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Quiz 1 Solutions 

1 

(a)(i) Without loss of generality we can pin down X1 at any fixed point. X2 is still uniformly 
distributed over the square. Assuming that the police car will always follow a shortest route to the 
emergency incident, the max possible distance between X1 and X2 is 2 km. The travel distance is 
thus uniformly distributed between 0 and 2 km. 

(a)(ii) Following similar logic, the max possible distance is now 4 km. The travel distance is 
thus uniformly distributed between 0 and 4 km. 

(b) Let’s number the links as shown in Figure 1. There is a 1 chance that the emergency 12 
incident will be on any one of the 12 links. Thus if we can determine the conditional pdf for the 
travel distance from X1 (conditioned to be uniformly distributed on link 7) to X2 for each possible 
link for X2, we are done. All we do then is add the resulting conditional pdfs, multiplying each 

1by 12 , the probability of occurrence. Careful inspection of the problem reveals that with regard to 
computing the conditional travel distance pdf between X1 and X2 there are three sets of links 
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Figure 1: Link Numbering 

Set 1: 1, 3, 4, 5, 6, 8, 9, 10, 11 
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Consider link 1. Define X2 to be the distance from the right most point of link 1. Then the 
conditional travel distance, given that X1 is defined to be the distance on link 7 from its left 
most point and that X2 is on link 1, is (D|1, 7) = X1 + X2 + 1. Let’s define V = X1 + X2. 
Note that X1, X2 ∼ U(0, 1) i.i.d. Either by convolution, or by the “never fail” sample space 
method using cumulative distribution functions, or by recalling problem 2(e)(i) of HW1, we 
find   d, d ∈ [0, 1] 

fV (d) =  2 − d, d ∈ [1, 2]  0, otherwise 

Now the conditional pdf we want for link 1 is fV (d) “shifted to the right” by one unit of 
distance. Call this conditional pdf f(D|1, 7)(d). Then we have for link 1, f(D|1, 7)(d) =  
fV (d − 1). By inspection we also have f(D|3, 7)(d) =  f(D|8, 7)(d) =  f(D|11, 7)(d) =  
f(D|1, 7)(d) =  fV (d − 1). For the remaining links in Set 1, links 4, 5, 6, 9 and 10 “touch” 
link 7, so there is no shifting of the pdf by one. That is, there is no intermediate link between 
them that would add 1.0 km to the travel distance. Hence, f(D|4, 7)(d) =  f(D|5, 7)(d) =  
f(D|6, 7)(d) =  f(D|9, 7)(d) =  f(D|10, 7)(d) =  fV (d). 

Set 2: 2, 12 

Consider link 2. (Link 12 is probabilistically the same as link 2.) Say that X2 is the distance 
defined from the left most point on link 2 and that, as before, X1 is the distance from the 
left most point on link 7. The police car, which can make U-turns, will follow a minimum 
distance path from its location at X1 to the emergency incident at X2. Call this distance 
(D|2, 7). Then we can write 

(D|2, 7)	 = min {X1 + X2 + 1, (1 − X1) + (1  − X2) + 1}
= 1  +  min  {X1 + X2, 2 − (X1 + X2)} 

Let W = min  {X1 + X2, 2 − (X1 + X2)}. Again, X1, X2 ∼ U(0, 1) i.i.d. Now use the never-
fail cumulative distribution function method. 

FW (d) =  P (min {X1 + X2, 2 − (X1 + X2)} ≤ d) 
= P (X1 + X2 ≤ 2 − (X1 + X2), X1 + X2 ≤ d) 

+ P (X1 + X2 > 2 − (X1 + X2), 2 − (X1 + X2) ≤ d) 

where the last equality follows since X1 + X2 ≤ 2 − (X1 + X2) and  X1 + X2 > 2 − (X1 + X2) 
are mutually exclusive and exhaustive events. First note that min {X1 + X2, 2 − (X1 + X2)}
is always nonnegative and less than or equal to 1. Now consider d ∈ [0, 1]. Because the 
joint distribution of (X1, X2) was uniform over the unit square, we can compute the above 
probabilities by calculating the areas of the smaller triangles shown in Figure 2. So, finally, 
we obtain that   0, d ≤ 0 

FW (d) =  d2, d  ∈ [0, 1)  1, d ≥ 1 
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Key:
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Figure 2: Joint Sample Space of X1 and X2 

Taking derivatives, we obtain that the pdf of W is given by 

fW (d) = 	
2d, d ∈ [0, 1) 
0, otherwise 

Now, recalling that we need to add 1.0 km of travel distance between the respective links, 
the desired answer to this part of the problem is 

f(D|2,7)(d) =  f(D|12,7)(d) =  fW (d − 1) 

Set 3: 7 

Here we have the textbook problem of finding the pdf for (D|7, 7) = |X1 − X2|, where X1 and 
X2 are uniformly independently distributed on the interval [0, 1]. The answer, from p. 82 of 
the text (Eq.(3.2)) is 

f(D|7,7)(d) = 	
2(1 − d), d  ∈ [0, 1] 
0, otherwise 
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Figure 3: Sketch of fD(d)

Putting this all together, we obtain

d ∈ [0, 1] d ∈ [1, 2) d ∈ [2, 3]
f(D|1,7)(d) 0 d − 1 3 − d

f(D|2,7)(d) 0 2(d − 1) 0
f(D|3,7)(d) 0 d − 1 3 − d

f(D|4,7)(d) d 2 − d 0
f(D|5,7)(d) d 2 − d 0
f(D|6,7)(d) d 2 − d 0
f(D|7,7)(d) 2(1 − d) 0 0
f(D|8,7)(d) 0 d − 1 3 − d

f(D|9,7)(d) d 2 − d 0
f(D|10,7)(d) d 2 − d 0
f(D|11,7)(d) 0 d − 1 3 − d

f(D|12,7)(d) 0 2(d − 1) 0

So,

fD(d) =




d
4 + 1

6 , d ∈ [0, 2)
−d

3 + 1, d ∈ [2, 3]
0, otherwise

The graph of this pdf is shown in Figure 3.
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(i) Because the two arrival processes are independent, the total arrival process is also a Poisson 
process, but with rate λ1 + λ2. If the server has just finished an idle period, the time until he is next 
idle is the length of the busy period that has just commenced. Therefore, the average time until 
the server is next idle is just the average length of a busy period in an M/M/1 queueing system 
with Poiss(λ1 + λ2) arrivals and exp(µ) services. That is, 

1¯ E[time until next idle] = B = 
µ − (λ1 + λ2) 

(ii) Each busy period begins with an arrival to an empty system. For a given busy period, let 
us use the term “trigger customer” to refer to the customer whose arrival begins the busy period. 
The server will handle only one customer during this busy period iff no additional arrivals occur 
during the service time of this “trigger customer.” Thus, we must compute the probability of no 
arrivals during the “trigger customer’s” service time. 

Let us begin by noting that the next event following a service initiation is determined by the 
following two independent, competing exponentials: the time until the next arrival, and the time 
until service completion. The probability that a service completion occurs before the next arrival 

µis given by λ1+λ2+µ . To justify this result, consider a time interval of infinitesimal length ε. Then, 
Pr(next event is svc completion | next event occurs in [0, ε]) 

Pr(next event occurs in [0, ε] and is svc completion) 
= 

Pr(next event occurs in [0, ε]) 

= 
ε(λ1 + λ2 + µ)


µ

= 

λ1 + λ2 + µ 

Therefore, the probability that the server will handle exactly one customer during a busy period 
µis λ1+λ2+µ . 

(iii) The imposition of a non-preemptive priority policy does not affect the arrivals process and 
does not cause the server to work any more slowly or quickly than in the absence of this priority 
policy. Therefore, the average fraction of time the server spends busy is the same as under a 
no-priority policy. That is, it is given by 

λ1 + λ2
ρ = 

µ 

(iv) In deriving the preemptive priority queueing results we saw in class, we noted that the 
average busy period under FCFS is the same as under LCFS. In fact, the average busy period is 
invariant under all service disciplines, as along as they are work-conserving (the server is never idle 
when there are customers in the system). To see why, note that, in order to empty the system (and 
thereby end a busy period), the server must serve all customers currently in the system and all 
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of their “descendents.” If we change the service discipline, we do not change the arrivals process. 
The only thing that changes is the “bookkeeping” of recording new arrivals as “descendents” of 
one customer rather than another. This change in bookkeeping does not alter the workload in 
the system and therefore, does not affect the length of the busy period. So, the average busy 
period under this non-preemptive priority arrangement will be the same as under the no-priority 
arrangement. That is, 

¯ B = 
1 

µ − (λ1 + λ2) 

(v) z gives the total amount of time that both of the following conditions hold 

1. Mendel is in the system 

2. a type 2 customer is currently being served 

To get some intuition for z, consider the following two cases 

Case 1) Mendel arrives to find the server either idle or serving a type 1 customer. 

Mendel is a type 1 customer, and therefore has non-preemptive priority over any type 2 
customers. Accordingly, in this case, no type 2 customer will begin service while Mendel is 
in the system. Therefore, none of Mendel’s time in the system will coincide with a type 2 
service. Hence z will be 0. 

Case 2) Mendel arrives to find a type 2 customer in service. 

Mendel may or may not be the first type 1 customer in the queue. However, this is irrelevant 
for the purpose of determining z. In either case, since type 1 customers have non-preemptive 
priority over type 2, once the current type 2 customer in service completes his/her service, no 
additional type 2 customers will be served until after Mendel leaves the system. Therefore, z 
is simply the remaining service time of the type 2 customer in service at the time of Mendel’s 
arrival. Because of the memorylessness of the exponential distribution, z ∼ exp(µ). 

• Pr(z = 0)  

Pr(z = 0)  =  Pr(z = 0  | Case 1)P (Case 1) + Pr(z = 0  | Case 2)P (Case 2) 

As already noted above, Pr(z = 0  | Case 1) = 1, since in Case 1, no type 2 customer will 
be served while Mendel is in the system. For Case 2, since the remaining service time is a 
continuous RV, there is a zero probability that its value is exactly 0. That is, Pr(z = 0  |
Case 2) = 0. Finally, note that P (Case 1) is equal to the fraction of the time that the server 
is NOT busy serving type 2 customers. This is given by 1 − ρ2 = 1  − λ

µ 
2 . Putting this all 

together, we obtain 

Pr(z = 0)  =  1  − 
λ2 

µ 
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• Pr(z > 2) 

Pr(z > 2) = Pr(z > 2 | Case 1)P (Case 1) + Pr(z > 2 | Case 2)P (Case 2) 

Since, in Case 1, no type 2 customer will be served while Mendel is in the system Pr(z > 2 |
Case 1) = 0. As already noted, in Case 2, z ∼ exp(µ). Therefore, 

Pr(z > 2) = e −2µ λ2 

µ 

• E[z] 

E[z] =  E[z | Case 1]P (Case 1) + E[z | Case 2]P (Case 2) 
E[z | Case 1] = 0 

E[z | Case 2] = E[X], where X ∼ exp(µ) 
1 

= 
µ 
λ2

E[z] =  
µ2 
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