
PREEMPTIVE PRIORITY QUEUES

 Consider an M/M/1 queuing system in which there are two 
classes of customers--high and low priority--who arrive under 
independent Poisson processes with parameters of, respectively, λ1 

and λ2. We assume that: 

•	 No low-priority customer enters service when any high-priority 
customers are present. 

•	  If a low-priority customer is in service, his service will be 
interrupted at once if a high-priority customer arrives, and will 
not be resumed until the system is again clear of high-priority 
customers. 

•	 Service times for different customers are independent, and all 
follow an exponential distribution with parameter µ.

 We seek here the average queue length and mean time in 
system for high-priority (hereafter Type 1) customers, and the 
corresponding quantities for low-priority (Type 2) customers. 

Easy Start

 The analysis for L1 and W1 (L and W for the Type-1’s) is 
straightforward. Type-2 customers are nonexistent as far as Type-
1 service is concerned, so the Type-1’s enjoy an M/M/1 queuing 
system with arrival λ1 and service rate µ. We can therefore invoke 
previous results and write:

 W1 = 1/(µ- λ1) L1 = λ1/(µ- λ1) 

Light Turbulence

 Obviously, matters are more complicated for the Type-2 
analysis. We proceed first to calculate E2(w⏐k1,k2), the conditional 



k
mean time in the system for a Type-2 customer who arrives to find 

1 Type-1’s and k2 Type-2’s already there.

 First of all, we note that all Type 1’s present will have to be 
served before any of the Type 2’s get any attention. Moreover, any 
other Type 1’s who arrive while the present Type-1’s are being 
served--and any Type 1’s who arrive while this second group is 
getting served, etc.--will be handled before the server turns to the 
first Type-2. Thus, even if there are only five Type-1’s now, there 
might be 25 Type-1 services before the first Type-2 service begins. 
On average, how long will it take to clear the system of the k1 Type-
1’s and their high-priority “descendants”?

      Things are easier if we make the observation that the mean time 
it takes the server to get rid of the Type-1’s is independent of the 
order in which she serves them. Thus, it does not change the 
problem mathematically if we assume that the server first handles 
the longest waiting of the k1 Type-1’s and his “descendants,” then 
turns to the second-longest waiting and proceeds similarly, and 
continues in this way until she gets to the ki

th and her descendants. 
The average time to handle the first group (longest waiting plus his 
descendants) is simply the average busy period for an M/M/1 queue 
with parameters λ1 and µ. (Do you see why? Ask us if not.) As we 
have seen earlier, this busy period B1 follows: 

B1 = 1/(µ- λ1)

 Similarly, the time to deal with each of the other k groups of 
Type-1’s is on average B1. Thus, the total mean time to get rid of 
the Type-1 customers and turn to the low-priority group is k1 B1. 

The Type-2 Ordeal

 A Type-2 customer’s “service” can be humiliating and 
protracted. He starts service and either (i) finishes up before any 
Type-1’s arrive, or(ii) is instead preempted by a Type-1 arrival. 
Once such preemption occurs, the server will turn to this Type-1 
and her descendants and, on average, will not resume service to the 
Type-2 until a full Type-1 busy period (B1) has elapsed. And, once 



service resumes, the Type-2 is essentially back at the beginning: 
under an exponential service time distribution, he gets no “partial 
credit” for the time he already spent in service.

 To turn the preceding description into mathematics, we need an 
important general result about exponential processes: 

Suppose that the time to the next event in process A is exponential 
with parameter rA, and that in process B it is exponential with 
parameter rB. Then: 

•	 the time until the next event in either process follows an 
exponential distribution with parameter rA + rB. 

•	 The probability the next event comes from process A is
 rA/( rA + rB.), and from process B is rB/( rA + rB.).

 Now, let’s return to the start of a Type-2 service. Two 
exponential processes will be competing to stop this service: 
completion of the service, and the arrival of a high-priority 
customer. From the previous paragraph, we see that the average 
time until the stoppage will be 1/(λ1 + µ), while the probability that 
it represents a service completion is µ/(λ1 + µ). If service is 
interrupted rather than completed (probability λ1/(λ1 + µ)), then it 
will be an average of B1 time units until the server returns to the 
Type-2 customer, at which point the customer is effectively back at 
the beginning. Putting all this stuff together via the conditional 
expectation rule, we find the following equation for the mean Type-
2 service time E2(s):

 E2(s) = [µ/(λ1 + µ)][1/(λ1 + µ)] + [λ1/(λ1 + µ)][1/(λ1 + µ) + B1 + E2(s)] 

(The first term on the right covers the case when the Type-2 service 
is not interrupted; the second covers the case when it is.) 

Note that we have one linear equation in one unknown above, so we 
can solve immediately for E2(s). 



------------------------------------------------------------------------

 The time it will take the server to clear the system of all k2 of the 
Type-2’s already present is simply k2 E2(s); it will take her an 
additional E2(s) to serve the new arrival. It follows that: 

E2(w⏐k1,k2) = k1 B1 + (k2 + 1) E2(s) 

Our Service Ends

 We’re almost finished. We need recall that k1 and k2 are 
themselves random variables, and thus that, to work out the overall 
mean time-in-system for a Type-2 customer, we need use the 
conditional expectation rule once more: 

W2 = B1E(k1) + E2(s)E(k2+1) 

Now, E(k1) is just L1 and E(k2+1) is just L2 + 1. Thus, we can rewrite 
this last equation as: 

W2 = B1L1 + E2(s)(L2+1) 

With a Little help from our friends, we know too that L2 = λ2W2. 
Given that we know L1 and the other constants in the above 
expression for W2, it combines with Little’s law to give us two linear 
equations for the two unknowns L2 and W2. You can work out the 
algebra. 


