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Birth-and-Death Queueing Systems

1. m parallel, identical servers.
2. Infinite queue capacity (for now).

3. Whenever n users are in system (in
gueue plus in service) arrivals are
Poisson at rate of A, per unit of time.

4. Whenever n users are in system,
service completions are Poisson at
rate of g, per unit of time.

5. FCFS discipline (for now).

The Fundamental Relationship
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The differential equations that
determine the state probabilities

By (t+41) = Pn+1(t)'/un+1 'At+Pn—l(t) Ap-1-At+ P, (t)'[l_(/un +ﬂ'n)'At]

After a simple manipulation:

dP, (t
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(1) applies when n=1, 2, 3,....; when n =0, we have:
dBy (1)
dt

=—Ag-Py(t) + 1 - B(2) (2)

* The system of equations (1) and (2) is known as the
Chapman-Kolmogorov equations for a birth-and-death
system

The “state balance” equations

« We now consider the situation in which the queueing
system has reached “steady state”, i.e., t is large

enough to have P,(t) = P,, independent of t, or dp, (1) ~0

dt
e Then, (1) and (2) provide the state balance equations:
dog-Fo=m-RA n=0 (€©)

(Ap + 1) Py =Ap1 By + tpy1-Bria n=123,. (4)

« The state balance equations can also be written directly

from the state transition diagram




Birth-and-Death System: State
Transition Diagram
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* We are interested in the characteristics of the system
under equilibrium conditions (“steady state”), i.e., when
the state probabilities Pn(t) are independent of t for
large values of t

» Can write system balance equations and obtain
closed form expressions for P,, L, W, L,, W,

Solving.....

Solving (3) and (4), we have:
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M/M/1: Observing State Transition
Diagram from Two Points

e From point 1:
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M/M/1: Derivation of Pyand P,
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M/M/1: Derivation of L, W, Wq, and Lq
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High Sensitivity of Delay at High
Levels of Utilization
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M/M/1: An alternative, direct derivation
of Land W

« For an M/M/1 system, with FCFS discipline:

0.0]
W=y (n+1) P, =E[n+1]: E[n]+1: L+1 (1)
n=0 M H H H
e But from Little’s theorem we also have:
L=A1-W (2)
It follows from (1) and (2) that, as before:
L __A : /4 I
u—A u—A

Does the queueing discipline matter?

Additional important M/M/1 results

* The pdf for the total time in the system, w, can
be computed for a M/M/1 system (and FCFS):

Fuw ) = @=p)pe™ P = (11— ) W=D for w>0
Thus, as already shown, W = 1/(u-4) = 1/[u (1-p)]

 The standard deviation of N, w, Ny, w, are all
proportional to 1/(1-p), just like their expected
values (L, W, Ly, W,, respectively)

* The expected length of the “busy period”, E[B],
is equal to 1/(u-4)




M/M/1: E[B], the expected length of a

busy period
N
B = busy period
| =idle period
[] N
| <> <t
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0~ E[Busy] + E[ldle]

But, Py =1—-p  E[ldle] =%
1 1

Therefore, E[B]= E[Length of busy period]= 1
u Q=p) u-2

M/M/m (infinite queue capacity)
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» Condition for steady state?




M/M/wo (infinite no. of servers)
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* N is Poisson distributed!
-L:/l/,u;Wzl/u;quo; W,=0

* Many applications

M/M/1: finite system capacity, K;
customers finding system full are lost
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» Steady state is always reached

* Be careful in applying Little’s Law! Must count only the
customers who actually join the system:

A= 2-(1-Py)




M/M/m: finite system capacity, K;
customers finding system full are lost
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» Can write system balance equations and obtain
closed form expressions for P, L, W, L, W,

» Often useful in practice

M/M/m: finite system capacity, m;
special case!
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* Probability of full system, P, is “Erlang’s loss formula”

* Exactly same expression for P, of M/G/m system with K=m




M/M/wo (infinite no. of servers)
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eL=A/p;W=1/p;Ly=0;W,=0

* Many applications

Variations and extensions of
birth-and-death queueing systems

« Huge number of extensions on the previous
models

« Most common is arrival rates and service
rates that depend on state of the system,
some lead to closed-form expressions

« Systems which are not birth-and-death, but
can be modeled by continuous time, discrete
state Markov processes can also be
analyzed [“phase systems”]

- State representation is the key (e.g. M/E,/1)




