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Queueing Systems: Lecture 1 

Amedeo R. Odoni 

Topics in Queueing Theory 

• Introduction to Queues 
• Little’s Law 
• Markovian Birth-and-Death Queues 
• The M/M/1 and Other Related Queues 
• The M/G/1 Queue and Extensions 
• Priority Queues 
• Some Useful Bounds 
• Congestion Pricing 
• Queueing Networks; State Representations 
• Dynamic Behavior of Queues 
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Lecture Outline 

•	 Introduction to queueing systems 
•	 Conceptual representation of queueing 

systems 
•	 Codes for queueing models 
•	 Terminology and notation 
•	 Little’s Law and basic relationships 

Reference: Chapter 4, pp. 182-193 

Queues 
•	 Queueing theory is the branch of operations research 

concerned with waiting lines (delays/congestion) 
•	 A queueing system consists of a user source, a queue 

and a service facility with one or more identical parallel 
servers 

•	 A queueing network is a set of interconnected queueing 
systems 

•	 Fundamental parameters of a queueing system: 
- Demand rate - Capacity (service rate) 
- Demand inter-arrival times - Service times 
- Queue capacity and discipline (finite vs. infinite; 

FIFO/FCFS, SIRO, LIFO, priorities)

- Myriad details (feedback effects, “balking”, 


“jockeying”, etc.)
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Applications of Queueing Theory 

•	 Some familiar queues: 
_ Airport check-in; aircraft in a holding pattern 
_ Automated Teller Machines (ATMs) 
_ Fast food restaurants 
_ Phone center’s lines 
_ Urban intersection 
_ Toll booths 
_ Police or other spatially distributed urban services 

•	 Level-of-service (LOS) standards 
•	 Economic analyses involving trade-offs among 

operating costs, capital investments and LOS 
•	 Congestion pricing 

The Airside as a Queueing Network 
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Analysis of Capital Investments 
Queueing Models Can Be Essential in 

Cost 

Airport Capacity 
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Total cost  
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“Optimal” capacity 

Optimal 
cost 

Strengths and Weaknesses of 
Queueing Theory 

•	 Queueing models necessarily involve approximations 
and simplification of reality 

•	 Results give a sense of order of magnitude, changes 
relative to a baseline, promising directions in which to 
move 

•	 Closed-form results essentially limited to “steady 
state” conditions and derived primarily (but not solely)
for birth-and-death systems and “phase” systems 

•	 Some useful bounds for more general systems at 
steady state 

•	 Numerical solutions increasingly viable for dynamic 
systems 

•	 Huge number of important applications 
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A/B/m 

• Some standard code letters for A and B: 
_ ( ) 
_ D: Deterministic 
_ Ek

_ G: General distribution 
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A Code for Queueing Models: 

M: Negative exponential M stands for memoryless

:kth-order Erlang distribution 
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Terminology and Notation 

•	 Number in system: number of customers in 
queueing system 

•	 Number in queue or “Queue length”: number of 
customers waiting for service 

•	 Total time in system and waiting time 
•	 N(t) = number of customers in queueing system 

at time t 
•	 Pn(t) = probability that N(t) is equal to n at time t 
•	 λn: mean arrival rate of new customers when 

N(t) = n 
•	 µn: mean (total) service rate when N(t) = n 
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Terminology and Notation (2) 

•	 Transient state: state of system at t is 
influenced by the state of the system at t = 0 

•	 Steady state: state of the system is independent 
of initial state of the system 

•	 m: number of servers (parallel service
channels) 

•	 If λn and the service rate per busy server are 
constants, λ and µ, respectively, then λ =λ, µ = n n 
min (nµ, mµ); in this case:

_ Expected inter-arrival time = 1/λ

_ Expected service time = 1/µ


• Unknowns: 
_ L 
_ Lq 

_ W W = 
E(w)) 

_ Wq = Wq = 
E(wq)) 

• 4 unknowns ⇒ We need 4 equations 

Some Expected Values of Interest 
at Steady State 

• Given: 
_ λ = arrival rate 
_ µ = service rate per service channel 

= expected number of users in queueing system 
= expected number of users in queue 
= expected time in queueing system per user (

expected waiting time in queue per user (
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Little’s Law 
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Relationships among L, Lq, W, Wq 

•	 Four unknowns: L, W, Lq, Wq 
•	 Need 4 equations. We have the following 3 equations: 

_ L = λW (Little’s law) 
_ Lq = λWq 

1 
_	 W = Wq + 

µ 

•	 If we can find any one of the four expected values, we 
can determine the three others 

•	 The determination of L (or other) may be hard or easy 
depending on the type of queueing system at hand 

∞ 

•	 L =∑ nP (P y that probabilit : n system) in the are customers n n

n=0
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Birth-and-Death Queueing Systems 

1.	 m parallel, identical servers. 
2.	 Infinite queue capacity (for now). 
3.	 Whenever n users are in system (in 

queue plus in service) arrivals are 
Poisson at rate of λn per unit of time. 

4.	 Whenever n users are in system, 
service completions are Poisson at 
rate of µn per unit of time. 

5.	 FCFS discipline (for now). 

The Fundamental Relationship 
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The differential equations that 
determine the state probabilities 
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(1) applies when = 1, 2, 3,….; when 0, we have: 

− = 

The system of equations (1) and (2) is known as the 
Chapman-Kolmogorov equations for a birth-and-death 
system 

The “state balance” equations 

• 
t is large

enough to have 

• 

• 
from the state transition diagram 
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We now consider the situation in which the queueing 
system has reached “steady state”, i.e., 

           , independent of t, or 

Then, (1) and (2) provide the state balance equations: 

The state balance equations can also be written directly 
3 ,2 ,1 
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Birth-and-Death System: State 
Transition Diagram 
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…… …… 

• 
closed form expressions for Pn, L, W, Lq, Wq 

• 

the state probabilities Pn(t) are independent of t for 
large values of t 

m+1  

Can write system balance equations and obtain 

We are interested in the characteristics of the system 
under equilibrium conditions (“steady state”), i.e., when 

Solving….. 
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Solving (3) and (4), we have: 

and, in general, 

But, we also have: 

∞ < 
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