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Abstract

In the setting of the trace reconstruction problem, a uniform random binary sequence
w E {0, 1}' yields a collection of traces, such that each subsequence is obtained
by independently deleting each bit with a public probability parameter p. In this
thesis we explore a restricted version of this problem, in which each trace is a random
subsequence of one of two original known sequences. Given a series of traces, we would
like to device a method that allows to us to decide from which sequence, from the pair
of known public sequences w, w', do all the traces come from. The question we will
try to solve in this thesis is to know if such a method, operating with high probability
and polynomially many samples, is possible in practice. Among other things, we
show that if the two strings are drawn uniformly at random there is an algorithm
that allows to efficiently distinguish with high probability the traces they produce,
failing only on an exponentially small proportion of the random pairs. Additionally
we explore variants of this problem and their connections with a number theoretic
known as the Prouhet-Tarry-Escott problem.
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Chapter 1

Introduction

The large amount of research on the Graph Reconstruction Conjecture of S. Ulam

and P. Kelley has led to an interest in reconstruction problems for a variety of other

combinatorial structures (such as for example, digraphs and posets). In this thesis we

focus on studying the reconstruction problem for sequences. In particular we present

an overview of current advances on a simplified version of the Trace Reconstruction

Problem.

The Trace reconstruction problem asks to reconstruct an unknown random se-

quence T over a fixed alphabet X by processing a series of subsequences of T,

S1, - - - , S, drawn from a distribution over the subsequences of T.

We consider the unknown string to be drawn from the uniform distribution over

sequences of Xn. Let pn E [0, l]Vn. A subsequence S of T (we denote S < T to say

S is a subsequence of T) is drawn from a distribution P(-,pn) where Pn(S,pn)

PnnIS s| _Pn) 'Si

In other words, for each symbol of T. pn is the probability that symbol of T is

deleted and the subsequence S is what remains after the deletions happen.

The authors of [2] study the trace reconstruction problem when the family {pn} is

such that pn = 6 for some 6 constant. Among other things they propose a polynomial

time algorithm that is capable of reconstructing all but an exponentially small fraction

of the strings in {0, 1} and after polynomial post processing time, whenever the

deletion probability 6 is less than some small universal constant 'y. Unfortunately,
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their reconstruction algorithm is quite complicated, and Y << 1 therefore leaving

some room for finding a simpler and more intuitive version, and one which could

work for constant deletion probability 6 for 6 > I. We will not survey the internal

workings of this algorithm in this Thesis, although we will touch upon some of the

results they present in their paper.

In the same paper, Mitzenmacher et al. sow the existence of an algorithm that

uses exp( Vri) many traces and that is able to reconstruct any sequence with high

probability, where n is the size of the sequence to be reconstructed.

A related version of the same Trace Reconstruction Problem is that where T is an

unknown sequence of length n over a fixed alphabet X and the goal is to reconstruct

T after making questions of the form, "does the sequence S appear as a subsequence

of T?

Dekel Tsur, in his paper "Tight bounds for string reconstruction using substring

queries" 151 proves that every non adaptive algorithm must make Q(en2) queries in

order to reconstruct 1 - e fraction of the strings of length n.

For the purposes of this Thesis, we consider the following version of the Trace

reconstruction problem:

Problem 1. The Trace Reconstruction Problem asks to devise an algorithm whereby

after receiving a series of subsequences t1, -- - , t, from a hidden random sequence w C

{0, 1}. The sequence w is assumed to be drawn from the uniform distribution. The

sampling distribution over subsequences equals pPn () for some probability parameter

Pn C (0, 1).

The full version of the Trace Reconstruction Problem asks for the existence of an

algorithm that after processing polynomially many samples and using polynomial post

processing time, is capable of reconstructing, with exponentially small probability of

error, the string w from which the samples were generated. The hidden string, w is

assumed to be drawn uniformly at random from the space {0, 1}.

A milder version of the Trace Reconstruction Problem asks to show that there is

an algorithm that although only requires polynomially many samples, uses exponen-
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tial post processing time with the samples to reconstruct, with exponentially small

probability of error, the string w from which the samples were generated. As we

mentioned before, Mitzenmacher et al. show in 12] show an algorithm capable of

reconstructing with high probability a high proportion of the strings, but failing on

the rest, and an algorithm capable of reconstructing all the strings but requiring both

exponentially many samples, and therefore exponentially big post processing time,

thus falling short from fully solving both the full and the milder version of the Trace

Reconstruction Problem.

In this Thesis although we will talk about the Trace Reconstruction Problem, we

will mainly focus on solving a very related problem, which we call the Pair Trace

Identification Problem:

Problem 2. Given two known sequences w, w' E {0, 1}fn, and a known parameter

of probability p E [0, 1]. Design an algorithm that uses polynomially many samples

and uses polynomial post processing time that allows to decide, with high probability

and after receiving polynomially many traces from either w or w' (with a probability

distribution over subsequences induced by the probability parameter p) which sequence

generated the sequence of observed traces.

In the context of the Pair Trace Identification Problem, we would like to show that

the sequences are distinguishable, not only in theory, but in practice. This entails to

show that the distributions induced by the deletion process are 'far' away from each

other, enough to allow a sampling algorithm to distinguish the distribution originating

the samples. To this purpose we will define an appropriate notion of distance between

distance in Chapter 1.

The full version of the Pair Trace Identification Problem asks for the existence of

an algorithm that after processing polynomially many samples and using polynomial

post processing time, is capable of distinguishing, with exponentially small probability

of error, if the samples came from w or w' for all possible pairs of strings w, w' E {0, 1}

with w / w'.

A milder version of the Pair Trace Identification Problems as to show that there
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is an algorithm that requires only polynomially many samples, but fails only for a

exponentially small proportion of the pairs w, wI.

In what follows, any algorithm capable to distinguish with high probability and

only polynomially many samples if the observed traces are coming from either w or

w', is referred to as a statistical test for the Pair Trace Identification Problem.

Our results will be mainly concerned with the case where p = The crux result

that we achieve in this Thesis is a solution for the milder version of the Pair Trace

Identification Problem. In other words, with high probability over the space of pairs

of sequences, w, w' E {0, 1}n, there exists an algorithm that distinguishes w from w'

after only polynomially many traces and uses polynomial post processing time.

In our discussion, we will also talk about some other related problems to both

the Trace Reconstruction Problem and the Pair Trace Identification Problem, in

particular, the techniques and results we develop towards the solution of the Pair

Trace Identification Problem will lead us to ask what is the shortest length of a

sequence ko(n) such that for any two sequences w, w' E {o, 1}fn, there is a subsequence

s with s E {0, 1}ko(n) appears a different number of times in w than in w'. More

formally:

A given sequence w E {0, 1} contains (n) subsequences of length k. Call the

multiset of subsequences of size k of w, the k-deck of w. A sequence that is

uniquely defined by its k-deck is called k-reconstructible. A sequence w E {0, 1}

is k-reconstructible if no other sequence has the same k-deck as w. For example,

all sequences of length 4 are 3-reconstructible.

The following problem which in this Thesis we will refer to as the k-Trace recon-

struction problem asks:

Problem 3. What is the minimum k such that all sequences of {0, 1}' are k-reconstructible.

We call ko(n) to this minimum k.

The current results on the k-Trace Reconstruction Problem can be summarized

in the following:
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c1 log 2 (n) < ko(n) < c2v6n

For some absolute constants c 1 , c 2 > 0.

The lower bound is due to a constructive proof by Schulman and Dudik and it

is shown in their paper 'Reconstruction from subsequences' [7]. The upper bound is

a result by Krasikov and Roditty, and its proof can be found in their paper 'On a

reconstruction problem for subsequences' [8].

Interestingly, the proof of the upper bound is closely related to the number the-

oretic result known as the Prouhet-Tarry-Escott problem. In Chapter 5, Extensions

we will elucidate its connections with the Reconstruction Problems discussed in this

Thesis.

Finally, as we mention before we will define a notion of distance between dis-

tributions, and will address the question of, finding a lower bound for the distance

between any two distributions over subsequences induced by the deletion process here

described and where p = 1. The notion of distance between distributions that we

will use in this Thesis is that of variation distance, which is defined in the following

paragraphs.

For a given sequence w E {0, 1}" and a deletion parameter p, we define the

distribution over subsequences of w induced by the deletion process here described as

Pp(-) : f{s < w} -+ [0, 1]. P,,p(.) can be written out explicitly:

Definition 4. P",P(s) = C(w, s)pn-lH(1 - p)I8I

Assume w, w' E {0, 1}". Let dTv(Pw,p(-), Pw',p( )) = 2 Ess 1 ' IPw,p(s)-Pw',p(s)

be the variation distance between two distributions induced by the deletion process

with probability p.

Problem 5. Find the minimum value of dTv(PW,P(.), PW',P(.)) for all pairs of strings

w, w' E {0, 1}'. In particular, find the exact value of this lower bound when p =

and the pair of strings w, w' that achieve it.
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We will discuss some advances and conjectures related to the solution of the Prob-

lem 5 in the last chapter of this Thesis, Extensions.

1.1 Summary of results and thesis structure

In this thesis we will focus on the Pair Trace Identification Problem for the case

when the deletion probability equals 1. The first chapter, titled "Preeliminaries",

introduces a few efficient algorithms for computing a few combinatorial properties of

subsequences.

In the second chapter, "Distinguishing tests and special string pairs", we explore

a few statistical tests and their performance. Additionally we explore a few families

of string pairs for which we can show their statistical distinguishability.

In the third chapter, "Random strings are distinguishable" we provide a proof

that with high probability, pairs of uniformly random strings are statistically distin-

guishable. This is the main result of this section, and hinges upon some of the tests

and results introduced in Chapter 2. In particular, the statistical test that is used

in the proof of this theorem is a specialization of the test introduced in Chapter 2,

which we call the "Subsequences of Subsequences Test".

The last chapter, "Extensions" discusses among other things, further directions

towards the full solution of the Pair Trace Identification Problem, and the different

and rich connections that the results exposed in Chapter 3 have with the k-trace re-

construction problem. We provide an alternative proof that matches the asymptotics

of the existing upper bound for the following quantity:

ko(n) = max min s.t.C(w, Sk') # C(w', sk')
wAw'Jw,w'E{O,1}n k'

Additionally we discuss a purely number theoretical implication of this proof,

which to the knowledge of the author of this paper, shows an improvement on existing

results concerning a particular class of Littlewood type problems on [0, 1].
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The reader might want to skip some of the sections. In particular, if the reader's

intention is to read the Chapter titled 'Random Strings are Distinguishable', a suf-

ficient read would go over the Preeliminaries Chapter, and the section on the subse-

quences of subsequences test in Chapter 3, and through all of the 'Random Strings

are Distinguishable' Chapter.
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Chapter 2

Preeliminaries

2.1 Subsequences and their properties

In this section we describe some of the properties of subsequences. The purpose

of this discussion is to present some results about how to compute the number of

subsequences of a given sequence. We will focus on sequences where the alphabet is

x {o, 1}.

2.1.1 Sequence representation

Here we present an overview on the distinct ways in which we will represent sequences

in the incoming sections and chapters.

Definition 6. Every sequence w E {0, 1} can be naturally identified with a vector

in R' whose entries are either 0 or 1. We call this the 0 - 1-vector of w.

Definition 7. The 0-vector of a sequence w E {0, }fl with m ones is (bo,. ,bm).

Where bi indicates the number of zeroes before the i + 1-th and after the ith one. By

convention, bo is the number of zeroes before the first one, b, is the number of zeroes

after the last one.

Definition 8. The 1--vector of a sequence w E {0, } with m zeroes is (ao,... ,am).

Where ai indicates the number of ones before the i + 1-th and after the ith zero. By
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convention, ao is the number of ones before the first zero, an is the number of ones

after the last zero.

Definition 9. The position-of-ones of w E {0, 1} equals (x1 ,--- , x) if w has m

ones and the i-th one of w is in position xi. We define analogously the position-of-

zeroes vector representation of w.

2.1.2 Algorithms

We present a variety of algorithms over sequences and their subsequences that will

prove handy in our discussion in the pages to come.

Subsequence appearances

Let C(w, s) = number of times s is a subsequence of w.

We provide an algorithm that takes as inputs w E {0, 1} and s E {0, 1 }k where

k < n and outputs C(w, s) in polynomial time.

The procedure hinges upon the following observation:

Observation 10. If sk w, then:

C(w, s) C(w[: n - 1], s) + C(w[: n - 1], s[: k - 1])

else:

C(w, s) = C(w[: n - 1], s)

The observation 10 is enough to set the bases for a recursive algorithm capable of

computing C(w, s).

If for j =1,-- , i and r = 1,... , k we know C(w[: k], s[: r]) we can compute, by

means of 10, the values of C(w[: i + 1], s[: r]) for all r = 1, - - - , k.

In fact, to compute the values C(w[: i + 1], s[: r]) for all r 1,.-- , k we only need

to know the values of C(w[: i], s[: r])Vr = 1, . . . , k.

18



The proposed algorithm computes the values of C(w[: i], s[: r]) for all values of

i E [n] and r E [k] via memoization.

Algorithm 11. 1. Compute the array of values C(w[: 1], s[: r]) for r = 1,... , k.

2. For all i use the observation in the previous paragraph to compute the array of

values C(w[: i + 1], s[: r])Vr E [k] from the array of values C(w[: i], s[: rj)Vr E

[k].

The basis of the algorithm is the computation of the array of values for C(w[:

1], s[: r]). This equals:

C(w[: 1], s[: 1]) = 1 if w[: 1] = s[: 1]

C(w[: 1], s[: 1]) = 0 o.w.

Furthermore, by convention, we specify that s[: 0] = 0 and C(w, 0) = 1Vw G

{0, 1}n.

This algorithm takes O(k) operations per step. Since the number of times these

recursive calculations must be ran n times, the running time of this algorithm is

0(nk), which is polynomial in n, the size of w.

Subsequence count polynomials

Let w E {0, 1}", and s E {0, 1 }k for some k. Let C(w, s) be the number of times s

appears as a subsequence of w.

Lemma 12. Let x1 , --- , m, be the positions of the ones of w. For fixed m, n, we

can write, C(w, s) as fs(x 1 ,- , r), a polynomial on xi,- , xm.

Proof. If s has no ones, then f,(xi,- , X) = (nfA) which is constant (by assumption

m, n are fixed). Let s = 0k1 s' where k > 0, need not be different from zero.

By summing over the position of the first one of s within w, either at x1 or X2, or

19



.. Xm. We get that:

fS((X,, Xm)= fS,(xj+l - Xj, Xm - Xj) * j k)
j=1

Where each fs, (xj+1 - x, - -- , xm -xj) specifies the number of occurrences of s' in

the region w[xj +1 :] and (xa -i) is the number of ways to choose k zeros from the first

xj-J zeros. Hence in overall each factor of the sum, fs, (xj+1 -xj, -,--, xm - xj ) * (x-)

specifies the number of times s appears as a subsequence of w where the first one of

s coincides with the j-th one of w.

The recursive nature of this definition finishes the proof.

LI

From this result we can provide an alternative polynomial time algorithm to com-

pute the value of C(w, s).

By employing memoization, the recursion above yields a 0(n2 ) algorithm for com-

puting f,(w), for any given s. The advantage of this method is the fact that the poly-

nomial expression f,(x1, - - - , xm) can be reevaluated for different values of the array

(Xi, * - - , xM). For some sequences s, the expression f,(x 1 , - , xm) can be evaluated

in 0(n) time instead of 0(n2 ).

The family of polynomials {fs(xi, , xm)} for all sequences s of size less or equal

to n is an interesting object of study. Let Ek - {f (Xi, - - - , Xm)Is<k for a fixed m.

The following question touches upon the independence structure of the Fk.

Open Problem 13. What is the span of Fok over the space of multivariate m variate

polynomials?

The motivation behind 13 stems from the observation that if T(k spans all

the space of m variate polynomials (x 1, - -- ,xm-) , then there must exist a string

of size k such that for every two strings w, w' C {0, ifn, with m ones in positions

xi,-- , xm and x' ..-.- ,x respectively, f,(xi,- , xm) # f 8 (x .... ,x ') or in other

words, C(w, s) 7 C(w', s)

20



In the Chapter 'Extensions' we will provide some partial results regarding the

Open Problem 13.

2.1.3 Counting common subsequences

In the case where the probability parameter of the Pair Trace Identification Problem is

21p = , a given pair of sequences w, w' E {O, l}" are identifiable, under the assumptions

of the Pair Trace Identification Problem (Problem 2) if we consider the multiset of

sequences of w that are not subsequences of w', and the cardinality of this set is of

order O(9) for some universal constant c. If this was the case under the sampling

procedure described by the Pair Trace Identification Problem statement, and with

parameter p = , the probability of observing a substring of w that is not a substring

of w' given that the hidden sequence was w is at least - for some constant c1 . In this

case, the following algorithm distinguishes them after polynomially many samples

(The condition and algorithm are symmetric if we exchange w by w'):

Algorithm 14. Repeat nC times: For any given sample s compute C(w, s) and

C(w', s). If C(w, s) 7 0 and C(w', s) then output w as the belief for the hidden

sequence, if after nc times no such sequence s has appeared, output w' as the belief

for the hidden sequence.

In this section we present an algorithm that allows us to compute, for a given

pair of sequences w and w', the cardinality of the multiset of subsequences of w that

are not subsequences of w'. The spirit of investigating such a procedure lies in the

observation above. If this set is "polynomially large" with respect to the space of 2'

possible traces, we hope to use the algorithm 14 to identify the source of the traces.

In the next section we present an algorithm that allows to compute the probability

Pm(n) of observing a subsequence of w that is not a subsequence of w' when the deletion

parameter is an arbitrary value p E [0, 1]. If this probability pm(n) were of the form

" for some universal constants ci, c E R+, the same algorithmic procedure described

in Algorithm 14 will solve the Pair Trace Identification problem between w and w'.

Unfortunately, the required separability property under which Algorithm 14 works
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is not achieved by all sequence pairs w, w'. In particular, it is not achieved by the

sequence pair, w, w' = 0 k1 0 k-1, 0 k-1 1 0 *. In this case, the sequences that are subse-

quences of w but not of w' are only those that are of the form 0 k 1 0 *. There are 2 k of

them, which is not a polynomial fraction of 22k.

Recall the following definition:

Definition 15. Let s < w denote s is a subsequence of w.

Let w = w1, .. -wn and w' =w' ..- W'

Definition 16. Let -1(w, w') = <,,, = ,,w C(w', s). Where 1A is the indi-

cator function of A and B = {sjs < w} set of distinct sequences that are subsequences

of w.

Definition 17. Let

%(w, w') = 3 1SUfOj'
sU{O} w

= C(w', s U {0})

We are interested in finding out a recursion for 1. We will derive the desired

recursion in several steps. The idea underlying the derivation is to construct the

common subsequences of w and w' by observing their last character.

1(w U {0}, w') = 1(w, w') + extra terms.

Some subsequences of w U {O} that are subsequences of w' as well, could lie only

within w.

The remaining subsequences of w U {O} that are subsequences of w' as well, all

finish in the last 0 of w U {0}. Among these, there are two types of strings:

1. subsequences of w U {0} having the added 0 as last character that are also

subsequences of w and w'.
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2. subsequences of w U {O} having the added 0 as last character that are not

subsequences of w but are subsequences of w'.

The first subset is exactly To(w, w'). This is because one can take a subsequence

of w finishing in zero, and substituting that last character with the added zero of

w U {0}. This term comes into the sum by substituting 1o last zero with the added

zero in w U {o}.

To count the second susbset of strings = <s.W lsU{o}w'

In other words, the number of subsequences of w such that adding a zero they

still belong to w' but not to w. To find a decomposition of the last desired term:

Say s<w, s<w' is such that sU{0} <w and sU{0} <w' but sU{0} /_w. Call

w[: i] = w, ... wi. Then call r to the largest index of w such that w, = 0. Define r'

analogously for w'. Notice that s /lw[: r - 1], since otherwise s U {0} < w[: r] < w.

Furthermore, since s U {0} < w', one must have that s < w'[: r' - 1]. And therefore

we have the conditions:

1. s /1w[: r - 1]

2. s Kw

3. s < w'[: r' - 1]

These conditions are necessary and sufficient for s U {0} being in the set we are

trying to enumerate. Necessary follows from above, sufficiency follows easily as well.

The value we are looking for is = (w, w'[r' - 1]) - D(w[: r - 1], w'[r' - 1]) which

completes the recursion. In synthesis:

1(w U {0}, w') = 1(w, w') + o(w, w') + 4(w, w'[: r' - 1]) - D(w[: r - 1], w'[: r' - 1])

We now provide a recursion for (o(w, w'). Observe first that 4o(w, w') = (o(w

r], w'[: r']) meaning that if either of w or w' does not end in 0 then we have a recursion

23



into a shorter sequence. We are therefore interested in finding a recursive definition

for the remaining case D(w U {0}, w' U {O}). To obtain such a formula, we perform a

similar process as before. The subsequences of w U {O} ending in 0 common to w'{0}

can be divided into the following sets:

1. subsequences of w ending in zero common to w' U {0}.

2. subsequences of w U {0} having the added 0 as last character that are subse-

quences of w and are subsequences of w' U {0}.

3. subsequences of w U {0} having the added 0 as last character that are not

subsequences of w and are subsequences of w' U {0}.

The size of the first subset is 4o(w, w' U {0}). This follows merely by definition.

The size of the second subset is (o(w, w' U {0}). This follows by considering all

subsequences of w having a zero at the end and substituting that zero by the added

zero in w U {0}. The third subset is {s < wIs U {0} /w, s U {0} < w' U {0}}. To count

this, notice that

{s < wIs U {0} /'w, s U {0} < w' U {0}} =

{s < wIs U {0} /w, s < w'} =

{s < wIs U{} /_ lw[: r - 1], s U {0} : w'U {0}}

The equivalence of the first and the second identity is trivial while the equivalence

of the second and the third identity follows from the same argument for the first part

since the condition that s /_1w is equivalent to s /klw[: r - 1] where r is the largest

index of w such that Wr = 0. Therefore 41o(w U {0}, w' U {0}) = 24o(w, w' U {0}) +

(w, w') - 1(w[: r - 1], w'). In synthesis:

" 4(wU{0}, w') = ((w, w')+1co(w,w')+4)(w, w'[: r'-1])-(w[: r-1], w'[: r'-1])

* 0o(w U {0}, w' U {0}) = 21o(w, w' U {0}) + '1(w, w') - I(w[: r - 1], w')
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Probabilistic count

In this section we devise a method to compute the probability, given the underlying

sequences are w and w', of observing a trace (subsequence) that is common to both

w and w', given the underlying sequence is (say) w.

Definition 18. Define 4(P)(w,w') = E,1,<w p(s w). Where p(s1w) = probability

of observing s given w.

It is easy to see that p(slw) = plwHsl(i - p)sl. V()(w, w') is the probability that

a common subsequence of w and w' is observed as a trace of w.

We can easily extend the previous' section recurrence relations to yield the fol-

lowing ones:

(P) (W U {0}, w') = p (41(p)(w, w') + Df (w, w') + I(D)(w, w'[: r' - 1]))

- p jw-r+1(p) (w[: r - 1], w'[: r' - 1])

Where

(W>) = lsuoS<WP(s U {O}|w)
sU{O}< w

Extending the recursion for %o(w, w') into the probabilistic case, we get:

(P) (w U {0}, w' U {0}) p (2bo(w, w' U {0}) + @(w, w')) - pIw-r+1,(w[: r - 1], w')

The recursions above allow us to compute these counts or probabilities in polyno-

mial time by using memoization and noting the base cases:

1. D(0, w') = 1WI

2. (DO(0, W') = 0ew,
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3. IP(1, w') = lEs

4. (Do(1, w') = 0

The general recursion needs a term:

1 1(w, w')

This is defined analogously to 4%(w, w') both in the counting and probabilities

case.

A potentially fruitful and interesting discussion could arise from generalizing the

previous algorithm for the case of larger alphabets than {0, 1}. Because of lack of its

relatedness to the main topic of this thesis we do not pursue that discussions here.

2.2 Variation distance

In order to establish the solvability of the Pair Trace Identification Problem, one would

like first to show that the distributions over subsequences, P,, and P,,, induced by

the deletion process described for the Pair Trace Identification Problem, are far apart.

The notion of distance between distributions that we will focus on in these notes is

that which is known as Variation Distance.

A result we would like to establish is the theoretical possibility of distinguishing

between every two given strings w and w', each in {O, 1}' when they are subject to

the sampling conditions of the Pair Trace Identification Problem. In order to achieve

this goal, we would like to show that the variation distance between the distributions

over subsequences Pm,,, P.,,p is "large". In other words, we would like to prove the

distributions 'P,, and P,,, are far apart.

In the context of this thesis we will say that two distributions are "far away" when

there is a polynomial gap between the two of them. More formally:

Definition 19. A sequence of families of distributions {F\}'L 1 such that each p,, E

.F is supported over a space of size O(2n) is called polynomially distinguishable if

there is a universal constant c such that the variation distance between every two

different distributions pn, qn E -Fn is at least Q(1).
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In the context of the trace identification problem, T = {Pwp}wE{o,1}.. A question

that will be explored in the incoming sections of this thesis is the following one:

Open Problem 20. Is the family {F } 1, where F,= {P=fW,,}.Cj0,11n polynomially

distinguishable?

In the following section we will define the concept of Variation distance and explore

some of its basic properties.

2.2.1 General properties

Given two probability distributions, the variation distance measures how far are the

two of them from one another. In this thesis we will restrict ourselves to probability

distributions supported over a discrete set.

Definition 21. Given two distributions p, v supported over a discrete set S the vari-

ation distance between the two is defined as:

dTv(P, v) =| P - V ITV= supAcs lp(A) -v(A)|

One can understand the total variation distance as the maximal deviation between

v and p when evaluated over any measurable set. We would like to prove that the

variation distance between the induced distributions over subsequences for any pair of

distinct sequences (w, w') is large enough so to allow the existence of a differentiating

test.

It is easy to show that for a pair of discrete distributions P, V supported over a

discrete set S, the variation distance dTv( 1p, v) can be written as:

dTv(/I, v) = 2 P(s) - v(s)'
sES

Definition 22. We say that the variation distance dTv(Pn, vn) is polynomially large

for a pair of distributions (indexed by n) pn and un defined over an alphabet of size

2n if dTv(/-I, V.) = Q(-) for some fixed constant c > 0.
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2.2.2 Hoeffding Inequality

The following inequality, known as Hoeffding inequality will be used multiple times

in this Thesis.

Theorem 23. Let X1,..., Xn be independent random variables. Assume that the Xi

are almost surely bounded; that is, assume for 1 < i < n that Pr(Xi C [ai, bi ]) = 1. We

define the empirical mean of these variables as X = RX 1 + - + Xn). The following

inequalities hold:

Pr(X - E[X] > t) < exp - n 2n )2 )
Ei_1(bi aj)2

--2n 2t2
Pr(JX - E[X]| I t) < 2 exp -n , b j

Hoeffding bound allows us to develop the following bounds for approximating the

probability of a given event via sampling.

Suppose we are sampling from a family of random variables {Xn} and a family

of events {An}. Let l(X, E An) = PAn

SupposePAn = Q(PA.

1 if Xn E An

0 otherwise

After generating R samples Y), .- , Yn from Yn, since Yn E [0, 1] the Hoeffding

bound ensures that:

Pr ( - An > < exp ( ) 2Re =exp (-2Re 2
)

In order to approximate PAn = Q(7) such that the probability of being far from

its actual value by an additive factor of is of the form e-n for some constant c > 0
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we need:

exp(-2RE 2 ) = exp(-cn)

1
nm

1
exp(-2R ) = exp(-cn)

-+ R = O(n 2 n+l)

This leads to the following lemma:

Lemma 24. Let sequence of events {An} 1 defined over probability spaces { } L 0

be such that IP(A,) = Q(-) for some m G N. Un be a uniform random variable

over 1 2n for all n. It is possible to approximate P((A,) up to an error of j using

O(n 2 (k+l)+1) samples such that the probability of error is bounded by exp(-2n).

2.2.3 Sampling from polynomially distinguishable families

In this section we prove a result concerning the distinguishability of two distributions

whose variation distance is large.

Let p and q be two distributions over a set Q. Consider the following four quan-

tities:

A1,q =Eq[1q(i)>p(i)1

A1,p = Ep[1q(i)>p() ]

A2,q =Eq[1p(i)>q(i)]

A2,p = Ep[1p(i)>q(i)]

Notice that dTv(p, q) = ([Ai,q - A1 ,p] + [A 2,, - A2,q])

This means that if dTv(p, q) > A then at least one between [Ai,q - A1,p] or [A2,p -

A2,q] is greater of equal than 6/2. Wlog say [Ai,q - A1,p] > 6/2

If p and q are such that for every given i E Q it is possible to compute p(i) and

q(1), we can use sampling and the previous section's Hoeffding bounds to estimate
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to high accuracy [Ai,q - A 1 ,p] by using Lemma 24. If dTv(p, q) is polynomially large,

then by using Lemma 24 we will only need polynomially many samples.

If we have a protocol whereby we are receiving samples from either p or q, but we

don't know which distribution are they coming from, we can estimate the empirical

value of [Ai,q - A1,p1 for each belief of p and q and compare it to the estimate we have

already sampled.

In particular, when dTv(p, q) is polynomially large of order Q( ), then O(n2c+1)

samples are required to estimate up to accuracy Q( ) the value of [Ai,q - A1,p] or

[A2,p - A2,q]. Call this estimate A. After sampling from the hidden distribution, we

can estimate A assuming the two cases:

1. Hidden distribution is p

2. Hidden distribution is q

Call these estimates AP and Aq respectively. After O(n2c+1) samples, the estimate

AP or Aq yielding the closest estimate to the previously estimated value of A will

provide us a value of the hypothesis. The algorithm fails with probability bounded

by exp(-nc) for some constant c > 0.

2.2.4 Subsequences variation distance

As we have mentioned before, we will focus on the Pair Trace Identification Problem

in the case where p This is important for this section, since if the hidden

sequence were w E {0, 1} the probability that the sampled trace was made up of

exactly the bits {w, . . , w2 } for some set of values {i1 , . , Wt} C [n] is y which is

independent of the set {ii, - . , it}.

Let Sn = {w E 0 U {0, 11 ... {0, 1}"} be the set of binary sequences of length at

most n. Notice that ISnj = 2 n+1 _1 . Let Sn be the 2 n+1 - 1 dimensional space whose

basis vectors are all sequences of Sn.

Define the following map:

fn : {0, 1}" _ Sn
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f, maps any string w E {0, 1}' to the vector of frequencies of all its subsequences.

For example:

f3(001) = 1 - e0 + 2 - eo + 1 -el + 1 - eoo + 2 - eol + 1 - eoo1

Where e, denotes the basis vector in S, corresponding to the coordinate associated

with the sequence s.

Because we are dealing with the case p =, instead of dealing with the distribu-

tional variation distance we will deal with the following more convenient distance:

Definition 25. Given two binary sequences: w, w' let d,(w, w') = |fn(w) - f,(w')|1

be the 11 distance between the vector images in Sn of each.

This construction makes S, into a Hilbert space. I.e. d, induces a norm, and a

dot product. Interestingly, If,(w)= 2n. All these vectors are on the 11 sphere of

radius 2'.

Notice that dTv(P, I, P,, ) = , d(w, w'). In order to lower bound the vari-

ation distance of dTv(Pw,-,P1,1 ) is sufficient to find a lower bound for d,(w, w').

Showing dTv(P!., P& 1 ) is polynomially big is equivalent to show that there exists

a constant c E R+ such that for all pairs of distinct sequences w, WI E {0, 1}" we have

that d. (w, w') = Q(nc).

By our discussion on 'Sampling from polynomially distinguishable families' it fol-

lows that, a polynomially big variation distance for the distributions P.,g P1, for

any two sequences w, w' E {0, 1} implies the existence of a statistical distinguishing

test that allows to solve the Pair Trace Identification Problem with high probability

for every pair of strings when p = .
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Chapter 3

Distinguishing tests and special string

pairs

In this chapter we focus on developing additional machinery towards the solution of

the Pair Trace Identification. In particular, we will propose a variety of statistical

distinguishing tests that are here proposed to serve as partial solutions for the Pair

Trace Identification Problem. Recall the Pair Trace Identification Problem statement:

Problem 26. Given two known sequences w, w' G {0, 1}n, and a known parameter

of probability p E [0,1], design an algorithm that uses polynomially many samples

and uses polynomial post processing time that allows to decide, with high probability

and after receiving polynomially many traces, from which distribution are the samples

coming from, either PLP (-) or -P (-)

We would like to propose a statistical distinguishing test that achieves either one

of the following:

(a) Polynomial number of traces, but unlimited processing time.

(b) Polynomial number of traces, polynomial processing time.

A solution to (a) would prove that the variation distance between the distributions

over subsequences is polynomially large for every pair of sequences w, w'. The second,

(b), would prove not only that the variation distance is polynomially large between
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the two distributions induced by every pair of sequences w, w', but also, the existence

of a polynomial time algorithm that processes these traces and decides if they are

being sampled from 'P)(-) or -?(-) in polynomial time.

3.1 Distinguishing tests

In this section we present a survey of different types of distinguishing tests and their

properties.

Recall the following definition:

Definition 27. Let C(w, s) = (number of times s is a subsequence of w).

Definition 28. We say that a pair of strings w, w' is distinguishable if there is a

statistical test that allows to distinguish them in polynomial time after polynomially

many samples.

3.1.1 The number of ones test

We analyze the performance of the statistical distinguishing test based on counting

the average observed number of ones (or zeroes) in the observed traces from the

hidden sequence.

We show that all pairs of sequences (w, w') such that the number of ones in w is

different from the number of ones in w', are distinguishable. That is, we provide a

test that will distinguish w from w' after only polynomially many samples, and using

polynomial post processing time.

Given a string w E {0, 1}*, denote

1. Ci(w) = number of ones of w.

2. C2(w) = number of zeros of w.

We say w and w' are 1-unbalanced if Ci(w) # Ci(w'). For this section we will allow p

to vary and attain any value in (0, 1) and not only 1. We explore a sampling scheme
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capable of discerning between sample traces coming from 2 unbalanced sequences.

We will consider the following numbers:

a(ilw) =probability the observed sequence has i ones given w is the underlying seq.

It is easy to see that:

C (w))i _ gjipci) -i if i < Ci(w)

0 otherwise

The distribution a(.jw) is binomial with parameters (1 - p, Ci(w)). The mean

of a(-Iw) is Ci(w) - (1 - p) If w and w' are a 1-unbalanced pair, the mean of the

binomial distributions a(.Iw) and a(.-w') differ by at least an additive factor of I - p.

The argument for 0-unbalanced pairs yields a symmetric condition.

For a given w with m ones, we can compute the minimum number of samples s

such that our estimate for the mean of a(- Whidden) will achieve a deviation from the

mean of more than 1-P with probability less than eclwI for some constant c. A simple

use of Hoeffding inequality yields:

1
S = O(Iwl P) s O~jw~(1 - p)2)

This value is polynomial in Iwj and in L. Since p is assumed to be fixed, this

quantity yields a polynomial number of samples with respect to Iwj.
We can immediately extend this result in the following way:

Lemma 29. If p depends on the size of the sequence in such a way that p = Pn

Q(-1 ) for some constant k, then this test needs only polynomially many samples.

Corollary 30. The sequence pair (w, w') with |w| z |w'| is distinguishable in poly-

nomial time and after polynomially many samples.

3.1.2 The first one test

In this section we assume that p = 1. The following is a purported test to differentiate

between the two strings based on the idea of looking at the location of the first one.
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In order to give the reader a feel for why the problem of devising a statistical distin-

guishing test is nontrivial we show that this test does not work as a distinguishing

test for all pairs of sequences.

Let w and w' be two sequences of length n and let I ={i, . , ik } be the positions

for the ones in w and I' = {i', -, '} be the positions of the ones in w'. With

il < i2 < - < ik and i' < i 2 < -< k. Assume both w and w' have the

same number of ones. Otherwise the "count the number of ones" and we could hope

that the array of two tests ("number of ones" and "first one") would differentiate

them. As mentioned before, and for ease of the discussion let p =1. Assume that

I - I - I' - I= 1.

The number of subsequences of w having a one in its first position is:

2 n-i +2 2r-2 ... +2 2nik

More generally, the number of subsequences of w shaving a one in its i-th position is:

i1 1 2 - + +2  2 -2 - - + ik k 2"-ik

The number of subsequences of w having no ones is 2 n-k. Because II - I'I = 1, the

two subsequences differ only in a single index. Assume the index they differ is the

j-th position in which both w and w' have a one. Let them be (after relabeling of

the indices) i3 and i'. Then:

n

d, (w, w') >3 (7 J2 -j2

i =

The last sum is less or equal than:

) 2 -i2  + ( ) 2 n-

Now assume that j is roughly n and i, I' are roughly 9.

Then the sum above is roughly n2 . Which is exponentially far from 24.
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3.1.3 The marginals test

We introduce the marginals test. We define the marginals test to be the following

array of tests:

Let the positions of the ones in an n bit string w be xi,- , Xm. Define pj(w) as

the probability that the i-th entry of an observed trace of w equals one.

1 Ipim)= 4 - *2 -
i=1 /

In the following section we prove that there exists a pair of strings whose two

arrays of marginals tests are exponentially close.

3.1.4 The failure of the marginals test

Let P(i, j) = probability that the i-th symbol of w ends up in position j. By definition

P(i, j) =1y (j). Consider the following matrix A where

A 2,i . 2 n-i-i

We define (n) = 0 for m > n. A is upper triangular. If we call ei, - , eln the

indicator vectors on coordinates 1,... , n then, if we identify a sequence w E {0, 1}

with a column vector vW such that v= 1 if wi = l and vo = 0 if w = 0. Then,

P-(w) = A -v'

In other words Pr(we observe a one in position j) = Av'. Let vW' be defined

analogously.

The variation distance between the two summary statistics tests is:

IA(vw -v")I
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Let v = vW - v"'. By definition v' E {, 1, -1}. The variation distance between the

summary statistics of the tests applied to w and w' is:

|Av|1

We prove the marginals test fails by exhibiting a pair of strings w, and w 2 E

{0, 1} for which the variation distance between the two arrays of marginals tests is

exponentially small.

Theorem 31. There are two strings w1 and w 2 such that |Aw1-Aw 2 11 < n--Delta(og 2
(n)))

Because of ?? it is sufficient to find a vector v in {-1, 0, 1} such that IAvli is small

enough.

For a given function f, let A'df to be the function so defined:

(Adf)(x)= f(x + d) - f(x)

In other words, the function Ad is the discrete derivative of f with step d. let's

consider the following:

A Cl C2,-)Ck(f) = AC1(AC2 ,Ckf

Consider the following recursively defined vector: v(') = (1), and 0) = (v(- 1 ), -v(i1)).

Let w = (On-1 v(k)) where k be determined later. Then we have that if y = A -w,

the j component of y is yj = _> A 2 k-1 ,2 k-2,..., 1P(n + i, j).

In order to bound IA -wI it is sufficient to find a bound for A2k-1, 2 k-2,..., 1P(n+i,j

Using the mean value theorem from calculus we can find a relation between

Ac1 ,... ,ckf and $k-f through the following lemma:

Lemma 32. Let f : [0, oc) -+ R a C' function and c1,-- , ck are given such that

ci > 0. Then we have that:

k dk
(AC 1, ,ckf)(x) (1c) - kf(X ) X)

i=1
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where X, c [0, Zj ci]

The last lemma implies that in order to obtain the desired bounds, we would like

to obtain some bounds for the absolute value of kP(ij).

Let's compute the derivatives of P(i, j) respect to i.

dP. d(i- I)

By applying the product rule:

d i - I 2 i _

d i-1 I i-1 d I
di 1) i 2 -1 di 2

[ ]+ [log(')]

Expanding y (_' -i y - 1)

Since (j - 1)! doesn't depend on i we can take the factor out.

d (i-1) 1 dI z
i - -)!d [(i - + 1) (i 1)]

Let y = (I + 1).-. (-

d 1 d-log(y) = I dydi ycdi

On the other hand log(y) = log(i - j + 1) + - + log(i - 1)

Taking derivatives respect to i we obtain:

dlog(y) =
di

d[log(I - j + 1) + --- + log(i - 1)] =

1 1

i-j+1

Let
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F(x) f tx-le-dt and let T(0)(x) = -ln(F(x)) and T (k)(X) _dk VI( 0 )(x). The

above observations yield the following formula for the derivative of P(i, j):

y P(i,j) P(i, j)g(i,j) where

g(i, j) = log(() + iF()(i) _ i(O)(i - j + 1)

Notice that this implies that:

dk
dij') - 4(k)(i -(k)(i - j + 1)

The following lemmas provide some bounds for the value of d g(i, j)

Lemma 33. Let e|l+ <1- For i(1 - -l and E N, we have that2 i2 2

g(i,j)j < 12c + $.

Proof. We omit the proof.

l

Lemma 34. If k > 1, i >j > 1 we havel g(ij)I < 4k!
dik (i-j)k

Proof. We omit the proof. l

We can now use these lemmas to find a bound for -TP(i, j)1. The idea for a bound

comes from the observation that we can write I P(ij)I as a product of P(i, j) and

a polynomial of bounded size in derivatives of g(i, j). More specifically:

Lemma 35. Let f(x) be a CO function such that f(x) > 0 and f'(x) = f(x)g0 )(x).

Then if we define g(k)(X) - g(k- 1)(x) we have that for all k > 1:

dk s(k)

a=1 p

Where we define p,, E N>o, s(k) < (k + 1)! and k for all oz. (this is, for

all fixed ce, the p,, form a partition of k.
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Proof. The proof follows just by expansion and induction.

From these estimates on g, and its derivatives, we can find an upper bound for

I-P(i, j*)I.

Lemma 36. Let i - j (1+ e)-i, i > 2 and j N. Then

dk p(., <) P(i, ')2 2k og(k)(1+o(1))(M X II

27

Proof. We omit the proof.

Now we can use this machinery to prove the desired theorem, the failure of the

marginals.

Proof. As before, define v(') vectors of length 2', recursively as follows: v(0) = 1,

V(00 = (V(OZ-1), -V(a-1)).

Set w (0n-1, v(k), O,) where k will be determined later.

Let j =n(l) - Vkn log(n)/2 and j+ = n(l) + Vkn log(n)/2 + 2k

Notice that:

> {Aw}y + Z{Aw}31 + E S{AwjI
j<j_ j=j- j>j+

Now, observe that:

E<j_ {Aw}yj < 2kPr[At least /knlog(n)/2 deletions occur in the first n bits].

By Hoeffdings bound, the last quantity is at most 2ke-kog(n)/ 2 Analogously one can

prove that:

|{ {Aw}g| < 2n -k1/

To bound for the remaining term, Ei+_ I{Aw},j works as follows:

First we notice that by the way in which the vector w is defined:

(Aw), = A2 k-l,... 1P(n, j)
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Using the bounding lemmas above, and taking E < kogn) + 2.

Then

k log(n) 2 -2 k
I{Awlj| < 2 2 rg +

2n- n

Now taking k log(n )) and for n large enough,

k 2 k log(n) + 22 k k
2  (rn))k -O(klog(n))

2n n -n

LLI

3.1.5 The subsequences of subsequences test

In this section we introduce a statistical test that relies on counts of subsequences

of subsequences. The main idea of the subsequences of subsequences test is to count

for a given 'model' substring s, the frequency with which s appears as a substring of

the observed sequences. The quantity we would like to approximate is the expected

number of appearances of s as substring of a substring of w.

For a given substring s, we call the associated test. T.

Recall that for a given sequence w C {o, 1}", and s E {0, I}k for some k C(w, s)

denotes the number of times s appears as a subsequence of w. The subsequence of

subsequences test aims to distinguish two sequences w, w' E {O, }fl by sampling the

number of times a model sequence s E {0, I}k appears as subsequence of a subsequence

of w or w' respectively. The following lemmas exemplify some of the characteristics

this test enjoys.

Lemma 37. Let w E {0, 1}. Let s E {O, I}k for k < n. The number of times s

appears as a subsequence of a subsequence of w equals C(w, s) * 2

Proof. For every instance of s as a subsequence of w, (say s'), there are 2'-k sequences

of w that contain s'. Since there are C(w, s) instances of s as a subsequence of w,
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the total number of times s appears as a subsequence of a subsequence of w equals

C(w, s) * 2 "-k as desired. E

Let s be a model sequence of {0, 1}k. Call

C'(w, s) = number of times s is a subsequence of a subsequence of w

Let w and w' be the two given sequences as input for the algorithm. The following

lemma holds:

Lemma 38. If |C(w, s) -C(w, s')| = 0(2k /n') for some universal constant r = 0(1),

then IC'(w, s) - C'(w', s)| = O(2n/nr). In particular, sampling from the quantities

C'(w, s) and C(w', s) we can get a distinguishing test that works with polynomially

many samples and in polynomial time.

Proof. For a given s, el = E,[ number of times s is a subsequence of a subsequence of w] =

C'(,s). Analogously, e 2 = E' [ number of times s is a subsequence of a subsequence of w']

C'(w',s). If the assumption of the lemma was true, there is a polynomial gap of or-

der 1 between el and e 2 . Using the Hoeffding bounds we derived in the previous

Chapter, we must be able to approximate the actual mean of the hidden sequence's

distribution to within an additive error of 1 using only O(n2r+1) samples. Since the

values C'(w, s) and C'(w', s) are easily computable knowing w, w' and s, this yields a

distinguishing test that works with polynomially many samples and using polynomial

time processing. l

3.1.6 A subsequences of subsequences test

We exhibit a particular array of subsequences of subsequences tests that satisfies var-

ious interesting properties and that will be utilized in the Chapter, 'Random Strings

are Distinguishable' to prove the distinguishability of random pairs of strings. Con-

sider the following family of sequences:
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A1 = {s = }, B1 = {s' = 11-101}

If w E {0, 1}' and its position-of-ones representation be (xi, x.. , Xm) i.e. the

positions of the ones in w are x = x 1 ,- , x for some m < n then we can count

C(w, si) for all 1 as follows:

Lemma 39. C(w, si) = E 1 ('- )(n - xi)

Proof. A simple counting argument gives the answer. Each term of the sum counts

the number of appearances of si such that the one is in position xi, that is in such a

position there are (V) options to take the initial 1 - I ones. The n - xi - (n - i)

factor counts the possibilities for the zero.

l

We can count C(w, s') for all 1'.

Lemma 40.

C(w,s) = ( ( Z-x-i2
i=1 ( )j=i

Proof. A simple counting argument gives us the answer. Each term of the sum counts

the number of appearances of s' such that the 1 - 1 one is in position xi. That

is, in such a position there are ('-) options to take the initial 1 - 2 ones. The

Ei7L(xj - xi - (j - i)) factor comes from counting the number of 01 substrings on

the interval w[x, + 1,:] where xj is the position of the last one of the subsequence.

The formulas above are linear on x,, xm.

We now show the following lemma:

Lemma 41. (a) There is an index I for which |C(w, si) - C(w', si)| / 0

(b) There is an index for which IC(w, s') - C(w', s) I z 0.
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Proof. Given w E {0, 1}"n, let x E R" be a vector such that xi = position of i one in w.

Define x' analogously for w'. The statement holds trivially if the number of ones in w

is different from the number of ones in w'. The argument is symmetric for the zeroes.

Each of the C(w, si) and the C(w, s') is a linear function (plus some fixed constant)

on the xi or the x'. More formally:

E affine funtion F: R' R

CQw, si) = F(x)

Their corresponding matrices for the linear part, M and M' are triangular with

nonzero diagonal entries and therefore invertible. The last means that Mx = Mx' if

cv $ c'. ED

As a corollary of this we have the following

Corollary 42. If any of the sequences has O(log(n)) ones (or zeros), then they are

distinguishable.

The test that separates them apart is the array of tests described above for the

subsequences of subsequences test. If WLOG the number of zeroes is clog(n), then,

the number of samples required will be of the order O(n2
c+1), which is polynomial in

n, if c is constant.

3.2 Special sequence pairs

Here we explore the different properties of a variety of natural sequence pairs. We

derive the polynomiality of the variation distance between a series of them. We also

explore a variety of tests that for particular pairs of sequences act as distinguishing

tests.

45



3.2.1 Unbalanced sequences

If w and w' have different number of ones (or zeroes) the Number of Ones test

differentiates them in polynomial samples and time.

3.2.2 Differing tails

In this section we assume that p =. We prove the following result:

Lemma 43. If p =. For pairs of sequences w, w' such that

1. w w 101

2. w' = w 110

d,(w, w') is polynomially large.

Proof. Let s be some string. The difference C(w, s) - C(w', s) equals to the instances

of the string s appearing as a substring of w using its last [0,1] symbols plus the

instances of the string s appearing as a substring of w' using its last [1, 0] symbols.

This is because all instances of the string s appearing as a substring of w com-

pletely contained in the w, part of w completely cancel with all the instances of the

string s appearing as a substring of w' completely contained in the w, part of w'.

Similarly all instances of the string s appearing as a substring of w containing

only the last 1 and not the [0, 1] of w completely cancel with all the instances of the

string s appearing as a substring of w' containing only the last 1 an not the [1, 0] of

w'. The same is true with all the instances of the string s appearing as a substring

of w containing only the last 0 an not the [0, 1] of w.

If n = IwI, the value we are looking for equals 2 2*2 = 2-, which is polynomially

big respect to the size of 2'.

Evidently, the last implies that for

1. w 01w,

2. w' =10w
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d, (w, w') is also polynomially big.

In the following section we prove a stronger result.

3.2.3 Edit distance one are far

We assume that p 1. In this section we prove the following result:

Lemma 44. If = For pairs of sequences w, w' such that

1. w = w 1 01w 2

2. w' - w 1 10w 2

d,(w, w') is polynornially big.

Proof. Let Pm be the distribution of the position of the m - th one in the observed

sequences.

We will show that for the given sequences there is an rn for which the variation

distance of the distributions Pm and P' is polynomially large. Pm denotes the dis-

tribution of the position of the m - th one in the observed sequences coming from w

and P the distribution of the position of the m - th one in the observed sequences

coming from wI.

Call Pm,, the probability of observing a trace from w with its m-th one in the

r-th position. Call P,,,, the probability of observing a trace from w' with its m-th

one in the r-th position.

Say w has k ones in positions i1 , -,ik respectively. With Z1 < i 2 < .< .k

Let I be the index of the middle one (that which lies after the w, and before w2 )

By construction w' has k ones in positions i, - - - , I'

with Z" = i for j l and i 1' = I - 1.

For the case where p = 1

k . . . k .- i

Pm," oc ( ' - ' i 2 n-i P,r ,Oc ( * ) j 2"-
T-m - 1 r - mn m -1 r-m
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Where the proportionality denominator is y2.

|PMr - P'r,| = | 2"n-il

By using pascal's identity and cancelling out some terms, we get:

1- 1) ( i _(i- m1) - m -~
Notice that by unimodality of the binomial coefficients, if we consider

|Pm,r - Pmr I = 1-1)2 i
(M - 1

-1
0

- 1)
- 0 +

1

1) - (it -1
0

+1) -- )

The telescopic sum cancels all the terms except the middle ones, where the direction

of the subtractions flips. Therefore:

lPm,r - P,',r ( =12 -i * 2 - 1 )
L 2 11

Now, notice that if m - I [LL J then

since (." ) = 8()

We get that under these assumptions:

i1+m-l 2n

S IPmr - Pn,rl = ((.-)
r=m /*

Which implies a polynomial lower bound for the variation distance for the types of

sequences considered above. E

3.2.4 Alternating sequences

For the setting where p =, we prove that the alternating sequences are far apart.

More precisely:

Lemma 45. If w = 01 . 01 and w' = 10 -10, then d, (w, w') is polynomially big.
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For n = 10 the sequences are:

1. w 0101010101

2. w' 1010101010

Proof. If n = Iwj is odd, both sequences differ in the number of ones they contain,

and therefore they are polynomially separated.

Assume n is even.

w = 01 - -- 01 and w' = 10 - 10

Notice that we can write w and w' in the following form:

w = wI and w' = 1w,

All instances of strings that are subsequences of w that are completely contained

within w, cancel out with all those instances of strings that are subsequences of w'

and are completely contained within wi.

Among those instances of strings that are subsequences of w that have the last

one of w and start with a zero cannot cancel out with any of the sequences of w' that

have the first one of w' and end with a zero.

The remaining strings, are those that are subsequences of w that have the last

one an start in a one. And those strings that are subsequences of w' that have the

first one and end in a one.

These can be paired to each other. Every instance of such a sequence in w can

be translated (shifted to the left) to correspond with an instance in w'. Since this

operation is invertible, it gives us a bijection between them, and therefore, they do

not add to the count of the variation distance.

The variation distance is therefore, the sum of the number A1 of instances of

strings that are subsequences of w that have the last one of w and start with a zero

plus A 2 the number of subsequences of w' that have the first one of w' and end with

a zero.

w = 01 - 01 and w' = 10 10

Let n = 2k.

A simple counting argument yields:
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All zeroes of w are in positions 2j - 1 for j - 1, - - - , k.

The number of symbols between a zero in position 2j - 1 and the last one of w is

2k - 1 - (2j - 1) = 2k - 2j. Therefore the. value of A1 is:

A 1 = E 2 2k-2j k 4 k-j _ 4k+l-1_ 2n+2_1
j=1 J=1 3 3

Analogously

A 2 - 2n+= 1

And therefore A1 + A2 = 2n+ -2 which is polynomially big in the size of 2'. El3

3.2.5 Cyclic shifted strings

We see that there is a test that distinguishes cyclic shifted strings. Let the two strings

be the pair (w, w') where w' is a cyclic shift of w. WLOG we assume that the cyclic

shift is to the right.

Let s = 01. The following holds:

Lemma 46. C(w, s) 74 C(w', s)

Proof. Let xj, - -- , x.. be the positions of the ones in w. We assume the shift from w

to w' is to the right.

There are two cases to analyze:

1. If xm = n

2. xm = n

In the first case, the first digit of w' is a one. C(w, s) - c12 - i. Since

there are xi - i instances of s ending in the i-th one. Because we are in the first

case, the positions of the ones in w' are 1, x1 - 1, - - -xm-1 - 1. The last implies that

C(W', s) = 1-1 +E -1- (i+1). Which reduces to C(w', s) = x1 ci - (i+2)

which is clearly less than C(w, s) if m # 0.

In the second case, there is no wrap around in w' and the positions of the ones in

w' are, xi + 1, - - - , x, + 1. The value of C(w', s) = E', xi + 1 - i which is clearly

bigger than C(w, s) since each term dominates the corresponding one of the other

summation. E
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This result implies that the test T, succeeds, since Isi is of constant size. The

cyclic shifted strings are distinguishable.
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Chapter 4

Random strings are distinguishable

In this Chapter we prove that there exists some universal constant c E [0, 1) and a

statistical test T such that the fraction of pairs the test T fails to distinguish over

the space of pairs {0, 1} x {0, 1} is asymptotically of order less than c'. In other

words, given a uniform random pair of sequences, the probability that T fails for the

array of sequences {Sk} is exponentially small.

Consider the 0-vector representation of a sequence w with m ones. Recall that

the 0-vector of a sequence w E {0, l} is (bo, - - - , bm). Where bi indicates the number

of zeroes before the i+ 1-th and after the ith one. By convention, bo is the number of

zeroes before the first one, bm is the number of zeroes after the last one. Let s - 1k0

be the sequence that starts with k zeroes and finishes with a 1.

Lemma 47. If w can be represented as (bo,-- , bn) then for all k we have that

C(w, sk) = E o () - bi.

Proof. Every instance of sk appearing as a subsequence of w is specified by the po-

sition of its ones within the sequence w. The last zero of sk may lie in any of the

regions, bo, - - , b,. The number of instances of sk appearing as subsequences of w

and having its last zero within bi is:

()- bi

Summing over all the possible values of i E {0, - , mn} yields the desired result. E
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When comparing two sequences w and w' and their subsequences counts for the

family of sequences {Sk} ko, the previous lemma yields the following necessary con-

dition for w and w' to have different counts for sk.

Corollary 48. If w can be represented as (bo,... , bn) and w' can be represented as

(bl, b.. ,b') then C(w, sk) : C(w', sk) if and only if EmO (') - bi $ Z 0o (') - b'

Let k be the minkEEo,... ,m} such that C(w, Sk) $ C(w', sk').

Corollary 49. k as defined above if and only if Z O (',) - bi $ Z00 (,,) b' for all

k' < k - 1.

Corollary 50. If IC(w, sk) - C(w', sk) 0( 2k /nr) for some absolute constant r,

then IC'(w, sk) - C'(w', sk)| 0 (2n/n'). In particular, sampling from the quantities

C'(w, sk) and C(w', sk) we can get a distinguishing test that works with polynomially

many samples and in polynomial time. Additionally, this implies the variation dis-

tance between the distributions of subsequences, the one associated with w and the one

associated with w' are polynomially far.

In the following notes of this section we explore explore under what series of

conditions under which the corollary above holds. The main conjecture of this section

is the following:

Conjecture 51. Let k = mink' s.t.C(w, Sk') # C(w', sk') for sk' - 1 '0 . |C(w, s) -

C(w', sk) - 0(2k /nc) for some universal constant c.

If the conjecture above were true, it would imply the following:

(a) The variation distance between the distribution induced by the deletion process

with parameter p = 1 [We believe this can be generalized to any constant]

between the sequence w and the sequence w' is polynomially large.

(b) There exists a test that allows to differentiate samples from the distribution

induced by w and the distribution induced by w' using polynomially many

samples and polynomial post processing time.
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As we defined before, let k = mink' s.t.C(w, sk') # C(w', sk') if and only if:

0 (',) -b 2 = Er 0 (,) -b' for all k' < k - 1 and EZ o ( ) -b$ Z7 O () -b'.

Consider the polynomial p(x) = E o bix and pw,(x) = E o b'px Through the

following lemmas we will relate the polynomials pw(x),pw,(x) with the first index k

for which the counts of C(w, s) and C(w', sk) differ.

Lemma 52. (1-x)k--px-p( but (- _ )k doesn't divide f(x) = pw(x)-p,(x)

If and only if 2/ is divisible by (1 - x) for all k' < k - 2.

Proof. This follows from simple properties of a polynomial and its derivatives. In

particular, the fact that (x - a)' divides p(x) if and only if a-f(x) is divisible by
axr-l

x - a but Orf ) is not.

Lemma 53. Keeping the notation above, assuming that k = mink' s.t.C(w, sk') #

C(w', sk'), let f(x) = (1 - xc)k-lg(x) where g(1) $ 0. Then g(1) = E 0 (') . b -

Z(k) b'.

Proof. The result follows from noting that by L'Hopital's rule: limx~l f (x)/(1 -

- / x)k- ... =a- ak-1 xk-1 . It follows that: ax/ k -1 1

M ( -bi - E 0  -b'

Since limxsi f(X)/(1 - x)k- 1 = limxsi g(x) = g(1) the result follows. E

The last few lemmas yield the following corollary:

Corollary 54. >j4% (',) - bi = Em (',) - b' for all k' < k and E>n () - bi $

Z 0 () . b'. Is equivalent to: (1 - x)klpw(X) - pw'QV) but (1 - _)k+1 doesn't divide

Pw() - P,(x).

Conditions under which the subsequences of subsequences test yields a

good result.

Let wj = Iw'I = n and let m = number of ones in w. In general, if n > - 2 k for

some ac, 3 > 0, then k < 1 o which implies that 2k < /3e . na. Since 0., the

last implies that 2 n-k = 0( ). In fact, it implies that 2 n-k -- 2).
r nf7
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From lemma above it follows that for this particular choice of a if there is a

sequence s such that IsI = k and C(w, s) 74 C(w, s') then, the subsequences of

subsequences test using model sequence s serves to differentiate the distributions of

w and w' using only polynomially many samples.

In particular if n = 8(20") where k is the first k = mink' s.t.C(w, Ski) 7 C(w', sk,).

For some universal constant a then, the subsequences of subsequences test with model

sequence sk will be able to distinguish between the to distributions of subsequences

drawn from w or w' using only polynomially many samples and polynomial processing.

We now proceed to characterize some classes of sequences for which there is a

distinguishing test based on a subsequences of subsequences test for the family {s2 }.

Let k = mink' s.t.C(w, s') 74 C(w', s'k)

Lemma 55. If g(-1) 74 0 then, |wI = n 2k-1. In particular this implies that

n = 0(2k).

Proof. Let f(x) be defined as before, and f(x) = (1 - X)k-lg(x) where g(1) 74 0. We

can assume this is the case by invoking the use of lemma 53. Notice that for every

w E C such that Iwl = 1, we have that, by the definition of f(x) and a simple use of

the triangle inequality:

If(w) < 2(n - m)

Where n is the size of the sequences and m is the number of ones in both w and w'.

In particular, since we WLOG can assume that m > L[J. If(w)I < n. We prove that

if g(-1) 74 0 then If(-1)I I 2-

If(-1)I = (1 + 1)k~lllg(-1)I. If g(-1) z/ 0, since g is an integer polynomial,

Ig(-1)I > 1. This means that If(-1)1 2 k-1. Hence, n > If(-1)I > 2k1 and

therefore jwj > 2 *E

Corollary 56. If -I is not a root of pw(x)pw'(x), then, there is a distinguishing test

that works with polynomially many samples and uses polynomial time. Such a test is

the subsequences of subsequences test for the first subsequence in {sk}, sk' for which
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C(w, sk') / C(w', Ski). The a exponent of this test is 1. For those pairs of sequences

(w,w') such that f(-1) # 0, the gap is of order Q(-!). Following our discussion on

Hoeffding bounds, the algorithm will require O(n2* 2 +1) = 0(n') samples to achieve a

1/n 2 factor accuracy.

Translating the above corollary to the (bo, . , b,) and (b',-. , b') representation

of w and w', we can establish the following result:

Corollary 57. If w and w' are two sequences from {0, 1}f with representations

(b,..- , bn) and (b,... , b'), then there is a test distinguishing them if the sum of

the bi in the even positions doesn't match the sum of the b' in the even positions.

Proof. By assumption Z 0 bi = % b'o. By the corollary, a distinguishing test exists

if f (-1) z 0. The condition f(-1) = 0 implies:

Pw(1 =W pw(- 1)

Evaluating the polynomial pw(x) = E O bixi yields, pw(- 1 ) = bi(-l1). The

equality pw(-1) = Pw,(-1) implies that:

m m

1:bi(- 1)'= b'(-1I)i
i=O i=O

This equation along with the identity EZiO b. = EO b' yields the desired result.

It is possible to replicate a similar result by considering other roots of unity,

distinct from -1.

Lemma 58. If g(i) / 0 then, IwI = n > 2 . For i = v'-1. In particular,

n = 0(2)

Proof. Let f(x) be defined as before, and f(x) (1 - x)k-g(x) where g(1) / 0. If

i is not a root of g(x) then |f(i) = 1(1 - i)k-gIg - ( - I)jk1jg(i)j. Notice that
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because g(x) has integer coefficients, g(i) is a member of the integer lattice generated

over C by i and 1. The smallest nonzero vector in this lattice has norm 1. Since

1 - i= v'2, this implies that If(i)I > 2 . Hence n > If(i)I ;> 2 21 .D

Corollary 59. If i is not a root of p,(x) - p,,(x), then, there is a distinguishing test

that works with polynomially many samples and uses polynomial time. Such a test

is the subsequences of subsequences test for the first subsequence in {Sk} for which

its counts first differ in w and w'. The a exponent of this test is -. For those pairs

of sequences (w, w') such that f(i) j 0, the gap is of order Q(b). Because f(x)

has integer coefficients, f(i) = 0 implies that f(--i) = 0 as well. The test will need

(n2*3+1) = 0(n 7) samples to achieve a 1/n3 factor accuracy.

We can translate the above corollary to the (., .- , bm) and (b', , b') repre-

sentation of w and w', we can establish the following result:

Corollary 60. If w and w' are two sequences from {0, } with representations

(b,--. , bn) and (b',- , b'), then there is a test distinguishing them if the sum of the

bi in positions congruent to a modulo 4 doesn't match the sum of the b' in positions

congruent to a modulo 4 for all a in the system of residues modulo 4.

Proof. By the corollary 57 we can assume

S bi = ( b'
iE[0,mi]i=0 mod 2 iE[0,m]iEO mod 2

E bi = E b'
iE[O,m]i=1 mod 2 iE[0,m]i=1 mod 2

Evaluating the polynomial pw(x) = o bix' yields, pw(i) = o bi(Wf. The

equality pw(i) = P& (i) implies that:

M M

E bi E b'(i)
i=0 i=0
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Equating the coefficients of i in the left hand side and the coefficients of i in the

right hand side and combining the resulting identities with the result from lemma [xi

yields the desired result.

S bi = b'
iE[O,m]iEO mod 4 iC[O,m]iEO mod 4

1: bi = 1: b'
iE[O,m]i=1 mod 4 iE[O,m]i=1 mod 4

1 bi = 1 b'
iE[O,m]i=2 mod 4 iE[O,m]iE2 mod 4

1: bi = 1: b'
iE[O,m]i=3 mod 4 iE[O,m]i=3 mod 4

0

It is possible to replicate a similar result by considering other roots of unity,

distinct from -1 and i.

Lemma 61. If g(w) / 0 then, |wI 2 2(k1). For w = third root of unity.

Proof. Let f(x) be defined as before, and f(x) (1 - x)k-1g(x) where g(1) # 0. If W

is not a root of g(x) then f(W)I= I(1 - w)k-lg(W)I ( - w)klIg(w)1. Notice that

because g(x) has integer coefficients., g(w) is a member of the integer lattice generated

over C by w and 1. The smallest nonzero vector in this lattice has norm 1. Since

I1-wI = v/, this implies that if(w)i 2 o 2 (k-1). Hence n > If(w)I 2 2 (k-1). E

Corollary 62. If w is not a root of p,(x)p,,(x), then, there is a distinguishing test

that works with polynomially many samples and uses polynomial time. Such a test

is the subsequences of subsequences test for the first subsequence in {sk} for which

its counts first differ in w and w'. The a exponent of this test is Lo . For those2

pairs of sequences (w, w') such that f(w) = 0, the gap is of order Q(-\-). Hence in

n log (3)

order to approximate it up to an accuracy of 1/nlog3) l we need O(n *1og3)l =

O(n( Iog3) samples. Because f(x) has integer coefficients, f(w) = 0 implies that

f (w) = 0 as well.
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We can translate the above corollary to the (b0 , , bm) and (b',.-- , b') repre-

sentation of w and w', and establish the following result:

Corollary 63. If w and w' are two sequences from {, }f with representations

(bo, -b) and (b' .... ,b'), then there is a test distinguishing them if the sum of the

bi in positions congruent to a modulo 3 doesn't match the sum of the b' in positions

congruent to a modulo 3 for all a in the system of residues modulo 3.

Proof. Let

A = (bi
iE[O,m]iEO mod 3

A' = b

iE[O,m]i=1 mod 3

B = E bi
iE[O,m]iE1 mod 3

B' = (b'
iE[,m]i=-1 mod 3

C = : bi
iE[O,m]i=-1 mod 3

C' = ( b'
iE[O,Mli=-1l mod 3

Evaluating the polynomial pw(x) - E o bizx yields, pw(w) - EZ O bi(W)'. The

equality pw (w) = p, (w) implies that:

m m

E bi (w) =E b'(w)
i=O i=0

Along with the condition gO bi = 0 b', equating the coefficients of i in the

left hand side and the coefficients of i in the right hand side and equating the real

coefficients in the right hand side and the real coefficients in the left hand side yields

the following system of equations:
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A + B + C A'+ B'+ C'

A -B A'- B'

A -C A'- C'

B -C B'- C'

After the appropriate elimination of variables the following equations hold:

A A'

B B'

C =C

Therefore

1: bi = E b'
iC[0,mjis0 mod 3 iE[O,m]i=O mod 3

1: bi = E bi
iC[O,m]i-l mod 3 iE[0,m]iE1 mod 3

Sbi = b'
iE[0,m]i=-1 mod 3 iE[m]i--1 mod 3

FD

Remark 64. We can establish a final result on this vein by considering the 6th root

of unity.

Unfortunately, these results do not extend to all the roots of unity. This is because

the integral lattice generated by the powers of a root of unity other than the 2nd,

3rd, 4th or 6th does not have a minimal element. We have no hope to be able to

bound the modulus of g(Wn) below, where w, is any other root of unity.

As a consequence of these observations, the subsequences of subsequences test
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for k = mink s.t.C(w, Sk) $ C(w', sk) works with high probability after polynomially

many samples and polynomial time if any of the following conditions holds:

>3 bi -
iE[O,m]i O mod 2

>b
iE[O,m]i 1 mod 2

E3 bi -
iE[O,m]iEO mod 3

iE[O,m]i 1 mod 3

E bi
iE[,m]i=-1 mod 3

b
iE[O,m]i O mod 4

iE[0,m]i 1 mod 4

b
iG[O,m]i 2 mod 4

bi
iE[O,m]i 3 mod 4

E b/
iC[O,m]iEO mod 2

E b/
iG[O,m]i 1 mod 2

E b'
iE[0,mji= 0 mod 3

1: bi
iE[O,m]iE1 mod 3

E b'
iE[,m]i -1 mod 3

iE[0,mli= 0 mod 4

iE[O,Mli= 1 mod 4

iE[,m]i=-2 mod 4

iE[O,m]i 3 mod 4

Remark 65. These restrictions hold in both for the 0- vectors of w, w' and the

1-vector of w, w'. By considering these extra restrictions it would be possible to (at

least) refine the constants in the exponent of current upper bound on the probability

of failure.

The restriction of the sum over the even positions and etc needs to hold both

ways, for the ones and for the zeroes. This is, for the 0-vector and the 1-vector.

In the following we analyze a model whereby a random pair of strings (w, w') E

{ 0, l} x {0, l} is drawn uniformly at random and, we are asked if we can solve the

Pair Trace Identification Problem on the pair. We show that with exponentially small

probability the array of subsequence of subsequences tests exhibited in this section
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is unable to distinguish between w and w'. First we show that within the space of

sequences (w, w') where w and w' have both the same number of ones, the fraction

of pairs that do not pass the subsequences of subsequences test described above is

vanishingly small.

We focus on the following conditions. There is a distinguishing test for w and w'

if

: bi 7 1 b'
iE[O,m]i=O mod 2 iE[0,m]iEO mod 2

E bi 7 1 b'
iC[0,m]i=1 mod 2 iE[0,m]i=l mod 2

Let M = (w, w') E {0, 1}?I x {0, 1}" such that w and w' have the same number of

ones.

Lemma 66.

n 2

i=0 (

Proof. The number of sequences w E {0, 1} such that w has exactly m ones is

The number of pairs (w, w') with w, w'E {0, 1} is and exactly m ones is therefore

(n)2_E

We count the number of pairs (w, w') within M such that if w and w' have

both m ones exactly, and their representations are (b 0 , , bm) and (b, .... , b'), then

ZiE[0,m]iaO mod 2 b iE[0,m]i=0 mod2 i

Lemma 67. The number of pairs w, w' C {0, 1} such that w and w' have both exactly

m ones equals:

target sum t=O

t + L]) 2
[TO
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Where the target sum is that over the even positions of (bo,-.. ,b) and (b'.... , b).

Proof. The lemma follows immediately from the basic counting fact that the number

of ordered tuples (ai, - , ar) of nonnegative numbers summing to a target value t

equals:

Applying this fact to each possible value of the target sum yields the desired result. E

The fraction of pairs that are not distinguishable by the subsequences of subse-

quences test over pairs of strings (w, w') such that w and w' have both exactly m

ones is at most:

n-m t+IM 1 2

Dm - target sum t=O (tL 2

(n)2

We will try to upper bound Dm for m E [n/4, 3n/4]. Let r(t) (t+L ) 2

Since r(t) is an increasing function of t,

n-m t0t+ H )2 ( - +LM)2

< (n - m) L 2
target sum t= 2 [

This estimate provides us with the following upper bound for D-

(n - (m)(n mj)2
Dm < (n __2®

(n)2

After expanding out these expressions:

Dm < (n - m) ( m(n 1)( Lz2tj+1)) 2
- n(n -- 1) ..-. (n-- L12M + 1))
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Lemma 68. If m E [n/4,-.. , 3n, 4]. Then,

Dm < n(

Proof.

Dm ~ <m(m--)---([]+ 1)Dm (ri-) (n(n-1) -- (n - [2]+1)

m(m-1) -- ([]+ 2

<n

< n (n - --- (n -2 ] + 1)

m -1 [gm+ 2

nT (T) M

n n-1 n - [L +1

/n3 .3 .. 3\)2

To aid in our proof, we prove a concentration inequality for the case squares of

the binomial coefficients.

Lemma 69. Let 0 < e < I then: Let A, B be the following sets of indices:

4

1 1
A =n[( - e)iJ, [( + e)r]]

LO 1 1B L 0 ( -e)nJ]]U[[(--+ e)nl, n]

The following inequality holds:

zQ ?I(e)ce

22

iG B iE A

Where A =
1- e
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Proof. Notice that max eB (n) < miniEA (n).

() < ( maxinEB iEB 

EA

As desired.

D - =0 Entag sum t=o (t+LM2J)2

M ( M

Using the same argument to upper bound Dm we get the following bound for D:

0 (n m) 2

Dn ( n 2
m=0 M

n (n-m+nj 2

= n m^ Lj E g

E m+ (nn)0 2
n-m+L1 N -m+L n-ijm)2)

E mE + n mE [mE2

mEA E~m=O M"

The first summand can be bounded above by a simple use of the Lemma 68, and

the second lemma can be bounded above by a simple use of Lemma 69 with E = .

Adding the two bounds yields:
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D < nn31 + nA

Where A = e
1-4e- 7

This implies that for some universal constant c E [0, 1) the fraction of pairs for

which the subsequences of subsequences test over the space of pairs A4 fails is asymp-

totically of order less than c'. In other words, given a uniform random pair of

sequences drawn from M, the probability the subsequences of subsequences test for

the array of sequences {sk'} fails is exponentially small.

If w and w' are both from {0, 1} but (w, w') M, then, the test, counting the

number of ones in both sequences is a distinguishing test that works with polynomially

many samples and polynomial processing.

A more exact statement can be enunciated by first noticing that a simple combi-

natorial identity yields the following asymptotic estimate MI = (2), and therefore

=2n o( ). Therefore,

Theorem 70. There exists some universal constant c e [0,1) such that the fraction of

pairs for which the subsequences of subsequences test over the space of pairs {0,1I}n x

{0, 1}fl fails is asymptotically of order less than cn. In other words, given a uniform

random pair of sequences, the probability the subsequences of subsequences test fails

for the array of sequences {Sk'} is exponentially small.

4.0.6 Future directions

In this section we discuss how the techniques introduced in this section could lead

to the solution of the Pair Trace Identification Problem. The following conjecture,

if proven right would imply the polynomial distinguishability of all pairs of distinct

sequences w, w' and therefore a full solution of the Pair Trace Identification Problem.

Open Problem 71. For every w, w' E {0, 1}n, there exists a k < n and a subsequence

s E {0, I}k such that |C(w, s) - C(w', s I O( k ) for some universal constant c.
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A more detailed condition, whereby the desired string specified in 71 is conjectured

to come from a polynomially large family of strings is the following:

Open Problem 72. Let {s}% {01} % and { {l2O}gi. If

k max min s.t.C(w, si) / C(w', si)
w:w'lw,w'E{0,1}n i

Define k' analogously for the family {s' } Then, |C(w,sk) - C(w',sk)| O( ) or

|C(w, sI,) - C(w',s',')|= (2)

The proof exhibited above does not work

lographic restriction. For any given primitive

is no simple lower bound for Ig(wq)1, even if

fourth, or sixth root of unity.

for the full case because of the crystal-

root wq, and polynomial g E Z[x], there

g(Wq) z 0, if Wq is not a second, third,

4.0.7 The marginals test

The marginals test is related to the array of subsequences of subsequences tests in-

troduced in this section.

Recall that for a pair of sequences w, w' E {f0,1}" each with exactly m ones and

with 0-vectors (b 1 , .- . , b.) and (b', - - , b'm) we define the polynomials:

i=nPw() = bix
i=O

i=O

And the polynomial f(x) = pw (x) - p& (x) = E o(bi - b')x'.

Recall that in the proof of the failure of the marginals test that the construction

of the vectors that achieve subpolynomiallity in the l distance of their summary

statistics goes as follows:
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Let fvi be the polynomial corresponding to the difference vector V). It is easy to

see that f,() (x) (x - 1). Furthermore, a simple computation yields the following

result:

Observation 73.

fVk> (X) = (X 2 k-1 - l)fV(k-2 (x)

Furtherrmore if = (O",v(k)) is a difference vector, then fv(x) fV(k) (x)

We can solve the recurrence on f>(k) (x) explicitly:

Observation 74.

k-2

fV(k) (x) - -(X - 1) J(x2 
- 1)

i=0

Notice that (X - 1)kIfV(k)(x) but (x - 1)k+1 does not divide f(k)(x). And that

(Xv + 1)k-
2 IfV(k) (Xv).

Notice that even though the difference vector v(k) makes the marginals test fail,

it does not make the subsequences of subsequences test fail. This is simply because,

if V = (0m, v(k)) where v = w - w', where w and w' as seen as vectors, then the

observation in the previous paragraph this means that 2k-2IIC(w, Sk) - C(w', Sk),

which implies that it does not violate the conjecture stated in 71.

In the next chapter we will explore another way in which the marginals test is

related to the results and techniques exhibited in this section.
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Chapter 5

Extensions

In this Chapter we explore several problems related to the Pair Trace Reconstruction.

In particular, we talk about its relation with the k-Trace Reconstruction Problem

and with the full Trace Reconstruction. We show how the techniques and methods

developed in this thesis can help gain some new insights in both problems.

5.1 A new distance

In this section we will define a new distance between sequences, and explain how

could this be used to generate a statistical distinguishing test between any two strings

W, W' E {0, 1}".

Definition 75. Let w, w' be two sequences in {0, 1}. Let d1(w, w') be the minimum

length of a sequence s for which C(w, s) : C(w', s).

If w and w' have distinct quantities of ones, (or zeros) then d1 (w, w') = 1. Notice

also that d1 (011, 110) = 2.

Definition 76. The k-deck of a sequence w E {0, 1}n is the multiset of all subse-

quences of size k of w.

We prove first if w f w', d1 (w, w') - 1 is the last size for which the k-decks of w

and w' differ. In other words:
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Lemma 77. If two sequences w, w' have the same k-deck, then they also have the

same k'-deck for all k' G {1,... , k}.

Proof. A given subsequence s of w of size k - i will appear exactly:

(n- (-0 C(w, s)

times in the k subsequences of w. If w and w' had the same k-deck, we should have

that C(w, s) C(w', s), and therefore they will also have the same k - i deck. E

Let ko(n) maxw,,'E{o,1}n d1 (w, w'). We would like to understand the asymptotic

behavior of ko(n).

There exists a strong relationship between the asymptotic behavior of ko, the

search for a bound on the variation distance, subsequence count polynomials and the

subsequences of subsequences test.

By definition ko(n) is the smallest value such that T() for all values of m forms

a basis of all the m variables multivariate polynomials of degree up to ko(n).

In particular, let the subsequence of subsequences test be ran on all sequences s

such that IsI < ko(n).

In particular, if the following conjecture was true, then the procedure of running

the subsequences of subsequences test for all subsequences of size up to ko(n) would

yield a polynomial samples, polynomial post processing time, procedure to solve the

Pair Trace Identification Problem, proving that the variation distance between P&,,

and P, for every pair w, w' E {O, 1} is polynomially large.

Conjecture 78. The max of d1 (w, w') over all pairs w, w' E {0, 1} such that w $ w'

is of order O(log(n)).

Unfortunately, this conjecture is false, as we will see in the next section. Never-

theless, it is easy to prove that:

Lemma 79. ?? d1(w, w') LLJ + 1
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Proof. Let a sequence w C {0, 1}' have m ones and a 0-vector representation

(bo, - - - , bm). Let si,m-i = I01'-. Then Vi {0, . .. , m}, C(w, si,mi) = bi. We de-

fine so,m = 0 1 m and sm,o = 1 "0. Notice that isi,m-il = m + 1. Knowing C(w, sim-1)

for all i, we can know the 0-vector representation of w, and therefore the array of

values C(w, si,m-i) is unique to every w. A symmetric argument can be made for the

1-vector representation of w. This means that d1 (w, w') < (maxm minm,n-m) + 1

[l] + 1 as desired.

Lemma 80. If w and w' end in the same symbol. WLOG say w = w1 0 and w' = w'0

Then d' (w,w') = d1(wi,w').

Proof. Let s be such that the number of occurrences of s in w and w' are the same.

And such that for all s' with Is'l < IsI, C(w, s') = C(w', s').

If the last symbol of s is different from the last symbol of w:

C(w, s) = C(wi, s)

and

C(w', s) = C(w', s)

This is because s when considered as a substring of w or w' cannot possibly use the

very last one in either string. In this case C(wi, s) = C(w', s) are the same.

If the last symbol of s is the same as the last symbol of w. Let wlog s = s10

Then

C(w, s) = C(wi, s) + C(wi, si)

This formula reads, the number of appearances of s in w equals the number of ap-

pearances of s where s doesn't contain the last 0 of w plus the number of appearances

of s where it contains the last 0 of w.
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Analogously,

C(w', s) C(w', s) + C(w', si)

If s, doesn't finish in a zero, if s, 82 1, then C(wi, si) = C(w, si). Analogously

C(w', si) = C(w', si). If si finishes in a zero, Si = S20, then

Notice that

C(w, Si) = C(wi, Si) + C(wi, S2)

and

C(w', Si) = C(w'1, Si) + C(w', S2)

These imply that:

C(wi, Si) = C(w, si) - C(wi, s 2 )

and

C(w'l, Si) = C(w', Si) - C(w', S2)

By assumption, since for

have that:

all s" with Is"I < IsI, C(w, s") = C(w', s") and Isil < s we

C(wi, si) = C(w', si) as long as C(wi, s 2) = C(w', s 2 )

Applying the same argument over and over again, until we reach the first one in

s. Gluing these observations together we get that, if s = SOO0

C(wi, s) = C(w', s)

Provided that
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C(wi, Ski) = C(w, Skil) which is true because jSki! < Isl which implies that

C(w, SO1) = C(w', Si)

And because w, w' both end in 0, C(wi, skO) = C(w, SO) and C(wi, ski) = C(w', ski).

Which implies that C(wi, Ski) = C(wi, SkO), and therefore that C(wi, s) = C(w', s),

as desired.

The last implies that if s is such that C(w, s) = C(w', s) and for all s' with Is' <

IsI, C(w, s') = C(w', s) then, C(wi, s) = C(w', s). Which means that dl(w, w') <

d'(wi, w').

The inequality d'(wi, w') < d1 (w, w') is much simpler. If s is such that C(wi, s)

C(w', s) and such that Vs' with Is'l < IsI, C(wi, s') = C(w', s') then, because

C(w, s) = C(wi, s) + C(wi, si), and C(w', s) = C(w', s) + C(w', si).

If C(wi, s) = C(w', s) then, it implies that C(wi, si) = C(w', si), which in turn

implies that C(w, s) = C(w', s). This chain of arguments imply that d1 (wi, w') <

d1 (w, w'). Combining the two inequalities yields:

d' (wi, w') = d'(w, w')

Lemma 81. If w and w' are two sequences such that there is no intermediate index

i such that w[: i] and w'[: i] have the exact same number of symbols (Except for the

extremes.) Then the number of appearances of 01 in w and the number of appearances

of 01 in w' differ.

Proof. Let xi, . - - , xm the positions of the ones in w and let yi, - - - , ym be the positions

of the ones in w'.

The condition imposed on w and w' is equivalent to:

xi > yiVi
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The number of instances of 01 in w is:

m

i=1

The number of instances of 01 in w' is:

m

B - y -i

Since xi > y, Vi then

A - B > 0. By observing there is a difference of one per term subtraction, it can

be proven that:

A - B ;> m

Lemma 82. Let w, w' be two strings of length n such that the number of ones in w[: i]

equals the number of ones in w'[: i]. If d1 (w[: i], w'[: i]) $ d1(w[i + 1 :],w'[i + 1:])

then d1(w, w') = min(d1 (w[: i], w'[: i]), d1(w[i + 1 :], w'[i + 1 :])).

Proof. WLOG let the left hand pair w[: i], w'[: i]. be such that d1 (w[: i1], w'[: i]) <

d1 (w[i +1I :], w'[i+I :]), and let s be the first string such that C(w[: i], s) $ C(w'[: i], s).

By assumption IsI = dl(w[: i], w'[: i]), and C(w[i + 1 :], s') C(w'[i + 1 :], s'), for

s = s and for all s' with Is'l < IsI. Furthermore, C(w[: i], s') C(w'[: i], s') for all s'

with Is'l < Isi.

Notice that

ISI-1
C(w, s) = C(w[: i], s[: j]) * C(w[i + 1 :], s[j + 1 :]) + C(w[: i], s) + C(w[i + 1 :, s)

j=1
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and

1I1-1
C(w', s) = C(w'[: i], s[: j]) * C(w'[i + 1:], s[j + 1:]) + C(w'[: i], s) + C(w'[i + 1:], s)

j=1

Since all of the corresponding summands are the same, except for C(w[i + 1 :], s)

and C(w'[i + 1 :], s), the two quantities differ. This implies directly that d1 (w, w') <

min(d1 (w[: i], w'[: i]), d1 (w[i + 1 :], w'[i + 1 :])).

A similar argument tells us that for all so such that I so < Is1, since

Iso-1

C(w, so) = C(w[: i], so[: j)*C(W[i + I :], so[j + I ] + C(w[: 1], so) + C(W[i + I :], so)
j=1

and

ISoI-1
C(w', so) > C(w'[: i], s[: ii) * C(w'[i + 1 :], so[j + 1:1) + C(w'[: i], so) + C(w'[i + 1:], so)

j=1

and all of the corresponding RHS terms are the same, then C(w, so) = C(w', so) which

implies that d1 (w, w') > min(d (w[: i], w'[: i]), d1 (w[i + 1 :], w'[i + 1 :])). Combining

both results, yields the desired result.

Let ko = minw~'E{oj}n d1(w, w')

Lemma 83. Let w,w' E {0,1} be such that d1 (w,w') > 1 then, df(ww',w'w) >

d'(w, w') + 1

Proof. Let w - ww' and w(2) = w'w. Suppose s <w and IsI = d'(w, w'). Notice

that C(w(1 ), s) = C(w(2 ), s). This is because all instances of s as subsequence of wl)

is either fully contained in w, w' or split between w and w'. That is, C(w(), s)

C(w, s) + C(w, s') + I'l1 C(w, s[: i]) . C(w', s[i + 1 : IsI]). Since Is[: i]1, Is[i + 1:

]I < Isl = d1 (w, w') this means that C(w, s[: i]) = C(w', s[: i]) and C(w, s[i + 1:

- C(w', s[i + 1 :]). Therefore C(w(1 ), s) = C(w, s) + C(w, s') + Esij C(w, s[:
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i]) C(w', s[i+ 1 : Is]) =C(w, s) + C(w, s') + ZI1 C(w', s[: i]) C(w, s(i + 1 : Is])=
C(w'w, s), implying that d1(w(1 ), w(2 )) > d1(w, w') + 1.

5.2 Reconstruction of sequences

The previous discussion on the subsequences of subsequences test is closely related to

the following trace reconstruction problem:

Suppose we are given a multiset of sequences of length k. Does that multiset come

from some sequence of length n? If so, is the source sequence unique?

This problem is very much reminiscent of other reconstruction problems such as

the the problem of reconstructing graphs from vertex deleted subgraphs. [INSERT

REFERENCE]

In this section we consider the problem of reconstructing an sequence of length n

from the multiset of its subsequences of size k. As it was mentioned in the introduction

we refer to this problem as the k-trace reconstruction problem:

Problem 84. What is the minimum k such that all sequences of {0, 1}' are k-reconstructible.

In other words, we are interested in understanding the asymptotics for the follow-

ing quantity.

k max min s.t.C(w, Ski) 7 C(w', ski)
wfw'Iw,w'E{O,1}n k'

The best bounds known to date for the value of k are:

clog(n)2 < k < c'xfn)

For some universal constants c, c' E R+. The upper bound is proven in [8], the

best constant c' known is [6v j + 4. The proof for the lower bound clog(n) is

constructive and can be found in 171. In this section we show a simplified version of
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the proof for the lower bound, and an alternative version which relies on the methods

introduced in the previous chapter.

Loose bounds

For the lower bound it is easy to show k = O(log(n)). The proof follows by construc-

tion see [71:

Let wo = 0, w' = 1. And define wn and w' recursively by:

wn+1 =wnWn

wn+1 =w nwn

The validity of the construction follows from the lemma 83.

A.D. Scott in his paper 'Reconstructing sequences' proves a lower bound of the

order (1 + o(1)) fn log(n) 11]

Subsequence count polynomials

Recall that if w E {0, 1} and x1 ,--- ,xm are the positions of the ones of w. For a

fixed m, n, C(w, s) = f,(x 1,- ,xm). Let F(m) = {f cvi - ,Xm)}IsI<k-

A consequence of the result by Shulman see 17] it follows immediately that the sys-

tem of polynomials made up of all subsequence count polynomials for subsequences of

length up to c log(n) for any c E R+ cannot be a basis for the space of all polynomials.

More formally:

Lemma 85. For every n, there is an m such that the span of FW, for r = O(log(n))

is never the whole space of multivariate polynomials of m variables.

Moreover, there exists a fundamental connection between finding the asymptotic

behavior of k and problem 13:

Open Problem 86. What is the span of Fr() over the space of multivariate m

variate polynomials?
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The span of T ") equals the space of multivariate polynomials of m variables if

r> k.

The upper bound

First we show a simple proof of the upper bound for ko (n). We show that the following

bound holds:

16
ko(n) < [-inj + 5

7

The proof we present here is a simplified section of the one presented by Krasikov,

Roditty in 181 and referenced by Schulman in 171.

Identify a sequence w E {0, 1}f with a vector in Rn whose entries are only 0 or 1.

For a sequence w E {0, 1} and any given k and for all values of i E {1, . . , k},

let f(k)(w) be the number of times the i-th entry of a subsequence of size k of w

equals 1.

Remark 87.

fi'k () -:( )( )W
j=1

In particular f)(w) 1=)w. Consider the array of values {f k =)(w)1

associated with w and {f k)(w')} with w'. It follows that if w and w' have the same

k-deck for a given k' then fk) - () for all k E {1,-- , k'}. This follows

from the definition of f() and from ??.

Let ko = mink for which f () f(), then

k i k 1) w Vk < ko - 1
j=1 j=1

The following theorem from [9] will be auxiliary to our results.
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Theorem 88. Every polynomial p of the form

n

p(x) = ajxj, laol =1, Ia1 < 1, aj E C
j=0

has at most L!#V ] + 4 zeroes at 1.

Let pw (x)( 1) - Z 1 xi 1 we and p2 (x) = n , XjWi

Following similar ideas to the ones exhibited by P. Borwein and C. Ingalls in their

survey paper "The Prouhet-Tarry-Escott problem revisited", [10], we can establish

the following lemma:

Lemma 89. The following conditions are equivalent:

(i) En(> (- n 'Vk < ko - 1 and E_1 jko-lj / En 1 ko-1w;

(ii) (x - I)klp) - x) and (x - 1)ko does not divide p (x) - p)(x)

Proof. The proof is the same process by which the Corollary 54 is produced. 0

Let f()(x) = p,(x) - p2(x). Let x' be the first power of x appearing with

a nonzero coefficient in f(1)(x). Define fl1)(x) - 1__. Notice that all the nonzero

coefficients of (1) have modulus 1, and that the degree of fl' is at most n - 1.

Applying the result of Theorem 88 to bound the multiplicity of x - 1 as a root of fl)

we obtain the following corollary:

Corollary 90.

16
ko - I < L 16vn -I] + 4

7

or more succinctly:

16
ko < [ 16n - ] + 57

Since this bound is independent of the underlying pair of strings w, w' and only

depends on their length, it must be the case that:
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16
ko(n) < L v/n - 1 + 5

7

The condition E"_1 (_) - 1(l)wjVk < ko - 1 implies, by taking linear

combinations of the coefficients, that:

n n
k-lWj k-lw.Vk < ko - 1

j=1 j=1

The later condition is closely related with the number theoretic problem known

as the Prouhet-Tarry-Escott problem.

The Prouhet-Tarry-Escott problem asks for finding tuples of integers u1, u.. , a8

and v1 ,--- ,v 8 such that:

1t + Sn + - - 5=o +o v, h = 1, --. ko - 1

1<ui< 2 ---<U. < u i,1 v,<v 2 < -<u<n

It is known that ko < -] J/]+ 4. A simple application of this fact to the problem

at hand yields the desired bound for ko(n).

An alternative proof for the upper bound

In what follows we derive an alternative proof for the upper bound for ko(n) that

hinges upon the 0-vector representation that lead to the proof of distinguishability

of random sequences in Chapter 4.

Let w E {0, 1} a sequence with m ones. Let w be represented, as in Chapter 4,

by the vector (bo, - - - , bn). Where bi indicates the number of zeroes before the i + 1-th

and after the ith one. As before, bo is the number of zeroes before the first one, bm

is the number of zeroes after the last one. Let sk 1 k 0 be the sequence that starts
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with k zeroes and finishes with a 1. Recall that:

C(w, sk) = ) - bi
i=O

Recall that if w can be represented as (bo,.. , bm) and w' can be represented as

(bo,- , b'), then

C(w, sk) z C(w',s k) if

bi 4 b'f
i=0 i=O

Let ko = minkEIo,... ,m} such that C(w, Ski) / C(w', Sk'). The following condition

holds:

Lemma 91. Let ko defined as above, then:

m m

Sr b2 5r -blI: I - bi = I: i
i=O i=O

for all r E{, - ko - 1}.

This condition follows immediately from noticing that the equations E ir

Z O b'U can be obtained as a linear combination of the conditions: Ei= () by

Z= ( ) b' for all i < ko - 1.

Following the same notation as in Chapter 4, let w, w' E {0, 1}, define pw(x)

=O b x' and pw,(x) = Z10 b'ix and f (x) = pw(x) - pw,(x).

We cam establishe the following corollary, a rewriting of the conditions in Corollary

54:

Corollary 92. (i) C(w, SkI) = C(w', Ski) for k' G {,... ,ko - 1} but C(w, Sko )

C(w', skj)

(ii) Zgo (,) -bi = E mo (i,) -b' for all k' < ko - 1 and m ) -bi = Z o ) -b'.
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(iii) (1 - x)kop.(x) - p,(x) but (1 - X)ko+1 doesn't divide pw (x) - pw,(x)

The three conditions are equivalent.

The following theorem from [91 will be auxiliary to our results.

Theorem 93. There is an absolute constant c > 0 such that every polynomial p of

the form:

n

p(x) Z ajxj, IajI < 1, aj E C
j=0

has at most c(n(1 - log(laol)))2 zeroes at 1.

Let xO be the first power of x in f(x) with a nonzero coefficient, and define

fi(x) = 1 f(x). All the coefficients of fi(x) have modulus less than 1, hence we can

apply to fi(x) the Theorem 93. Let ao be the first nonzero coefficient of fi(x). Since

laol ;> this implies that - log(laol) < log(n). Therefore,

ko < c(n(1 + log(n)))- = 0(,)

We cannot use the same Theorem 88 in this case because laol need not equal 1.

Because by considering either the 0-vector or the 1-vector representation of w, w'

we can assume the degree of fi(x) be at most L[J. This gives us an improved bound

of

ko < c(n/2(1 + log(n/2)))2 = O(d)

Which implies:

ko(n) < c(n/2(1 + log(n/2)))" = O(/)

This bound is better than the previous one, provided c < -. It might be possible to

obtain a better bound for ko(n) than the existing value, LLVn j + 5 via sharpening
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the constant c. We leave that as an open problem for the reader.

Number theoretic connections

The results of the previous section imply that given two sequences w, w' E {0, 1},

the multiplicity of (x - 1) as a root of f(x) = pw(x) - p,(x) is less than or equal to

L6 V] +4.

This prompts the following result:

Theorem 94. Let f(x) c Z[x], an n degree polynomial with integer coefficients. If

A1 = En 0 ailai o and A 2 = ZD=0 -aila<o. Then the multiplicity of (x - 1) as a

root of f(x), ko - 1 follows:

ko < [ 1Vn + max A, A 2] + 5
7

Proof. Let f(x) = 0E aix'. Let b= (bo, .-. , ba), b' (b', ... , b') be two vectors

defined as:

bi =la2 >oai

b's = -lai'oai

As above, let A1 = ai 0 >1o2! and A2 = Z~% -ailai o. Let w E {0, 1}n+A1 and

w' E {0, 1}n+A 2 be the sequences defined by the 0-vectors b and b' respectively. Notice

that f(x) = pw(x) - p,(x) which, together with the previous remarks, completes the

proof. E

Notice that the coefficients of f(x) are integers and follow it is realizable by two

sequences w, w' of size n such as

Reconstruction algorithm

Consider the array of subsequences of subsequences tests which uses the model se-

quences {si};"O.
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The Trace Reconstruction Problem asks to devise an algorithm whereby after re-

ceiving a series of subsequences t, - - - , t, from a hidden random sequence w E {0, 1}.

The sequence w is assumed to be drawn from the uniform distribution. The sam-

pling distribution over subsequences equals PW, (.) for some probability parameter

pn C (0, 1).

Current developments towards the solution of the Trace Reconstruction Problem

include a reconstruction algorithm developed by Thomas Holenstein, Michael Mitzen-

macher, Rina Panigrahy, Udi Wieder, in their paper Trace reconstruction with con-

stant deletion probability and related results 12] which proposes an efficient algorithm

that, whenever pn is a constant smaller than 1, only fails to uniquely reconstruct an

exponentially small fraction of the sequences of {0, 1}.

In this thesis we have focused on the case where the deletion probability is a con-

stant p. We proposed an efficient algorithm that, whenever p = , fails to distinguish

between w, w' drawn uniformly at random from {0, 1}" with only an exponentially

small probability.

The subsequences of subsequences test described in the previous chapter provides

a natural way to approach the reconstruction problem. Let {si}>o' be the family of

sequences si = lO

The proposed algorithm takes the following form:

Algorithm 95.

Draw polynomially many sample traces. In order to obtain a estimate of the expected

number of appearances that si for all i has as a subsequence of a sequence of the

hidden string. Let the estimates be {E}U

Loop through all sequences w C {0, 1}, compute the real expected values {E(w)};j'

for each si and output the sequence w E {0, 1} such that maxijEo,...,n-11 E - Bi(w)|

is minimal.

Unfortunately this algorithm although utilizes polynomially many samples, takes

an exponential amount of time.
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Conjecture 96. The algorithm predicts the structure of the hidden sequence with

high probability.

An alternative version of the algorithm 97 is the following:

Algorithm 97.

Draw polynomially many sample traces. In order to obtain a estimate of the expected

number of appearances that si for all i has as a subsequence of a sequence of the

hidden string. Let the estimates be {Er}n1 . Let e = B,- ,En_1] be a vector in

R .

Notice that if w G {0, 1} and its 0-vector is of the form b (bo,-- ,b) then there

exists an invertible operator A such that Ab = e. Try A-le and recover the closest

possible values of b in the resulting vector.

This algorithm requires only a polynomial number of samples and it runs in poly-

nomial time. Nevertheless, it requires that the array of subsequences of subsequences

test {si}o be always able to distinguish a pair of sequences w, w' E {0, 1}.

5.3 Searching for the minimising pair

In this section we explore a lower bound for the pair of strings w, w' E {0, 1} min-

imising the variation distance between P,, and P,,, where p = -. We conjecture

the asymptotics of the minimal distance and the structure of the pairs of strings that

achieve it. The content of this section is speculative. The results and conjectures

here exhibited have been produced by a series of computer simulations, the code for

which is available through the author's github account, Pacchiano.

Cyclic shift

As a result from the simulations we have the following conjecture.

Conjecture 98. For a given string w, the string w' that minimizes the variation

distance d,(w, w') is such that w' is a cyclic shift of w.

87



The minimizing pair

As a result from the simulations we also have the following conjecture. Consider the

following binary strings:

1. w - Onion-1

2. w' 0 n-1 10 n

Lemma 99. The distance d,(w, w') (2n

Proof. Notice that all subsequences s of w that do not contain the middle 1 'cancel'

with corresponding subsequences of w' that do not contain the middle 1. Among the

remaining sequences we have the following relations:

C(W, Oi103) = .n (n .)

C (W', Oi I00) = n -). n

Notice that:

d,(w, w') = C(w, O 1O3 ) - C(w', O2103)
i~j

It can be shown that

IC(w, Oi10) - C(w', O10) = ) . (n )- (n. (n

n if (n)

This means that

d,(w,w') = -
i=1 j=1

It can be shown that this sum equals (2n)

The following is the crux conjecture of this section:
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Conjecture 100. minww/e{o,12n d,(w, w') is exactly (2n) Furthermore: It is achieved

only for the pairs of strings: w = 0 n1 0 n-1 w' = 0 - 1 0n and w = 1I 0 1n-1 WI

In-10in

In the following we exhibit the possible structure of a proof of the result above,

with a series of steps completed and some others pending for completion.

Proof. We divide the proof into two sections.

1. First we see that for a given string w, by a result hinted above, d,(w, w') is

minimal for w' a cyclic shift of w.

2. Second we conjecture that among all pairs of sequences d,(w, w') such that w'

is a cyclic shift of w, the pair that minimizes d,(w, w') is precisely (w, w')

(onlOn-1,0 n-1Ion) or (w, w') = (on-llononon-1)

The following lemma shows that the variation distance of a pair of sequences w, w'

such that w' is a cyclic shift of w is polynomially large.

Lemma 101. The variation distance d,(w,w') between w and a cyclic shift w' is

"polynomially big ".

Proof. In Chapter 3 we provided a test that distinguishes pairs of cyclic shifted strings.

That shows the variation distance is big. E

Unfortunately, the steps towards a proof of the conjectures exhibited in this section

is far from being possible with the machinery developed in this Thesis so far. We

leave the interested reader with the task of pursuing those further directions.
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Chapter 6

Conclusion

In this thesis we explored a few different aspects of the Trace Reconstruction Prob-

lem. In particular, we focused on solving the Pair Trace Identification Problem, and

managed to obtain a partial result in the form of the distinguishability of random

strings when the deletion parameter equals p = We showed that .

There is plenty of room for improvement and future work. In particular regarding

the extension of the existing results that led towards the distinguishability of random

traces that could lead to a full proof of the Pair Trace Identification Problem at least

for the case where p = Additionally, proving true the conjecture for the lower

bound on the variation distance is not only an important problem towards the full

solution of the Trace Identification Problem, but also would mean the solution of a

problem with an undeniable aesthetic appeal.

In synthesis, the Trace Identification Problem is a rich source of interesting prob-

lems regarding the combinatorics of strings and its asymptotic properties, and one

which has strong connections with areas ranging from error correcting codes to Com-

putational Biology. It was a delight to have had the chance to work on it.
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Appendix A

Notation reference

Definition 102. Let C(w, s) = (number of times s is a subsequence of w).

Definition 103. Let s < w denote s is a subsequence of w.

Definition 104. Let w = w 1 - n - be a sequence in {0, 1}. w[: i] denotes w1  w ..wi.

Definition 105. Let w = w1 -, Wn be a sequence in {Z,}". w~i :J denotes w- wn.

Definition 106. Let w E {0, 1}n, and s E {0, 1}k for some let f,(w) be the num-

ber of times s appears as a subsequence of w. Where w is represented as a vector

(x1,-- ,x*,) (the positions of the ones in w).

Definition 107. d' (w, w') be the minimum length of a sequence s for which C(w, s) $
C(w', s)

Definition 108. The k-deck of a sequence w E {0, 1}n is the multiset of all subse-

quences of size k of w.

Definition 109. ko(n) = maxw,,'E{O,1} d'(w,-w').

Definition 110. PP(s) = C(w, s)pn-IsI (1-p)s be the distribution over subsequences

of w induced by the deletion process here studied.

Definition 111. The 0-vector of a sequence w E {0, 1} with m ones is (bo, , bm).

Where bi indicates the number of zeroes before the i + 1-th and after the ith one. By

convention, bo is the number of zeroes before the first one, bn is the number of zeroes

after the last one.
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Definition 112. The 1-vector of a sequence w E {0, 1} with m zeroes is (ao, - -- , am)-.

Where ai indicates the number of ones before the i + 1-th and after the ith zero. By

convention, ao is the number of ones before the first zero, am is the number of ones

after the last zero.
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