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Lecture Outline

• Birth-and-death processes
• State transition diagrams
• Steady-state probabilities
• M/M/1
• M/M/m
• M/M/∞

Reference: Chapter 4, pp. 194-206



Birth-and-Death Queueing Systems

1. m parallel, identical servers.
2. Infinite queue capacity (for now).
3. Whenever n users are in system (in 

queue plus in service) arrivals are 
Poisson at rate of λn per unit of time.

4. Whenever n users are in system, 
service completions are Poisson at 
rate of µn per unit of time.

5. FCFS discipline (for now).

The Fundamental Relationship

1-(λn+ µn)∆t

λn∆t

µn∆t

n+1 users

n users

n-1 users

n users

Pn(t) = Prob [n users 
in system at time t]
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The differential equations that 
determine the state probabilities
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After a simple manipulation:

)()()()(
)(

1111 tPtPtP
dt
tdP

nnnnnnn
n

++−− ⋅+⋅+⋅+−= µλµλ (1)

(1) applies when n = 1, 2, 3,….; when n = 0, we have: 
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• The system of equations (1) and (2) is known as the 
Chapman-Kolmogorov equations for a birth-and-death 
system

The “state balance” equations

• We now consider the situation in which the queueing 
system has reached “steady state”, i.e., t is large 
enough to have                  , independent of t, or 

• Then, (1) and (2) provide the state balance equations:

• The state balance equations can also be written directly 
from the state transition diagram
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Birth-and-Death System: State 
Transition Diagram
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• Can write system balance equations and obtain 
closed form expressions for Pn, L, W, Lq, Wq

• We are interested in the characteristics of the system 
under equilibrium conditions (“steady state”), i.e., when 
the state probabilities Pn(t) are independent of t for 
large values of t

Solving…..

Solving (3) and (4), we have:
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and, in general, 

00
121

0121
.....

.....
PKPP n

nn

nn
n ⋅=⋅

⋅⋅⋅⋅
⋅⋅⋅⋅

=
−

−−
µµµµ
λλλλ
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M/M/1: Observing State Transition 
Diagram from Two Points

10 PλP µ=

• From point 1:

0 1 2 n-1 n+1n…
λ

µ

λ λ λ λ λ λ

µ µ µ µ µ µ

201)( PPP µλµλ +=+

• From point 2:
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M/M/1: Derivation of P0 and Pn
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Step 1:

Step 2:

Step 3:

Step 4:



M/M/1: Derivation of L, W, Wq, and Lq
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High Sensitivity of Delay at High 
Levels of Utilization

Capacity

Demand

Expected delay

ρ = 1



M/M/1: An alternative, direct derivation 
of L and W

• For an M/M/1 system, with FCFS discipline:

(1)

• But from Little’s theorem we also have:
(2)

• It follows from (1) and (2) that, as before:
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Does the queueing discipline matter?

Additional important M/M/1 results

• The pdf for the total time in the system, w, can 
be computed for a M/M/1 system (and FCFS):

for w≥ 0
Thus, as already shown, W = 1/(µ -λ) = 1/[µ (1-ρ)]

• The standard deviation of N, w, Nq, wq are all 
proportional to 1/(1-ρ), just like their expected 
values (L, W, Lq, Wq, respectively)

• The expected length of the “busy period”, E[B], 
is equal to 1/(µ -λ) 
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M/M/1: E[B], the expected length of a 
busy period
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M/M/m (infinite queue capacity)
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• Condition for steady state?



M/M/∞ (infinite no. of servers)
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• N is Poisson distributed!

• L = λ / µ ; W = 1 / µ ; Lq = 0; Wq = 0

• Many applications

M/M/1: finite system capacity, K; 
customers finding system full are lost

…0 1 2 K-1 K

λ λ λ λ λ

µµµ
µ µ

KnforP K

n
n .....,,2,1,0

1
)1(

1 =
−

−⋅
=

+ρ

ρρ

• Steady state is always reached

• Be careful in applying Little’s Law! Must count only the 
customers who actually join the system:
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M/M/m: finite system capacity, K; 
customers finding system full are lost
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• Can write system balance equations and obtain 
closed form expressions for Pn, L, W, Lq, Wq

• Often useful in practice

M/M/m: finite system capacity, m; 
special case!
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• Probability of full system, Pm, is “Erlang’s loss formula”

• Exactly same expression for Pn of M/G/m system with K=m



M/M/∞ (infinite no. of servers)
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• N is Poisson distributed!

• L = λ / µ ; W = 1 / µ ; Lq = 0; Wq = 0

• Many applications

Variations and extensions of 
birth-and-death queueing systems

• Huge number of extensions on the previous 
models

• Most common is arrival rates and service 
rates that depend on state of the system; 
some lead to closed-form expressions

• Systems which are not birth-and-death, but 
can be modeled by continuous time, discrete 
state Markov processes can also be 
analyzed [“phase systems”]

• State representation is the key (e.g. M/Ek/1)


