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Queueing Systems: Lecture 4 

Amedeo R. Odoni 

Lecture Outline 
• M/G/1: a couple of examples 
• Introduction to systems with priorities 
• Representation of a priority queuing system 
• The M/G/1 non-preemptive priority system 
• An important optimization theorem 
• … and an important corollary 
• Brief mention of other priority systems 
• Bounds for G/G/1 systems 

Reference: Chapter 4, pp. 222-239 (just skim
Sections 4.8.2 and 4.8.4) 



Expected values for M/G/1 
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Runway Example 

•	 Single runway, mixed operations 
•	 E[S] = 75 seconds; σ S = 25 seconds 

µ = 3600 / 75 = 48 per hour 
•	 Assume demand is relatively constant for a 

sufficiently long period of time to have 
approximately steady-state conditions 

•	 Assume Poisson process is reasonable 
approximation for instants when demands 
occur 



Estimated expected queue length 

and expected waiting time


λ (per hour) ρ Lq Lq 
(% change) 

Wq 
(seconds) 

Wq 
(% change) 

30 0.625 0.58 69 
30.3 0.63125 0.60 3.4% 71 2.9% 

36 0.75 1.25 125 
36.36 0.7575 1.31 4.8% 130 4% 

42 0.875 3.40 292 
42.42 0.88375 3.73 9.7% 317 8.6% 

45 0.9375 7.81 625 
45.45 0.946875 9.38 20.1% 743 18.9% 

Can also estimate PHCAP ≅ 40.9 per hour 

Background and observations 

•	 W, L, Wq and Lq are not affected as long as the
queue discipline does not give priority to 
certain classes of customers 

•	 WFIFO = WSIRO = WLIFO (what about the
corresponding variances?) 

•	 Things may change, however, in systems 
where customers are assigned to various
priority classes, if different classes have 
different service-time characteristics 

•	 Preemptive vs. non-preemptive priority 
systems 

•	 Preemptive-resume vs. preemptive-repeat 



M/G/1 system with non-preemptive 
priorities: background 

•	 r classes of customers; class 1 is highest 
priority, class r is lowest 

•	 Poisson arrivals for each class k; rate λk 

•	 General service times, Sk , for each class; 
fSk(s); E[Sk]=1/µk; E[Sk2] 

•	 FIFO service for each class 
•	 Infinite queue capacity for each class 
•	 Define: ρ = λ /µk k k 
•	 Assume for now that: ρ = ρ1 + ρ2 +….+ ρ <1r 
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A queueing system with r priority 
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Expected time in queue of customer of 
class k who has just arrived at system 
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expected remaining time in service of the customer who 
occupies the server when the new customer (from class ) arrives 

= expected no. of customers of class who are already waiting 
in queue at the instant when the newly arrived customer (from class 

) arrives 

expected number of customers of class who will arrive while 
the newly arrived customer (from class ) is waiting in queue 

Expressions for the constituent parts 
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qiiqi WL ⋅= λ (2) 

qkii WM ⋅= λ (3) 

[random incidence, see (2.66)]
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A closed-form expression 
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[from (1), (2) and (3)] 

k=1, k

k for ,......,2 ,1 

k for ,......,2 ,1 
1)( 

and solving (4) recursively, for =2,….., we obtain (5): 

Minimizing total expected cost 

ck k 
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• For each class k compute the ratio 
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(6) 

= cost per unit of time that a customer of class 
spends in the queuing system (waiting or being served) 

Suppose we wish to minimize the expected cost (per 
unit of time) of the total time that all customers spend in 

S E 



Optimization Theorem and a Corollary 

•	 Theorem: To minimize (6), priorities should be 
assigned according to the ratios fk : the higher 
the ratio, the higher the priority of the class. 

•	 Corollary: To minimize the total expected time 
in the system for all customers, priorities 
should be assigned according to the expected 
service times for each customer class: the 
shorter the expected service time, the higher 
the priority of the class.  

Cost inflow and outflow in a 
priority queuing system 
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A generalization 

• Let p r such that 

ρ 1 + ρ 2 +….+ ρ p <1 ρ 1 + ρ 2 +….+ ρ p + ρ p+1 ≥ 1 

• p experience 
p+1 through r 

• p occupy the server a 
fraction ρ k of the time each (k = 1, 2, …, p); customers in 
class p ap ;and the other 

• The expression (5) for Wqk can be modified accordingly 
W0 

be an integer between 1 and 

while    

Then customers in classes 1 through 
steady-state conditions, while those in 
suffer unbounded in-system (or waiting) times 

Customers in classes 1 through 

+1 occupy the server a fraction 1-
classes do not have any access 

by writing the correct expression for in the numerator  

Generalized expression 
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Wqk ∞ = k > p 



Other priority systems 

• Simple closed-form results also exist for 

examples include: 
_ r classes 

same service rate µ 
_ r classes of 

same service rate µ Wk) 
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several other types of priority systems; 

Non-preemptive M/M/m queuing systems with 
of customers and all classes of customers having the 

Preemptive M/M/1 queuing systems with 
customers and all classes of customers having the 

(see below expression for 

k for ,......,2 ,1 
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A general upper bound for G/G/1 
systems 
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A number of bounds are available for very general 
queueing systems (see Section 4.8) 

A good example is an upper bound for the waiting time at 
G/G/1 systems: 

where and are, respectively, the r.v.’s denoting inter-
arrival times and service times 

Under some fairly general conditions, such bounds can 
be tightened and perform extremely well 

σ λ 



Better bounds 
for a (not so) special case 
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• 
at most, 1/λ 

ρ increases! 

(2) 

For G/G/1 systems whose inter-arrival times have the 
property that for all non-negative values of 

t X t X E 

it has been shown that: 

= ≤ 
σ λ 

what does this mean, intuitively?

Note that the upper and lower bounds in (1) differ by, 
and that the percent difference between 

the upper and lower bounds decreases as 


