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Urban Operations Research Compiled by James S. Kang 

Fall 2001 Quiz 2 Solutions 12/5/2001 

Problem 1 (Larson, 2001) 

λ 1(a) One is tempted to say yes by setting ρ = Nµ  = 2 = . But  λ = 2 is not the rate at which 2×2 2

customers are accepted into the system because we have a loss system. Thus the answer is 

no, and we must derive the correct figure. We can use the following aggregate birth-death 

process (state transition diagram for an M/M/2 queueing system with no waiting space) to 

compute the workloads: 
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The balance equations and the normalization equation are 

2P0 = 2P1 

2P1 = 4P2 

P0 + P1 + P2 = 1  

Solving the equations, we obtain


2 2 1

P0 = , P1 = , P2 = . 

5 5 5


The workloads of server 1 and server 2 are then given by


1 2 1 2

ρ1 = P1 + P2 = , ρ2 = P1 + P2 = . 

2 5 2 5 

(b) The 2-dimensional hypercube state transition diagram is given below.	 From the steady-state 

probabilities computed in part (a) and the symmetry of the system, we have 

2 1	 1 1 
P00 = P0 = , P11 = P2 = , P10 = P01 = P1 = . 

5 5 2 5


The fraction of dispatches that take server 1 to sector 2 is


λ2 1 1 1 
f12 = P10 =	 = . 

(1 − P11)λ (1 − 1 5)2 5 8 
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¯(c) The mean travel time to a random served customer, T , is obtained by 

T̄ = f11 T1(sector 1) + f22 T2(sector 2) + f12 T1(sector 2) + f21 T2(sector 1) . 

Since the travel speed is constant, let us first compute the mean travel distance to a random 
¯customer, D.


¯
D = f11 D1(sector 1) + f22 D2(sector 2) + f12 D1(sector 2) + f21 D2(sector 1) . 

Using the knowledge of Chapter 3, we have 

1 1 2 1 1 2 
D1(sector 1) = + = , D2(sector 2) = + = ,

3 3 3 3 3 3 

1 4 1 4 
D1(sector 2) = 1 + = ,  D2(sector 1) = 1 + = . 

3 3 3 3


We compute f11 as follows:


λ1 1 2 1 3 
f11 = (P00 + P10) =  + = . 

(1 − P11)λ (1 − 1 5)2 5 5 8


Invoking the symmetries, we know


1 3

f21 = f12 = , f22 = f11 = . 

8 8


Putting all together,


3 2 3 2 1 4 1 4 5

D̄ = · + · + · + · = mile . 

8 3 8 3 8 3 8 3 6 

¯ ¯
Hence the mean travel time to a random served customer is T = D hr = 3.0 sec. This 1000 
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means that changes in total service time due to changes in travel time are insignificant and 
¯therefore the Markov models applies. Note that another way to compute D is 

2 1 4 2
3) +  2 4 1 2 

3 ) +  (P01 + P10)( 1 · + · 3) 5 ( 2 5( 1 · + · 3 ) 5P00( 2 2 3 2 3 2D̄ = = 2 = .4 6P00 + P01 + P10 5 

¯In fact, we can obtain this form by simplifying the formula for D above. However, think 
¯about how we can obtain this directly without using the formula for D above. 

(d) Consider a long time interval T . In the steady state, the average total number of customers 

served is λT (1 − P11). Server 1 is sent to sector 2 in the following cases: 

(1) A customer arrives from sector 2, server 2 is busy, and server 1 is idle. 

(2) A customer arrives from buffer zone 2, server 2 is idle outside buffer zone 2, and server 

1 is idle inside buffer zone 1. 

The average number of customers served by the first case is λ2TP10. To compute the average 

number of customers served by the second case, let us first find the probability that server 2 is 

idle outside buffer zone 2 and server 1 is idle inside buffer zone 1. Using geometrical probability 
3and the independence of the two servers, we know that the probability is ( 4)( 
1 
4 )P00. Since  the  

λ2 
4 

T is λ2 4 T ( 3 
arrival rate from buffer zone 2 is , the average number of customers served by the second 

case during time interval 4)( 
1 
4 )P00. 

Using these quantities, we obtain the fraction of dispatch assignments that send server 1 to 

sector 2 under the new dispatch policy as follows: 

λ2 
4 

2(1 − 1 5 ) 256λT (1 − P11) 

T ( 3 1 3 1 2 
4)( 
1 
4 )P00 1 · 1 + · · · 5 4 4 4λ2TP10 + 35 

f ′ 12 =
 5 = 0.1367 .= = 

f ′ 12 is greater than f12 = 0.125 as expected. Note that the state transition diagram does not 

change under the new dispatch policy (Why? Invoke symmetries). 

(e) Let T1 be the travel time of server 1 to a random customer and T2 be the travel time of server 

2 to a random customer. Similar to (c), the mean travel time to a random customer under 

the new dispatch policy is given by 

T̄ ′ =f ′ 11 E[T1 

f ′ 22 E[T2 

f ′ 12 E[T1 

f ′ 21 E[T2 

| server 1 has been dispatched into sector 1] + 

| server 2 has been dispatched into sector 2] + 

| server 1 has been dispatched into sector 2] + 

| server 2 has been dispatched into sector 1] . 
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But the existence of buffer zones complicates matters. One way to handle this is as follows: 

• Break up f ′ 21) into its two constituent parts and compute a conditional mean 12 (and f ′


travel distance for each


• Do  the same for  f ′ 22.11 and f ′ 

• Combine the results for the final answer. 

The numerical value is less than that of part (c), because we tend to dispatch the closer 

available server (not always successful, though). 

Although it is not required in the question, let us compute T̄ ′ exactly. We define the following 

events: 

• CB: A customer is in a buffer zone. 

• SAB: Server of the adjacent sector is in its buffer zone. 

• SHB: Server of home sector is in its buffer zone. 

Let us denote by CBc the complement event of CB, which means that a customer is not 

in a buffer zone. Other complement events are defined similarly. Then in the state where 

both servers are available, with probability P00, we have eight mutually exclusive, collective 

exhaustive events: (CB ∩ SAB ∩ SHB), (CBc ∩ SAB ∩ SHB), (CB ∩ SABc ∩ SHB), (CB ∩ SAB ∩ 

SHBc), (CBc ∩ SABc ∩ SHB), (CBc ∩ SAB ∩ SHBc), (CB ∩ SABc ∩ SHBc), and (CBc ∩ SABc ∩ 

SHBc). 

Let us abbreviate these events in binary, for example, (CB ∩ SAB ∩ SHB) = (111), (CBc ∩ 

SAB ∩ SHBc) = (010), etc. Then we can write, using the techniques from Chapter 3 for the 

conditional mean travel distances, 

2 1 4P00A + (P01 + P10)( 1 · + · 3)2 3 2D̄′ = ,
P00 + P01 + P10 

where A is 

� � � � �� 
1 1 1 1 3 1 1 

A = + P (110) + + · + · P (100) + 
3 4 3 2 4 2 4 

1 1 1 � � 1 1 3 � � 
+ · P (101) + P (111) + + · P (010) + P (000) + 

3 3 4 3 3 4 

1 1 1 1 3 � � 
+ · + · P (001) + P (011) . 

3 2 4 2 4 

We have 
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1	 1 3 1 3 3 1 3 1 1 1 1 
P (110) = · · , P (100) = · · , P (101) = · · , P (111) = · · ,

4 4 4 4 4 4 4 4 4 4 4 4 

3 1 3 3 3 3 3 3 1 3 1 1 
P (010) = · · , P (000) = · · , P (001) = · · , P (011) = · · . 

4	 4 4 4 4 4 4 4 4 4 4 4 

¯′ 1271 ¯Plugging all numbers, we obtain D = 1536 = 0.82747 < D = 5 = 0.83333. The mean travel 6 
D� ¯time to a random customer is T̄ ′ = 
¯

= 2.9789 sec < T = 3 sec. So, we do get an expected 1000 

improvement in mean response distance (time), but not a large one. The fact that we have 

more inter-sector dispatches does not necessarily mean that mean response distance (time) 

will increase. 

(f) First, do not use Carter, Chaiken, and Ignall formula (Equation (5.18)). It only applies when 
¯server locations are fixed. The best option is to compute T (x), where x is the location of 

a boundary line, and use calculus to find an optimal value of x (as we did in the 2-server 

numerical example in the book and in class). The problem with Equation (5.18) is that T1(B) 

and T2(B) depend on the location of the boundary line separating sectors 1 and 2. This is 

because each available server patrols uniformly its sector while it is idle and thus its travel 

time in B depends on sector design. 

Problem 2 (Odoni, 2001) 

(a) There are several possible ways to define the system’s state.	 All of them lead to essentially 

the same state-transition diagram. One possible definition of state is (i, j), where 

• i is the number of people being serviced by or waiting for Vincent, 

• j is the state of Al (either idle or busy). 

Then we have the following state-transition diagram: 

0,0 1,0 2,0 

0,1 1,1 2,1 

µ1 µ1 

µ2µ2µ2 

λ λ 

λ 

λλ 

µ1	 µ1 
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(b) Let N denote the number of customers served by Vincent per hour. All customers who, on 

arrival, find the system in state (0, 0), (1, 0), (0, 1), or (1, 1) are served by Vincent. Therefore, 

E[N ] =  λ(P00 + P10 + P01 + P11) . 

From the service rate point of view, we can also write E[N ] as follows: 

E[N ] =  µ1(P10 + P20 + P11 + P21) . 

This follows from the following balance equations: 

λP00 + λP01 = µ1P10 + µ1P11 

λP10 + λP11 = µ1P20 + µ1P21 

(c) Since we have just observed a customer enter the barbershop and sit Al’s chair, the system 

is now in state (2, 1). If one of the following two events happens, the next customer who will 

enter the shop will be served by Vincent: 

(1) Vincent finishes his service for the customer in his barber chair before Al does. 

(2) Al finishes his service	 and then Vincent finishes his service before the next customer 

arrives. 

The probability of the first event is µ1
µ
+
1 

µ2 
(Think about two competing Poisson processes). 

µ1The probability of the second event is ( µ1
µ
+
2 

µ2 
)( µ1+λ ). Since the two events are mutually 

exclusive, the probability we want to know is 

µ1 µ2 µ1
P (·) =  +	 . 

µ1 + µ2 µ1 + µ2 µ1 + λ 

Problem 3 (Odoni, 2001) 

(a) There are many possible minimum spanning trees, some better than others for getting a good 

TSP solution. The following is one good minimum spanning tree, where the dashed lines 

indicate a matching of odd-degree nodes, A − D and H − M . This results in a tour (skipping 

nodes already visited, if possible) that looks like 

{A, B, D, E, F, G, H, G, M, L, K, J, I, C, A} . 

The only edge covered twice in this tour is (G, H ). 
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(b) The above tour is also an optimal tour! The length of the tour is 2,060.
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