Queueing Systems: Lecture 4
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Lecture Outline

M/G/1: a couple of examples

Introduction to systems with priorities
Representation of a priority queuing system
The M/G/1 non-preemptive priority system
An important optimization theorem

... and an important corollary

Brief mention of other priority systems
Bounds for G/G/1 systems

Reference: Chapter 4, pp. 222-239 (just skim
Sections 4.8.2 and 4.8.4)




Expected values for M/G/1
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Runway Example

Single runway, mixed operations

E[S] = 75 seconds; 6s= 25 seconds
u=3600/75 =48 per hour

Assume demand is relatively constant for a

sufficiently long period of time to have
approximately steady-state conditions

Assume Poisson process is reasonable
approximation for instants when demands
occur




Estimated expected queue length

and expected waiting time

A (per hour) p Lq Lq Wy W,y
(% change) | (seconds) | (% change)
30 0.625 0.58 69
30.3 0.63125 0.60 3.4% 71 2.9%
36 0.75 1.25 125
36.36 0.7575 131 4.8% 130 4%
42 0.875 3.40 292
42.42 0.88375 3.73 9.7% 317 8.6%
45 0.9375 7.81 625
45.45 0.946875 9.38 20.1% 743 18.9%

Can also estimate PHCAP = 40.9 per hour

Background and observations

W, L, W, and L, are not affected as long as the
queue discipline does not give priority to
certain classes of customers

Weieo = Wgiro = W g0 (What about the
corresponding variances?)

Things may change, however, in systems
where customers are assigned to various
priority classes, if different classes have
different service-time characteristics

Preemptive vs. non-preemptive priority
systems

Preemptive-resume vs. preemptive-repeat




M/G/1 system with non-preemptive
priorities: background

r classes of customers; class 1 is highest
priority, class r is lowest

« Poisson arrivals for each class k; rate Ay

« General service times, S, , for each class;
fsk(S); E[Sk]zl/ﬂk; E[Skz]

« FIFO service for each class

 Infinite queue capacity for each class

o Define: p = Ay 1

« Assume for now that: p=p; + po +....+ p, <1

A queueing system with r priority
classes
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Expected time in queue of customer of
class k who has just arrived at system

1 =y
Wk _W0+Z— Li + -M;
i= 11Ll| i= 1ﬂ|

Wy = expected remaining time in service of the customer who
occupies the server when the new customer (from class k) arrives

Lqi = expected no. of customers of class i who are already waiting
in queue at the instant when the newly arrived customer (from class
k) arrives

M; = expected number of customers of class i who will arrive while
the newly arrived customer (from class k) is waiting in queue

Expressions for the constituent parts

E[S?] _ﬂi’E[Siz]
2-E[Si] = 2

Wo 1) = [random incidence, see (2.66)]

-E[s{] le E[S ] 1)

> W0=Zpi'(Wo|i)=Zpi.yi2

i=1 i=1

Lgi = 4i -Wy;i 2)

Mj = 4 -Wg (3)




A closed-form expression

K k-1
Wk =Wo + D pj Wi +Wei - D i [from (1), (2) and (3)]
i=1 i=1
k
Wo +Zpi Wi
2> Wy = o fork=1,2,....t  (4)
1-3 pi
i=1
and solving (4) recursively, for k=1, k=2,....., we obtain (5):
Wy i
Wy = fork=12,....,r where a, =) pj
T a2 |

i=1

Minimizing total expected cost

Cy = cost per unit of time that a customer of class k
spends in the queuing system (waiting or being served)

» Suppose we wish to minimize the expected cost (per
unit of time) of the total time that all customers spend in
the system:

r r r
C=>i-Li=>cipi+ 0 4 Wy (6)
i=1 i=1 i=1

* For each class k compute the ratio

c
=K =y
E[Sk]

fi




Optimization Theorem and a Corollary

« Theorem: To minimize (6), priorities should be
assigned according to the ratios f, : the higher
the ratio, the higher the priority of the class.

e Corollary: To minimize the total expected time
in the system for all customers, priorities
should be assigned according to the expected
service times for each customer class: the
shorter the expected service time, the higher
the priority of the class.

Cost inflow and outflow in a
priority queuing system

4 Cost ($) Cost
inflow

i t Time




A generalization

* Let p be an integer between 1 and r such that

prtpot.tp,<l while ittt ptp21

* Then customers in classes 1 through p experience
steady-state conditions, while those in p+1 through r
suffer unbounded in-system (or waiting) times

» Customers in classes 1 through p occupy the server a
fraction p, of the time each (k =1, 2, ..., p); customers in
class p+1 occupy the server a fraction 1- a, ;and the other
classes do not have any access

* The expression (5) for W, can be modified accordingly
by writing the correct expression for Wyin the numerator

Generalized expression

0, pi ISP, (=2p)ElSpa]
= 2-E[Si] 2-E[Sp1]

o= (L-ag_1)(L-ay)

fork<p

qu = K>p




Other priority systems

« Simple closed-form results also exist for
several other types of priority systems;
examples include:

_ Non-preemptive M/M/m queuing systems with r classes
of customers and all classes of customers having the
same service rate u

_ Preemptive M/M/1 queuing systems with r classes of
customers and all classes of customers having the
same service rate u (see below expression for W)

K
- @ p) for k=12,...,r where ay =Y pj
(-ag_1)A-ax) =1

A general upper bound for G/G/1
systems

*« A number of bounds are available for very general
gueueing systems (see Section 4.8)

* A good example is an upper bound for the waiting time at
G/G/1 systems:

_A(ok +a8)
1T 2.1-p)

where X and S are, respectively, the r.v.’s denoting inter-
arrival times and service times

(p<1) @)

* Under some fairly general conditions, such bounds can
be tightened and perform extremely well




Better bounds
for a (not so) special case

* For G/G/1 systems whose inter-arrival times have the
property that for all non-negative values of tg,

1
E[X -tg | X >1o] <~ (what does this mean, intuitively?)

it has been shown that:
2 2
1l+p <Wq <B = A-(o% +0%)
A 2-(1- p)
* Note that the upper and lower bounds in (1) differ by,

at most, 1/4 and that the percent difference between
the upper and lower bounds decreases as pincreases!

(p<]) 2)




