
May 1979 LIDS-P-915

DECENTRALIZED MAXIMUM FLOW ALGORITHMS*

by

Adrian Segall

Faculty of Engineering
Technion Israel Institute of Technology

Haifa, Israel

and

Consultant

Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

Cambridge, Mass. 02139

Research supported in part by the Defense Advanced Projects Agency

(monitored by ONR) under contract ONR/N00014-75-C-1183 and in part

by the Office of Naval Research under contract ONR/N00014-77-C-0532.

Submitted for

publication to

"Networks"

DECENTRALIZED MAXIMUM FLOW ALGORITHMS

Adrian Segall

Faculty of Electrical Engineering
Technion - Israel Institute of Technology

Haifa, Israel.

Abstract

The paper presents three algorithms for obtaining maximum

flow in a network using distributed computation. Each node in the

network has memory and processing capabilities and coordinates the

algorithm with its neighbors using control messages. Each of the

last two versions requires more sophistication at the nodes than

the previous one, but on the other hand employs less communication.

This work was performed on a consulting agreement with the Laboratory for
Information and Decision Systems at MIT, Cambridge, Mass., and was supported
in part by the Advanced Research Project Agency of the US Department of
Defense (monitored by ONR) under Contract No. N00014-75-C-1183, and in part
by the Office of Naval Research under Contract No. ONR/N00014-77-C-0532.

lo INTRODUCTION

In this paper we treat the problem of decentralized regulation of

the flow of a commodity through a capacitated network. We assume that a

controller with a certain computation capability is located at each node of

a given network; each controller can measure the amount of flow incoming to

and outgoing from the corresponding node, on each of the adjacent links and

neighboring controllers are able to exchange information over the link con-

necting them in the form of control messages. The problem is to design a

protocol for each of the controllers, so that the combined algorithm will

maximize the total flow through the network , from a given node, called

source, to another given node, called sink.

The problem of maximizing network flow using central computation has

been widely studied in the literature and many algorithms have been designed

for its solution [1]- [5]. On the other hand, technological developments of

mini and micro computers have made it possible to introduce relatively

sophisticated computation and large memory capabilities in each of the nodes

of a transportation or communication network. Decentralized computation

provides a serious advantage over the centralized one, mainly because of

enhanced survivability and reliability, and because it saves transmission

requirements of status information and of command information towards and

from the central controller. As such, developing efficient.and reliable

decentralized algorithms to perform various network functions is of major

importance for network design. The research on decentralized network algor-

ithms is just at its starting stages, but several such algorithms have already

been developed and validated, Among these we may mention here algorithms

for minimum delay routing without and with changing topology [6] - [9],

shortest path [10]- [11] and minimum spanning tree [12] - [14].

2 -

A pioneering work on a decentralized algorithm for maximum flow can

be found in [15], where a decentralized version of the Ford-Fulkerson algor-

ithm is introduced. In this paper we present decentralized versions of three

well-known maximum flow algorithms: Ford-Fulkerson [1] (a simpler version than

in [15]), Edmonds-Karp [2] and Dinic [3]° In the order presented, each algor-

ithm requires less communication, but more computation and sophistication at

the nodes, than the previous one, This trade-off between communication and

computation is a subject of much interest to network designers, and in this

context it is interesting to observe that, according to L.G. Roberts [16],

a"the cost of memory and switching has fallen by a factor of 30 compared to

transmission costs over the last nine years oo."

2 GENERAL MODEL

Consider a network (N,E) where N is the set of nodes, ECNx N

is the set of directed edges and assume that the network has no self-loops

and no parallel edges. Two nodes s, t e N are specified, where s is the

source and t the sink. Without loss of generality we may assume that

(js)j A and (t,j) A for all j eNo To each edge (i,k) E we attach

an integer-valued capacity c ik If the capacities are not integers but

commensurable, an appropriate scale factor will provide an equivalent problem

with integer-valued capacities. If (i,j) E or (j,i) E E, then node i

is said to be adjacent to node j and the corresponding edge is said to be

incident to node i.

A feasible flow f is an assignment of an- integer. fij_ to each. edge

kijJ) such. that 0 < fij < ci j for all (i,j)eE and such that for all

ieN- {s,t} we! have

f o- fo -O
j:(i,j)EA m0 j:(j,i)PA J0

Each node -i has certain memory, processing and transmission capabilities

and is assumed to know and to be able to update the flows fag and. f.. on

al.1 edges incident to it, In addition, if (i,j)e E, then nodes i and j

are assumed to be able to send to each other control messages that are cor-

rectly received at the other node within arbitrary, finite, non-zero timeo

We may note that this assumption does not preclude that individual control

messages are received in error because of noise say, provided that there is

an error control and retransmission protocol that will assure error detection

and appropriate retransmission until the message is correctly received.

Observe also that our assumption implies that if (i,j)e E, then control

messages can be sent over it in both directions, even if (j,i) Eo

- 4-

The total flow F of a feasible flow f is defined as the net flow

from source to sink, namely

j: (,j) a E sj: j w(j,t)E j

0ur goal is to design a decentralized protocol whereby each node i will

make computations and decisions based upon local knowledge of f.. and f.,

and upon control messages received from adjacent nodes, to achieve a flow f

for which the total flow is maximum.

In the following sections we present three decentralized algorithms

for achieving maximum flow. They are decentralized versions of the well-known

maximum flow algorithms of Ford-Fulkerson (FF), Edmonds-Karp (EK) and Dinic,

respectively. All algorithms are based on flow updating cycles started by

the sink-node t, propagating in the network while seeking a flow augmenting

path from source to sink and terminating back at the sink. At the time of

the termination of a cycle, node t knows that all nodes in the network have

completed their part of the previous cycle and are ready to perform a new

cycle, so that node t can indeed start a new updating cycle, The protocol

also insures that at the completion of the cycle that finally achieves maximum

flow, the sink node will be informed that no more cycles are necessary. The

three algorithms differ in the procedure for finding augmenting paths. In

the first algorithm (based on the FF algorithm), paths are searched and found

in a random fashion, employing a decentralized protocol similar to the one

used in [8], [9] for adaptive routingo In the second algorithm (based on EK),

the augmenting path is always one with smallest number of arcs and to achieve

this in a decentralized way, we employ simplified versions of algorithms

proposed in [10] and [8]. Finally, in the third algorithm the procedure con-

sists of two kinds of actions as in Dinic [3]: first the nodes find the set

of all possible paths with smallest number of arcs, then one augments all

-5-

possible paths out of this set, and the procedure is repeated for longer and

longer paths.

We shall need now several notations and definitions. For the purpose

of simplicity, if (i,j)c E and (j,i) IE, then we shall include (j,i)

in E and take c ji - 0, f i 0o For a given flow f, let us define for

each edge the quantity

Pij = i fi + f °
13 ij ij ji

It can be considered as the available extra-capacity in the direction from

i to j of the pair (i,j),(j,i) in the presence of flow f. In particular,

additional flow can be pushed from i to j if and only if p.. > O. A
1J

pair (i,j),(j,i) such that pio > 0 or poi > 0 (or both) will be called

a link, and if peg > O, we shall say that the link is outgoing from i and

incoming to j. Observe that these definitions are flow dependent and that

if Pij > 0 and Pji > O, then the link is both outgoing from and incoming

to i (as well as from and to j)o For a given node i, we shall use the

notation [i,j] for the pair (i,j),(j,i) and also:

I= {klP > 0}

0. = {k pk > O}
i Pik

Given any two nodes i,k in the network N, an augmenting path from

i to k is defined as a series of distinct nodes, i = i ,il i2, .o,i = k

such that for all n = 0,1,oo ,(m-l) there is a link outgoing from i and

incoming to i +l The quantity p =min P , where the minimum is
n n+l

over n = 0, o.. (m-l), will be called the available capacity of the augment-

ing path. If there is at least one augmenting path from i to k, we say

that i has access to k and k is accessible from i. We denote by A
r

the set of nodes that have access to sink at the time T of starting the

r-th cycle, and by L the set of links connecting any two nodes in A at
r r

time T
r

6-

In each of the following sections, we shall first describe the

general distributed protocols corresponding to each of the versions, then

indicate the exact algorithm to be performed by each node as a part of the

protocol and finally prove that the protocols indeed achieve maximum flow.

30 VERSION 1

The protocol described in this section is the decentralized version

of the Ford-Fulkerson labeling procedure. As said before, the algorithm

consists of a series of cycles started by and terminated at the sink node to

We assume that before the first cycle starts, a feasible initial flow exists

~rnithe;--ttimtwkeet·tgs-f . k~= O0 for all--edgesiand alsQ ; l~lodp 4~i -are.in.i

1state S1 with the same cycle number, ni = ° for all i. A cycle consists

of two phases. Phase A is started at sink and propagates into the network.

During this phase augmenting paths from network nodes to sink are being built

in such a way that all paths belong to a single directed tree rooted at sink.

All nodes that have access to the sink t will eventually enter the tree,

and therefore the source node s will also join the tree, provided that the

existing flow is not maximal. Phase B of a cycle propagates over the tree,

from its leaves towards the sink, During this phase, the nodes along the

source-sink augmenting path update the flows (or equivalently the quantities

Pik) and all other nodes make no flow changes. However, they participate in

phase B in order to complete their part of the cycle and to finally inform

the sink that the present cycle has been terminated, By the time the propaga-

tion of phase 'B arrives at the sink, all nodes in the tree have had completed

their part of the current cycle, and therefore the sink knows that a new cycle

can be started.

To accomplish its part of the protocol, each node i keeps the fol-

lowing set of variables:

no - cycle identification number (values 0, 1);
1

a. - source-sink augmenting path identification (values, 0, 1);

do - available capacity of augmenting path from i to sink

(strictly positive integer-valued, except that dt = I);

t

-8-

p. - pointer to next node on augmenting path from i to sink

(called father);

Noik) - for each adjacent node k (values 0, i)o
1

The meanaing .Qgiri$ N k)i- will be explained presnly .Thepropaatio.;- .i,

of the cycle is achieved using control messages sent by nodes to their

adjacent nodes and having the format MSG(n,d,a), where, if i is the send-

ing node, then n = no, d.= do, a = aoo The variables n and no serve

to distinguish a given cycle from the previous one. The variable ai takes on

normally the value 0; i..t changes to 1 if node i finds out that it

belongs to the current augmenting path from source to sink. If ai = 0,

the quantity d, denotes the available capacity of an augmenting path from

i to sink. If ao = 1, then d. indicates the available capacity of the
1 1

augmenting path from source to sink and it is exactly the amount of flow

pushed from source to sink during the current cycle.

We next proceed to describe the propagation of a flow increasing

cycle in the network and the actions taken by the nodes to participate in

such a cycle (the numbers in parentheses refer to the Tables). Just before

the cycle is started, all nodes in the network are in state S1 with identi-

cal cycle numbers {(n}o A cycle is started by the sink t when it per-
1

forms the transition T12 (cfo Figo 1) from state S1 to state S2 (Io51). At

this time it sets the identification number of the new cycle nt as the

binary complement of the number of the previous cycle (Io52) and sends a

control message on each of its incoming links (I 53). The new cycle identi-

fication number will be carried by all control messages of the present cycle.

An arbitrary node i performs its part of phase A when it receives the

first message belonging to the present cycle (o113). At this time it updates

its own cycle number no (Iol7), it chooses the originator of this message £
1

as father pi (Io18) and sets the available capacity to sink on the chosen

path do to the minimum of dt (received in the message as d) and of
1

the available capacity pit on link (i,1). Then, to propagate phase A, it

sends a control message over all incoming links, but not to its father pi

(io20). It is easy to see that, as proven in the:Appendixj:all nodes having an

augmentihng-ath-hto sink will indeed:perform T12 and the links {(i,pi)}

will form a tree rooted at sink.

Having completed its part of phase A, node i waits for phase B, and

this will be performed when node i had received a control message of this

cycle over all of its incoming links. Since node i is not interested in

messages coming on links that are not incoming, such messages are immediately

"bounced" by node i (Io4, Io5)o To recognize the situation that will

enable it to perform phase B, node i stores the cycle number of any received

message from t in No(t) (IL3) and will indeed perform phase B when

N(k) = no for all incoming links (Io21). Also, if in the meantime it

receives a message with a 1, node i recognizes that it belongs to the

source-sink augmenting path for this cycle, performs the appropriate flow

increase (Io6- Il0) and during transition T21, which is exactly phase B,

it augments the flow on the link (i,pi) (I.22- I.24). In any case it sends

during T21 a control message to pi, thus informing it of the completion of

its part of the cycle. It is easy to see (Cfo Appendix) that this informa-

tion will propagate downtree and by the time the sink node t performs T21

(Io54), all nodes on the tree will have completed their part of the present

cycle. If an augmenting path has been found and the sink still has incoming

links, then a new cycle will be started (Io52); otherwise, maximum flow

has been achieved. Finally, observe that the source node s performs the

Same operations as all other nodes, except that it has no incoming links and

<shat it is always on the source-sink augmenting path (I.27- 1.42).

- 10 -

The decentralized protocol described above indeed achieves maximum

flow. To prove this, it is sufficient to show that for any cycle started by

the sink node at time T1 say.

- the cycle will be completed in finite time;

- if the flow is not maximal at time T1 , the cycle will increase

the flow by a strictly positive integer amount;

- if the flow is maximal at time T1, the cycle will not change

the flow;

- if at the end of the cycle the flow is not maximal, a new cycle will

be started by sink at that time.

The exact proofs of these properties are given in the Appendix.

4o VERSION 2

Edmonds and Karp [2] have shown that if we insist that the chosen

augmenting path from source to sink has minimum number of links, then the

number of augmentations is O(1N 3), as opposed to the Ford-Fulkerson algor-

it'hm where this number can be bounded only by the value of the maximal flow.

We shall now present the decentralized version of the Edmonds-Karp algorithm.

As in Version 1, the present protocol consists of consecutive cycles,

stazrted by and completed at the sink node t. A cycle consists of two phases,

the first one forming the tree of shortest paths to the sink and the second

one propagating downtree to finally inform the sink of the completion of the

cycle while increasing the flow on the augmenting source-sink path. Here

the finite-state machine for the node needs three states (see Fig. 2): the

state SO of a node i is SO before it hears of a new cycle, it is S1

'whenever the node participates in the first phase of a cycle, namely while

it looks for its shortest path +to sink, and .; = S.' after the node has

found this path and until. it completes the second phase of the cycleo This

'version differs from Version 1. mainly in the procedure for the node to

choose its father pi, namely during the time the node is in state Sl. In

Version 1, node i chooses as p. the l'nk over which it receives the

first message of the present cycle. If the delays on all links were identi-

cal, then clearly- Version 1. would also provide the link corresponding to the

shortest path. Since this is not the case however, the idea of the procedure

here is to have the protocol act as if the delays were identical. Explicitly,

during the phase of looking for the shortest path (i.eo in state Sl), a node

i sequentially learns (via control messages from its neighbors) whether or

not the sink is at distance 1, 2, 3, etc. from ito Suppose, for example,

that node i has already learned that the sink is not at distance 1 or 2.

If one of the nodes, k say, such that [i,k] is outgoing from i, reports

- 12 -

to i that k is at distance 2 from sink, then node i knows that its

shortest path to sink is via k and is 3 links longo The protocol provides

this information by requiring each node i to keep the following variables

in addition to ni, do, Pi' which have the same purpose as in Version 1:
1 2.

d-o =
- if shortest path has not been found yet; otherwise same

meaning as in Version 1;

z Q - distance from node i covered by the algorithm until now

(values 0,1,...INI);

Mo(k) - for each adjacent node k, counting the number of messages

received from k during the present cycle; it is exactly

the last zk reported by k to i and received at node i,

(values O,l,1,INI);

Do(k) - for each adjacent node k (values O,0).

The meaning of Dj(k) will be explained presently. The quantity M (k) is

initialized to (-1) at the end of the previous cycle (IIo36) and is incre-

mented (IIo4) every time node i receives a message from k. The counter

z, is set to 0 when node i enters the present cycle (II.22), incremented

to 1 after having received at least one message from all outgoing links, i.e.

after Mi(k)) 0 for all. such links (Iio24), (Iio27), incremented to 2 after

Mo(k) > 1 and so on (IIo25), (II29). Every time z. is incremented, a

control message is sent over all incoming links, to inform the neighbors that

i has covered all nodes that are z. or less links away. Node i declares

that it has found the link (i,Pi) providing the shortest path to sink when-

ever it has received from pc a message with d 0 - (II5), (II.6), (II.27),

and it is ready to increment zo to z +1 = M(p i)+l (127). At this

time it performs the transition to state S2 and from here on acts as in

Version Lo

- 13 -

In order to validate Version 2, it is sufficient to show that for

alli nodes i that have access to the sink at the beginning of a cycle, the

link (i,p,) as chosen by the algorithm during this cycle, provided the

shortest augmenting path to the sink. This is because, except for the phase

of choosing (i,Pi), the algorithm acts as in Version 1 and that version
1

would choose (i,p.) as providing the shortest path if control message
1

delays were identical on all links. Therefore, since validation of Version 1

was proved for arbitrary control message delays, the case under considera-

tion here becomes a special. case.

Lerrmma 4 1

For each node i with acces to sink, the link [i,pi] at the time

when i performs transition T12, corresponds to the augmenting path with

smallest number of links connecting i to sink.

Pro of

We proceed by induction. With the notations at the end of Section 2,

consider all nodes in A that have an augmenting path with m links or

less to sink. Suppose that these nodes satisfy the statement of the Lemmao

.Then a node i. whose distance to sink is (m+l) must have an outgoing link

to a node k with distance m and no outgoing link to nodes with distance

less than mo The link [i,k] provides the shortest augmenting path from

i to sink, and when k performs T12 it will send its (m+l)-st message to

node i with d # o This will make d.o , and when node i will also

have received at least (m+i) messages from its other outgoing links, it

will perform T12 with p. = ko
1

- 14 -

5, VERSION 3

Dinic's algorithm [3] achieves maximum flow in O(IN12) augmenta-

ti.ons by first finding the set of all shortest augmenting paths from source

to sink in the subnetwork (A ,L), and then looking for augmenting paths

only in this subnetworko For a given flow, the union of all shortest source-

sink paths is called the referent of the network and. after exhausting all

paths in one referent, a new referent with longer paths will be searched for.

Suppose that for the given flow under consideration, the shortest source-

sink path has m linkso Then the referent contains (m+l) levels, where

t is in level 0, 'the source s is in level m, and an arbitrary node

i C A is in level j if its shortest path to sink has j links, and if
r

there is an incoming link [t,i] to i such that . is in level (j+l)

of the referent. In this case link [1,i] belongs to the referent (for

details see [3])0

As in the previous sections, the distributed version of Dinic's

algorithm is composed of a series of cycles° Each cycle here consists of

first finding the referent (Part A in Table 3), and then of a series of sub-

cycles during which augmenting paths in this referent are searched for, During

the first part, each node finds out if itself and which of its adjacent links

belong to the referent° A node i in the referent compiles the sets R o

and R of nodes that are one level above it and one level below it,
out

respectively. Only those nodes (and the appropriate links) will participate in

the second part of the cycle, during which source-sink augmenting paths belong-

ing 'to the referent will be obtained in the same way as in Section 3 of this

paper. (Part B in Table 3). We therefore have to describe here only the

first part of a cycle, ioeo determining the referent, which is done as fol-

lowso First a node will find its distance from sink in the same way as in

- 15 -

Section 4, so that. in state SO and Sl it will behave as in Table 2. The dif-

ference is in state S2, because we require that a node will positively know

'whether it belongs to the referent or not at the time of performing T20, and

if it does, which of its incoming and outgoing links are in Ri and R
in out'

respectively. If a node i is at distance j from the sink, then it will

belo.ng to Level j of the referent if indeed it enters the referent. In

this case, the adjacent links that will enter the referent will be outgoing

links to the nodes distanced (j-l) hops from sink and incoming links from

nodes distanced (j+l) hops from sink. Observe that in Section 4, if Di(k) = 0,

namely if a message with d # ~ has been previously received from k, then

this means that k has found its distance from sink, which is exactly equal

to M ,(k) Now, node i finds out its distance from sink in transition T12.

Therefore any kc 0, such that Di(k) = 0, Mi(k) = Zi (here we mean the

value of zo just before the transition) will positively enter the referent

if i does and all links [i,k] will also enter the referent in the direc-

tion from i to ko We indicate this in (IIL3). In addition, if such a node

k is also in i , node i will not send a message to it while performing T12

(as in Version 2), but rather when performing T20 (IIIo5), (III.6). By that time,

i will know whether it has entered the referent, Node i will actually enter

the referent by command received over an incoming link (IIIo2) and performing

T20 without receiving such a command is the information that node i did not

enter the referent, T7he variables a. and a play here the same role as in

Sections 3,4, except that here they indicate -that node i belongs to the refer-

ezyt, whereas previously they indicated that i is on the chosen source-sink path.

From the description of the algorithm it is clear that Part A of a cycle

of the distributed algorithm here will give the same result as the construction

of ,a referent in [3], and this validates our algorithm. Details of the proof

are essentially identical to the proofs in the Appendix and therefore deleted.

- 16 -

6. Summary

We have described distributed versions of three well-known maximal

flow algorithmso Probably other existing algorithms [4], [5] can be

decentralized using similar ideaso As mentioned before, the processing

requirements are simpler in Versionl, become more complicated in Version 2

and even more so in Version 3o On the other hand, as presently seen, the

communication requirements are reducedo

For integer valued capacities, Version 1 needs a maximum of F
max

augmentations, where F is the value of the maximal flowo Since the algor-
max

ithm requires a maximum of 1 message/edge (in each direction) for each augmenta-

tion, the communication requirement is O(F) messages/edge. Version 2
max

requires O(IN|3) augmentations, and since the maximum distance to sink is

jNi, each augmentation requires no more than |Nj + 1 messages/edge. Hence

the communication requirement is no more than O(INI) messages edge. Finally

in Dinic's algorithm [3] the number of required cycles is no more than INI.

In order to find the referent one needs no more than INI + messages/edge

as in Version 2, and the nummber of possible subcycles is bounded by IEl,

since each subcycle saturates at least one li.nk, For each subcycle one needs

no more than 1 message/edge as in Version i, and hence the communication

requirements are bounded by 0(INI (iEJ + INI)) = (INi jEI) < O(iN 3)

messages/edge°

Acknowledgement

The author would like to thank Profo S. Even and Dr. 0. Kariv for

many stimulating discussions regarding the algorithms of this paper.

- 17 -

APPENDIX- Validation of' Version 1

In this Appendix we shall prove that the protocol proposed in Sec-

tion 3 indeed achieves maximum flowo The other 'Versions have been validated

in the body of the paper. We shall first need several definitions and nota-

tions, Recall that a cycle is started by the sink t when it performs T12

and is completed when sink performs T21. Let ? be the time when the r-th
r

cycle is started and ari the time of its completion, which is the same

as the time of starting the (r+l)-st cycle (see io56)o We say that the net-

work (N,E) is O-relaxed at time T if all nodes is N are in state S1,
r

if no messages are in transit and if all nodes i in A have cycle number
r

n. = 0o Similarly for 1-relaxedo Also, in order to specify the value of a

variable at a given time T, we put r in parentheses, e.go ni (T) denotes

the value of n. at time T.

Suppose that the network is 0-relaxed at time T and a cycle is

started by sink at this time, ioe sink performs T12 and changes nt from

0 to lo In order to see exactly what happens within a cycle, let us assume

that whenever (I154) will hold (if at all), instead of starting a new cycle

after performing T21 as required by (Io56), the sink will stop. We shall

show that indeed (I054) will hold in finite time after T , at time T
r r+l

say, and at that time the network will be 1-relaxedo We shall also see the

operations performed by the nodes during the period from r to T and
r r+l

that, unless the flow was maximal. at time T , the cycle will have strictly

increased the flow by an integer amounto Then, by induction on the cycles,

maximum flow will indeed be reached within a finite number of cycles.

Lemma 1

Suppose that at time cr the network is O-relaxed and sink performs

T12 (whiie changing nt from 0 to !). Suppose that if after time Tk the sink

- 18 -

perfiurms T21, it will not start a new cycle, but will rather stop. Then,

witth the notations of Section 2,

(a) each node i must change ni from 0 to 1 before it generates any

message;

(b) each node i A will perform T12 at most once; nodes not in A
r r

perform no transition;

(c) all generated messages carry n = 1;

(d) each node is A will perform T21 at most once;

(e) no more than one message is sent on each link of L in each direc-

tiono No messages are sent on links not in L
r

Proof

Observe that by the assumption of the Lemma, at time T all nodes

is A have n, = 0, so that (a) is clear from (I13), (Io17). Now we prove
r 1

(b)- (c) by a common induction. For any instant T > X , suppose that
r

(b)- (c) hold until time T-, We shall show that whatever happens at time T

will not violate (b) - (c), Suppose the first part of (b) is violated at

time T, i.e. node i performs T12 for the second time. Then (Io13) says

that it receives at this time a message with n = 0, which must have been

generated before time T-, violating (b) before r-o Since messages are

sent by i either to k s I (1o20), or on links from which messages have

been received ((io5) and (Io25)), nodes not in A receive no messages and
r

hence perform no transitions, completing the proof of (b)o Now suppose node

i generates a message with n = 0 at time T, violating (c)¢ Then it must

have no(T) = 0 violating (b) before or at time T.
1

Now (d) is clear, since T12 and T21 must alternate (Fig i)o. In

order to prove the first part of (e), we suppose again that it holds through-

- 19 -

out the network until time T- and show that at time r it cannot be violated.

First observe that if condition (Io4) holds at time .r-, then by (c) we have

n(-) = no(T-) = 1, so that i must have performed T12 earlier. Therefore

if (1o4) holds, then l i pi, since otherwise Pi must have sent two messages

to i violating (e) before T-. Now node i sends a message to Pi in T21,

a message to each kc Ii, k i p. in T12.and a message to each k I., k 0 pi

in (Io5), so that the first part of (e) holds. The second part of (e) follows

from the second part of (b)o
[1

Lemma 2

Suppose the same assumptions as in Lemma 1 hold. Then

(a) each of the nodes in A and only those nodes will perform T12 exactly

once;

(b) the set A and the links (i,pi) form a tree spanning (A ,L) and
r 1 r r

rooted at the sink node t;

(c) each node ie A will perform T21 exactly once;

(d) the last node to perform T21 is the sink and at that time, Trn i' say,

the network is 1-relaxed and A+ 1,CA
r~l - r

Proof

(a) At time T all nodes i in A are in state S1 with n, = 0O At

time r sink performs T12, changes nt from 0 to 1 and sends a message
r

with n = 1 over incoming linkso Therefore the nodes i at the other end

of these links will eventually receive a message with n - 1, and unless they

have performed T12 before, they will perform T12 now (Io13) while changing

no from 0 to 1. Each such node j will send a message with n = 1 on all

of its incoming links, except to pj which has already performed T12, so

that by induction, all nodes that have at time T at least one augmenting
r

- 20 -

path to sink will perform T12 and change no from 0 to lo The above reason-
1

ing also shows that only nodes in A will perform T12o
r

(b) The graph formed by the links (i,pi) clearly spans (A ,Lr)Y If

Z is chosen by i as pi as in (Io18), then l must have performed T12

before i, and hence this graph is loop-freeo Since each i has a unique

Pi' the graph is a tree. Since there must be at least one node i such

that pi = t, and t has no "father" Pt' the tree is rooted at t.

(c) Consider first a node i which is a leaf of the tree (ioe. k s.to

Pk = i). Let us look at an arbitrary node k such that k Ii, k 0 Pi,

to which i sends a message when performing T12 (Io20)o When this message

arrives at k, it must hold that n = no, otherwise k will choose i as

Pk violating the fact that i is a leafo Therefore, if k Ii / then (Io4)

will hold and k will send a message to i. On the other hand, if k IQ,

then k has sent a message to i while performing T12. Therefore i will

eventually receive messages from all kEIo, (I.21) will hold, i will

perform T21 and send a message to pi. Similarly, by induction, we can show

that each node in A will perform T21, this action propagating down-treeo
r

(d) The reasoning in (c) shows that the sink t is the last to perform

T21, If a node i A , then it and all nodes to which it has access (which
r

are also not in A) performed no transitions, hence remained in state Sl
r

and had no change of flow, implying that they are not in A +1 eithero

Finally, if iE A , then it has received all messages on links [i,k] such

that k C I before performing T12. If kg Ii, then Ik and k has
I 1 k

received a message from i before k performed T21o But i can send such

a message only when receiving a message from k. Therefore i receives all

messages sent to it before sink performs T21, so that there are no messages

in transit at time T and hence the network is 1-relaxed.
r+l r

- 21 -

Theorem

Let F be the total flow entering the sink, In the protocol indi-

cated in Section 3 and Table 1, we have for all cycles

F(r+1) > F(T) (A.l)
r+l - r

with equality if and only if F(T) is maximal. If the latter holds, then

the sink will stop after the (r+l)-st cycle or possibly even before this

cycle. Therefore maximal flow will be reached in a finite number of cycles.

Proof

Clearly the flow is maximal at Tr if and only if s A . If

s eA , it will eventually enter the tree, perform T12 and immediately T21

while sending MSG(n ,d ,a = 1) to p (I.41). When k = p receives it,

it sets dk = d and ak 1 and when performing T21 sends MSG(nk,dk,ak = 1)

to pko By induction, the nodes of the entire source-sink path on the tree

will perform similar operations, while also changing the flow (or equivalently

the available extra-capacities Pit). Therefore (Aol) holds with inequality.

On the other hand if sg A , either It at time T is empty in
r t r

which case the sink starts no new cycle or else the cycle is started, but s

does not enter the tree and the cycle will be completed with at = 0, In

either case the flow is maximal and the sink stops triggering cycles (I.57).

- 22 -

TABLE 1: Algorithm for Version 1

la) Algorithm for Node i N- {s,t}

Note: Message MSG(n,d,a) received from node Q is delivered to the

algorithm in the form MSG(n,d,a,1).

I.o Message Handling

1,2 When receiving MSG(n,d,a,Z), execute:

Io3 Ni() + n;

Io4 if n = no, U I, (comment: I £ pi, a = 0),
1

Io5 then send MSG(n,,dO) to e;
Io6 if a = 1 (comment: i is in state S2, Q $ p2)

Io7 then p+ i pit d,

o8 1Io8 Pti Pti-d,

Io9 di +d,

1o10 a. $)1;

o.11 execute Finite-State-Machine.

IP12 Finite-State-Machine Transitions (see Fig. 1)

Note: The Finite-State-Machine is executed until no more transitions

are possible.

Io13 T12 Condition 12 MSG(n no,d,a,Z).

Io14 Comment 12 a = 0, ao = 0, pi > 0.

o1l5 Action 12 I A {kI > 0}
i Pki

iol6 o {kjp > 0};
li ik

Io17 n. - n;

Io18 Pi L

I.o19 di + min(d,p)

PI20 send MSG(ni,di,ai) to all k such that

kcIi, k Pio
1 1

- 23 -

Io21 T21 Condition 21 k E Ii, then Ni(k) = noo

io22 Action 21 If a, = 1, then

1.23 Pii + P +,di,
I.24 pipi Pip id;

Io25 send MSG(nidi,ai) to Pi;

io26 ai + 0.

lb) Algorithm for Source Node s

Note: I =
S

Io27 Message Handling

Io28 When receiving MSG(n,d,a,Z), execute:

Io29 if n = n ,
S

s

IP31 execute Finite-State-Machine for so

Io32 Finite-State-Machine Transitions for s (see Fig. 1)

Io33 T12 Condition 12 MSG(n 0 ni,d,a,Z).

Io34 Action 12 ds + min(d,ps);

I035 n + n;

I o 36 Ps

IP37 a + 1;

Io38 execute transition T21,

Io39 T21 Condition 21 noneo

Io40 Action 21 p - p -d ;
sp sp 5s s

Io41 send MSG(ns,d s,as) to Ps;

I142 a s 0.

· ·-- · · - --- ~· --- ·- ·- ·-~- -- ~ -?sU--- -~-- ~ ~ ~ 1 ~- ~_5

- 24 -

ic) Algorithm for Sink Node t

Note: t
= ; dt- o

Io,3 Message Handling

,o.44 'When receiving MSG(n,d,a,1), execute:

1 45 N, iQ) t r,;

i 46 if a = 1

io4'7 then P,,t 1t -d,

iIO48 '-et 1;

'r. 49 execute Finite-State-Machine.

'r 50 Finite-State--Machine Transitions (see Fig. 1)

.,51 T12 Condition 12 none.

-Actin 12 n --- nt- note: nt is the binary complement of n t);t t t t

53 .. send MSG(nt,dt= ,at) to all k It

4 ̂ 2.1 Condition 21 Yk E It, then Nt(k) = nt

Io55 Action 21 i A {kP > 01;
t kt

I56 If at =1 and It ¢ , then at + 0 and perform T12;

I:, 57 else STOP, maximum flow achieved.

- 25 -

TABLE 2: Algorithm for Version 2

Algorithm for Node i eN- Ts gt)

IoI Message Handling

i1o2 When receiving MSG(n,d,a,1), execute:

'Lo3 if d ~, then Di(Z) + 0,

Id:I,,4 M, (t) + M + i,

-li5 if d = , d , then Pi + Z, d. - min{d,pl},
1 1

L..6 if d j , d. 7 ~, MI() < M(Pi), then pi + I , di + min{d,p,}

iio7 if n = ni, l[I , d , i is in state S2 or SO

(comment: I t Pi, a = 0);

i1.8 then send MSG(n,,d ,0) to Z;

iio9 tif a = 1 (comment: i is in state S2, I Z p#)

IlIo!,0 then pi + Pi, d

X l oI-.. Pzei i+ - d,

Io12 di + d,

Il13 ai ± 1;

ITi 14 execute Finite-State-Machine

IIoA.5 Finite-State-Machine Transitions (see Figo 2)

16 7T0i Condition Cl MSG(n - n ,d,a,1)

-1L17 Action C0 1i {k P > 0};

1i =
OkiIio19 a, 0;

ilo20 no n;

I:1L 21 d, + ;

ii c 22 z 0;

10 23 send MSG(n,,di,a,) to all kE Io

-- ~~~~~~ ~ 1--· - ---- ·- ·-- ·- 1 ~-------

- 26 -

1L.24 TI1 Condition 11 {{ks 0i, then M.(k) > z } and
1 -1 1

{[d. =] or [(di #) and (z, <Mi(Pi)]

i.io25 Action 11 z z +1;
i i

1,o26 send MSG(no,d=-,a,) to all kE I.o
1 1 1

11,27 Tl2 Condition 12 {#kc 0O, then M,(k) > zi) and

{d-i $ } and {Zi = Mj(p)}o.

:I:rI 28 Comment 12 ai =0

IIo29 Action 12 z +- z +t ;
1 1

1130 send MSG(ni,di,ai) to all ke I, k Pio

Iio31 T20 Condition 20 9kE I,, then D(k) = 0
1

IIo32 Action 20 if a, 1, then

IIo33 P Pi +d i,
P 1 P,1 1

IIOr.~34 P~ip Pipi 1

1-35 send MSG(n.,d i,ai) to pi;

!Io36 ik i 1 0o,i then M,(k) +-1, D (k) + ;
1 1 1 1

Note: To save space, we do not indicate explicitly the algorithms

for source and sink, The source s acts as all other

nodes, except that it has no incoming links, so that it

performs T20 immediately after T12 and also a - l o The

sink t has only transitions T02 and T20 which are identical

to T12 and T21 of Version 1. It will stop the algorithm

when it will have at
= 0 at the time of performing T20o

Then maximum flow is achie ved,

- 27 -

TABLE 3: Algorithm for Version 3

Part A: Finding the Referent.

All instructions are exactly as in Table 2, except for the following

changes:

IIIo1 In (II.7) change l. Ii to L I IUR out

II1.2 Change (II.9)- (IIo13) to: if a = 1 (comment: i is in state S2)

then a. + 1 and include l in R.
1 in

Action 12 should read:

IIIL3 R t {klks Oi, Di(k) = 0. M (k) = Zi};
out 1

I1i4 z z + 1;+l

±L 05 send MSG(ni,di,a,,ri) to all k C I, kiRout'

1o6 In Action 20, delete (IIo32)- (II.34) and change (IIo35) to:

send MSG(ni,di,ai) to all kRout.

IIIo7 In Action 20, add: n! + 0.
1

Part B: Finding Augmenting Paths

The algorithm is almost identical to Table 1. All variables, states

and transitions here will have the same names as in Table 1, except

that they will be primed (e.g. n!, sl', T1'2', etc.) to distinguish

them from those of Part A. All instructions are exactly as in

Table 1, except for the following changes:

1I18 In (I.4) change l I, to 's ER

III.9 Change (TI8) to: pli - Pi d d ahnd-then ifi p i '= O'. exdlude -

n10 Delete (16) from Action 12

111.10 Delete (1.15), (1.16) from Action 12.

- 28 -

IIIoli Change (IL20) to: send MSG'(n',d',a!) to all kE R,i1 1 in

1Io.12 Change (I.21) to: fk e R, then N'(k) = n'o
in 1 1

Io13 Change (Lo24) to: p - p - d, and then if p o= 0, exclude
ip ip 1 p

l from Rout
out

IIIo14 Change (Io57) to: else perform T01o

T21

T12

Fig. 1 - Finite-State-Machine for Version 1.

Tll

Fig. 2 - Finite-State-Machine for Version 2.

T11

T12

T20
T1 '21

T2'l'

Fig. 3 - Finite-State-Machine for Version 3.

- 29 -

References

[1] LoRo Ford and D.R. Fulkerson, Flows in Networks, Princeton Univ. Press,
Princeton, N.J., 1962.

[2] Jo Edmonds and RM. Karp, Theoretical Improvements in Algorithm
Efficiency for Network Flow Problems, JACM, Volo 19, No. 2,
pp. 248-264, 1972.

[3] EoAo Dinic, Algorithm for Solution of a Problem of Maximum Flow in a
Network with Power Estimation, Soviet Math. Dokl., Vol. 11,
ppo 1277-1280, 1970.

[4] AoVo Karzanov, Determining the Maximal Flow in a Network by the Method
of Preflows, Soviet Math. Dokl., Vol. 15, pp. 434-437, 1974.

[5] V.oM. Malhotra, M. Pramodh Kumar and S.N. Mahashwari, An 0(I'N3) Algorithm
for Finding Maximum Flows in Networks, preprint.

[6] R.oG Gallager, A, Minimum Delay Routing Algorithm using Distributed
Computation, IEEE Trans. Comm., Vol. COM-25, ppo 73-85,
January 1977.

[7] Ao Segall, Optimal Distributed Routing for Virtual Line-Switched Data
Networks, IEEE Trans. Comm., Vol. COM-27, ppo 201-209, Jan. 1979.

[8] A. Segall, P.M. Merlin, R.G. GAllager, A Recoverable Protocol for Loop-
Free Distributed Routing, ICC 78, Toronto, June 1978.

[9] P.M. Merlin and A. Segall, A Failsafe Distributed Routing Protocol, sub-
mitted to IEEE Trans. Comm.

[10] R.G. Gallager, A shortest Path Routing Algorithm with Automatic ResynO,
MIT Memo, March 1976.

[11] PoA. Humblet, A Distributed Shortest-Path Algorithm, International Tele-
metering Confo, Los Angeles, Nov. 1978.

[12] Y, Dalal, Broadcast Protocols in Packet Switched Computer Networks,
Ph.Do thesis, Stanford Univ., April 1977.

[13] PoMo Spira, Communication Complexity of Distributed Minimum Spanning
Tree Algorithms, Second Berkeley Workshop on Distributed Data
Management and Computer Networks, May 1977.

[24] R.G. Gallager, Minimum Weight Spanning Trees, MIT Memo, 1978.

[15] R. Lau, R.M. Persiano and P. Varaiya, Decentralized Information and
Control: A Network Flow Example, IEEE Trans. Autom. Control,
Vol. AC-17, pp. 466-474, Aug. 1972.

[16] L.G. Roberts, The Evolution of Packet Switching, Proc. IEEE, Vol. 66,
pp. 1307-1314, Nov. 1978.

