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Crofton’s Method

Let X; and X5 be independent random variables that are uniformly distributed over the interval
[0, a]. We are interested in computing E[|X; — Xs|]. For instance, in an urban setting, X; and Xy
may denote the location of an accident and the location where an emergency vehicle is currently
parked in a road segment of length a, respectively. In this case, we want to know the distance (or
the travel time) on average between the two locations, E[|X; — X2|]. We may solve this question
using a joint distribution of X; and X5, but Crofton’s method is quite useful for the question.

Let G(a) = E[|X; — X2|]. Now consider the following question: If the interval were [0,a + €]
where € is small, what would G(a+¢€) be? Table 1 summarizes G(a+ ¢) depending on the locations
of X7 and Xs.

Table 1: G(a + ¢)

Case Probability of a case | G(a + €) given a case
0<X;<a, 0<Xy<a A= (3%)? G(a)
€ _ _& 3 _ ate
CL<X]_§U/+E, OSXQSU/ a_‘lf‘aL‘lf_(a‘i’(z)Q a+§_%—aT
a e _ €a € a __ ate
0<Xi<a, a<X9<a+e ate ate = (ate)y? a+5—5="95
a<Xi<a+e a<Xy<a+e %ﬁ%ﬁ:(ﬁay We do not care.

Figure 1: Case where 0 < X; <aanda< Xo <a+¢

Note that we did not specify G(a + ¢) for the case where a < X1 <a+eanda< Xy <a+e,
because the probability of that case, (G%FE)Z, is negligible when ¢ is small (“If ¢ is small, €2 is
pathetic.”).

To compute G(a+¢) from Table 1, we invoke the total expectation theorem (or the conditional
expectation rule). When a sample space is divided into Aj, As, ... , A, that are mutually exclusive

and collectively exhaustive events, the expected value of a random variable Z is computed by



Using the total expectation theorem, we obtain
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where o(g?) is a collection of terms of order 2 or higher. If ¢ is small, we can ignore o(e?). Hence

we have
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From the formula of the sum of an infinite geometric series, we know
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This gives the following approximations:
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Therefore, we can rewrite G(a + €) as

G(a+¢) ~ G(a) ( >

Rearranging terms, we have
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If ¢ — 0, we have the following differential equation:

G'(a)

Now let us “guess” that G(a) = C' + Ba, where C and B are some constants. Since G(0) = 0, we

~2G(a)

= +1.
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have C' = 0. From the differential equation above, we obtain
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Therefore

G(a) =

Crofton’s method can be used to compute F[max(X1, X2)] as well. In this case, there are slight

changes in G(a+ ¢) as shown in Table 2. Following a procedure similar to one we just used, we can

show that
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E[| X1 — Xs|| = 3
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G(a) = Elmax(X1, X2)] = 3

Table 2: G(a + ¢)

Case Probability of a case | G(a + €) given a case
0<X1<a, 0<Xy,<a = (GR)? G(a)
a<Xi1<a-+e 0<X5<a aLJrE.aLJrE:(a—EI—iP a+$
0<Xi1<a, a<Xo<a+te aLﬁ.aLﬁ:(aj—i)Q a+$
a<Xi1<a+e a<Xo<a+te a%rsa%ﬂz:(a%rs)Q We do not care.




