#### **Networks: Lecture 2**

Amedeo R. Odoni November 17, 2004

### **Solving the TSP**

- Best existing exact algorithms can solve optimally problems with up to 15,000 points (as of 2001)
- Numerous heuristic approaches for good solutions to MUCH larger problems
- For practical purposes, heuristics are very powerful. A classification:
  - \_ Tour construction
  - \_ Tour improvement
  - Hybrid
- Analysis of heuristics:
  - Worst case

\_ Empirical

\_ Asymptotic

Probabilistic

#### **Outline**

- Generic heuristics for the TSP
- Euclidean TSP: tour construction, tour improvement, hybrids
- Worst-case performance
- Probabilistic analysis and asymptotic result for Euclidean TSP [Separate handout]
- Extensions

#### **Heuristics: Euclidean TSP**

#### **The Nearest Neighbor Heuristic**



#### **Performance: Nearest Neighbor**

$$\frac{L(NEARNEIGHBOR)}{L(TSP)} \le \frac{1}{2} \lceil \log_2 n \rceil + \frac{1}{2}$$

- Poor performance in practice (+20%)
- Can be improved through refinements (e.g., "likely subgraph")

### **Insertion Heuristics**



## **Worst-case Performance: Insertion Heuristics**

- $\frac{L(RANDOM\ INSERT)}{L(TSP)} \le \lceil \log_2 n \rceil + 1$
- $\frac{L(NEAR\ INSERT)}{L(TSP)} < 2$
- $\frac{L(FAR\ INSERT)}{L(TSP)}$  => Unknown
- $\frac{L(CHEAP\ INSERT)}{L(TSP)} < 2$

### **Empirical Performance: Insertion Heuristics**

- In practice "Farthest Insertion" and "Random Insertion" (+9%, +11%) seem to perform better than "Cheapest" and "Nearest" (+16%, +19%)
- Can be further refined (e.g., though the Convex Hull heuristic)







## Worst-case Performance: MST Heuristic for TSP

 $L(MST) \le L(TSP-(longest edge of TSP)) < L(TSP)$ 

$$=>$$
  $L(MST-TOUR) = 2*L(MST) < 2*L(TSP)$ 

$$\frac{L(MST - TOUR)}{L(TSP)} < 2$$







## Improve Solution by Skipping Points Already Visited



### Worst-case Performance: The Christofides Heuristic

- L(CHRISTOFIDES) = L(MST) + L(M)
- But, L(MST) < L(TSP)</li>
   and L(M) ≤ L(M') ≤ L(TSP) / 2

(M' = minimum length pairwise matching of odd- degree nodes of MST using only links that are part of TSP)

### **Worst-case Performance: The Christofides Heuristic**

L(CHRISTOFIDES) = L(MST) + L(M)

But, L(MST) < L(TSP)and  $L(M) \le L(M') \le L(TSP)/2$ 

(M' = minimum length pairwise matching of odddegree nodes of MST using only links that are part of TSP)

 $=> \frac{L(CHRISTOFIDES)}{L(TSP)} < \frac{3}{2}$ 

## A Worst-Case Example for the Christofides Heuristic



# A Worst-Case Example for the Christofides Heuristic (2)



L(Christofides) =  $2*m*(1-\epsilon) + m \approx 3*m$ 

# A Worst-Case Example for the Christofides Heuristic (3)



$$L(TSP) = m + m - 1 + 2*(1 - \epsilon) \approx 2*m + 1$$

Therefore:

$$\frac{L(CHRISTOFIDES)}{L(TSP)} \approx \frac{3m}{2m+1} \to \frac{3}{2} \quad as \quad m \to \infty$$

# The Convex Hull Heuristic: Euclidean Plane



### **Adding New Points**



#### **Convex Hull Heuristic (Euclidean TSP)**

- Optimal TSP tour cannot intersect itself
- Therefore, points on the convex hull must appear in same order on optimal TSP tour
- Provides good starting point; for instance, improves insertion heuristics by 2-3%, on average



### The Savings Algorithm (2)

- Connect every node to the origin ("depot") through a "round trip" (n-1 tours)
- Merge tours, one node at a time, by maximizing the "savings"
   s(i,j) = d(D,i) + d(D,j) - d(i,j)
- Tours should not violate such constraints as:
  - \_ Vehicle capacity
  - \_ Maximum length of a tour
  - \_ Maximum number of stops per tour
- O(n<sup>3</sup>)
- Performs very well in practice; very flexible



## Tour Improvement Heuristics: Node Insertion



- d(p,q) + d(j,i) + d(i,k) vs. d(p,i) + d(i,q) + d(j,k)
- O(n²) computational effort on each iteration

## Tour Improvement Heuristics: 2-exchange (or "2-opt")



## Tour Improvement Heuristics: 3-exchange (or "3-opt")



# **Tour Improvement Heuristics:** Variable Depth Search

- Lin and Kernighan (1973)
- Use combinations of 2-opt and 3-opt searches
- Initially many "short-depth", later fewer
- Has been extended to "deeper" searches than 3-opt
- Numerous variations