

The differential equations that determine the state probabilities

$$
P_n(t + \Delta t) = P_{n+1}(t) \cdot \mu_{n+1} \cdot \Delta t + P_{n-1}(t) \cdot \lambda_{n-1} \cdot \Delta t + P_n(t) \cdot [1 - (\mu_n + \lambda_n) \cdot \Delta t]
$$

After a simple manipulation:

$$
\frac{dP_n(t)}{dt} = -(\lambda_n + \mu_n) \cdot P_n(t) + \lambda_{n-1} \cdot P_{n-1}(t) + \mu_{n+1} \cdot P_{n+1}(t)
$$
 (1)
(1) applies when $n = 1, 2, 3,...$; when $n = 0$, we have:

$$
\frac{dP_0(t)}{dt} = -\lambda_0 \cdot P_0(t) + \mu_1 \cdot P_1(t)
$$
 (2)
• The system of equations (1) and (2) is known as the
Chapman-Kolmogorov equations for a birth-and-death
system

The "state balance" equations • **We now consider the situation in which the queueing system has reached "steady state", i.e.,** *t* **is large enough to have** $P_n(t) = P_n$, independent of t, or $\frac{dP_n(t)}{dt} = 0$ • **Then, (1) and (2) provide the state balance equations:** • **The state balance equations can also be written directly from the state transition diagram** $(\lambda_n + \mu_n) \cdot P_n = \lambda_{n-1} \cdot P_{n-1} + \mu_{n+1} \cdot P_{n+1}$ $n = 1, 2, 3,...$ (4) $n = 0$ (3) $\lambda_0 \cdot P_0 = \mu_1 \cdot P_1$ $n =$

**M/M/1: Derivation of
$$
P_0
$$
 and P_n**
\n
\n
\n
\n
\n**Step 1:** $P_1 = \frac{\lambda}{\mu} P_0, P_2 = \left(\frac{\lambda}{\mu}\right)^2 P_0, \dots, P_n = \left(\frac{\lambda}{\mu}\right)^n P_0$
\n
\n**Step 2:** $\sum_{n=0}^{\infty} P_n = 1, \Rightarrow P_0 \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n = 1 \Rightarrow P_0 = \frac{1}{\sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n}$
\n
\n**Step 3:** $\rho = \frac{\lambda}{\mu}, \text{ then } \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n = \sum_{n=0}^{\infty} \rho^n = \frac{1-\rho^n}{1-\rho} = \frac{1}{1-\rho} \quad (\because \rho < 1)$
\n
\n**Step 4:** $P_0 = \frac{1}{\sum_{n=0}^{\infty} \rho^n} = 1 - \rho \text{ and } P_n = \rho^n (1-\rho)$

**M/M/1: Derivation of L, W, W_q, and L_q
\n•
$$
L = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{\infty} n \rho^n (1-\rho) = (1-\rho) \sum_{n=0}^{\infty} n \rho^n = (1-\rho) \rho \sum_{n=1}^{\infty} n \rho^{n-1}
$$

\n
$$
= (1-\rho) \rho \frac{d}{d\rho} \left(\sum_{n=0}^{\infty} \rho^n \right) = (1-\rho) \rho \frac{d}{d\rho} \left(\frac{1}{1-\rho} \right)
$$
\n
$$
= (1-\rho) \rho \left(\frac{1}{(1-\rho)^2} \right) = \frac{\rho}{(1-\rho)} = \frac{\lambda}{1-\lambda} \frac{\lambda}{\mu-\lambda}
$$
\n• $W = \frac{L}{\lambda} = \frac{\lambda}{\mu-\lambda} \cdot \frac{1}{\lambda} = \frac{1}{\mu-\lambda}$
\n• $W_q = W - \frac{1}{\mu} = \frac{1}{\mu-\lambda} - \frac{1}{\mu} = \frac{\lambda}{\mu(\mu-\lambda)}$
\n• $L_q = \lambda W_q = \lambda \cdot \frac{\lambda}{\mu(\mu-\lambda)} = \frac{\lambda^2}{\mu(\mu-\lambda)}$**

M/M/1: An alternative, direct derivation of *L* **and** *W*

• **For an M/M/1 system, with FCFS discipline:**

$$
W = \sum_{n=0}^{\infty} \frac{(n+1)}{\mu} \cdot P_n = E[\frac{n+1}{\mu}] = \frac{E[n]+1}{\mu} = \frac{L+1}{\mu}
$$
 (1)

- **But from Little's theorem we also have: (2)** $L = \lambda \cdot W$
- **It follows from (1) and (2) that, as before:**

$$
L = \frac{\lambda}{\mu - \lambda}; \qquad W = \frac{1}{\mu - \lambda}
$$

Does the queueing discipline matter?

Additional important M/M/1 results • **The pdf for the total time in the system,** *w,* **can be computed for a M/M/1 system (and FCFS):** $f_w(w) = (1 - \rho)\mu e^{-(1 - \rho)\mu w} = (\mu - \lambda)e^{-(\mu - \lambda)w}$ for $w \ge 0$ **Thus, as already shown,** $W = 1/(\mu - \lambda) = 1/[\mu (1-\rho)]$ • **The standard deviation of** *N***,** *w***,** *Nq***,** *wq* **are all proportional to 1/(1-**ρ*),* **just like their expected** values (*L*, *W*, L_{α} , W_{α} , respectively) • **The expected length of the "busy period",** *E[B]***, is equal to** $1/(\mu - \lambda)$

