The visual and oculomotor systems

Peter H. Schiller, year 2006

Form perception

Gestalt ideas of form perception

Objects close together tend to unite perceptually into groups

Objects similar in shape and size tend to group together

Objects that move together in the same direction and same velocity are grouped together

Three general theories of form perception:

- 1. Form perception is accomplished by neurons that respond selectively to line segmens of different orientation.
- 2. Form perception is accomplished by spatial mapping of the visual scene onto visual cortex.
- 3. Form perception is accomplished by virtue of Fourier analysis.

Orientation of line segments and spatial frequency

Topographic mapping

Figure by MIT OCW.

Cortical layout of neurons activated by arrows

all arrows in contralateral hemifiel

monkey

Figure by MIT OCW.

Cortical layout of neurons activated by arrows

arrows across midline

Figure by MIT OCW.

Cortical layout of neurons activated by disks

disks in one hemifield

Figure by MIT OCW.

Cortical layout of neurons activated by disks

disks across midline

Figure by MIT OCW.

The Giotto Story:

When Pope Benedict, the 12th, in 13th Century set out to have the walls of the great cathedral of St. Peter redecorated, he sent messengers all over Italy to find out who were the best painters. Specimen were gladly given. When a messenger came to Ambrogio Bondone **Giotto** (1267-1337), he did not provide a sample painting. Instead, he took a sheet of paper and a pencil dipped in red color, and drew a perfect circle. "Here is your drawing," he said. The Pope, upon examining all the productions submitted, chose Giotto without hesitation.

To this day in Tuscany there is the saying:

The round O of Giotto

Spatial frequency analysis

Frequency-specific adaptation

Channel model

Figure by MIT OCW.

Shape-selective responses in inferotemporal cortex

IT neuron response to various shapes

IT neuron response to various shapes

Intermediate level vision

Basic visual capacities

color brightness pattern texture motion depth

Intermediate visual capacities

constancy selection recognition transposition comparison location

The Art World

Secret Knowledge by David Hockney

Figure by MIT OCW.

Camera obscura

Figure by MIT OCW.

The perception of subjective contours

Subjective contrours at isoluminance

Response to subjective contours in V2

Response to subjective contours in V2 $\,$

The effects of V4 and MT lesions on intermediate vision

Match to sample task

The effect of V4 lesions on object matching

Successive days of testing

Intermediate vision tasks

Α

CONTOUR

The effect of V4 lesions on object transformations

Greater and lesser brightness discrimination

Brightness discrimination, greater and lesser targets

Target brighter

Target dimmer

Target/Comparison Luminance Difference (cd/m2)

Greater and lesser size discrimination

Size discrimination, greater and lesser targets

Target larger

Target smaller

Summary, form:

- Three theories of form precessing in the brain are (a) analysis by orientation of line segmens, (b) spatial mapping onto a topographically organized brain region and (c) Fourier analysis.
- 2. Areas V2, V4 and IT play important roles in intermediate vision.
- 3. Neurons responding to subjective contours have been found in V2.
- Recognition of objects transformed in various ways is compromised by lesions. V4 lesions also produce major deficits in visual V4 learning and in selecting "lesser" stimuli.
- 5. Some IT neurons are selective for objects including faces, but most respond to a variety of objects whose recognition is based on the differential activity of a great many neurons.
- 6. How we process and deal with ambiguities in perception remains a mystery