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Little’s Law

Markovian Birth-and-Death Queues
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Priority Queues

Some Useful Bounds

Congestion Pricing
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Lecture Outline

Introduction to queueing systems

Conceptual representation of queueing
systems

Codes for queueing models
Terminology and notation
Little’s Law and basic relationships

Reference: Chapter 4, pp. 182-193

Queues

Queueing theory is the branch of operations research
concerned with waiting lines (delays/congestion)

A queueing system consists of a user source, a queue
and a service facility with one or more identical parallel
servers
A queueing network is a set of interconnected queueing
systems
Fundamental parameters of a queueing system:
- Demand rate - Capacity (service rate)
- Demand inter-arrival times - Service times
- Queue capacity and discipline (finite vs. infinite;
FIFO/FCFS, SIRO, LIFO, priorities)
- Myriad details (feedback effects, “balking”,
“jockeying”, etc.)




A Generic Queueing System
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Applications of Queueing Theory

Some familiar queues:

_ Airport check-in; aircraft in a holding pattern

_ Automated Teller Machines (ATMSs)

_ Fast food restaurants

_ Phone center’s lines

_ Urban intersection

_ Toll booths

_ Police or other spatially distributed urban services
Level-of-service (LOS) standards

Economic analyses involving trade-offs among
operating costs, capital investments and LOS
Congestion pricing

The Airside as a Queueing Network
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Queueing Models Can Be Essential in
Analysis of Capital Investments
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Strengths and Weaknesses of
Queueing Theory

Queueing models necessarily involve approximations
and simplification of reality

Results give a sense of order of magnitude, changes
relative to a baseline, promising directions in which to
move

Closed-form results essentially limited to “steady
state” conditions and derived primarily (but not solely)
for birth-and-death systems and “phase” systems
Some useful bounds for more general systems at
steady state

Numerical solutions increasingly viable for dynamic
systems

Huge number of important applications




A Code for Queueing Models:
A/B/m
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« Some standard code letters for ‘A/\ and B:
_M: Negative exponential (M stands for memoryless)
_D: Deterministic
_E,:kth-order Erlang distribution
_ G: General distribution

Terminology and Notation

Number in system: number of customers in
gueueing system

Number in queue or “Queue length”: number of
customers waiting for service

Total time in system and waiting time

N(t) = number of customers in queueing system
at time t

P,(t) = probability that N(t) is equal to n at time t

A, mean arrival rate of new customers when
N() =n

4,: mean (total) service rate when N(t) = n




Terminology and Notation (2)

- Transient state: state of system attis
influenced by the state of the systematt =0

- Steady state: state of the system is independent
of initial state of the system

« m: number of servers (parallel service
channels)

 If 4,and the service rate per busy server are
constants, 4 and g, respectively, then 4,=4, u,=
min (ng, mg); in this case:
_ Expected inter-arrival time = 1/4
_ Expected service time = 1/u

Some Expected Values of Interest
at Steady State

« Given:
_ A=arrival rate
_ u=service rate per service channel

« Unknowns:
_ L =expected number of users in queueing system
_ L, = expected number of users in queue
_ W =expected time in queueing system per user (W =
E(w))
_ W, =expected waiting time in queue per user (W, =
E(wg))
« 4 unknowns = We need 4 equations




Little’s Law

Number of 4 A(t): cumulative arrivals to the system
users C(t): cumulative service completions in the system

Time
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Relationships among L, L, W, W,

« Four unknowns: L, W, Ly, W,
« Need 4 equations. We have the following 3 equations:
_ L=AW (Little’s law)
_ Ly =AW,
CW=W,
7]

- If we can find any one of the four expected values, we
can determine the three others

« The determination of L (or other) may be hard or easy
depending on the type of queueing system at hand

e L= z nP, (P, :probability that n customersare in the system)

n=0




Birth-and-Death Queueing Systems

1. m parallel, identical servers.
2. Infinite queue capacity (for now).

3. Whenever n users are in system (in
gueue plus in service) arrivals are
Poisson at rate of 4, per unit of time.

4. Whenever n users are in system,
service completions are Poisson at
rate of g, per unit of time.

5. FCFS discipline (for now).

The Fundamental Relationship

n+1l users
At

& Pn(t) = Prob [n users

1t i) At in system at time t]
n users

n users
At

n-1 users

Po(t+4t) =Png(t) prngq - At+Py_g () - A g - At + Py (1) - [1- (e + 4p) - At]
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The differential equations that
determine the state probabilities

Po(t+at) =Py () pnpg - At+Pyg () Apg - At + Py (1) -[1— (un + 45) - 4t]

After a simple manipulation:

dP, (t
(r;t( ) =—(An + ) - P (@) + An_g - Prog () + tngg - Pra®) (1)
(1) applies when n=1, 2, 3,....; when n =0, we have:
dP, (t
#() =-Ag -Po(t) + 14 - PL(1) (2)

* The system of equations (1) and (2) is known as the
Chapman-Kolmogorov equations for a birth-and-death
system

The “state balance” equations

« We now consider the situation in which the queueing
system has reached “steady state”, i.e., t is large,
enough to have P, (t) = Py, independent of t, or dPy (1) -0

dt
e Then, (1) and (2) provide the state balance equations:
Ao-Po=m-R n=0 (€©)

(An +40) Py = An_1 - Pzt + #ng1 - Prsa n=123,.. (4)

« The state balance equations can also be written directly
from the state transition diagram
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Birth-and-Death System: State
Transition Diagram

* We are interested in the characteristics of the system
under equilibrium conditions (“steady state”), i.e., when

the state probabilities Pn(t) are independent of t for
large values of t

» Can write system balance equations and obtain
closed form expressions for P,, L, W, L,, W,

Solving.....

Solving (3) and (4), we have:

A A A

yZ1 H2 H2
and, in general,
Pn :ﬂan_l'ﬂ/n_z‘ ..... .ﬁl'ﬂo .Poan-PO

Hn* Mol e Moo
But, we also have: 1= ZPn =Py -1+ ZKn)

n=1
Giving, Py = + Condlt&g)n for steady state:
1+ Y K, > Kp <o
n=1 n=1




