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The M/G/1 Queueing System 

For the M/G/1 queueing system being operated under the FIFO service rule, we derive the expres-

sions of the following quantities in terms of the arrival rate λ, the mean service time E[S], and the 

variance of service time σ2 S . 

•	W : the average time a randomly arriving customer will spend in the system, which is com-

posed of the waiting time in the queue and the service time. 

•	 L: the average number of people in the system that a randomly arriving customer finds, 

which is composed of the number of people in the queue and the person in service. 

•	 ρ: the long run fraction of time the server is busy, which is equivalently the probability that 

the server is busy at a random point in time. 

•	 B: the long run average duration of a server busy period. 

Recall that the M/G/1 queueing system is a single server queueing system in which the customer 

arrival process is Poisson with rate λ and the service time, S, for each customer follows a general 

distribution with PDF fS (s), mean E[S], and variance σ2 S .	 Let us first compute ρ and B. 
∗Suppose we have been watching the queueing system for a very very long time, say T minutes 

∗where T is very large. If we recorded the number of minutes the server was busy during this long 
∗period of time and then divided it by T , we would obtain ρ, the long run fraction of time the 

∗	 ∗server is busy. During the long period of time T , we would expect there have been λT customers 

arriving to the queueing system, each of who takes on average E[S] minutes to be served. This 

means 

∗number of minutes server is busy λT × E[S]
ρ =	 = = λE[S] . 

T ∗	 T ∗ 

To compute B, the long run average length of a server busy period, we again think of observing 

the system for a long period of time. During this long period of time, there occur a large number, 

say N , of busy periods. Since every busy period is followed by an idle period, we could say that 

the number of idle periods is N as well. (The difference between the number of busy periods and 

the number of idle periods would be at most one, and this is negligible compared to N .). Since 

the average length of a busy period is B and the number of busy periods is N , the total amount of 

time the server is busy, over the the long period of time we are observing, is NB. 
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The length of an idle period is, on average, 1/λ since an idle period occurs when the server is 

waiting for a customer to arrive after the queue becomes empty. Since the arrival process is Poisson 

and therefore memoryless, the server will wait a negative exponentially distributed amount of time 

until the next customer arrives. Therefore if there are N idle periods, the total amount of time the 

server is idle is N/λ. The fraction of time the server is busy, ρ, can now be computed by 

NB  B 
ρ = = 

(NB  + N/λ) B + 1 
. 

λ 

Solving for B and using ρ = λE[S], we have 

ρ 
E[S]

B = λ = . 
1 − ρ 1 − λE[S] 

Let T be a random variable denoting the amount of time that a randomly arriving customer, 

say I, will spend in the system. Our goal is to compute W = E[T ]. Note that we can decompose 

T into the following three random variables: 

• T1, the remaining service time of the customer currently in service. 

• T2, the time required to serve the customers waiting ahead of me in the queue. 

• T3, my service time. 

Clearly, W = E[T1] +  E[T2] +  E[T3]. Since the expected service time for each customer is E[S], 

we have 

E[T3] =  E[S] . 

To obtain E[T2], we first compute the conditional expectation of T2 given that there are already 

n customers in the system when I, a randomly arriving customer, arrive in the system. Since one 

customer is being served and n − 1 customers are waiting in the queue, 

(n − 1)E[S], n  ≥ 1, 
E[T2 | n] =  

0, n = 0. 

Using the total expectation theorem, we obtain 

E[T2] =  E[T2 | n]Pn = (n − 1)E[S]Pn 
n n≥1 

= E[S] nPn − E[S] Pn . 
n≥1 n≥1 
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Note that n≥1 nPn = L and Pn = ρ. So  we  have  n≥1 

E[T2] =  E[S]L− E[S]ρ .  

Now let us compute E[T1]. Since the service time distribution may not be negative exponential, 

we should consider the issue of random incidence. Note that I, a randomly arriving customer, am 

more likely to join the queueing system when the duration of the current service is long than when 

it is short, because long services take up more of the time horizon. The expected remaining service 

time for the customer in service when I randomly arrive in the system is given by (see Equation 

(2.66) in the textbook) 

2σS+E[S]
2 

= 
2σS 

E[T1 | n] =  2E[S] 2E[S] 
E[S]+ , n  ≥ 1,2 

0, n = 0. 

E[T1] is then computed by 

E[T1] =  E[T1 | n]Pn 
n � σ2 E[S]S = + Pn

2E[S] 2 
n≥1 

σ2 E[S]S= + Pn
2E[S] 2 

n≥1 

σ2 E[S]S= + ρ .  
2E[S] 2 

Note that the last equality holds because Pn is the probability of the server being busy, which n≥1 

is ρ. 

Adding up all the parts we have derived above, we get 

W = E[T1] +  E[T2] +  E[T3] 

σ2 E[S] 
= S + ρ+ E[S]L− E[S]ρ+ E[S] . 

2E[S] 2 

We now have one linear relationship between L and W . Combining this with Little’s Law, L = λW , 

we have two equations for two unknowns, L and W . A little algebra gives us 

ρ2 + λ2σ2 
L = ρ+ S ,

2(1 − ρ) 

and W follows. 
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