

- which are close to 1; therefore "steady state" expressions may be very poor approximations when intervals are relatively short
- 3. Approach does not take into consideration the "dynamics" of the demand profile

Two Recent References on Numerical Methods for Dynamic Queuing Systems

- Escobar, M., A. R. Odoni and E. Roth, "Approximate Solutions for Multi-Server Queuing Systems with Erlangian Service Times", with M. Escobar and E. Roth, *Computers and Operations Research, 29*, pp. 1353-1374, 2002.
- Ingolfsson, A., E. Akhmetshina, S. Budge, Y. Li and X. Wu, "A Survey and Experimental Comparison of Service Level Approximation Methods for Non-Stationary M/M/s Queueing Systems," Working Paper, July 2002. http://www.bus.ualberta.ca/aingolfsson/working papers.htm

Congestion pricing: The basic observation

• The congestion costs due to any specific user have 2 components:

(1) Cost of delay to that user (internal cost)

(2) Cost of delay to all other users caused by that user (external cost)

- At congested facilities, this second component can be very large
- A congestion toll can be imposed to force users to experience this cost component (to "internalize the external costs")

Economic principle

Optimal use of a transportation facility cannot be achieved unless each additional (marginal) user pays for all the additional costs that this user imposes on all other users and on the facility itself. A congestion toll not only contributes to maximizing social economic welfare, but is also necessary to reach such a result. (Vickrey, 1967, 1969; Carlin + Park, 1970)

Numerical Example [2]

$$W_{q} = \frac{\lambda \cdot [E^{2}[S] + \sigma_{S}^{2}]}{2 \cdot (1 - \rho)} = \frac{90 \cdot [(0.01)^{2} + 3.11213 \times 10^{-6}]}{2 \cdot (1 - 90/100)} \approx 0.0464 \text{ hours} \approx 167 \text{ sec}$$

Define: $c = c_{1} \frac{\lambda_{1}}{\lambda} + c_{2} \frac{\lambda_{2}}{\lambda} + c_{3} \frac{\lambda_{3}}{\lambda}$
 $C = c \cdot L_{q} = c \cdot \lambda \cdot W_{q} = (c_{1} \cdot \lambda_{1} + c_{2} \cdot \lambda_{2} + c_{3} \cdot \lambda_{3}) \cdot W_{q} = \overline{c} \cdot W_{q}$
Or: $C = \overline{c} \cdot W_{q} = (\$138,000) \cdot (0.0464) = \$6,400$
 $\frac{dW_{q}}{d\lambda} = \frac{E^{2}[S] + \sigma_{S}^{2}}{2 \cdot (1 - \rho)} + \frac{\lambda \cdot [E^{2}[S] + \sigma_{S}^{2}]}{2 \cdot (1 - \rho)^{2}} \cdot \frac{1}{\mu} \approx 5.1556 \times 10^{-6} \text{ hours} \approx 18.6 \text{ sec}$

Finding Equilibrium Conditions and Optimal Congestion Tolls!

We now generalize further: let x_i be the *total* cost perceived by a user of type *i* for access to a congested facility and let $\lambda_i(x_i)$ be the demand function for type *i* users.

 $x_i = IC_i + CT_i + K_i$

 IC_i = internal private cost; it is a function of the demand rates, $\lambda_i(x_i)$

 CT_i = congestion toll imposed; equal to 0 in absence of congestion tolls; can be set arbitrarily or can be set as a function of the $\lambda_i(x_i)$ under congestion pricing schemes

 K_i = any other charges that are independent of level of congestion

Finding Equilibrium Conditions and Optimal Congestion Tolls! [2]

• With *m* types of users, the equilibrium conditions for any set of demand functions, can be found by solving simultaneously the *m* equations:

$$x_{i} = c_{i} \cdot W_{q}[\hat{\lambda}(\hat{x})] + \left(\sum_{j=1}^{m} c_{j} \cdot \lambda_{j}(x_{j})\right) \cdot \frac{dW_{q}[\hat{\lambda}(\hat{x})]}{d\lambda_{i}(x_{i})} + K_{i} \qquad \forall i$$

where $\hat{\lambda}(\hat{x}) = \{\lambda_1(x_1), \lambda_2(x_2), ..., \lambda_m(x_m)\}$.

The missing piece: Demand functions can only be roughly estimated, at best!

An illustrative example from airports

	Type 1 (Big)	Type 2 (Medium)	Type 3 (Small)
Service rate (movements per hour)	80	90	100
Standard deviation of service time (seconds)	10	10	10
Cost of delay time (\$ per hour)	\$2,500	\$1,000	\$400

Hypothetical Demand Functions

$$\lambda_1(x_1) = 40 - 0.001 \cdot x_1 - 0.00001 \cdot x_1^2$$
$$\lambda_2(x_2) = 50 - 0.003 \cdot x_2 - 0.00002 \cdot x_2^2$$
$$\lambda_3(x_3) = 60 - 0.01 \cdot x_3 - 0.00008 \cdot x_3^2$$

Case 1: No Congestion Fee

	Type 1	Type 2	Туре 3
No Congestion Fee			
(1) Delay cost (IC) per aircraft	\$1,802	\$721	\$288
(2) Congestion fee	\$0	\$0	\$0
(3) Total cost of access	\$1802	\$721	\$288
[=(1)+(2)]			
(4) Demand (no. of movements	5.7	37.4	50.5
per hour)			
(5) Total demand (no. of	93.6		
movements per hour)			
(6) Expected delay per aircraft	43 minutes 15 seconds		
(7) Utilization of the airport	99.2%		
(% of time busy)			

Case 2: Optimal Congestion Fee

Optimal Congestion Fee				
(8) Delay cost (IC) per aircraft	\$135	\$54	\$22	
(9) Congestion fee (CF)	\$853	\$750	\$670	
(10) Total cost of access [=(1)+(2)]	\$988	\$804	\$692	
(11) Demand (no. of movements per hour)	29.2	34.6	14.9	
(12) Total demand (no. of movements per hour)	78.7			
(13) Expected delay per aircraft	3 minutes 15 seconds			
(14) Utilization of the airport (% of time busy)	89.9%			

