these simple estimations of the wing strength and stiffness that the Glider-Mark I should be capable of withstanding the inertial and aerodynamic loads imposed upon it by the electromagnetic launch and subsequent flight. To test the response to inertial loading, the Glider-Mark I was placed on the yoke structure on the bucket and held in place with strapping tape. The bucket was fired repeatedly to a velocity of $15 \mathrm{~m} / \mathrm{sec}$. at average accelerations varying from $200 \mathrm{~m} / \mathrm{sec} . / \mathrm{sec}$. (20 Gee) tc $2500 \mathrm{~m} / \mathrm{sec} . / \mathrm{sec} .(\sim 250$ Gee $)$. The peak acceleration reached (albeit for a very short time - approximately two milliseconds) was $4000 \mathrm{~m} / \mathrm{sec} . / \mathrm{sec}$. (~400 Gee).

No damage to either the aircraft structure or the
radio control components was noted. Since the peak acceleration expected on launch would be 2000 m/sec./sec. (~200 Gee) maximum, the glider was deemed acceptably strong with regard to inertial lcading, having at least a safety factor of twe.
2) Stability Analysis
a) Longitudinal Static Stability

Using the derivations in Appendix C, the Data in Table 1 , and the following data in Table 3:

TABLE 3

Center of Gravity:	$X_{C . G}=0.05 \mathrm{~m}$
Wing Aercdynamic Center:	$X_{A_{. C}}=0.027 \mathrm{~m}$
Wing Lift Curve Slope:	$a=5.4$
Horiz. Tail L. C. S.:	$a_{1}=3.0$
Elevator Lift Curve Slcpe:	$a_{2}=2.0$
Tail Incidence Angle:	$\eta_{T}=0$
Change in Downwash:	$\frac{\partial \epsilon}{\partial \alpha}=0.2$
Moment Ccefficient:	$C_{m_{0}}=-0.1$

The following can be calculated:

Horizontal Tail Lift:

$$
L_{\text {horiz. } k_{1} 1}=-0.0031 \mathrm{~V}^{2}+0.525
$$

Horizontal Tail Lift Coefficient:

$$
C_{L_{\text {hertz. }}} \text { tail }=-0.1533+25.97 / \mathrm{V}^{2}
$$

Elevator Angle to Trim:

$$
\eta=0.544 C_{L_{\text {harl. Tall }}}-0.23 C_{L}
$$

Tail Incidence Angle:

$$
\alpha_{T}=0.333 C_{L_{\text {horiz. Til }}}-0.666 \eta
$$

These are tabulated for various flight speeds in Table 4.

$$
\text { TABLE } 4
$$

Velocity $\mathrm{m} / \mathrm{sec}$.	\underline{C}_{L}	$\underline{C}_{\text {Lhoriz. Til }}$	$\underline{\eta}$	$\underline{\mathrm{rad}}$
10	0.84	0.106	-0.147	0.133
30	0.099	-0.124	-0.090	0.019
50	0.036	-0.143	-0.085	0.010
70	0.018	-0.148	-0.084	0.007
90	0.011	-0.150	-0.083	0.006

The stick fixed neutral point is:

$$
h_{n}=0.495
$$

so the static margin:

$$
\mathrm{K}_{n}=0.078
$$

This is positive, sc the aircraft is longitudinally statically stable.
b) Lengitudinal Dynamic Stability

The longitudinal dynamic stability derivatives and dimensicnal parameters (as derived in Appendix D) are listed in Table 5. The ones that have a lift coefficient dependence are given for each velccity.

TABLE 5

Using the approximate sclutions in Appendix E, values for the natural frequency and damping ratic in both the Phugcid and Short Pericd Modes are cbtained.

It is seen that the aircraft is stable in both Phugcid and Short pericd mode cscillaticns, with the stability in the Phugcid mode actually increasing with increasing velccity.
C) Lateral Dynamic Stability

The lateral dynamic stability derivatives and dimensicnal parameters (as derived in Appendix D) are listed in Table 6. The cnes that have a lift coefficient
dependence are given for each velccity.

TABLE 6

derivative	value
$C_{y_{\beta}}$	-0.2
$C_{y_{p}}$	0
$C_{l_{p}}$	-0.385
$C_{y_{r}}$	0.115
μ	6.05
I_{1}	0.75
i_{A}	1.02
i_{c}	1.45
i_{E}	0.014

	$\frac{10}{\mathrm{~m} / \mathrm{sec}}$	$\frac{50}{\mathrm{~m} / \mathrm{sec}}$	$\frac{80}{\mathrm{~m} / \mathrm{sec}}$
$C_{n \beta}$	0.05	0.0443	0.0443
$C_{\ell_{\beta}}$	-0.043	-0.018	-0.017
$C_{n r}$	-0.055	-0.038	-0.037
$C_{\ell r}$	0.033	0.012	0.011
$C_{n p}$	-0.066	0.002	0.0035
t^{*}	0.075	0.015	0.0094

Using the exact sclution in Appendix E for lateral motion, the characteristic equation is cbtained for each velcoity. Solving the characteristic equation gives the following rocts:

TABLE 7

rects	$\frac{10 \mathrm{~m} / \mathrm{sec}}{\lambda_{1}}$	-0.00213	$-\frac{50}{\mathrm{~m} / \mathrm{sec}}$
λ_{2}	-0.395	-0.000025	-0.00001
$\lambda_{3,4}$	$-0.017 \pm 0.204 \mathrm{~m} / \mathrm{sec}$		
	$-0.021 \pm 0.174 \mathrm{i}$	$-0.022 \pm 0.171 \mathrm{i}$	

The characteristics of the lateral dynamics are given in Table 8.

TABLE 8

Dutch Rcll	$\frac{10}{\mathrm{~m} / \mathrm{sec}}$	$\frac{50}{\mathrm{~m} / \mathrm{sec}}$	$\frac{80}{\mathrm{~m} / \mathrm{sec}}$
pericd (sec)	2.31	0.542	0.345
halving time	3.06	0.49	0.29
cycles to halve	1.32	0.91	0.84

Spiral Mcde
halving time
24.3
414
667

Relling mode
halving time
0.13
0.027
0.017

It can be seen that the aircraft is laterally stable in all modes, although the spiral instability takes a very long time to damp out at high speeds.

The stability of the Glider - Mark I has been confirmed at all velcoities in all of the lateral and longitudinal modes. The next step was the flight testing.
D) Flight Testing $=$ Conventicnal Launches (Strake Addition)

Pricr tc an electromagnetic launch, it was deemed appropriate to launch the glider by conventional means (Hi-Start) tc determine its operating and flight characteristics. On a cold Saturday morning in March 1981 Jcrge Chavier and I tock the plane, Hi-Start, and radic control equipment cut cntc Briggs Field at M.I.T. The elevator and rudder were adjusted by eye, and then a few hand launches were performed to get the final trim settings. The glider flew smocthly and slowly with few adjustments, and then a Hi-Start launch was attempted.

The Hi-Start launcher consists of 130 meters of nylon fishing line and 30 meters of surgical grade rubber tubing. One end of the nylon line is staked down, the tubing tied to the cther end, and the free end of the tubing hooked ontc the glider tow hock. The rubber tubing is stretched, and the system functions as a huge slingshot. A representation of the lanch process is shown in Figure 12.

FIGURE 12

HI-START LAUNCH

We launched the glider twice with the Hi-Start. It was determined (by Jorge) that there was a pronounced tendency tc turn left, and the vertical stabilizer wasn't very effective, although the rudder was. During the following week modifications to the vertical stabilizer (adding a strake) and to the right wing (adding some washout) were performed to alleviate the deficiencies. The next Saturday we Hi-Start launched the glider two more times. The stabilizer was more effective and the tendency to turn left was eliminated. The glider showed no cther adverse flight characteristics, and was deemed ready for
electromagnetic launching.

E) Flight Testing = Electromagnetic Launches

Fcur electromagnetic launches were performed in late March 1981. Everyone in the Accelerator group helped bring all the equipment cut to Briggs Field on a rented truck. We set up the launcher at approximately a 20 degree angle (resting one end on a fence). The charging circuit and capacitcr banks were kept in the truck, and were plugged intc an cutlet near the M.I.T. sclar house. Jorge hand launched the glider a few times to check the trim and we placed the glider in the yoke on the bucket. Two of the capacitor banks were charged up tc 140 volts. We waited until the air was calm and then the banks were discharged, launching the glider at a velocity of approximately 30 $\mathrm{m} / \mathrm{sec}$. The average acceleration was $200 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$ (20 Gees) and the peak acceleration was twice that. The glider went straight ahead at an angle of 20 degrees to an altitude of abcut 25 meters where Jorge leveled it off and flew two large, fast left hand circles. He then brought the glider in for a perfect landing 10 meters from the launcher. Jcrge and I examined the plane and radic, deemed them airworthy, and the glider was put on the launcher yoke again. The two banks were charged to 160 volts, and when the air again became calm, the banks were discharged,
launching the glider at a velccity of $35 \mathrm{~m} / \mathrm{sec}$. The average acceleration was $250 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$ (25 Gees) and the peak acceleration was twice that. The glider again went straight ahead to an altitude of 35 meters. Jorge flew it in a few circles but it landed hard since the wind had picked up. The tail was cracked and the nose was dented, but those were both patched up with fiberglass and epoxy that night.

The next time we brought the launcher cut to Briggs Field we also brought an $A-f r a m e$ to lift the end of the launcher to four meters off the ground, making the angle of launch abcut 40 degrees. The glider was placed on the yoke, and three banks were charged to 160 volts. When the banks were discharged the glider climbed at a 40 degree angle tc approximately 55 meters altitude. The launch velccity was $40 \mathrm{~m} / \mathrm{sec} .$, with an average acceleration of 300 m/sec/sec. Jorge flew it for abcut 45 seconds and then brcught it in for a landing. After ancther examination we put the glider on the yoke and charged the three banks to 200 volts. The discharge launched the glider at a 40 degree angle at $45 \mathrm{~m} / \mathrm{sec}$. The average acceleration was 500 m/sec/sec. The glider climbed to 75 meters altitude but then Jorge had a partial control loss, and a mild crash resulted. That concluded the Glider Mark I electromagnetic launches. Figure 13 shows the launcher at 20 degrees for the first two launches, and Figure 14 shows the launcher at 40 degrees for the last two launches.

FIGURE 13

Table 9 includes launch angle, altitude, velccity, accelerations, bank vcltages, and number of banks used.

TABLE 9

$$
\frac{\text { acceleration }}{\left(\mathrm{m} / \sec ^{2}\right)}
$$

launch	\#banks	Vclts	angle	alt. (m.)	speed		avg. peak	
1	2	140	20	25	30		200	400
2	2	160	20	35	35		250	500
3	3	160	40	55	40	300	600	
4	3	200	40	75	45	500	1000	

With its glide ratic of approximately fifteen, this glider could have flown one to cne and a half kilcmeters had it gone in a straight line, from an altitude of 75 meters and a launch velccity of $45 \mathrm{~m} / \mathrm{sec}$.
V. GLIDER - MARK II DESIGN: CARGO GLIDER
A) Preliminary Design and Configuration Determination

The Glider - Mark II was to be a half scale model of the 22 kilogram cargo glider. Therefore the general laycut and design of the cargo glider had to be determined before the half scale model could be designed. A modular system would be used, allcwing for easy and compact transportation and assembly in the support area. There would be a fuselage cargo compartment with snap-in snap-cut cargo pods and a removable wing for compactness during storage.

Since the aircraft is a glider, the glide ratio (or lift-to-drag ratio) is a very important factor in determining the effectiveness of the craft. The higher the glide ratic, the farther the glider can fly from a given altitude. In this case, the higher the glide ratio the better. The L/D (lift-to-drag ratic) is a function of many things, the main ones being two features of the aircraft configuration; the aspect ratio (length to width ratio of the wing) and the wing loading (the weight of the aircraft divided by the wing planform area). For any specific configuration it is also function of the flight velocity.

A graph of (L/D) max vs. Aspect Ratic for different wing leadings is given in Figure 15. This is for different
wings cn an arbitrary fuselage.

FIGURE 15

It is seen that the (L/D) max increases with increasing aspect ratic and decreases with increasing wing lcading. The increase with AR (aspect ratio) is caused by a reduction in the induced drag at high AR's, and as the drag goes down while the lift remains constant, the L/D rises. An increase in the wing loading (with the same fuselage) entails a smaller wing. Since the fuselage is the same size but the wing is smaller, the ratio of fuselage drag tc wing drag increases, thereby causing a
decrease in the L/D.

The L/D is also a function of the flight velcoity, and a graph of sink velocity vs. forward velocity is given in Figure 16. This graph is commonly known as a drag pclar.

FIGURE 16

It is seen that the point where a tangent line through the crigin touches the curve must be the point of (L/D) max , and that the forward velocity divided by the sink velocity is the L/D.

A large high AR wing by necessity weighs more than a small low $A R$ wing, and therefore subtracts from the carge carrying capacity of the glider even as it increases its range. It was determined that a wing loading of $200 \mathrm{Nt} / \mathrm{m}^{2}$ and an aspect ratic of abcut 15 would give a payload to gross weight ratio of approximately $1 / 2$ (good for a glider) and also give the requisite range capability.
B) Final Configuration

A view of the final configuration of the $1 / 2$ scale Carge Glider Mark II is seen in figure 17.

FIGURE 17

It is a pod and twin bocm configuration, with twin vertical stabilizers and an all flying herizontal stabilizer. It has 3-axis control (elevator, rudder, ailercns). The reason for this design is its modularity. The wing, fuselage, and tail and boom assemblies can be constructed separately and then bolted together. This would be convenient in the field, as a stock of the three components could be stored and then put together just before the flight, saving a great deal of space. It is alsc a convenient design for the construction and testing phases of the program. It allows the construction of
replacement parts which can just be bclted in place in case cf a damaging crash. This wculd save time and alsc allow assembly line procedures in the construction.

The Glider - Mark II characteristics are given in Table 10.

TABLE 10

Gross Weight	W_{g}	55.7 Nt.
Empty Weight	We_{e}	22 Nt.
Wing Area	S	0.28 m.
Herizontal Tail Area	S_{H}	0.05 m.
Vertical Tail Area	S_{V}	0.034 m.
Fuselage Length	F_{L}	0.6 m.
Fuselage Diameter	w	0.13 m.
Bcom Length	I_{V}	0.43 m.

		Short Wing	Lcng Wing
Aspect Ratic	AR	6	12
Span	b	1.29 m.	1.82 m.
Cherd	c	0.22 m.	0.15 m.

Twc wings have been planned; an aspect ratic of 6 and an aspect ratic of 12. The low aspect ratio wing is a conservative wing, stronger and more stable (as will be shewn later), although with lower perfcrmance. It will be
used first to prove out the glider and then the longer wing will be used to cbtain a lenger range.
C) Materials Selecticn

1) Wing

As in the Glider - Mark I a foam core fiberglass-epoxy skin would be used. This is stronger, lighter and simpler than a built up wing. The foam is $30 \mathrm{~kg} / \mathrm{m}^{3}$ density blue construction insulation styrofoam. The fiberglass used is $0.2 \mathrm{~kg} / \mathrm{m}^{2} 90$ degree weave clcth, with Hobbypoxy 2 epcxy.

The ailercns are heavy balsa wocd, as are the wing tips. Pine blocks under the skin are used as fuselage attachment points.
2) Fuselage

Standard medel aircraft construction techniques were chosen for simplicity and familiarity reasons. Spars would be spruce, while the bulkheads would be plywood. The frame would be skinned with 1/16" balsa sheet and then covered with one layer of fiberglass-epoxy. The nose and tail cones would be carved from the styrofcam insulation and then covered with one layer of fiberglass-epoxy.

3) Tail and Booms

The tail (both herizontal and vertical stabilizers) would be shaped from hard balsa and then covered with one layer of fiberglass-epoxy. This provides more than adequate strength and stiffness, and is simple tc build.

The bocms would be aluminum tubes, chosen for their stiffness. Fiberglass-epoxy tubes would be better (having a higher stiffness tc weight ratic) however they weren't available at construction time. The penalty was a little weight. The bocm tubes would have pine plugs in them at areas of stress concentration.
D) Structural Analysis

The structural analysis concerns the main aircraft components, i.e. the wing, fuselage, booms, and tail. It uses simple beam theory and torsion theory, along with idealized simplifications of the actual structure. However, all the simplifications and idealizations are conservative cnes, giving results lower in strength and stiffness than will actually be the case.

Wing Strength

Using the Data in Table 2, Table 10 and the modeling
in figure 10; following through the analysis given in equations cne thrcugh eight in Chapter IV, a maximum velcoity at $C_{L_{\text {max }}}$ is cbtained for both the long and shert wings. These maximum velccities are:
short wing: $V_{\max }=85 \mathrm{~m} / \mathrm{sec}(-210 \mathrm{mph})$
leng wing: $V_{\max }=80 \mathrm{~m} / \mathrm{sec}(\sim 200 \mathrm{mph})$

The maximum allcwable velcoity from torsicnal moments is fcund using Figure 11 and equaticns nine through 11 (in Chapter IV). These maximum velocities are:
shert wing: $V_{\text {max }}=400 \mathrm{~m} / \mathrm{sec}(\sim 900 \mathrm{mph})$
leng wing: $V_{\text {max }}=375 \mathrm{~m} / \mathrm{sec}(-850 \mathrm{mph})$

Because these have been very conservative estimates of the strength of the wing in bending and in torsion, it is seen that the glider can withstand any planned velcoity even at $C_{L_{\text {max }}}$

2) Wing Stiffness

Using the formulaticn given in Chapter IV equations 12 thrcugh 15, the divergent speed and maximum twist of the wings are found. These are:
short wing: $V_{D}=400 \mathrm{~m} / \mathrm{sec}(\sim 900 \mathrm{mph})$

$$
\begin{aligned}
& \theta_{\max }=2.6 \text { degrees } 80 \mathrm{~m} / \mathrm{sec} \\
& \text { long wing: } V_{D}=350 \mathrm{~m} / \mathrm{sec}(-780 \mathrm{mph}) \\
& \theta_{\max }=2.5 \text { degrees }(80 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Again, the wing stiffness is adequate for any reachable velocities.
3) Fuselage Strength

The fuselage stringers must be capable of withstanding the full accelerative forces the glider will feel while being launched. Tc be conservative, it is assumed that the stringers will see the full weight of the glider at 100 gees with a safety factor of two. Spruce properties are listed below:
$\ell=450 \mathrm{~kg} / \mathrm{m}$
$E=9.6 \mathrm{gPa}$
$F_{T 4}=69 \mathrm{mPa}$

The total area for the stringers is given by

$$
\begin{equation*}
A=\frac{F}{F_{\tau u}} \tag{16}
\end{equation*}
$$

where F is the total force. In this case

$$
\begin{equation*}
F=W_{g} n_{1} S \cdot F_{1} \tag{17}
\end{equation*}
$$

se

$$
\begin{equation*}
A=\frac{W_{g} n_{1} S_{0} F_{1}}{F_{T u}} \tag{18}
\end{equation*}
$$

substituting:

$$
A=23 \mathrm{~mm}^{2}
$$

With eight square stringers, each must be 4.7 mm . on a side.
4) Bocm Strength and Stiffness

Stresses in the tail booms will be produces by moments from the aercdynamic fcrces of the tail and by accelerative lcads applied by the launcher. If the tctal bcom and tail weight is assumed to be $1 / 10$ the gross weight of the glider, then with the following properties in Table 11,

TABLE 11
Aluminum
$\rho=2800 \mathrm{~kg} / \mathrm{m} . \quad l_{\nu}=0.43 \mathrm{~m}$.
$E_{n}=72 \mathrm{gPa}$
O.D. $=2.86 \mathrm{~cm}$.
$F_{T u}=440 \mathrm{mPa} \quad$ wall thickness $=0.89 \mathrm{~mm}$.

$$
\mathrm{W}_{6 .+T}=5.6 \mathrm{Nt} .
$$

the stress due to acceleraticn is:

$$
\sigma_{a}=14.3 \mathrm{mPa}
$$

And the stress due te tail forces, assuming $C_{L_{\text {max }}}=1.2$ and $V=80 \mathrm{~m} / \mathrm{sec}$:

$$
\sigma_{\tau_{f}}=45 \mathrm{mPa}
$$

Bcth of these are well below the yield stress of aluminum cf 440 mPa .

It was required to keep the bending of the tail bocms as low as possible tc minimize the unwanted angular deflecticns of the tail. A deflecticn of cne degree at the tail was allowable. The deflection of the tail (modeled as a clamped cantilever beam) from simple beam thecry is:

$$
\begin{equation*}
f_{\max }=\frac{F l_{v}^{3}}{3 E_{n} I} \tag{19}
\end{equation*}
$$

where F is the down (or up) force from the tail and I is the moment of inertia of both bocms.

$$
\begin{align*}
& F=1 / 2 P_{\text {air }} V^{2} C_{L \text { Tail }} S_{H} \tag{20}\\
& I=\pi / 4\left[\left(\frac{O . D}{2}\right)^{4}-\left(\frac{0 . D}{2}-\text { wall thicK(ness }\right)^{4}\right] \tag{21}
\end{align*}
$$

Substituting (20) and (21) into (19), after inserting the proper values we get:

$$
f_{\max }=0.75 \mathrm{~cm}
$$

ever the 43 cm . length of the bocms this is a deflection of approximately cne degree, and as such is acceptable.
5) Tail Strength

The tail must withstand the inertial accelerative forces impcsed upen it by the launch, and also the maximum aercdynamic leads that might be enccuntered.

The maximum lift (either positive or negative) produced by the horizontal stabilizer is:

$$
F=200 \mathrm{Nt} .
$$

sc the lift distribution is:

$$
\mathrm{w}_{H}=447 \mathrm{Nt} / \mathrm{m} .
$$

The maximum moment will be where the outer sections of the stabilizer meet the tail bcoms. then:

$$
M_{I_{\text {max }}}=W_{H} \frac{\left(b_{H} / 3\right)^{2}}{2}=4.96 \mathrm{Nt}-\mathrm{m}
$$

For the fiberglass-epoxy covered horizontal stabilizer, the moment of inertia about the Y-axis is:

$$
I=800 \times 10^{-12} \mathrm{~m}^{4}
$$

Then the maximum stress in the stabilizer will be:

$$
\sigma_{a}=M Y / I=30 \mathrm{mPa}
$$

This is well below the ultimate strength of the fiberglass of 200 mPa .

From acceleration, the maximum moment will be:

$$
M_{2_{\text {max }}}=5 \mathrm{Nt}-\mathrm{m}
$$

The moment of inertia about the Z-axis is:

$$
I=8.5 \times 10^{-9} \mathrm{~m}^{4}
$$

Then the maximum stress will be:

$$
\sigma_{I}=30 \mathrm{mPa}
$$

A similar analysis is carried cut for the vertical stabilizers, and gives a maximum stress from aerodynamic leads of:

$$
\sigma_{a}=20 \mathrm{mPa}
$$

And a maximum stress from inertial loading of:

$$
\sigma_{I}=21 \mathrm{mPa}
$$

It is seen that all of these stresses are well below the maximum allcwable stress in the fiberglass of 200 mPa .

This analysis has shown that all the major structural components are capable of withstanding any and all lcads that may be encountered either be aercdynamic lcading or by inertial lcading.
E) Stability Analysis

1) Lengitudinal Static Stability

Using the same methcds as for the Glider - Mark I, we use the aircraft characteristics given in Table 10 along with the following data in Table 12:

TABLE 12
empty weight gross weight

h_{1}	0.356	0.231
$\mathrm{~h}_{0}$	0.225	0.225
a(leng wing)	5.4	5.4
a(shert wing)	4.71	4.71
a_{1}	3.0	3.0
a_{2}	2.0	2.0
η_{T}	0	0
$\frac{\partial \epsilon}{\partial \alpha}$	0.2	0.2
$c_{m_{0}}$	-0.1	-0.1

short wing:	$h_{n}=0.372$		
leng wing:	$h_{n}=0.392$		
And the Static margin K_{n} :			
empty weight gress weight			
long wing:	K_{n}	0.016	0.141
short wing:	K_{n}	0.036	0.161

All of these are positive, so the aircraft will be longitudinally statically stable with either wing, either empty or at gross weight.
2) Lengitudinal Dynamic Stability

The longitudinal dynamic stability derivatives and dimensicnal parameters (as derived in Appendix D) for the Glider - Mark II with either wing at gross weight and at empty weight are given in table 13.

TABLE 13

	short wing		lcng wing	
Derivative	empty	grcss	empty	gross
a	4.71	4.71	5.4	5.4
$C_{L_{\alpha}}$	5.13	5.13	5.8	5.8
$C_{m_{\alpha}}$	-0.075	-0.664	-0.086	-0.761
$C_{z_{\alpha}}$	-5.13	-5.13	-5.8	-5.8
$C_{x_{4}}$	-0.03	-0.03	-0.03	-0.03
$C_{z_{q}}$	-1.962	-1.962	-1.986	-1.986
$C_{m q}$	-3.90	-3.90	-3.95	-3.95
$C_{z_{2}}$	-0.393	-0.393	-0.393	-0.393
$C_{m_{2}}$	-0.78	-0.78	-0.79	-0.79
i_{B}	65	408	430	1070
μ	60	150	85	213
1	0.108	0.108	0.076	0.076

short wing
empty
gross

	$\frac{25}{\mathrm{~m} / \mathrm{sec}}$	$\underline{100} \mathrm{~m} / \mathrm{sec}$	$\underline{25} \frac{\mathrm{~m} / \mathrm{sec}}{}$	$\underline{100} \mathrm{~m} / \mathrm{sec}$
c_{L}	0.2	0.013	0.51	0.031
$c_{X_{\alpha}}$	0.08	0.005	0.204	0.013
$c_{z_{u}}$	-0.0012	-0.0013	-0.0032	-0.0031
t^{*}	0.00432	0.00108	0.00432	0.00108

Using the approximate sclutions in Appendix E, values for the natural frequency, damping ration, period, halving time and cycles tc halve are cbtained.
i) Phugcid Mcde
short wing

	empty		gross	
	$25 \mathrm{~m} / \mathrm{sec}$	$100 \mathrm{~m} / \mathrm{sec}$	$25 \mathrm{~m} / \mathrm{sec}$	$100 \mathrm{~m} / \mathrm{sec}$
$\omega_{n}(\mathrm{rad} / \mathrm{sec})$	0.0023	0.00015	0.0024	0.00015
ξ	0.053	0.815	0.021	0.342
T (sec)	11.75	78	11.75	48
$t_{\text {half }}(\mathrm{sec})$	24.4	6.1	59.6	14.9
$N_{\text {half }}$	2.1	0.08	5.1	0.31
	lcng wing			
		empty	gr	css
	$25 \mathrm{~m} / \mathrm{sec}$	$100 \mathrm{~m} / \mathrm{sec}$	$25 \mathrm{~m} / \mathrm{sec}$	$\underline{100} \mathrm{~m} / \mathrm{sec}$
$\omega_{h}(\mathrm{rad} / \mathrm{sec})$	0.0017	0.00011	0.0017	0.0001
ξ	0.053	0.816	0.02	0.342
T (sec)	11.5	75.1	11.25	49.1
$t_{\text {half }}(\mathrm{sec})$	23.8	5.84	61.7	14.9
$N_{\text {half }}$	2.1	0.08	5.5	0.3

ii) Short Pericd Mode
shert wing

	empty		gross	
	$25 \mathrm{~m} / \mathrm{sec}$	$100 \mathrm{~m} / \mathrm{sec}$	$25 \mathrm{~m} / \mathrm{sec}$	$100 \mathrm{~m} / \mathrm{sec}$
$W_{n}(\mathrm{rad} / \mathrm{sec})$	0.038	0.038	0.042	0.042
ξ	0.929	0.929	0.338	0.338
T (sec)	0.073	0.018	0.068	0.017
$t_{\text {half }}$ (sec)	0.083	0.021	0.21	0.052
Nhalf	0.86	0.86	0.31	0.31

	leng wing			
	empty		gross	
	$25 \mathrm{~m} / \mathrm{sec}$	$100 \mathrm{~m} / \mathrm{sec}$	$25 \mathrm{~m} / \mathrm{sec}$	$100 \mathrm{~m} / \mathrm{sec}$
$w_{n}(\mathrm{rad} / \mathrm{sec})$	0.014	0.014	0.026	0.026
ξ	0.495	0.495	0.327	0.327
T (sec)	1.59	0.398	0.77	0.19
$t_{\text {half }}(\mathrm{sec})$	0.3	0.076	0.247	0.062
$N_{\text {half }}$	0.19	0.19	0.32	0.32

It is seen that the aircraft is stable in both the Phugcid and Shert Period Mode oscillations at either speed with either wing. This confirms the longitudinal Dynamic Stability.
3) Lateral Dynamic Stability

The lateral dynamic stability derivatives and dimensicnal parameters (as derived in Appendix D) for the Glider - Mark II with either wing at gross weight and at empty weight are given in Table 14.

TABLE 14

	shert wing		leng wing	
Derivative	empty	gress	empty	gross
$C_{y_{\beta}}$	-0.233	-0.233	-0.233	-0.233
$c^{c} y_{p}$	0	0	0	0
$c_{l p}$	-0.23	-0.23	-0.36	-0.36
$c_{y r}$	0.155	0.155	0.113	0.113
μ	10	25.1	7.3	18.36
1	0.645	0.645	0.91	0.91
$\mathrm{i}_{\text {A }}$	0.707	1.767	0.3112	0.778
i_{C}	1.162	2.904	. 468	1.17
${ }^{1}{ }_{E}$	0.025	0.064	0.011	0.026

shert wing

	empty		gross	
	$25 \mathrm{~m} / \mathrm{sec}$	$100 \mathrm{~m} / \mathrm{sec}$	$25 \mathrm{~m} / \mathrm{sec}$	$100 \mathrm{~m} / \mathrm{sec}$
$C_{n \beta}$	0.0573	0.057	0.059	0.057
$c^{\prime}{ }_{\beta}$	-0.038	-0.029	-0.054	-0.030
$C^{n_{r}}$	-0.059	-0.058	-0.063	-0.058
${ }^{C_{l r}}$	0.014	0.009	0.022	0.010
$c_{n p}$	-0.0013	0.008	-0.017	0.007
t^{*}	0.026	0.0065	0.026	0.0065

long wing
empty
gress
$25 \mathrm{~m} / \mathrm{sec} \quad 100 \mathrm{~m} / \mathrm{sec} \quad 25 \mathrm{~m} / \mathrm{sec} \quad 100 \mathrm{~m} / \mathrm{sec}$
$C_{n p}$
$0.041 \quad 0.040$
0.042
0.040
${ }_{C l}{ }_{p}$
$-0.205 \quad-0.201$
$-0.215 \quad-0.201$
$-0.032 \quad-0.032$
$-0.034 \quad-0.032$
0.059
0.008
0.145
0.013
-0.006
0.004
-0.021
0.003
0.0364
0.0091
0.0364
0.0091

Using the exact solutions in Appendix E for lateral mction, a characteristic equation is obtained for each set of derivatives (the glider with each wing at each velccity). Using the roots of these characteristic equations to cbtain the flight characteristics, the pericd, halving time, and cycles to halve are determined. These are given in Table 15.

TABLE 15
short wing
$\frac{\text { empty }}{25 \mathrm{~m} / \mathrm{sec} \quad 100 \mathrm{~m} / \mathrm{sec} \quad 25 \mathrm{~m} / \mathrm{sec} 100 \mathrm{~m} / \mathrm{sec}}$

Dutch Rcll

T (sec)	0.73	0.18	1.1	0.15
$t_{\text {half }}(\mathrm{sec})$	0.72	0.16	3.24	0.47
$N_{\text {half }}$	0.99	0.86	2.94	3.12

Spiral Mcde
$t_{\text {half }}(\mathrm{sec}) 2.1$
79.5
13.7
80

Rolling Mcde
${ }^{t}$ half $(\mathrm{sec}) 0.05$
0.013
0.12
0.03
long wing
empty
gross
$25 \mathrm{~m} / \mathrm{sec} \quad 100 \mathrm{~m} / \mathrm{sec} \quad 25 \mathrm{~m} / \mathrm{sec} \quad 100 \mathrm{~m} / \mathrm{sec}$
Dutch Roll

T (sec)	0.727	0.199	33.5	0.55
${ }^{\mathrm{t}}$ half				
$\mathrm{N}_{\text {half }}$	0.857	0.17	1.0	0.313
	1.18	0.85	33.5	1.74

Spiral Mcde
${ }^{t}$ half (sec) 7.5
16.1
36
18

Rclling Mcde
${ }^{t_{\text {half }}}(\mathrm{sec}) 0.02$
0.005
0.05
0.013

From these figures it is seen that the aircraft is laterally stable in all modes with either wing at either speed.

These calculaticns confirmed the stability, both longitudinal and lateral, of the Glider - Mark II. The next step was construction.
VI. GLIDER - MARK II CONSTRUCTION
A) Wing

The wings were built using the foam core, fiberglass-epoxy skin technique. We didn't have fcam cores already, as we had for the Glider - Mark I, so we had to cut cur cwn. This was done by making aluminum templates of the modified NACA 65 - 418 wing secticn that we were using, fastening them to the ends of the uncut foam slab and then using a taut, hot nichrome wire to cut the foam, using the templates on either end as a guide. Since a balsa leading edge and aileron were te be added, the foam was cut sans leading edges and ailercns.

The leading edges were shaped from light balsa and epoxied to the foam cores. This was done since the hot wire cutter could not cut the sharp curve of the leading edge, but the balsa could easily be carved to the correct shape. Pine blocks were installed in the front and rear of the center section of both wing cores. These would later have holes drilled in them and be used to mount the wings on the fuselage. The short wing (AR 6) was then laid up with cne layer of fiberglass-epoxy, the same as used on Glider - Mark I. The long wing (AR 12) was laid up with two layers of fiberglass-epoxy from the wing root to the half-span point and one layer from there outward to the tip. The crientation of the weave on both wings is shown
in Figure 6.

For each wing a set of ailerons was made from hard balsa. Balsa wingtips were carved and epoxied to the tip cf each wing. A cutout in the bottom of the center of each wing was made te hold the ailercn servc in place. The wing was primered and painted with polyurethane paint, and then the ailercn hinges were epoxied in place. A "Kavan" ailercn hinge line fairing was used between the wing and the ailercns to reduce drag. The ailercns were then installed, along with their pushrods from the serve. This completed the construction of the two wings, shown in Figure 18.

FIGURE 18

WINGS

An adapter was made from plywood and balsa se that the long wing could fit in the short wing fuselage saddle so both wings could be installed in the same fuselage.
B) Fuselage

The fuselage frame was constructed from spruce stringers and plywood bulkheads. The two rear bulkheads (numbers three and four) were cut from three quarter inch plywood and the two front bulkheads (numbers one and two)
were cut from three eigths inch plywocd. The spruce stringers were one quarter inch square. These were cut to length and the frame was epoxied together. This framework is shown in Figure 19.

FIGURE 19

Next the $3 / 4^{\prime \prime}$ bulkheads had cutcuts made for the tail-bcoms te nest in, and holes for the tail-bocm mounting bclts were drilled. A wing nounting saddle was installed between them on top, along with wing hold-down bolt nuts. Servo mounting rails and electronics mounts (all made of

1/4" x $1 / 2^{\prime \prime}$ spruce rails) were epoxied in. The pusher beam was epoxied intc place directly under the wing behind bulkhead three, above stringers numbers five and six. The pusher beam was $1 / 2^{\prime \prime} \times 1^{\prime \prime}$ spruce laminated with two pieces of $1 / 16^{\prime \prime}$ G-10 (fiberglass-epoxy composite) top and bcttcm. A piece of spruce was epoxied on the bottcm of the frame between bulkheads one and two, and two and three. This would later be used as a towhook and skid support. All these can be seen in Figure 19 abcve. This completed the majer fuselage structure.

Next came the fuselage covering. The first step was tc epoxy a skin of $1 / 16^{\prime \prime}$ light balsa completely over the fuselage except for the wing and tail bocm mounting areas. One layer of fiberglass-epoxy was then laid up over the balsa except on the bcttom, where two layers were used for abrasion protection during landings. The tow hook and landing skid were then installed.

The nose and tail cones were carved from foam and covered with one layer of fiberglass-epoxy which overhung the foam one centimeter in the rear. This overhang fitted arcund the fuselage, and two screws were screwed thrcugh it tc secure each of the cones te the fuselage.

TAIL and BOOMS

An exploded view of the tail and bocms is seen in Figure 20.

FIGURE 20

TAIL AND BOOMS

The horizontal and vertical tail components were carved from light balsa and covered with one layer of fiberglass-epoxy. Only one of the vertical stabilizers had a rudder. This simplified construction and control linkages. The horizental stabilizer was an all meving
type, pivcting on a music wire in a brass tube hinge. This simplified construction and the contrcl linkages also, but more importantly increased the stabilizer effectiveness.

The tail bocms were lengths of $1.25^{\prime \prime}$ diameter $1 / 32^{\prime \prime}$ wall thickness aluminum tubing. These had pine plugs epoxied inside them in three places; the two tube-fuselage mounting points and the horizontal stabilizer hinge line. These supported the tube at concentrated stress areas. Holes were then drilled for the mounting bolts, stabilizer hinge, vertical stabilizer mcunting lugs, and tail skid mcunting lugs. The fiberglass-epoxy covered tail skids were epoxied to the bottom of each bocm, and a vertical stabilizer was epcxied to the top of each boom. Holes were then drilled in the bocms for the control cable guides to pass thrcugh. The braided steel control cables and their guides were installed and then the bocms were attached to the horizcntal stabilizer by sliding the music wire hinge thrcugh the stabilizer, one bcom, the stabilizer center section, the other boom, and then the final secton of the stabilizer. Two screw collars kept the music wire in place. This completed the tail and boom assembly.

A view of the completely assembled Glider - Mark II is seen in Figure 21.

FIGURE 21

D) Control System

The contrcl system included the battery pack, receiver, antenna, three heavy duty servos, and all the control linkages. The rudder and horizontal stabilizer servcs were installed on the servo mounting rails directly under the wing by screwing them down. The braided steel control cables (two for each servo) entered their guides inside the rear of the fuselage and then went inside the tail bocms. The rudder cables were inside the left bcom and the horizontal stabilizer cables were inside the right
bccm (as seen from the front). At the rear of the bcoms the cables exited and were connected to control horns on either side of each contrcl surface (rudder and horizontal stabilizer).

An aileron serve was mounted in the bcttom of the center cf each wing, and connected to each aileron by bent music wire reds.

The battery pack and receiver were wrapped in fcam rubber and installed in the front of the fuselage between bulkheads cne and three and the electronics mounts. The antenna exited the fuselage by the front cone and was fastened te the fuselage with silicone RTV. It ran back under the wing and then up to the top of the vertical stabilizer.
E) Ycke

The ycke for the Glider - Mark II was an aluminum frame that bolted to the front and rear of the bucket. A schematic is shown in Figure 22.

FIGURE 22

YOKE

There were fcur identical aluminum struts that were bolted to the bucket via the bucket's threaded rods. A 1/8" wall thickness V-section aluminum beam was welded to the top of the front struts. A 1/8" thick aluminum plate four inches wide was welded to the side of each front strut and to the side of each V-secticn beam. Each plate was then screwed intc che drilled and tapped rear strut to hold the whole system together. An L-bracket was screwed intc the front of each front strut as part of the glider pusher-beam constraints.

The glider rested on the yoke with the pusher-beam held by the L-brackets and the V-sections. The tail bocm skids rested in the tep of the V-sections. As the bucket accelerated, the front struts pushed on the pusher-beam, while the down load on the bcoms was transferred to the rear struts via the V-sections. The front V-secticns and L-brackets transferred any up or down loads on the front of the glider to the front struts. When the bucket decelerated, the glider slid out of the yoke, while the V-secticns guided the bcoms, keeping them and the tail clear of any obstructions or the front of the yoke.
VII. FLIGHT TESTING

A) Ccnventicnal Launches

The same procedure was used for flight testing the Glider - Mark II as was used fer the Glider - Mark I. When the construction was completed in July 1981, the glider was assembled. The ailerons, rudder, and elevator were then trimmed by eye. Adrian Nye, Osa Fitch, Whitney Hamnett and I tock the aircraft, radic contrcl set, and Hi-Start launcher cut cntc Briggs field. Because of the weight of the aircraft and its high stall speed (~25 mph) a hand launch was impossible, since nc-cne could throw it that fast. A Hi-Start launch was therefore attempted. The plane accelerated slcwly and then began tc climb, reaching an altitude of 50 meters befcre it released from the Hi-Start. Adrian flew a left turn, straightened out and then turned intc the wind for a smocth landing. Because of the slow acceleration and low altitude gain, we decided tc procure another Hi-Start and use two of them in parallel for any subsequent launches.

With the dual Hi-Start, the launchings became much smocther and quicker, with scmewhat more altitude gain. It was determined that the ailerons were too sensitive to control mevements and the rell control was poor. The sensitivity was reduced, and the later flights were very
satisfactory. A few hard landings attested to the strength cf the fuselage and the tail, with even an upside down landing causing no damage. Adrian was able to set up all the trim settings for the three controls, and then the aircraft was deemed ready for an electromagnetic launch.
B) Electrcmagnetic Launches

No electromagnetic launches have been attempted yet, because of minor problems with the launcher. However, the glider and yoke assembly are complete and have been fitted to the launcher bucket. An electromagnetic launch is expected within twe weeks.

VIII. CONCLUSIONS and RECOMMENDATIONS

A) Conclusicns

From the work dcne with the Glider - Mark I, the main conclusicn that can be reached is that it is possible to launch an aircraft from an electromagnetic launcher at high accelerations. It is possible to launch a small, cheap glider at up to 100 gees and six times its glide velcoity while having complete contrcl cver it the whele time. There do not seem to be any basic difficulties with the process althcugh a full launch tc $80 \mathrm{~m} / \mathrm{sec}$ has not been accomplished yet. I believe that if an aircraft is built tc withstand the rigers of a 100 gee launch aleng with a very high launch velcoity, there are no strange interacticns or transients that cocur in the very short launch interval which would inhibit ncrmal flight.

It seems as though a glider for electromagnetic launching purposes can be built to have a payload ratic cf at least 50% with the simple construction methods and conservative design principles used in this report. It is my belief that this ratic could be raised to $\sim 75 \%$ (along with a higher glide ratic) by using less conservative design principles, lower safety factors, and by going to more advanced materials and construction processes.

B) Reccmmendaticns

Of course, my first recommendation is that electromagnetic launches with the Glider - Mark II be tried, beth with the short wing and the long wing, at velccities up tc $80 \mathrm{~m} / \mathrm{sec}$. Next, I believe that a full scale Cargc Glider should be built along with a full scale launcher for it. From there, work can be done tc increase the performance (glide ratic) while maintaining stability, and decrease the empty weight (increase the paylcad ratic). These may be done by using Kevlar and graphite composites for a great deal of the structure, allcwing longer wings and lighter components.

There are cther configurations af the aircraft that have nct been examined here because of time constraints. Scme cf these are: a canard, a folding wing for launch, a fclding wing canard, and an inflatable wing which inflates after launch. It may be that higher glide distances may be achieved and higher paylcads may be carried with these configuraticns. I believe that there is much work left to dc in these areas.
IX. APPENDICES
A) Michael Paluszek's Trajectory Analysis

TRAJECTORY ANALYSIS for an ELECTROMAGNETICALLY LAUNCHED

GLIDER
by
Michael A. Paluszek
M.I.T.

April 1980

1. Introduction

The purpose of this phase of the program was to determine the vehicle and launch configuration that would produce the maximum range for a given initial velocity at the exit of the electromagnetic accelerator. The glider characteristics available for modification were the wing aspect ratio (AR) and the wing loading. Given the launch velocity, the only launch parameter that could be varied was the launch angle, although the glider angle of attack was assumed to be controllable (if desired) during flight.

The limits for allowable aspect ratios and wing loadings were calculated by the glider design group, as were all the other vehicle parameters. Maximum launch weight and velocity were given by the accelerator group. Table l.l summarizes the relevant information.

Parameter	Value (or range)
$C_{D_{P}}$.03
m_{m}	23 kg
$C_{\ell_{\alpha}}$	2π
e	.95
s	$.2 \mathrm{~m}^{2} \rightarrow .65 \mathrm{~m}^{2}$
AR	6 to 13
V_{i}	$88 \mathrm{~m} / \mathrm{sec}$

Table l.l Glider Data

The basic procedure was to numerically integrate the equations of motion to obtain the flight path, and maximum range, varying $A R$, γi and m / s in a heuristic fashion until the maximum range was achieved. No attempt was made to formally optimize the glider.

Since the philosophy was to design as simple a glider as possible the emphasis was on simple vehicle controls, unless a large gain in range, commensurate with the increase in complexity, could be obtained. The cases studied were the fixed angle of attack case and the ballistic launch case, where the wing produces lift only once the trajectory peak is reached.

This report is divided into three parts detailing the equation of motion, the numerical techniques and the results respectively. Copies of the computer code are included as an appendix.
2. The Equations of Motion

The equations of the motion were written in the flight path axis, as illustrated in Figure 2.1, by the balancing of forces. The equations are:

$$
\begin{align*}
& m \frac{d u}{d t}=-D-m g \sin \gamma \\
& m v \frac{d \gamma}{d t}=L-m g \cos \gamma \tag{2.1}
\end{align*}
$$

where γ is the angle to the horizontal, m is the glider mass, v its velocity, g the acceleration of gravity, D the total drag and L the total lift.

The drag is defined by the equation
$D=\frac{1}{2} p v^{2} A C_{D}$
where ρ is the air density, C_{D} the drag coefficient and A is the drag reference area. The lift is similarly defined as

$$
\begin{equation*}
L=\frac{1}{2} p v^{2} s C_{L} \tag{2.3}
\end{equation*}
$$

where S is the lifting surface area and C_{L} is the lift coefficient.

.
2.1 Flight Path Axis

The drag coefficient is composed of two elements, one is the lift independent drag and the other the drag induced due to Jift.

$$
\begin{equation*}
C_{D}=C_{D}+\frac{C_{L}}{\pi e A R} \tag{2.4}
\end{equation*}
$$

The lift coefficient is derived from thin airfoil theory ${ }^{4}$ and is

$$
\begin{aligned}
& C_{L}=\frac{C_{L \gamma}}{1+\frac{C_{L \gamma}}{\pi A R}} \alpha \\
& C_{L \alpha}=2 \pi
\end{aligned}
$$

The air density is assumed to be an exponential function of altitude and is given by

$$
\begin{aligned}
& \rho=1.2 \mathrm{e}^{-\mathrm{h} / 634 \mathrm{l}} \\
& \text { with } \rho \text { in } \mathrm{kg} / \mathrm{m}^{3}
\end{aligned}
$$

3. Numerical Methods

A fourth order Runge-Kutta method was used to integrate the equations numerically. The four equations of motion are arranged as follows

$$
\begin{align*}
& \frac{d u}{d t}=-D / m-g \sin \gamma \\
& \frac{d \gamma}{d t}=\frac{L}{m v}-g / v \cos \gamma \\
& \frac{d v}{d t}=v \cos \gamma \tag{3.1}\\
& \frac{d v}{d t}=v \sin \gamma
\end{align*}
$$

The right hand sides are functions of V, γ and y.
The algorithm used is an extension of the two first order equation case as given in Hildebrandt. ${ }^{2}$ The error is on the order of $(\Delta t)^{4}$. For the trajectory analysis $\Delta t=1$ sec and the algorithm was implemented on a PDP 11/=0 using single precision arithmetic.
4. Results and Conclusions
4.1 Introduction

In order to establish a baseline vehicle a wide variety of vehicle configurations were simulated on the computer. The cases can be grouped into three general types; ballistic, fixed angle of attack and variable angle of attack. Maximum ranges and optimum launch angles were calculated for all the cases and the results used to choose a configuration for actual construction.
4.2 The Ballistic Vehicles

The simplest case was the ballistic projectile with no lifting surfaces. With a drag coefficient of $C_{D_{p}}=.03$ and a launch angle of 45° the range was 644 m . With $C_{D_{p}}=.001$ this range increased to 804 m . Essentially, this is an artillery shell with no controls and the simplest structure, due to the absence of wings.
4.3 The Constant Angle of Attack

The constant angle of attack configuration was the next simplest design with the wing preset at a given angle of attack and no active controls. The improvement in range over the ballistic case (with equal $C_{D_{p}}$) was 113 m for an aspect ratio of 6 and 192.4 m for an aspect ratio of 13 . The reason for this relatively poor performance is the need to maintain stable flight over a wide velocity range and during the very steep climb. Unless the angle of attack at launch is kept well below the angle for optimum L / D the glider will loop. Besides the short range, this configuration has very high landing velocities unless provisions are made for a flare at landing.

4.4 The Variable Angle of Attack

Since it is difficult to obtain good range in a vehicle designed for a high velocity boost and for gliding, the obvious step was to separate the two flight conditions and optimize for each with some simple control system providing the transition. The result was a combination of the previous two cases with a ballistic launch and lifting glide. The wings are deployed on launch but are set to provide no lift. At the peak of the trajectory an actuator sets the wings at the angle of attack for maximum L / D as determined by the relationship.

$$
\begin{equation*}
\alpha_{\max } L / D=\sqrt{\frac{\pi e A R}{C} C_{D} D_{D}} \tag{4.4.1}
\end{equation*}
$$

If the air density does not vary significantly this will produce the maximum glide distance. The-gilide distance for the constant angle of attack is ${ }^{3}$

$$
\begin{equation*}
\Delta x=\frac{C_{L}}{C_{D}}\left(h_{i}-h_{f}+\frac{V_{i}^{2}-V_{f}^{2}}{2 g}\right) \tag{4.4.2}
\end{equation*}
$$

where h is the altitude and v the velocity. Since ρ varies less than 5% in all the analyzed trajectories, this relationship is good for the cases of interest.

The free parameters for this analysis were taken to be γ_{i}, the launch angle, $A R$ and s, the wing surface area. γ_{i} determines the peak height of the trajectory and the crossrange during the ballistic flight while the latter two, along with the trajectory peak, determine the gliding range.

The procedure was to find an optimum combination of γi and s for every given $A R$, then to compare the optimums at each AR with each other.

Figures 4.1 and 4.2 give maximum ranges vs. wingloading for $A R=6$ and 13 , respectively. Each maximum is achieved at a given optimum launch angle which is given in figures 4.3 and 4.4. For each AR there is a wingloading that gives maximum total crossrange. The peak range is achieved with wingloadings on the order of 9.5 to $10 \mathrm{lbs} / \mathrm{ft}^{2}$. The roll off in range after the peak is due to the increase in drag during ballistic flight which reduces the trajectory peak and the ballistic crossrange.

Figure 4.5 gives the maximum ranges versus $A R$ for $A R$ ranging from 6 to 20. The variation with AR is nearly linear. Theory predicts that for gliding flight at optimum L/D the range should vary as $\sqrt{A R}$. This proves to be the case when the ballistic crossrange is subtracted from the total range and the increase in peak trajectory height is accounted for.

Figure 4.1 Maximum Range vs. Wingloading
$A R=6$

$\begin{array}{ll}\text { Figure 4.2 } & \begin{array}{l}\text { Maximum Range vs. Wingloading } \\ \text { for Ballistic Launch }\end{array}\end{array}$
$A R=13$

Figure 4.3 Optimum launch angle vs. wing area $A R=6$

Figure 4.4 Optimum launch angle vs. wing area
$\mathbb{R}=13$

Fig. 4.5
Maximum range vs. AR
4.6 Conclusions

Table 4.1 gives a summary of the data for all the cases examined. Figure 4.6 shows representative trajectories for the ballistic, constant angle of attack and variable angle of attack cases.

The best configuration is the variable angle of attack design with as large as aspect ratio as possible, The only limit to aspect ratio would be due to structural considerations. The wing loading should lie between 9.5 and $10 \mathrm{lbs} / \mathrm{ft}^{2}$ and launch angles will be in excess of 70°. Any limits due to diminishing returns on $A R$ will only occur for very large $A R$ when the AR law begins to reassert itself as γ_{i} reaches a limit. A further limit may be that the high angles of attack needed for optimum L / D at large $A R$ may be difficult to realize.

Figure 4.6 Trajectories for Ballistic with $C_{D}=.03$, Fixed α AR-13; Ballistic Launch: $\quad A R=6 ; A R \xlongequal{=} 13$

Table 4.1 Summary of Results

Case	γ_{i}	S	α	max range
	Deg	m^{2}	Deg	m
ballistic $\left(C_{D_{P}}=.001\right)$	45	0	0	808
ballistic $\left(C_{D_{p}}=.03\right)$	45	0	0	644
fixed α				
$A R=6$	0	. 2	8.9	757
AR 13	0	. 3	5	836
variable α, ballistic launch				
$A R=6$	65	. 50	8.9	3744
10	70	. 45	10.5	4940
13	70	. 45	11.4	5715
16	70	. 50	12.3	6362
20	70	. 50	13.4	7155

References

1. Larrabee, E.E., Flying by Computer, 16.15 course notes, MIT, Spring 1978.
2. Hildebrandt, F.B., Introduction to Numerical Analysis, McGraw-Hill, NY 1956, p.237.
3. Miele, A., Flight Mechanics, 1962 Addison-Wesley, Reading, MA.
4. Kuethe, A.M., and Chow, C., Foundations of Aerodynamics, Wiley, NY. '1976, p. 155.
```
    TYFE RLO:TRJ.FOR
C THIS FROGRAM USES THE RUNGE KUUTA INTEGRATION
&: techinique to sOlve the longituninal Equations
C OF MOTION FOR AN ELECTFOMAGNETICALLY LAUNCHEI
C GLIDEF
    REAL LyMgLOUERI
    COMMON/AEFOFR/CDF,CLALFH,S,AF,E,A,M,ALFFHA,AUNLIER
IO FORMAT(4OH INFUT CIF,CLALFHA,AF,gEM FOF THE GLTMER)
11 FORMAT(4OH CLF IS THE LIFT INLHEFENLENT INAAG COEFF.
    1/2\varrhoH CIALFHH IS THE LIFT COEFF.
    2/22H S IS THE SURFACE AREA
    3/2OH AR IS THE WTNG ASFECT NATIO
    4/19H E IS THE AERO. EFF
    G/IAH M IS THE MASS
    6/22H A IS THE FRONTAL AREA)
    TYFEE 11
    TYFE 10
    FI=3.14159
16 FORMar(EF12,4)
IS FOKMAT(4F12.4)
    REAG(S,AG) CDF,CLALFH:AF,%EM
    CLALFHOCLALFH/(L+HCLALFH/(FINAR))
    FOFMMT(2GH INFUT ITT IN SECSyYO&XO.VO)
    TYFE 2O
    FEAO(E,IE) CIT,YI,XI,UI
    FOFMAT (2JH INFUT DEFLOYMENT GAMMA)
    TYFE 1:1
    REALI(5.11B) GAMMAD
    G0 10 150
147 FOMMAT(29H INFUT ANGLE OF ATTACK IN [IEG)
150 TYFE 1.47
    FEAT(EyIIS) Al_FHTN
    ALFHIN:ALFHTN*3.14159/190.
    IF(ALFHTN,GE, O.) GO TO 1.67
    ALFHTN:SRST(FT*E*AR*COF/CLALFH**2.)
    TF(ALFHIN ,GT, .2792) ALFHIN=.2792
118 FORMAT(F12.4)
15S FOFMAT(17H ANGLE OF ATTACK=,FE.3,EH DEG.)
    TYFE 155, ALFHIN*180,/PI
160 FOFMAT(OF12.4)
1.57 FORMAT(E2H INFUT LIMITS.SI,SF,NELTAS,EAMMAI
    1.GAMMAF,DELTA GAMMA)
167 TYFE 157
    FEAN(E,160) ST,SF, DELS.GIyGF,DELG
    GI=FT*GT/180.
    GF=FIT*GF/180,
```

```
    FIELG=F'I*NELG/180.
    S:=S-LUELS
175
1.70
185
GAMT:=GAMI+DELGG
    IF\GAMI +GT + GF+DELG/2.) GO TO 175
    X=XI
    Y=YI
    U=VI
    GAM=GAMI
    If A=0
C THESE ARE THE FUNGE KUTTA SUBFGUTINE CALIG
CX X TS THE HOFIZONTAL MTSTANCE, Y THE AI.EITUNE
O AND GAM IS GAMSA THE FLITGHY FATH ANGLE
2O0 FIFHA:ONGLE(Y:GAM:ALFHTM:IA,GAMMADI)
210 VO=[THF1(Y,U,GAM)
    QAMO:=WTHFS(Y,V,GAM)
    XO=WTWFS(Y,V,GAM)
    YO=OTWFA(Y,U,GAM)
    U1=:WTWFA(Y+, S*YOFU+,W*UO,GAMt.5#GAMO)
```



```
    XI=LT*FZ(Y+,W*YO,U+, W%UO,GAMt,G*GAMO)
```



```
    Y2:MT*FA(Y+,W*YI,V&,GNU1,GAM+,GWGAM1)
    UZ#WT*F1(Y+Y2yU+V2yGAM+GAM2)
    QAM3=[T专F(Y+YS,U+US,GAM+GAM2)
    XZ=OT*FZ(Y+Y2,V+V2, (OAR+GAMD)
    YZ=口T*FA(Y+YS,V+VZ GAM+GAM2)
    V:=V+1,/6.*(V0+2+*VI+2.*V2+VZ)
    GAM=GAM+1./6.*(GAMO+2.*GAM1+2.*OAM2+GMMZ)
    X=X+1./6.*(XO+2.*X1+2.*X2+X3)
    Y=Y+1./6.*(YO+2.*Y1+2.*Y2+YZ3)
    JF(Y ,GT, O,L &NNO. U ,GT, 1,) GO TO 200
    LOUEFII=WLIFT(Y,U,S,CLALFH,ALFHA)/
    LDRAG(Y,V,CNF:CLALFH:A,ALFHA,AFFE,O.)
    TYFE 5S5,GAMI*I8O,/FI,S,X,LOUEFIN,V:U*SIN(GAM)
G55 FFOKMAT<1SH GAMMA TNTTTAL=,FA.OYLIH WTNG MFEA
```

```
    1=,F゙6.2,3H X=,F6,1,'SH L/I:=,F6.2,3H U=,F6.1,4H UY=,F6.1)
    G0 TO 18E
1000 ENH
C THESE AKE THE FIGHT SIDES OF THE INN/IX=
C FOR N: U,GAM,X:Y
            FUNCTION F.I(Y,U,GAM)
            FEAL M
            COMMON/AEFOFF/CMF,CLALFH,S,AR,E,A,M,ALFHA,AUNLIER
            G:=9.8
```



```
            F1=-rI/M-G*SIN(GAM)
            FETUFN
            END
            FUNCTION F2(Y,V,GAM)
            FEAL rigl
            COMMON/AEROFR/CHF,CLALFH,S,AR, EF,A,M,ALFHA,AUNDER
            G=9+6
            L=WLIFT(Y,V,S,CLAIFFH,ALFHA)
            F=:L/M/U-G/V*COS(GAM)
            RETUFiN
            ENLI
            FUNCTJON FG(YgU,GAM)
            F%=U*C0S(GAM)
            RETUFM
            ENE
            FUNCTION FA(Y,V,GAM)
            F&=U*GIN(GAM)
            RETUN゙N
            ENLI
C THTS FUNCTION COMFUTES THE TFAG
    FUNCTION MRAG(Y,VyCOF,CLALFHyAyALFHAyARyEyAUNDEF)
    RHO=IENS (Y)
```



```
    [MAG=, F*FHOWU**2.*A*CO
    FETUFN
    ENII
C THTS FUNOYION COMFUTES TME LIFT
    FUNCTION WLIFT(Y,U,S,CLALFH,ALPHA)
    FHO=TIENS(Y)
    WLIFT=, ت*FHO*U**2.*S*CL(ALFHA,CLALFH,V,Y)
    FETUFN
    ENO
```

```
    FUNCTION IIENS(AL_T)
    IENS=1. 2*EXF(-ALT/6341.)
    IF(ALT .LT. .O1) IIENS=1.2
    FETUFN
    ENII
C THIS FUNCTION COMFUTES THE LIFT COEFFICENT
    FUNCTION CL(ALFHA,CLALFH,V,Y)
    FEAL MACH
    FHO=YENS(Y)
    A=291.102*SQRT(FHO)
    MACH=U/A
    IF(MACH +LT + .98 + AND. MACH +GE + O.) GO TO 20
    TYFE \S:UgA,MACH
IS FOFMAT(BH U=,F12,4,3H A=,F12,4y6H MACH=,F12,4)
    STOF
20 COEFF=1./SOFT (1, MNOH**2)
    CL=CLAL_FH*MLFHANCOEFF
    FETUFN
    ENM
*TYFE MLO:ANOOFA.FOR
    FWNCTION ANGLE (Y,GAMyARGIN,TA,GAMMAN)
    TF(IA E EQ, 1) GO TO 2O
```



```
    IA=0
    ANGLE:=O.
    EETUFK
20 ANGLE=ANGIN
    IA=1
    EETUFN
    ENSI
```

B. Wing Mcment Fcrmulaticn

From Figure 10 we have:

since $s=b \times c=W / W g / S \quad$ and $\quad A R=b / c$

$$
\begin{equation*}
b=\sqrt{R S}=\left[\frac{R W_{g}}{W_{g} / S}\right]^{1 / 2} \tag{1}
\end{equation*}
$$

The lift distribution is assumed to be constant along the wing (a consevative estimate) and is

$$
\begin{equation*}
w_{1}=\frac{W_{g}}{b}=\frac{W_{g}}{\left[\frac{A R W_{g}}{W g / S}\right]^{1 / 2}} \tag{2}
\end{equation*}
$$

The maximum moment on a cantilever beam with a uniformly distributed load occurs at the root and is

$$
\begin{equation*}
M_{\max }=\frac{q l^{2}}{2} \tag{3}
\end{equation*}
$$

In this case $q=w_{1} x n, x$ ShF., ; $1=b / 2$ so substituting these into (3) and combining with (1) and (2) gives

$$
\begin{equation*}
M_{1_{\max }}=\frac{W_{g}^{3 / 2}\left[\frac{A}{W g / S}\right]^{1 / 2}}{8} n_{1} \text { S.F.1 } \tag{4}
\end{equation*}
$$

The force distribution that creates M is the inertial loading from the mass of the wing under acceleration. This is given by

$$
\begin{equation*}
w_{2}=\frac{W_{w}}{b}=\frac{W_{w}}{\left[\frac{A R W_{g}}{W_{g} / S}\right]^{1 / 2}} \tag{5}
\end{equation*}
$$

Assuming that the wing is uniform. Then with

$$
\begin{align*}
& q=W_{2} \times n_{2} \times S . F_{12} \text { and } \quad 1=0 / 2 \\
& M_{2_{\text {max }}}=\frac{W_{w}\left[\frac{R W_{3}}{W_{y} / S^{\prime}}\right]^{1 / 2}}{8} n_{2} S . F_{2} \tag{6}
\end{align*}
$$

C. Longitudinal Static Stability Determination

The derivation of the longitudinal static stability is taken from reference 6 .

Horizontal Tail Lift

$$
\begin{equation*}
L_{\text {Thoriz. Tail }}=\frac{C_{m_{0}} \frac{1}{2} \rho_{a i r} V^{2} S_{C}+\left(h_{1}-h_{0}\right) c L}{l_{H}} \tag{1}
\end{equation*}
$$

Herizental Tail Lift Coefficient

$$
\begin{equation*}
C_{L_{T}\left(\text { horiz. } T_{a_{1}}\right)}=\frac{L_{T(\text { horiz, ,til })}}{1 / 2 \operatorname{Pair}^{2} S_{N}^{\prime}} \tag{2}
\end{equation*}
$$

The tail incidence angle is given by

$$
\begin{equation*}
\alpha_{T}=\frac{C_{L T(n . T)}}{a_{1}}-\frac{a_{2}}{a_{1}} \eta \tag{3}
\end{equation*}
$$

Where η, the Elevator angle to trim, is given by

$$
\begin{equation*}
\eta=\frac{(1+F) C_{\text {(rat }}-\frac{a}{a}\left(1-\frac{\partial \delta}{\partial \alpha}\right) C_{l}-a, \eta_{T}}{a_{2}} \tag{4}
\end{equation*}
$$

F, a correction factor, is given by

$$
\begin{equation*}
F=\frac{a_{1}}{a} \frac{S_{H}}{S}\left(1-\frac{\partial \epsilon}{\partial \alpha}\right) \tag{5}
\end{equation*}
$$

The stick-fixed neutral pcint is given by

$$
\begin{equation*}
h_{n}=h_{0}+\frac{\tilde{V}^{\prime}}{1+F}\left(1-\frac{\partial \epsilon}{\partial \alpha}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
V^{\prime}=\frac{S_{H}}{S} \frac{l_{H}}{C} \tag{7}
\end{equation*}
$$

From this the Static Margin can be determined

$$
\begin{equation*}
K_{n}=\left(h_{n}-h_{1}\right) \tag{8}
\end{equation*}
$$

Fcr the aircraft to be longitudinally statically stable, $K_{h}>0$.
D. Dynamic Stability Derivative Formulation

The formulation for the dynamic stability derivatives is taken from reference 7 , and has been modified to take into account that the glider has no engine.

1) Longitudinal Stability Derivatives
a - lift curve slope of the wing, given by

$$
a=a_{0}\left(\frac{\pi A R}{a_{0}+\pi A}\right)
$$

Where a_{0} is the theoretical lift curve slope of a 2-dimensicnal wing, normally taken as $a \leq 2 \times \pi$.
$C_{L_{\alpha}}$ - lift curve slope of the aircraft as a whole

$$
C_{L_{\alpha}}=\frac{\partial C_{L}}{\partial \alpha}=a\left\{1+\frac{S_{H}}{J} \frac{a_{1}}{a}\left(1-\frac{\partial \epsilon}{\partial \alpha}\right)\right\}
$$

$C_{m \alpha}$ - change in moment coefficient with angle of attack

$$
C_{m_{\alpha}}=\frac{\partial C_{m}}{\partial \alpha}=a\left(h-h_{n}\right)=-a K_{n}
$$

$C_{x_{\alpha}}$ - change in X-direction (drag) force with angle of attack

$$
C_{x_{\alpha}}=\frac{\partial C_{X}}{\partial \alpha}=C_{L}\left(1-\frac{2 C_{l_{\alpha}}}{\pi R \varepsilon_{0}}\right)
$$

where ϵ_{0} is a wing efficiency factor, here taken as 0.95
$C_{Z_{\alpha}}$ - change in Z-directicn force with angle of attack

$$
C_{z_{\alpha}}=\frac{\partial C_{z}}{\partial \alpha}=-C_{L_{\alpha}}+C_{p_{0}}
$$

$C_{x_{u}}$ - change in the x-direction force with change in forward velocity and is, as such, the "speed damping" derivative.

$$
C_{x_{u}}=\frac{\partial C_{x}}{\partial u}=-2 C_{D_{0}}
$$

$C_{z_{q}}$ - change in lift due to the pitching velocity

$$
C_{z q}=\frac{\partial C_{z}}{\partial q}=-2 a, V_{H}
$$

Cm - change in moment coefficient with pitching velocity

$$
C_{m q}=\frac{\partial C_{m}}{\partial q}=C_{z_{q}} \frac{\ell_{H}}{C}
$$

$C_{Z}{ }_{2}$ - change in Z-directicn force with rate of angle of attack changes

$$
C_{z}=\frac{\partial C_{z}}{\partial \dot{\alpha}}=C_{z_{q}} \frac{\partial \epsilon}{\partial \alpha}
$$

C_{m} - change in moment coefficient with rate of angle cf attack changes

$$
C_{m \alpha}=\frac{\partial C_{m}}{\partial \alpha}=C_{z_{2}} \frac{l_{H}}{C}
$$

2) Longitudinal Dimensional Parameters

1 - characteristic length

$$
l=c / 2
$$

μ - nen-dimensicnal mass

$$
\mu=\frac{M g}{\rho_{\text {air } S l} S l}
$$

\underline{t}^{*} - characteristic time

$$
t^{*}=l / V
$$

i_{B} - non-dimensicnal moment of inertia about the Y-axis (Pitch axis)

$$
i_{B}=\frac{B}{\rho_{\text {air }} S \ell^{3}}
$$

3) Lateral Stability Derivatives
$C_{y_{\beta}}$ - change in sideforce due to sideslip angle

$$
C_{y_{\beta}}=\frac{\partial C_{y}}{\partial \beta}=-C_{L_{\alpha(v e r t i c a l}\left(t_{a, 1}\right)} \frac{S_{V}}{S}
$$

$C_{l_{\beta}}$ - change in rolling moment due to sideslip angle

$$
\begin{array}{r}
C_{\lambda_{\beta}}=\frac{\partial C_{l}}{\partial \beta}=\left[1.2 \sqrt{R} \frac{z_{w}}{b^{2}}(h+w)\right]-\left[C_{\left.L_{\alpha(\alpha)}\right)} \frac{S_{v}}{S} \frac{z_{f}}{b}\right]-\left[\frac{\partial C_{l \beta}}{\partial C_{l}} C_{l}\right] \\
-\left[\frac{\partial C_{w}}{\partial \Gamma} \Gamma\right]
\end{array}
$$

This derivative is the dihedral effect, and is the major determinant $c f$ directional stability.
$C_{n_{\beta}}$ - change in yawing moment due tc sideslip angle, known as the weathercocking derivative.
$C_{y \beta}$ - change in Y-directicn force with roll rate, in these cases negligible

$$
C_{y p}=\frac{\partial C_{y}}{\partial \beta} \approx 0
$$

Cop - change in yawing moment due tc roll, and is the cause of the cross coupling of roll and yaw

$$
C_{\lambda_{p}}=\frac{\partial C_{n}}{\partial p}=\left[2 C_{L \alpha, t)} \frac{S_{v}}{\Gamma} \frac{l_{v}}{b} \frac{z_{f}}{b}\right]-\left[\frac{\partial C_{n p}}{\partial C_{L}} C_{l}\right]
$$

Clop - change in rolling moment with roll, and is known as the roll-damping derivative. It is obtained from reference $7, \mathrm{pg}$. 487 .

$$
C_{e_{p}}=\frac{\partial C_{t}}{\partial p}=- \text { constant }
$$

C yr - change in Y-direction force with yaw rate

$$
C_{y_{r}}=\frac{\partial C_{y}}{\partial r}=2 C_{L_{\alpha(r, r)}}, \frac{S_{r}}{\Gamma} \frac{l_{y}}{b}
$$

Cl - change in rolling moment due to yaw rate, and is ancther cause of yaw-rcll cross-coupling.

$$
C_{l r}=\frac{\partial C_{l}}{\partial r}=\left[C_{y r} \frac{z_{f}}{b}\right]+\left[\frac{\partial C_{l r}}{\partial C_{i}} C_{l}\right]
$$

$C_{n r}$ - change in yawing moment due to yaw rate, and is the yaw damping derivative

$$
C_{h_{r}}=\frac{\partial C_{n}}{\partial r}=\left[-C_{y_{r}} \frac{\ell_{b}}{b}\right]-\left[\frac{\partial C_{n_{r}}}{\partial C_{L}^{2}} C_{c}^{2}\right]-\left[0.3 C_{D_{0}}\right]
$$

4) Lateral Dimensional Parameters

$$
\begin{gathered}
\underline{1}-\text { characteristic length } \\
l=b / 2
\end{gathered}
$$

μ - non-dimensional mass

$$
\mu=\frac{M g}{\operatorname{lair~} S_{l} l}
$$

t^{*} - characteristic time

$$
t^{*}=l / V
$$

i_{A} - non-dimensicnal moment of inertia about the X-axis (roll axis).

$$
i_{A}=\frac{A}{p_{a, r} S \ell^{3}}
$$

$i_{c}-n c n$-dimensional moment of inertia about the Z-axis (yaw axis).

$$
i_{c}=\frac{C}{\ell_{\text {air }} S l^{3}}
$$

$i_{E}-$ non dimensional product of inertia about the Y-axis (pitch axis).

$$
i_{E}=\frac{E}{\rho_{\text {air }} S l^{3}}
$$

E) Dynamic Stability Determination

1) Lengitudinal Dynamic Stability (Stick Fixed)
a) Exact Solutions:

The equations of motion used here were developed in reference 7 , as was the characteristic matrix resulting from the equation of motion.

The characteristic matrix for longitudinal motion is:

$$
\left|\begin{array}{ccc}
\left(2 \mu \lambda-c_{x_{4}}\right) & -c_{x_{2}} & c_{1} \\
\left(2 c_{1}-c_{c_{4}}\right) & \left(3 \mu \lambda-c_{x_{2}} \lambda-c_{z_{2}}\right) \lambda\left(2 \mu+c_{z_{q}}\right) \\
-c_{m_{\alpha}} & -\left(c_{m_{2}} \lambda+c_{m_{\alpha}}\right) & \left.\left(\zeta_{\phi} \lambda^{2}-c_{m_{2}}\right)\right)
\end{array}\right|=0
$$

This is the stability determinant and gives a fourth order characteristic equation of the dynamic system. Expansion of this leads to

$$
A \lambda^{4}+B \lambda^{3}+C \lambda^{2}+D \lambda+E=0
$$

where

$$
\begin{aligned}
& A=2 \mu i_{\beta}\left(2 \mu-C_{z_{2}}\right) \\
& B=-2 \mu i_{B}\left(C_{z_{\alpha}}+C_{x_{u}}\right)+i_{B} C_{X_{u}} C_{z_{\dot{\alpha}}}-2 \mu\left(C_{z_{q}} C_{m_{\alpha}}-C_{m q} C_{z_{\dot{\alpha}}}\right) \\
& -4 \mu^{2}\left(C_{m_{2}}+C_{m q}\right) \\
& c=i_{\alpha}\left(C_{x_{u}} C_{z_{\alpha}}-C_{x_{\alpha}} C_{z_{u}}\right)+2 \mu\left(C_{z_{\alpha}} C_{m q}-C_{m_{\alpha}} C_{z_{q}}+C_{x_{u}} C_{m q}\right. \\
& \left.+C_{m_{2}} C_{x_{k}}\right)-\left(4 \mu^{2} C_{m_{\alpha}}\right)-C_{x_{k}}\left(C_{m_{q}} C_{z_{\alpha}}-C_{z_{q}} C_{m_{2}}\right) \\
& +2 C_{L} C_{x_{2}} i_{B} \\
& D=-2 C_{2}^{2} C_{m_{\dot{\alpha}}}+2 \mu\left(C_{x_{\mu}} C_{m_{\alpha}}-C_{x_{\alpha}} C_{m_{u}}+C_{1} C_{m_{u}}\right) \\
& +C_{x_{4}}\left(C_{m_{\alpha}} C_{z_{q}}-C_{m_{q}} C_{z_{\alpha}}\right)-C_{x_{\alpha}}\left(C_{m_{\mu}} C_{z_{q}}-C_{m_{q}} C_{z_{k}}\right) \\
& -C_{l}\left(C_{m_{u}} C_{z_{\alpha}}-C_{z_{k}} C_{m_{\alpha}}\right)-2 C_{l} C_{m_{q}} C_{x_{\alpha}} \\
& E=-C_{L}\left[C_{m_{\alpha}}\left(2 C_{l}-C_{z_{u}}\right)+C_{m_{u}} C_{z_{\alpha}}\right]
\end{aligned}
$$

Solving the characteristic equation for λ gives two pairs of complex conjugate roots

$$
\lambda_{1,2}=-\xi w_{n_{1}} \pm i w_{n_{1}} \sqrt{1-\xi_{1}^{2}} ; \quad \lambda_{3,4}=-\xi_{2} w_{n_{2}} \pm i w_{n_{2}} \sqrt{1-\xi_{2}^{2}}
$$

The first set of roots, $\lambda_{1,2}$, is a long period, lightly damped mode and is called the phugcid mode.

The second set of roots, $\lambda_{3,4}$, is a short period, much more heavily damped cocillation, and is known as the short period mode.
B) Approximate Solutions:

Approximate solutions for the phugcid and the short period mode are given by the following equations:
i) Phugcid Mc de:

$$
\lambda_{1,2}=-\xi, w_{n_{1}} \pm i w_{n_{1}} \sqrt{1-\xi_{1}^{2}}
$$

where

$$
W_{n_{1}}=\frac{C_{L}}{\sqrt{2} \mu} \quad j_{1}=\frac{C_{x_{u}}}{2 \sqrt{2} C_{L}}
$$

The approximate values for the phugcid mode are accurate to within 20% of the exact values.
ii) Short Period Mode:

$$
\lambda_{3,4}=-\xi_{2} w_{n_{2}} \pm i w_{n_{2}} \sqrt{1-5_{2}^{2}}
$$

where

$$
\begin{aligned}
& W_{n_{2}}=\left[\frac{C_{z_{\alpha}} C_{m_{q}}-2 \mu C_{m \alpha}}{2 \mu C_{\beta}}\right]^{1 / 2} \\
& S_{2}=-\frac{2 \mu C_{m q}+i_{\beta} C_{z_{\alpha}}+2 \mu C_{m_{\alpha}}}{2\left[2 \mu i_{\beta}\left(C_{z_{\alpha}} C_{m q}-2 \mu C_{m \alpha}\right)\right]^{1 / 2}}
\end{aligned}
$$

The approximate values for the short period mode are the same as the exact values to within the accuracy of the calculation.

Fer beth the phugoid and short period modes the period
of oscillations, amplitude halving time, and cycles to halve are the important parameters. These are given by:

$$
\begin{aligned}
\text { PERIOD }: & T & =\frac{2 \pi}{w_{n} \sqrt{1-5^{2}}} t^{*} \\
\text { HALVING TIME : } & t_{\text {half }} & =\frac{0.69}{5 w_{n}} t^{*} \\
\text { CYCLES TO HALVE: } & N_{\text {half }} & =\frac{t_{\text {haft }}}{T}
\end{aligned}
$$

2) Lateral Dynamic Stability (Stick Fixed)

Again, the equations of motion and resulting characteristic matrix used here were developed in reference 7.

The characteristic matrix for lateral motion is:

$$
\left|\begin{array}{ccc}
\left(2 \mu \lambda-C_{y_{\beta}}\right) & -\left(C_{y_{p}} \lambda+C_{l}\right) & \left(3 \mu-C_{y_{r}}\right) \\
-C_{l_{\beta}} & \left(i_{A} \lambda^{2}-C_{l_{p}} \lambda\right) & -\left(i_{E} \lambda+C_{l_{r}}\right) \\
-C_{n_{\beta}} & -\left(i_{E} \lambda^{2}+C_{n \beta} \lambda\right) & \left(i_{c} \lambda-C_{n_{r}}\right)
\end{array}\right|=
$$

This stability determinant gives a fourth order
characteristic equation of the dynamic system. Expansion leads to:

$$
A \lambda^{4}+B \lambda^{3}+C \lambda^{2}+D \lambda+E=0
$$

where

$$
\begin{aligned}
& B=C_{y_{B}}\left(i_{E}^{2}-i_{A} \dot{C}_{C}\right)-2 \mu\left[i_{C} C_{l p}+i_{A} C_{n_{r}}+i_{E}\left(C_{l_{r}}+C_{n p}\right)\right] \\
& C=2 \mu\left[C_{n_{r}} C_{\ell_{p}}-C_{n p} C_{\ell_{r}}+i_{A} C_{n \beta}+i_{z} C_{\ell_{p}}\right]+C_{p}\left(C_{p} C_{n_{r}}-C_{n_{p}} C_{y_{r}}\right) \\
& +i_{c}\left(C_{p} C_{l_{p}}-C_{l_{\beta}} C_{p}\right)+i_{E}\left(C_{y_{\beta}} C_{n_{p}}-C_{n \beta} C_{p}+C_{l_{r}} C_{y_{p}}-C_{\beta} C_{y r}\right) \\
& D=C_{y \beta}\left(C_{l_{r}} C_{n_{\beta}}-C_{n_{r}} C_{\ell_{\beta}}\right)+C_{y_{p}}\left(C_{\ell_{\beta}} C_{n_{r}}-C_{n_{\beta}} C_{\ell_{r}}\right) \\
& \left.+6 \mu-C_{y r}\right)\left(C_{l_{\beta}} C_{n p}-C_{n_{\beta}} C_{\ell_{p}}\right)-C_{L}\left(i_{c} C_{\Omega_{\beta}}+\dot{C}_{E} C_{n_{\beta}}\right) \\
& E=C_{L}\left[C_{\ell_{\beta}} C_{n_{r}}-C_{n_{\beta}} C_{\ell_{r}}\right]
\end{aligned}
$$

Solving the characteristic equation [either by computer program (ACCESS) or long division] gives two real roots plus c ne pair cf complex conjugate roots.

$$
\lambda_{1}, \quad \lambda_{2}, \quad \lambda_{3,4}=-\xi_{3} W_{n_{3}} \pm i W_{n_{3}} \sqrt{1-\xi_{3}^{2}}
$$

The first root, λ_{1}, is the smaller real root and defines
the spiral mode. It has a steady decay, with a halving time given by:

$$
t_{\text {half }}=\frac{0.69}{\lambda_{1}} t^{*}
$$

The second rect, the larger of the real roots, defines the rolling mode. It also has a steady decay, with a halving time given by:

$$
t_{\text {half }}=\frac{0.6^{9}}{\lambda_{2}} t^{*}
$$

The complex conjugate pair defines the lateral cscillaticns, also known as dutch rel. It has a period, halving time, and cycles tc halve given by:
PERIOD :

$$
T=\frac{2 \pi}{w_{n_{3}} \sqrt{1-\sqrt{3}_{3}^{2}}} t^{*}
$$

HALVING TIME: $\quad t_{\text {half }}=\frac{0.69}{w_{n_{3}} F_{3}} t^{*}$
CYCLES TO HALVE: $\quad N_{\text {half }}=\frac{t_{\text {half }}}{T}$

X. BIOGRAPHICAL NOTE

The auther was bern during August, 1957 in nerthern Manhattan, and lived there till the age of six. Alcng with his parents and sibling(s) he moved tc Englewcod, New Jersey for the remainder of his formative years, attending Dwight Morrow High Schocl in the process. He left the comfcrts of upper middle class suburban life in September 1975 tc attend the Massachusetts Institute of Technclogy in Cambridge, Massachusetts, with the intent to study Physics and/or Mathematics. Ccming to his senses late in his scphcmere year, he majcred in Aercnautical Engineering, while alse taking many courses in the Mechanical Engineering Department. He was graduated in December 1979 with a 4.55/5.0 G.P.A., having cnce won the "Wunsch Silent Crane and Hcist" award for cutstanding design of an Algal Harvester, for design werk accomplished in a Mechanical Engineering design ccurse.

For three summers the auther worked at "Kevar Engineering Services", a precision machine shcp, and became proficient on the miller, lathe, surface grinder, and many cther machine tocls. He enjcyed working with his hands and felt it indispensible for an engineer to know and understand machine shop practices.

Mr. Zeitlin began attending gracuate schocl at M.I.T. in the Aeronautiical Engineering Department in February 1980 and promptly won ancther "Wunsch Silent Crane and Hcist" award for cutstanding desing of a Glare Screen Mount, for werk accemplished in an advanced Mechanical Engineering design ccurse.

After he is graduated (again) in August 1981, Mr. Zeitlin plans tc live and work in the Bostcn area.

```
XI. BIBLIOGRAPHY
```

1) Welch, Ann Lcrne, and Irving, Frank. New Scaring Pilct. 2nd ed. Lenden: Jchn Murray, 1970.
2) Abbctt, Ira H., and vcn Doenhoff, Albert. Theory of Wing Secticns. New York: McGraw Hill, 1949.
3) Althaus, D. Stuttgarter Profilkataleg. Stuttgart: Instituts for Aerodynamik and Gasdynamik, 1972.
4) Perkins, Ccurtland D., and Hage, Robert E. Aircraft Performance, Stability, and Contrcl. New York: Wiley, 1949.
5) Dwinnell, James H. Principles of Aercdynamics. New York: McGraw Hill, 1949.
6) Irving, Francis G. An Introducticn tc the Longitudinal Static Stability of Low Speed Aircraft. Oxford, New York: Pergamon Press, 1966.
7) Etkin, Bernard. Dynamics of Flight: Stability and Control. New York: Wiley, 1959.
8) Rivellc, Robert M. Theory and Analysis of Flight Structures. New York: McGraw Hill, 1969.
9) Peery, David J. Aircraft Structures. New York: McGraw Hill, 1950.
10) Hanson, P.W., ed. Science and Technclogy of Low Speed and Motorless Flight. Washington: NASA, 1979.
11) Marsden, D. J. "Sailplane Performance Estimation". Technical Scaring, Volume V, number 3 .
12) Larrabee, E.E. "The Aercdynamic Design of Sailplane Tail Assemblies." Technical Scaring, Vclume V, number 1.
13) Squires, P.K. "Configuration Optimization of a 13-meter Span Sport Sailplane." Technical Scaring, Volume IV, number 3.
14) Gcodhart, H.C.N. "A Note on the Measurement of the Induced Drag Factor (k) of a Glider." Technical Scaring, Volume I, number 4.
15) Glade, T.W., and Westkaemper, J.C. "Planform Effects on the Induced Drag of Untwisted Wings." Technical Soaring, Volume I, number 2.
16) Wortmann, F.X. "Drag Reduction in Sailplanes." Scaring, June-July 1966.
17) Jenes, R.T. "Minimizing Induced Drag." Scaring, Octcber 1979.
18) McMasters, John H., and Nash-Webber, James L. "Some Technical Extrapolations." Soaring, January, 1977.
19) Satc, Hiroshi. "Spanwise Distribution of aerodynamic Shear and Bending Mcment on Cantilever Tapered Wings." loth O.S.T.I.V. Congress Publication, June 1975.
20) Nash-Webber, James L. "The Effect of Wing Loading on the Perfermance of Advanced Sailplanes." S.S.A. A.I.A.A. Symposium. March 1974.
21) Nash-Webber, James L., ed. NASA CR-2315, Washington: NASA, November 1973.
22) Abold, Phillip L. "Design of a Deployable Wing Glider." M.S. Thesis, Air Force Institute of Technclogy, December 1974.
23) Snapp, Elbridge Lee III. "A Preliminary Design of a Remotely Controlled Glider for Long-Line Operation."
M.S. Thesis, Air Fcree Institute of Technology, June 1973.
24) Mar, J.W. "Research on the Exploitation of Advanced Composite Materials to Lightly Lcaded Structures." Washington: NASA, Ncvember 1973.
25) Zeitlin, Marc J. "16.29 Class Notes (Design With Filamentary Composite Materials)." Cambridge, May 1980.
26) Paluszek, Michael A. "Trajectory Analysis for an Electromagnetically Launched Glider." Cambridge, April 1980.
