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Quiz 2 Solutions 

(Larson 2002) 
(a) With probability 0.3, the emergency occurs on one of the two links incident to the garage 

location of ambulance 2. In this case, the travel distance is U(0, 1). With probability 0.7, the 
emergency occurs on one of the two links not incident to the garage location of ambulance 2. In 
this case, the travel distance is U(1, 2). Accordingly, as shown in Figure 1, the conditional pdf of 
the travel distance for ambulance 2 to travel to the scene of the emergency incident is 

0.3, d ∈ [0, 1)
fD (d) =  

0.7, d ∈ [1, 2] 

fD(d) 

0.7 
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Figure 1: Conditional pdf of Travel Distance 

(b) 
The state transition diagram for this system is shown in Figure 2, where first component of 

the state indicates whether ambulance 2 is busy and the second component indicates whether 
ambulance 1 is busy. We can thus write the following balance equations. 
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Figure 2: State Transition Diagram 

P0,0(0.3 + 0.7) = P0,1 + P1,0 

2P0,1 = 0.7P0,0 + P1,1 

2P1,1 = P1,0 + P0,1 

P0,0 + P0,1 + P1,0 + P1,1 = 1  

Solving this system, we obtain 

2 
P0,0 = 

5 
6 

P0,1 = 
25 
4 

P1,0 = 
25 
1 

P1,1 = 
5 

Therefore, 

11 
ρ1 = P0,1 + P1,1 = 

25 
9 

ρ2 = P1,0 + P1,1 = 
25 

(c) This is a straightforward application of Equation 5.18 from the textbook. 

2η 
s0 =

2η + 1
(T2(B) − T1(B)) 
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where Tn(B) gives the average travel time for unit n to travel to a random service request from 
anywhere in the entire service region. Note that s0 is therefore given in time units. Let us multiply 
the RHS through by the travel speed and let Dn(B) denote the average travel distance for unit n 
to travel to a random service request from anywhere in the entire service region. We can then write 
s0 as follows, in units of distance rather than time. 

2η 
s0 =

2η + 1
(D2(B) − D1(B)) 

D1(B) = 0.1 · 1.5 + 0.2 · 1.5 + 0.3 · 0.5 + 0.4 · 0.5 = 0.8 

D2(B) = 0.1 · 0.5 + 0.2 · 0.5 + 0.3 · 1.5 + 0.4 · 1.5 = 1.2 
λ 1 

η = 
2µ 

= 
2 

0.4 
=s0 = 0.2 km  

2 

This means we shift the equal-travel-time boundary line away from the northwest and southeast 
corners of the square and toward the northeast corner of the square, but moving only 0.2 km in 
those directions. 

(Odoni 2002) 
(a) The length of the optimal CPP tour will be the length of the original network, plus the length 

of the optimal pairwise matching of odd-degree nodes. The odd degree nodes are C,F,G,H,J,I,P, 
and L. By inspection, the optimal matching is C-F (8), G-H (9), J-I (6), and P-L (16), where 
the numbers in parentheses give the cost of this matching. So, the optimal CPP tour has length 
130 + 8 + 9 + 6 + 16 = 169. 

(b) Let us first use the majority theorem. Consider isthmus (G,H), which separates the network 
into two distinct subnetworks with node sets 

N1 = {A, B, C, D, E, F, G}
and N ′ 

1 = {H, I, J, K, L, M, N, O, P, Q, R, S} 

The total weights of these node sets are given by W (N1) = 7  and  W (N ′) = 12, respectively (we’ll 1

use W instead of the usual H notation to avoid confusion with node H). As a result, we can discard 
the portion of the original graph involving node set N1 and consider the subnetwork with node set 

′ and all node weights 1 except for node H, which now has weight 8. 1N

Now let us consider isthmus edge (L,M). Since the total weight of nodes M,N,O,P,Q,R,S is 7, 

we can disregard this part of the graph as well. We know that the absolute 1-median lies in the 
subnetwork given by nodes H,I,J,K,L, where nodes I,J, and K have weight 1 and nodes H and L 
each have weight 8. The minimum distance matrix for this subnetwork is 
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H I J K L 
H 0 4  3  7  8  
I 4 0  6  3  7  
J 3 6  0  9  5  
K 7 3  9  0  4  
L 8 7  5  4  0  

The weighted minimum distance matrix is 

8 x H  0 32 24 56 64  
I 4 0 6 3 7 
J 3 6 0 9 5 
K 7 3 9 0 4 

8 x L  64 56 40 32 0 

H I J K L 

78 79 80 

Therefore, the absolute 1-median is H. 

(Odoni 2002) 
(a) 

11 1−ε 1−ε 1−ε 

a 

1 

m 

Figure 3: MST 
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a 

m 

Figure 4: Optimal TSP Tour 

(b) 

(c) The curved lines in the below diagram indicate that upon reaching the upper-rightmost 
point, you travel a distance of 1 straight down to the lower-rightmost point and then travel a 
distance of m straight left to point a. 

a 

m 

Figure 5: 2-MST HEURISTIC Tour 
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L(2 − MST HEURISTIC) = m + m(1 − ε) + 2 + 1 + (1  +  β) 
+ (m − 1)(1 − ε) + (m − 1)(1 − δ) 

= 2m + 4 + 2m − 2 +  O(ε) +  O(δ) +  O(β) 
= 4m + 2 +  O(ε) +  O(δ) +  O(β) 

L(TSP) = m + m + 2γ + 2  =  2m + 2 + 2γ 
L(2 − MST HEURISTIC) 

= 
4m + 2

lim 
β,δ,ε,γ→0 L(TSP) 2m + 2  

L(2 − MST HEURISTIC) 
� 

lim lim = 2  
m→∞ β,δ,ε,γ→0 L(TSP) 

where O(h) denotes a function s.t. limh→0 O(h) = 0. Therefore, this is an example of the worst-case 
performance of the 2-MST HEURISTIC. 
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