Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2014-024 October 22,2014

Automatic Error Elimination by
Multi-Application Code Transfer

Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan
Long, Paolo Piselli, and Martin Rinard

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

Automatic Error Elimination by Multi-Application Code Transfer

Stelios Sidiroglou-Douskos Eric Lahtinen

Fan Long

Paolo Piselli Martin Rinard

August 11,2014

ABSTRACT

We present pDNA, a system for automatically transfer-
ring correct code from donor applications into recipient
applications to successfully eliminate errors in the recipi-
ent. Experimental results using three donor applications
to eliminate seven errors in four recipient applications
highlight the ability of pDNA to transfer code across appli-
cations to eliminate otherwise fatal integer overflow errors
at critical memory allocation sites. Because pDNA works
with binary donors with no need for source code or sym-
bolic information, it supports a wide range of use cases.
To the best of our knowledge, pDNA is the first system
to eliminate software errors via the successful transfer of
correct code across applications.

1 INTRODUCTION

Over the last decade, the software development commu-
nity, both open-source and proprietary, has implemented
multiple systems with similar functionality (for example,
systems that process standard image and video files). In
effect, the software development community is now en-
gaged in a spontaneous N-version programming exercise.
But despite the effort invested in these projects, errors and
security vulnerabilities still remain a significant concern.
Many of these errors are caused by an uncommon case
that the developers of one (or more) of the systems did not
anticipate. A key motivation for our research is the empiri-
cal observation that different systems often have different
errors — an input that will trigger an error in one system
can often be processed successfully by another system.

1.1 The pDNA Code Transfer System

We present pDNA, a system that automatically eliminates
errors in recipient software systems by finding correct logic
in donor systems, then transferring that logic from the
donor into the recipient to enable the recipient to correctly
process inputs that would otherwise trigger fatal errors.
The result is a software hybrid that productively combines
beneficial logic from multiple systems:

* Error Discovery: pDNA works with a seed input
that does not trigger the error and a related input
that does trigger the error. pDNA currently uses the
DIODE integer overflow discovery tool, which starts
with a seed input, then uses instrumented executions
of the recipient program to find related inputs that
trigger integer overflow errors at critical memory al-
location sites.

* Donor Selection: pDNA next uses instrumented ex-
ecutions of other systems that can process the same
inputs to find a donor that processes both the seed and
error-triggering inputs successfully. The hypothesis
is that the donor contains a check, missing in the re-
cipient, that enables it to process the error-triggering
input correctly. The goal is to transfer that check from
the donor into the recipient (thereby eliminating the
error in the recipient).

Candidate Check Discovery: To identify the check

that enables the donor to survive the error-triggering

input, pDNA analyzes the executed conditional
branches in the donor program to find branches that

1) are affected by input values involved in the over-

flow and 2) take different directions for the seed and

error-triggering inputs. The hypothesis is that if the
check eliminates the error, the seed input will pass the
check but the error-triggering input will fail the check

(and therefore change the branch direction).

* Patch Transfer: pDNA next transfers the check from
the donor into the recipient. There are two primary
(and related) challenges: expressing the check in the
name space of the recipient and finding an appropriate
location to insert the check.
pDNA first uses an instrumented execution of the
donor on the error-triggering input to express the
branch condition as a symbolic expression over the
input bytes that determine the value of the branch
condition — in effect, excising the check from the
donor to obtain a system-independent representation
of the check.
pDNA then uses an instrumented execution of the
recipient on the seed input to find candidate insertion
points at which all of the input bytes in the branch con-
dition are available in recipient program expressions.
At these points, pPDNA can generate a patch that ex-

presses the condition as a function of these recipient
expressions. This translation, in effect, implants the
excised check into the recipient. pDNA tries each
candidate insertion point in turn until it finds one that
validates.

 Patch Validation: pDNA first uses regression testing
to verify that the patch preserves correct behavior on
the regression suite. It then checks that the patch
enables the patched recipient to correctly process the
error-triggering input.
pDNA next uses DIODE to verify that the check ac-
tually eliminates the error. Specifically, pPDNA pro-
cesses the symbolic check condition, the symbolic
expression for the size of the allocated memory block,
and other existing checks in the recipient that are rele-
vant to the error to verify that there is no input that 1)
satisfies the checks but also 2) generates an overflow
in the computation of the size of the allocated block.
If the patch validation fails, pPDNA continues on to
try other candidate insertion points, other candidate
checks, and other donors.

The current pPDNA implementation generates source-
level recipient patches (given appropriate binary patching
capability, it would also be straightforward to generate
binary patches). But the donor analysis operates directly on
stripped binaries with no need for source code or symbolic
information of any kind. pDNA can therefore, for example,
use closed-source proprietary binaries to obtain patches for
open-source systems. It can also leverage binary donors in
any other way that makes sense in a given situation.

1.2 Experimental Results

We evaluate pDNA on seven errors in four recipient appli-
cations (CWebP 0.31 [2], Dillo 2.1 [3], swfplay 0.55 [9],
and Display 6.5.2-8 [7]). The donor applications are FEH-
2.9.3 [4], mtpaint 3.4 [8], ViewNoir 1.4 [10], and gnash
0.8.11 [5]. For all of the 10 possible donor/recipient pairs
(the donor and recipient must process inputs in the same
format), pDNA was able to successfully generate a patch
that eliminated the error.

To fully appreciate the significance of these results, con-
sider that the donor and recipient applications were devel-
oped in independent development efforts with no shared
source code base relevant to the error. This is not a situa-
tion in which pDNA is simply propagating patches from
one version of a shared code base to a previous version

— the patched code is instead excised from an indepen-
dently developed alien donor and successfully implanted
into the recipient. pDNA’s ability to obtain an application-
independent representation of the check (by expressing

the check as a function of the input bytes) is critical to the
success of the transfer.

We also note that the recipient and donor applications do
not need to implement the same functionality. Many of the
errors occur in the code that parses the input, constructs the
internal data structures that hold the input, and reads the
input into those data structures. Even when the applications
have different goals and functionality, the fact that they
both read the same input files is often enough to enable a
successful transfer.

1.3 Contributions

This paper makes the following contributions:

* Basic Concept: pDNA automatically eliminates soft-

ware errors by identifying and transferring correct
logic from donor systems into incorrect recipient sys-
tems. In this way pDNA can automatically harness
the combined knowledge and labor invested across
multiple systems to improve each system.
To the best of our knowledge, pDNA is the first system
to demonstrate that it is possible to automatically
transfer logic between software systems to eliminate
ITOrS.

* Logic Identification Technique: pDNA identifies
the correct donor logic to transfer into the recipient by
analyzing two instrumented executions of the donor:
one on the seed input and one on the error-triggering
input (which the donor, but not the recipient, can
successfully process). A comparison of the paths
that these two inputs take through the donor enables
pDNA to isolate a single check (present in the donor
but missing in the recipient) that enables systems to
correctly process inputs that would otherwise trigger
(usually fatal) errors.

* Transfer Technique: pDNA excises the check from
the donor by expressing the check in a system-
independent way as a function of the input bytes that
determine the value of the check. Itimplants the check
into the recipient by analyzing an instrumented execu-
tion of the recipient to discover program expressions
that contain the required input values. Specifically,
it uses the availability of these expressions to iden-
tify an appropriate check insertion point and translate
the check into the name space of the recipient at that
point. It then validates the transfer using regression
testing and directed input space exploration to verify
that there is no input that 1) satisfies the check and
relevant enforced DIODE branch conditions but also
2) triggers the error.

* Experimental Results: We present experimental re-
sults that characterize the ability of pDNA to elim-

inate seven otherwise fatal errors in four recipient
applications by transferring correct logic from three
donor applications. For all of the 10 possible donor/re-
cipient pairs, pPDNA was able to obtain a successful
validated transfer that eliminated the error.

The remainder of the paper is structured as follows.
Section 2 presents an example that illustrates how pDNA
eliminates an error in CWebp (with FEH as the donor).
Section 3 discusses the pDNA design and implementation.
We present experimental results in Section 4, related work
in Section 5, and conclude in Section 6.

2 EXAMPLE

We next present an example that illustrates how pDNA
automatically patches an integer overflow error in CWebP,
Google’s conversion program for the WepP image format.

Figure 1 presents (simplified) CWebP source code that
contains an integer overflow error. CWebP uses the lib-
jpeg library to read JPG images before converting them
to the CWebP format. It uses the Read JPEG function to
parse the JPG files. There is a potential overflow at line
9 where CWebP calculates the size of the allocated im-
age as stride x height, where stride is: width =
output_components *x sizeof (rgb).

On a 32-bit machine, inputs with large width and height

fields can cause the image buffer size calculation at line 9
to overflow. In this case CWebP allocates an image buffer
that is smaller than required and eventually writes beyond
the end of the allocated buffer.
Error Discovery: Starting with a seed input that CWebP
processes correctly, pPDNA uses the DIODE integer over-
flow discovery tool to obtain a related input that triggers
the integer overflow error. DIODE first executes CWebP
on the seed input. Ateach executed memory allocation site,
the DIODE instrumentation records a symbolic expression
for the size of the allocated memory. The variables in this
symbolic expression are the values of the JPG input fields.
The symbolic expressions therefore capture the complete
computation that CWebP performs on the input fields to
obtain the sizes of the allocated memory blocks.

DIODE next leverages branch conditions and the
recorded symbolic expressions to efficiently search the
input space to find an input that triggers an integer over-
flow at one (or more) of the memory allocation sites.
In the error-triggering input in our example, the JPG
/start_frame/content/height field is 62848
and the /start_frame/content/width field is
23200.

Donor Selection: pDNA next searches a database of ap-
plications that process JPG files to find candidate donor
applications that successfully process both the seed and

int ReadJPEG(...) {

1

2 R

3 dth = dinfo.output_width;

4 height = dinfo.output_height;

5 stride = dinfo.output_width =

6 dinfo.output_components =
7 sizeof (xrgb);

8 /* the overflow error */

9 rgb = (uint8_t+)malloc(stride * height);
10 if (rgb == NULL) ({

11 goto End;

12 }

Figure 1: (Simplified) CWebP Overflow Error

char load(...) {

int w, h;
struct jpeg_decompress_struct cinfo;
9 struct ImLib_JPEG_error_mgr jerr;
10 FILE *f;
11 e
12 if (...) |
13 . e
14 im->w = w = cinfo.output_width;
15 im->h = h = cinfo.output_height;
16 /* Candidate check condition */
17 if ((cinfo.rec_outbuf_height > 16) |
18 (cinfo.output_components <= 0) ||
19 ! IMAGE_DIMENSIONS_OK (w, h))
20 {
21 // Clean up and quit
22 cee
23 return 0;

Figure 2: (Simplified) FEH Overflow Check

the error-triggering inputs. In this example pDNA finds the
FEH image viewer application. pPDNA will attempt to find
a check in FEH that eliminates the integer overflow, then
transfer that check from FEH into CWebP to eliminate the
overflow in CWebP.

Candidate Check Discovery: pDNA next runs an instru-
mented version of the FEH donor application on the seed
and error-triggering inputs. At each conditional branch
that is influenced by the relevant input field values (in
thiscase the /start_frame/content/height and
/start_frame/content/width fields), it records
the direction taken at the branch and a symbolic expression
for the value of the branch condition (the free variables in
these expressions are the values of input fields).

pDNA operates under the hypothesis that one of the FEH
branch conditions implements a check designed to detect
inputs that trigger the overflow. Under this hypothesis,
the seed input and error-triggering inputs take different
directions at this branch (because the seed input would
satisfy the branch condition and the error-triggering input

define IMAGE_DIMENSIONS_OK(w, h) \
((unsigned long long)(w) * (unsigned long long)(h) <= (1ULL << 29) - 1))

S

((unsigned Iong long)(w) ((unsigned long long)(h (1ULL<<29) - 1)

/<=
*x \
cinfo->image_height cinfo_image_width 536870911

if ((((unsigned long) ((cinfo->image_height) *
((unsigned long) (cinfo->image_width)))) <= 536870911))-

Add(Width(BvOr(Constant(0x0),Width(Shi(Widt
h(BvAnd(Variable("/start_frame/content/
height"),Constant(0xff)),
Constant(32)),Constant(0x8)), Constant(32))),
Constant(32)),Width(BvOr(Constant(0x0),Width
(UShr(Width(BvAnd(Variable("/start_frame/
content/height"),Constant(0xff00)),
Constant(32)),Constant(0x8)), Constant(32))),
Constant(32)))

Add(BvOr(Constant(0x00),Shl(Width(BvAnd(Va
riable('/start_frame/content/
width'),Constant(0xFF)),Constant(32)),Constan
(8))),
BvOr(Constant(0x00),Width(UShr(BvAnd(Varia
ble('/start_frame/content/
width'),Constant(0xFF00)),Constant(8)),Consta
nt(32))))", 32

cinfo->image_height

Add(Width(BvOr(Constant(0x0),Width(Shi(Widt
h(BvAnd(Variable("/start_frame/content/
width"),Constant(0xff)),
Constant(32)),Constant(0x8)), Constant(32))),
Constant(32)),Width(BvOr(Constant(0x0),Width
(UShr(Width(BvAnd(Variable("/start_frame/
content/width"),Constant(0xff00)),
Constant(32)),Constant(0x8)), Constant(32))),
Constant(32))), Constant(32))),

DONOR

RECIPIENT

Add(BvOr(Constant(0x00),Shi(Width(BvAnd(Va
riable("/start_frame/content/
height'),Constant(0xFF)),Constant(32)),Consta
nt(8))).
BvOr(Constant(0x00), Width(UShr(BvAnd(Varia
ble('/start_frame/content/
height'), Constant(0xFF00)),Constant(8)),Const
ant(32))))", 32

cinfo->image_width

Figure 3: Patch Transfer

would not). pDNA therefore considers the condition at
each branch at which the seed and error-triggering inputs
take different directions to be a candidate check condition.

In our example, pDNA discovers a candidate check con-
dition in the im1ib library that FEH uses to load and
process JPG files. Figure 2 presents the (simplified) source
code for this condition.! The IMAGE_ DIMENSIONS_OK
macro (line 19), performs an overflow check on the compu-
tation of output_width * output_height. This
check enables FEH to detect and correctly process the
error-triggering input without overflow.

pDNA next excises the candidate check condition from
the donor by expressing the condition as a function of the
input bytes that determine the value of the condition. This
excision uses an instrumented execution of the donor that
dynamically tracks the flow of input bytes through program
to record the bytes that appear in the out put_widthand
output_height variables. In our example the excised
condition is as follows:

ULessEqual (Width (Mul (Width (BvOr (Width (Shl (Width (SRemainder

(BvOr (BvOr (Constant (0x00) , Width (Sub (Add (Constant (8),

Shl (Add (BvOr (Constant (0x00), Shl (BvAnd (Variable (’ /start_frame/content/height’),
Constant (0xFF)), Constant (8))), BvOr (Constant (0x00),

UShr (BvAnd (Variable (’ /start_frame/content/height’),Constant (0XFF00)),
Constant (8)))),Constant (3))),Constant (1)), Constant (64))),

Shl (Width (SShr (Sub (Add (Constant (8), Shl (Add (BvOr (Constant (0x00),

Shl (Width (BvAnd (Variable (' /start_frame/content/height’),

Constant (0xFF)), Constant (32)),Constant (8))),BvOr (Constant (0x00),

Ushr (BvAnd (Variable (' /start_frame/content/height’),Constant (0xFF00)),
Constant (8)))),Constant (3))),Constant (1)),Constant (31)),Constant (64)),
Constant (32))),Constant (8)),Constant (64)),Constant (32)),Constant (64)),
SDiv (BvOr (BvOr (Constant (0x00) ,Width (Sub (Add (Constant (8),

Shl (Add (BvOr (Constant (0x00),

Shl (BvAnd (Variable (’ /start_frame/content/height’),

Constant (0xFF)), Constant (8))), BvOr (Constant (0x00),

UShr (BvAnd (Variable (’ /start_frame/content/height’),Constant (0XFF00)),
Constant (8)))),Constant (3))),Constant (1)),Constant (64))),

Shl(Width (SShr (Sub (Add (Constant (8),

Shl (Add (BvOr (Constant (0x00),

Shl (BvAnd (Variable (’ /start_frame/content/height’),

Constant (0xFF)),Constant (8))),BvOr (Constant (0x00) ,

Ushr (BvAnd (Variable (' /start_frame/content/height’),Constant (0xFF00)),
Constant (8)))),Constant (3))),Constant (1)),Constant (31)),Constant (64)),

! Because pDNA operates on binaries, information about the source
code for the donor patch is, in general, not available. So that we can
present the FEH source code for the check in our example, we used the
symbolic debugging information in FEH to manually locate the source
code for the check.

Constant (32))),Constant (8))),Constant (64))

Width (BvOr (Width (Shl (Width (SRemainder (BvOr (BvOr (Constant (0x00),

Width (Sub (Add (Constant (8), Shl (Add (BvOr (Constant (0x00),

Shl (BvAnd (Variable(’/start_frame/content/width’), Constant (0xFF)),

Constant (8))),BvOr (Constant (0x00),

UShr (BvAnd (Variable (' /start_frame/content/width’),

Constant (0xFF00)),Constant (8)))),Constant (3))),Constant (1)), Constant (64))),
Shl (Width (SShr (Sub (Add (Constant (8), Shl (Add (BvOr (Constant (0x00),

Shl (BvAnd (Variable (’ /start_frame/content/width’),Constant (0xFF)),

Constant (8))),BvOr (Constant (0x00),

UShr (BvAnd (Variable (’ /start_frame/content/width’),Constant (0xFF00)),
Constant (8)))),Constant (3))),Constant (1)), Constant (31)),Constant (64)),
Constant (32))), Constant(8)),Constant (64)),Constant (32)),Constant (64)),
SDiv (BvOr (BvOr (Constant (0x00),
BvOr (Constant (0x00) , UShr (BvAnd (Variable (’ /start_frame/content/width’),
Constant (0xFF00)),Constant (8)))),Constant (3))),Constant (1)),

Constant (64))),Shl (Width (SShr (Sub (Add (Constant (8),

Shl (Add (BvOr (Constant (0x00), Shl (BvAnd (Variable (/ /start_frame/content/width’),
Constant (0xFF)),Constant (8))),BvOr (Constant (0x00) ,

UShr (BvAnd (Variable (’ /start_frame/content/width’),

Constant (0xFF00)),Constant (8)))),Constant (3))),Constant (1)),

Constant (31)),Constant (64)),Constant (32))),Constant (8))),

Constant (64))),Constant (64)),Constant (536870911))

There are two primary reasons for the complexity of this
excised condition. First, it correctly captures how FEH
manipulates the input fields to convert from big-endian
(in the input file) to little-endian (in the FEH application)
representation. Second, FEH also casts the 16-bit input
fields to long integers before it performs the overflow check.
The excised condition correctly captures the shifts and
masks that are performed as part of this conversion.
Patch Transfer: pDNA next attempts to transfer the can-
didate check condition from the donor FEH application to
the recipient CWebP application, then use the transferred
condition to insert a check into CWebP that eliminates the
integer overflow error. Two key challenges are translating
the condition into the name space of the CWebP application
(i.e., expressing the condition in terms of the variables of
the CWebP application) and finding a successful insertion
point for the generated check.

pDNA runs CWebP (the recipient) on the seed input.
After every assignment that reads a program expression
that contains one of the input fields in the candidate check
condition, the pDNA instrumentation computes the input
field values that are available in CWebP program expres-
sions at that point. If all of the input field values in the

Width (Sub (Add (Constant (8), Shl (Add (BvOr (Constant (0x00) ,
Shl (BvAnd (Variable (' /start_frame/content/width’),Constant (0xFF)),Constant(8))),

condition are available at a given point, pPDNA can express
the candidate check condition in terms of the available
CWebP expressions (Figure 3 illustrates the translation).
Each such point is a candidate insertion point.

pDNA iterates over the candidate insertion points
(sorted by the CWebP execution order). At each point
pDNA generates a candidate patch and attempts to vali-
date the patch to determine if it 1) eliminates the error and
2) does not introduce a new error. The iteration continues
until the patch validates.

For CWebP, pDNA identifies 16 candidate inser-
tion points. The first point occurs in jdmarker.c:267,
which is part of the jpeg-6b library. At this point
pDNA (using the cinfo— >image_height and
cinfo— >image_width expressions available in the
CWepP source code at that point) generates the following
patch:

if (! ((((unsigned long)
((unsigned long)

((cinfo->image_height) =
(cinfo->image_width))))
<= 536870911))) {
exit (-1);

Note that pDNA was able to successfully convert the
complex application-independent excised condition into
this simple form — pDNA was able to detect that CWebP,
even though developed independently, performs the same
endianess conversion, shifts, and masks on the input values
as FEH. pDNA therefore realizes that the input values are
available in the same format in both the CWebP and FEH
internal data structures, enabling pDNA to generate a sim-
ple patch that accesses the CWebP data structures directly
with no complex format conversion. The generated patch
checks the candidate check condition and, if the condition
is true, exits the application. The rationale is to exit the
application before the integer overflow (and any ensuing
error or vulnerabilities) can occur.

Figure 4, lines 14-18, shows where pDNA inserts the
generated patch into CWebP. A quick inspection of the
surrounding code, which also performs a number of input
checks, indicates that pDNA selected an appropriate patch
insertion point.

Patch Validation: Finally, pDNA rebuilds CWebP, which
now includes the generated patch, and subjects the patch to
anumber of tests. First, it ensures the compilation process
finished correctly. Second, it executes the patched version
of CWebP on the error-triggering input and checks that
the input no longer triggers the error (pDNA runs CWebP
under Valgrind memcheck to detect any errors that do
not manifest in crashes). Third, it runs a regression test
that compares the output of the patched application to the
output of the original application, on a pre-selected set of
inputs that the application is known to process correctly.

LOCAL (boolean)
get_sof (j_decompress_ptr cinfo, ...) {

1
2

3

4 // Existing ty cks

5 if (cinfo-> ge_height <= 0 |
6

7

8

cinfo->image_width <= 0 ||
cinfo->num_components <= 0)
ERREXIT (cinfo, JERR_EMPTY_IMAGE) ;

10 if (length != (cinfo->num_components * 3))
11 ERREXIT (cinfo, JERR_BAD_LENGTH) ;

13 /* pDNA transfered patch =/

14 if (! ((((unsigned long) ((cinfo->image_height) =
15 ((unsigned long) (cinfo->image_width))))

16 <= 536870911))) {

17 exit (-1);

18 }

19 e

20 return TRUE;

21 }

Figure 4: Transfered Patch In CWebP (from FEH)

Fourth, pDNA runs the patched version of the application
through the DIODE error discovery tool to ensure that no
more error-triggering inputs can be generated. The end
result, in this example, is a version of CWebP that contains
a check that eliminates the integer overflow error in the
original version.

3 DESIGN AND IMPLEMENTATION

We next discuss how pDNA deals with the many technical
issues it must overcome to successfully generate source-
level patches for discovered errors. pDNA consists of
approximately 10,000 lines of C (most of this code im-
plements the taint and symbolic expression tracking) and
4,000 lines of Python (code for rewriting donor expressions
into expressions that can be inserted into the recipient, code
that generates patches from the bitvector representation,
code that interfaces with Z3, and the code that manages the
database of relevant experimental results).

Figure 5 presents an overview of the pPDNA components.
First, we describe our techniques for error discovery. Sec-
ond, we describe our methodology for selecting donors.
Third, we describe our techniques for selecting candidate
checks from donor applications. Fourth, we describe our
patch transfer algorithms. Finally, we discuss our tech-
niques for patch validation.

3.1 Error Discovery

pDNA uses DIODE [1], a tool that we have previously
developed, to automatically generate inputs that trigger
integer overflows at memory allocation sites. DIODE is
designed to identify relevant checks that inputs must satisfy
to trigger overflows at target memory allocation sites, then
generate inputs that satisfy these checks to successfully
trigger the overflow.

Donor
DB

A

Candidate
Error Donor
Discovery Selection Check
Discovery

Patch
Transfer

Patch
Validation

S

F.

Figure 5: High-level overview of pDNA’s components

Starting with a seed input that causes one or more target
memory allocation sites to execute, DIODE performs the
following steps:

» Target Allocation Site Identification: Using a fine-
grained dynamic taint analysis on the application run-
ning on the seed input, DIODE identifies all memory
allocation sites that are influenced by values from the
seed input. These sites are the target sites.

e Target Constraint Extraction: Based on instru-
mented executions of the application, DIODE ex-
tracts a symbolic target expression that characterizes
how the application computes the target value (the
size of the allocated memory block) at each target
memory allocation site from input values. The input
bytes that influence this expression are the relevant
input bytes. Using the target expression, DIODE
generates a target constraint that characterizes all in-
puts that would cause the computation of the target
value to overflow (as long as the input also causes the
application to compute the target value).

* Branch Constraint Extraction: Again based on in-
strumented executions of the application, DIODE
extracts the sequence of conditional branch instruc-
tions that the application executes to generate the path
to the target memory allocation site.

To ensure that DIODE productively considers only
relevant conditional branches, DIODE discards 1)
all conditional branches whose condition is not influ-
enced by relevant input bytes and 2) all conditional
branches that implement loop back edges.

For each remaining conditional branch, DIODE gen-
erates a branch constraint that characterizes all input
values that cause the execution to take the same path
at that branch as the seed input. DIODE will use these
branch constraints to generate candidate test inputs
that force the application to follow the same path as
the seed input at selected conditional branches.

¢ Target Constraint Solution: DIODE invokes the Z3
SMT solver [15] to obtain input values that satisfy the
target constraint. If the application follows a path that
evaluates the target expression at the target memory

allocation site, DIODE has successfully generated
an input that triggers the overflow. If the application
performs no checks on the generated values, this step
typically delivers an input that triggers the overflow.
* Goal-Directed Conditional Branch Enforcement:
If the previous step failed to deliver an input that trig-
gers an overflow, DIODE compares the path that the
seed input followed with the path that the generated
input followed. These two paths must differ (oth-
erwise the generated input would have triggered an
overflow).
DIODE then finds the first (in the execution order) rel-
evant conditional branch where the two paths diverge
(i.e., where the generated input takes a different path
than the seed input). We call this conditional branch
the first flipped branch.
DIODE adds the branch constraint from the first
flipped branch to the constraint that it passes to the
solver, forcing the solver to generate a new input that
takes the same path as the seed input at the first flipped
branch. DIODE then runs the application on this new
generated input to see if it triggers the overflow.
DIODE continues this goal-directed branch enforce-
ment algorithm, incrementally adding the branch con-
straints from first flipped branches, until either 1) it
generates an input that triggers the overflow or 2) it
generates an unsatisfiable constraint.

3.2 Donor Selection

For each input file format, pDNA works with a set of appli-
cations that process that format. Note that the donor and
recipient applications do not have to implement identical
functionality — many of the errors that pDNA eliminates
occur in the initial input processing phase. Given seed and
error-triggering inputs, pPDNA considers applications that
can successfully process both inputs as potential donors.

3.3 Candidate Check Discovery

To extract candidate checks from donor applications,
pDNA contains a fine-grained dynamic taint analysis built
on top of the Valgrind [29] binary analysis framework. Our

analysis takes as input a specified taint source, such as a
filename or a network connection, and marks all data read
from the taint source as tainted. Each input byte is assigned
aunique label and is tracked by the execution monitor as it
propagates through the application until it reaches a poten-
tial sink in the target application (e.g., branch conditions
and memory allocation sites). To track the data-flow de-
pendencies from source to sink, our analysis instruments
arithmetic instructions (e.g., ADD, SUB), data movement
instructions (e.g., MOV, PUSH) and logic instructions (e.g.,
AND, XOR). Our analysis also supports additional instru-
mentation to reconstruct the full symbolic expression of
the value at a sink, which represents how the application
computes the value from input bytes.

Identify Candidate Check: pDNA runs the dynamic
taint analysis on the donor application twice, once with
a seed input and once with the bug-triggering input that
DIODE generates from the seed input. For each execution,
pDNA extracts the conditional branch statements in the
execution path that relevant input bytes influence. For
each such branch statement, pPDNA records which branch
direction the execution takes. pDNA then compares the
two execution paths to find the flipped conditional branch
statements that cause the two executions diverge.

pDNA empirically transfers the condition of the first
flipped branch statement into the recipient application. We
call the condition of the first flipped branch statement the
candidate check. If the generated patch does not pass the
validation (see Section 3.5), pDNA will transfer the second
flipped branch statement to generate a new patch, etc.,.

Generate Target Symbolic Condition: Next, pDNA
reruns the application with additional instrumentation that
enables pDNA to reconstruct the full target symbolic con-
dition for the candidate check, which characterizes how
the donor application computes the condition of the can-
didate check from the input byte values. Conceptually,
pDNA generates a symbolic record of all calculations that
the application performs. Obviously, attempting to record
all calculations would produce an unmanageable volume
of information. pDNA reduces the volume of recorded
information with the following optimizations:

* Relevant Input Bytes: pDNA only records calcula-
tions that involve the relevant input bytes. Specifi-
cally, pPDNA maintains an expression tree of relevant
calculations that only tracks calculations that operate
on tainted data (i.e., relevant input bytes). This opti-
mization drastically reduces the amount of recorded
information.

» Simplify Expressions: pDNA further reduces the
amount of recorded information by simplifying
recorded expressions at runtime. Specifically, pPDNA

identifies and simplifies resize, move and arithmetic
operations. For example, pPDNA can convert the fol-
lowing sequence of VEX IR instructions:

tl5 = Add32 (t10, 0x1:I32)

tl6 = Add32 (t15,0x1:1I32)

tl7 = Add32(t16,0x1:I32)
that would result in:

Add32 (Add32 (Add32 (t10, Ox1), 0x1),0x1)
into:

Add32 (t10, 0x3)

To convert relevant input bytes to symbolic representa-
tions of the input format, pPDNA uses the Hachoir [6] tool
to convert byte ranges into input fields (e.g., in the PNG
format, bytes 0-3 represent /header/height). If Hachoir
does not support a particular input format or is otherwise
unable to perform this conversion, pPDNA also supports
a raw mode in which all input bytes are represented as
offsets.

3.4 Patch Transfer

Next, pDNA determines if the symbolic representation of
the candidate check can eliminate the error from the recipi-
ent. In other words, pPDNA verifies that the target constraint
solution and relevant branches generated by DIODE, along
with the constraints introduced by the candidate check, can
no longer be used to generate an input that can cause an
integer overflow.

To transfer the candidate check to an insertion point in
the recipient application, pPDNA rewrites the target sym-
bolic condition with active variables at the insertion point.
Therefore, pPDNA first needs to track how a recipient appli-
cation computes the values of program variables that are
derived from input bytes.

Specifically, pPDNA performs its dynamic taint analysis
on the recipient application with the bug-triggering in-
put. For each variable assignment statement that involves
relevant input bytes, the analysis records the symbolic ex-
pression of the assigned value, which characterizes how
the recipient application computes the value from the input
bytes.

If all of the required input bytes are available in pro-
gram expressions after the assignment, pDNA currently
considers the program point after each variable assignment
statement that involves relevant input bytes to be a candi-
date check insertion point. For each such insertion point,
pDNA identifies active program variables at the insertion
point that pDNA can use to construct the patch. pDNA
then invokes a rewrite algorithm to synthesize the patch.

Figure 6 presents pPDNA’s expression rewrite algorithm.
The algorithm takes as input a symbolic expression E and

a set of variables Vars as inputs and rewrites the expres-
sion E using variables in Vars. The key insight behind the
rewrite algorithm is that the synthesized condition in the
recipient application should be semantically equivalent to
the candidate check in the donor application at least on
the error-triggering input. Therefore the symbolic repre-
sentation of the synthesized patch condition should match
the target symbolic condition pDNA obtains using the
dynamic analysis on the donor application.

Constant expressions (lines 12-14) are directly used and
do not require a rewrite pass. Next, the algorithm attempts
to find a single variable to represent the whole expression
(lines 15-21). If unsuccessful, the algorithm decomposes
the expression and attempts to rewrite each subexpression
recursively (lines 22-27 for expressions with unary opera-
tions, lines 28-36 for expressions with binary operations).

Note that at line 16, the algorithm queries the SMT
solver to determine whether two symbolic expressions are
equivalent. The pDNA implementation has two optimiza-
tions to reduce the number of invocations to the solver.
First, if two symbolic expressions depend on different sets
of input bytes, pDNA does not need to invoke the solver
because these two expressions cannot be equivalent. Sec-
ond, pDNA caches all queries to the SMT solver so that
it can retrieve results from the cache for future duplicate
queries.

For each insertion point in the recipient that the rewrite
algorithm successfully constructs the new condition,
pDNA generates a candidate patch as an if statement in-
serted at the insertion point. In the current implementation,
pDNA transforms the constructed bitvector condition into
a C expression as the if condition (appropriately generating
the casts, shifts, and masks required to preserve the seman-
tics of the transferred check). If the condition is satisfied,
the patch exits the application with an exit (-1).

3.5 Patch Validation

pDNA first recompiles the patched recipient application. It
then executes the patched application on the bug-triggering
input to verify that the patch successfully eliminates the
error for that input. pDNA also runs the patched build on
a set of regression suite inputs to validate that the patch
does not break the core functionality of the application.
pDNA finally runs DIODE on the patched recipient ap-
plication with the seed input. This validates that after the
recipient application is patched, DIODE is not able to find
another input that triggers the same error. In other words,
pDNA validates that there is no input that satisfies the patch
condition and the relevant branch conditions that DIODE
generates while also triggering an overflow at the target
allocation site.

Parameters:

E: A symbolic expression

Vars: A set of active variables

For each V in Vars, V.ar is the variable
name; V.exp is the symbolic expression that
corresponds to the value of the variable.
Return:

Rewriten expression of E or
9 false if failed

% 9w AW —

11 Rewrite (E, Vars) {

12 if (E is constant)

13 return E

14 end if

15 for V in Vars

16 if (SolverEquiv (E,V.exp))

17 Ret.opcode — VAR

18 Ret.opl «— V.ar

19 return Ret;

20 end if

21 end for

22 if (E.opcode is unary operation)
23 Ret.opcode — E.opcode

24 Ret.opl «— Rewrite (E.opl, Vars)
25 if (Ret.opl '= false)

26 return Ret

27 end if

28 else if (E.opcode is binary operation)
29 Ret.opcode «— E.opcode

30 Ret.opl «— Rewrite (E.opl, Vars)
31 Ret.op2 «— Rewrite (E.op2, Vars)
32 if (Ret.opl # false and

33 Ret.op2 # false)

34 return Ret

35 end if

36 end if

37 return false

38 }

Figure 6: pDNA Rewrite algorithm

4 EXPERIMENTAL RESULTS

We evaluate pDNA on seven integer overflow errors that
DIODE previously detected in four applications: CWebP
0.31 [2], Dillo 2.1 [3], swiplay 0.55 [9], and Display
6.5.2-8 [7]. Two of these errors were listed in the CVE
database; one was first discovered by BuzzFuzz [17]; the
other four were, to the best of our knowledge, first discov-
ered by DIODE. The errors are triggered by JPG image files
(CWebP), PNG image files (Dillo), SWF video files (swf-
play), and TIFF image files (Display). For JPG and PNG
files our set of donor applications includes FEH-2.9.3 [4]
and mtpaint 3.4 [8]. For TIFF files our donor application
is ViewNoir 1.4 [10]. For SWF our donor application is
gnash 0.8.11 [5].

For each error we started with seed and corresponding
error-triggering inputs previously identified by DIODE.
We then deployed pDNA in an attempt to generate val-
idated patches to eliminate each of the errors. Figure 7
summarizes the results of these experiments. There is a
row in the table for each combination of error and donor
application. The first column (Application) identifies the
application. The second column (Target) identifies the
source code file and line where the error occurs. The third

Error ‘ Format

Candidate ‘ # Insertion

Donor App ‘ Patch ‘ Generation Time

Application Target Checks Points
CWebP 0.3.1 jpegdec.c:248 New jpeg feh-2.9.3 v 13m 7 214
CWebP 0.3.1 jpegdec.c:248 New jpeg | mtpaint-3.40 v 7m 16 214

Dillo 2.1 png.c@203 | CVE-2009-2294 png | mtpaint-3.40 v 10m 2 167
Dillo 2.1 png.c@203 | CVE-2009-2294 png feh-2.9.3 v 13m 5 167
Dillo 2.1 fitkimagebuf.cc@39 New png | mtpaint-3.40 v 10m 2 167
Dillo 2.1 fitkimagebuf.cc@39 New png feh-2.9.3 v 13m 5 167
Display 6.5.2 xwindow.c@5619 | CVE-2009-1882 tiff | viewnior-1.4 v 1h 4328 148
Display 6.5.2 cache.c@803 New tiff | viewnior-1.4 v 1h 24 148
SwifPlay 0.5.5 | jpeg_rgb_decoder.c@253 New swf gnash v 45m 45 120
SwiPlay 0.5.5 jpeg.c@192 BuzzFuzz [17] swf gnash v 14m 27 222

Figure 7: pDNA Experimental Results

column (Error) presents either the CVE identifier (if the
error was previously known) or new (if the error was first
discovered by DIODE). The fourth column identifies the
input file format. The fifth column identifies the donor
application. The sixth column indicates (with a check
mark) if pPDNA was able to generate a validated patch for
that recipient/donor pair (pDNA succeeded for all pairs).
The seventh column presents the amount of time pDNA
required to generate and validate the patch.

The eighth column presents the number of candidate
checks that pDNA found in the donor. To improve the
efficiency of the search, our current pDNA implementa-
tion uses the DIODE target overflow constraint from the
allocation site, the conditions on the branches the DIODE
enforced, and the patch condition to check if any input can
simultaneously satisfy all of these conditions. If so, there
may be an input that can satisfy the check and still cause
an overflow. In this case pPDNA immediately filters the
candidate check and moves on to the next check. For all of
our benchmark errors, the first candidate check that passes
this DIODE test eventually validates.

The ninth column presents the number of insertion
points that pDNA found in the recipient. For all of our
benchmark errors, the first insertion point validates as ex-
pected.

4.1 Dillo

Dillo is a lightweight graphical web browser. Dillo 2.1 is
vulnerable to an integer overflow when decoding the PNG
file format. Dillo computes the size as a 32-bit product
of width, height, and pixel depth. An overflow check is
present, but the overflow check is itself vulnerable to an
overflow. When the buffer size calculation overflows, the
allocation at png.c line 203 returns a buffer that is too
small to hold the decompressed image (CVE-2009-2294).
Both FEH and mtpaint are successful donors for this error.
The transferred check appears in FEH as a subexpression
generated as part of the following macro invocation:>

2 Because pDNA operates on binaries, information about the source
code for the donor patch is, in general, not available. To present the source
code for the checks in this section, we used the symbolic debugging

if (! IMAGE_DIMENSIONS_OK (w32, h32))

After the transfer, the check appears in Dillo
(1ibpng-1.2.50/pngrutil.c:497) as:

if (! ((((unsigned int) (((unsigned int) (((unsigned int)
((unsigned int)
((width) = 0))) + ((unsigned int) ((unsigned int)

((unsigned int)
((unsigned int)

((height) %0)))))) + ((unsigned int)
((unsigned int) (((unsigned long

long) ((height) * ((unsigned long long) (width))))
>>32)))))) <=0)))
{exit (-1);}

In this patch the repeated casts to unsigned int and unsigned
long long are required to correctly reflect the varying bi-
nary representations at which the FEH binary performs the
check. The patch eliminates the error by checking that the
wideh and neight values will never generate an overflow.
pDNA inserted the patch at 1ibpng-1.2.50/pngrutil.c:497.

The mtpaint patch uses the following check:

if ((pwidth > MAX_WIDTH) ||
(pheight > MAX_HEIGHT))

where vax_wipts is equal to 16384. This check generates
the following patch:

1f (P (((1) <= 16384))) {exit(-1);}

which pDNA inserts into 1ibpng-1.2.50/pngrutil.c:65.
Two things are of interest. First, the patch checks only
the width field, but this check is enough to eliminate the
overflow. Second, the check constrains the width to be
small enough (no greater than 16384) so that Dillo may
reject some valid input files. But this is consistent with the
behavior of the mtpaint donor, which will also reject these
same input files.

We note that Dillo 2.1 has an additional overflow vul-
nerability after the initial allocation. The same function
initializes a cache for the image starting at png.c line 212,
which leads to an allocation inside the FLTK library at
fitkimgbuf.cc line 62 which computes a buffer size as a
product of improperly checked variables. If the calculation
of the buffer size overflows, the write of the image into
the cache will overrun the allocated space. Because the
buffer size computation involves the same width and height
values, the previous patches also eliminate this error.

information in the binary (when available) to locate this source code.

4.2 Display

ImageMagick Display is an image viewing and formatting
utility released as part of the ImageMagick suite. Display
6.5.2 is vulnerable to an integer overflow for TIFF files.
Display computes the length in bytes needed for a pixel
buffer as a product of several values from the input file
such as width, height, and bytes per pixel. With no over-
flow checking at all in this version, this length calculation
easily overflows its 32-bit size, resulting in an incorrect
size passed to malloc at xwindow.c line 5619 (CVE-2009-
1882).

PDNA successfully created a patch for this error using
viewnior as the donor application. The transfered check
appears in Viewnoir as:

bytes = height * rowstride;
if (bytes / rowstride != height)

This check was translated into the following patch for
Display (cache.c:2056) as:

if (! (((image->rows) == ((unsigned int)
long long) ((unsigned long long) (((unsigned long long)
(((unsigned int) (((unsigned int) ((unsigned int) (O

((unsigned long long) ((image->rows) % ((unsigned long

(((unsigned

long) ((unsigned int) ((unsigned int) ((image->columns)
<< 2))))))))) | ((unsigned int) ((unsigned int)

((unsigned int) (((unsigned long long) ((unsigned long
long) (((unsigned int) ((image->rows) = ((unsigned int)

((unsigned int) ((unsigned int) ((image->columns) <<

2)))))) >> 31))) << 32))))))

% ((unsigned long long) ((unsigned int) ((unsigned

int) ((image->columns) << 2)))))) << 32))) | ((unsigned
int) ((unsigned int) (((unsigned int) (((unsigned int)

((unsigned int)
image—>rows) =*

unsigned int)
nsigned int)

(0 | ((unsigned long long)

((unsigned long long) ((unsigned int)
((image—->columns) << 2))))))))) |
((unsigned int) ((unsigned int)
unsigned long long) ((unsigned long long)
unsigned int) ((image->rows) ((unsigned int)

u

(

(

unsigned int) ((unsigned int) ((image->columns) <<
)

u

)

)))) >> 31))) << 32)))))) / ((unsigned int)
nsigned int) ((unsigned int) ((image->columns) <<

(
(
(
(
(
(
)
(
)))))))))))) {exit(=1);}

(
(
(
(
(
(
2
(
2

The multiple casts, shifts, and mask operations are re-
quired to correctly reflect the different integer represen-
tations at which the viewnoir binary performs the check.
This patch eliminates the error by performing an overflow
check on height, width, and the number of columns (used to
compute rowst ride)

Display also contains overflow errors when creating a
resized version of the image for display within the GUI
window (starting at display.c line 4393), and when creating
a cache buffer for the image during TIFF decompression
(a request for pixel space at tiff.c line 1044 eventually
results in an allocation at cache.c line 3717). When the
computation of any of these buffer sizes overflows, the
allocated memory blocks are too small, causing Display to
write beyond the end of the block.

10

pDNA generated a patch for this error, again using viewnior
as the donor. The transfered check appears in viewnoir as:

rowstride = width * 4;
if (rowstride / 4 !'= width)

pDNA transfers this check into Display as
(tifidirread.c:400y
if (! ((((unsigned int) ((*(value)) | ((unsigned int)
((unsigned int) ((unsigned int) (((unsigned int)
((unsigned int) (((unsigned int) ((unsigned int) ((m) &
65280))) >> 8))) << 8)))))) == ((unsigned int)
(((unsigned long long) ((unsigned long long)
(((unsigned long long) (((unsigned int) (((unsigned
int) ((unsigned int) (0 | ((unsigned long long)
(((unsigned int) ((x(value)) | ((unsigned int)
((unsigned int) ((unsigned int) (((unsigned int)
unsigned int) (((unsigned int) ((unsigned int) ((m) &

280))) ((unsigned long long)
unsigned int) ((unsigned int) (((unsigned int)
*«(value)) | ((unsigned int) ((unsigned int)
unsigned int) (((unsigned int) ((unsigned int)
(unsigned int) ((unsigned int) ((m) & 65280)))
)) <<.8)))))) << 2))))))))) | ((unsigned int)
unsigned int) ((unsigned int) (((unsigned long long)
uns igned long long) (((unsigned int) (((unsigned

>> 8))) << 8)))))) =

>>

t) ((x(value)) | ((unsigned int) ((unsigned int)
unsigned int) (((unsigned int) ((unsigned int)
(unsigned int) ((unsigned int) ((m) & 65280))) >>
)) << 8)))))) * ((unsigned int) ((unsigned int)
unsigned int) (((unsigned int) ((x(value)) |
unsigned int) ((unsigned int) ((unsigned int)
(unsigned int) ((unsigned int) (((unsigned int)
unsigned int) ((m) & 65280))) >> 8))) << 8)))))) <<
))))) >> 31))) << 32)))))) % ((unsigned long long)

((
65
((
((
((
((
8)
((
((
in
((
((
8)
((
((
((
((
2)
((unsigned int) ((unsigned int) (((unsigned int)
((*(value)) | ((unsigned int) ((unsigned int)
((unsigned int) (((unsigned int) ((unsigned int)
(((unsigned int) ((unsigned int) ((m) & 65280))) >>
8))) << 8)))))) << 2)))))) << 32))) | ((unsigned int)
((unsigned int) (((unsigned int) (((unsigned int)
((unsigned int) (0 | ((unsigned long long) (((unsigned
in
((
((
8)
((
((
((
((
2)
in
((
((
((
((
((
((

t) ((*(value)) | ((unsigned int) ((unsigned int)
unsigned int) (((unsigned int) ((unsigned int)
(unsigned int) ((unsigned int) ((m) & 65280))) >>

)) << 8)))))) * ((unsigned long long) ((unsigned int)

unsigned int)
unsigned int)
(unsigned int)
unsigned int)

(((unsigned int)
((unsigned int) ((unsigned int)
((unsigned int) (((unsigned int)
((m) & 65280))) >> 8))) << 8)))))) <<
)))))))) | ((unsigned int) ((unsigned int) ((unsigned
t) (((unsigned long long) ((unsigned long long)
(unsigned int) (((unsigned int) ((* (value)) |
unsigned int) ((unsigned int) ((unsigned int)
(unsigned int) ((unsigned int) (((unsigned int)

((% (value)) |

unsigned int) ((m) & 65280))) >> 8))) << 8)))))) =*
unsigned int) ((unsigned int) ((unsigned int)
(unsigned int) ((x(value)) | ((unsigned int)

((unsigned int) ((unsigned int)
igned int) (((unsigned int) ((unsigned int) ((m) &
65280))) >> 8))) << 8)))))) << 2)))))) >> 31))) <<
32)))))) / ((unsigned int) ((unsigned int) ((unsigned
int) (((unsigned int) ((*(value)) | ((unsigned int)
((unsigned int) ((unsigned int) (((unsigned int)
((unsigned int) (((unsigned int) ((unsigned int)
& 65280))) >> 8))) << 8)))))) << 2))))))))))))
{exit (-1);}

(((unsigned int) ((uns

((m)

This patch successfully protects against the integer over-
flow error with the added overflow check on width « 4.
Once again, the patch reflects the conversion of the ana-
lyzed viewnoir VEX binary operations into C source code.

4.3 Swfplay

Swiplay is an Adobe Flash player that is released as part
of the open source Swfdec library. Swfplay 0.5.5 is vulner-
able to an integer overflow for SWF files when decoding
embedded JPEG data. When initially allocating buffers
for the individual YUVA components of the image, swf-
play computes the buffer size for each component buffer
as the 32-bit product of width, height, and various sam-
pling factors without sufficient overflow checking (jpeg.c
line 192). If the computation overflows, then the decom-
pression procedure will write beyond the allocated space.
Even if the computations of individual component buffer
sizes do not overflow, there is a potential overflow when
merging the individual YUVA components of the image
into a single RGBA buffer. Swiplay computes the size of
the combined buffer as a 32-bit product of width, height
and 4 without performing any overflow checking. This
computation is used twice in close succession: once for
the allocation of a temporary buffer (jpeg_rgb_decoder.c
line 253), and then for the allocation of the image buffer
(jpeg_rgb_decoder.c line 257). When this computation
overflows, the merge procedure will write beyond the al-
located space and ultimately result in a SIGSEGYV on an
invalid write. pPDNA generated a patch for this error, again
using Gnash as the donor. Because symbolic information
that would allow us to locate the Gnash source code for
this patch is not available, we present only the patch in the
swiplay recipient:

if (! (((image->height) <= 65500))) {exit(-1);}

This patch protects the application by limiting height to
a 16 bit value, which when used in the product of width,
height, and a small constant, cannot generate an overflow
on 32 bit machines.

For the error at (jpeg_rgb_decoder.c line 253), pDNA
generates the following patch at jpeg_bits.c line 60:

if (! ((((unsigned int) (((unsigned long long)
((unsigned long long) (((unsigned long long) ((unsigned
long long) (((unsigned int) (((unsigned int) ((unsigned
int) (0 | ((unsigned long long) ((unsigned long long)
(8 * ((unsigned int) ((unsigned int) (((unsigned int)
((unsigned int) (0 | (% (b->ptr))))) & 15))))))))) |
((unsigned int) ((unsigned int) ((unsigned int)
(((unsigned long long) ((unsigned long long)
(((unsigned int) ((unsigned int) (8 % ((unsigned int)
((unsigned int) (((unsigned int) ((unsigned int) (0

(*» (b=>ptr))))) & 15)))))) >> 31))) << 32)))))) % 8)))
<< 32))) | ((unsigned int) ((unsigned int) ((unsigned
int) (((unsigned int) (((unsigned int) ((unsigned int)
(0 | ((unsigned long long) ((unsigned long long) (8 =*
((unsigned int) ((unsigned int) (((unsigned int)
((unsigned int) (0 | (x(b->ptr))))) & 15))))))))) |
((unsigned int) ((unsigned int) ((unsigned int)
(((unsigned long long) ((unsigned long long)
(((unsigned int) ((unsigned int) (8 * ((unsigned int)
((unsigned int) (((unsigned int) ((unsigned int) (0

(¥ (b=>ptr))))) & 15)))))) >> 31))) << 32)))))) /

8)))))) == ((unsigned int) ((unsigned int) (((unsigned
int) ((unsigned int) (0 | (x(b->ptr))))) & 15))))))
{exit (-1);}

5 RELATED WORK

We discuss related work in program repair (static and
dynamic), N-version programming, and horizontal gene
transfer.

Static Program Repair: GenProg [37, 23] is an auto-
matic program repair tool that uses a genetic algorithm
to synthesize program patches. GenProg first copies an
existing code snippet from another location in the program,
then randomly applies a set of mutation rules based on
the genetic algorithm in an attempt to find a patch that
generates correct results on a set of sample inputs. pDNA,
in constrast, eliminates errors by transferring correct code
across multiple applications (including stripped binary
donor applications).

PAR [20] is a program repair tool that applies a set of
ten predefined repair templates that the authors manually
summarized from legacy human-written patches. These
templates correspond to the structures of common human
patches (e.g, inserting null checker, adding a method call,
inserting a bound check, etc.). PAR uses a search algorithm
to fill in details in the templates (e.g., the variable to be
checked, the method to be called.)

In contrast, pDNA transfers correct checks across appli-
cations. Instead of random mutations, pDNA uses dynamic
analysis techniques to obtain an application-independent
representation of the check, then implant the check into
the recipient at an appropriate insertion point where the
required values are available in program expressions.

Khmelevsky et al. [19] present a source-to-source repair
tool for missing return value checks after system library
calls (e.g., fopen()). The tool scans through the source
code for these library calls. For each of these calls, if the
source code misses the corresponding check after the call,
the tool will automatically add one.

Logozzo and Ball [24] have proposed a program repair
technique that provides the guarantee of verified program
repair in the form that the repaired program has more good
executions and less bad executions than the original pro-
gram. However, it relies on developer-supplied contracts
(i.e., preconditions, postconditions, and object invariants)
for scalability, which makes the technique less practical.
In contrast, pDNA is fully automatic — it does not require
any human annotations to transfer patches from the donor
application to the recipient application.

SJava[16] is a Java type system that exploits common it-
erative structures in applications. When a developer writes
program in SJava, the compiler can prove that the effects
of any error will be flushed from the system state after a

fixed number of iterations.

Runtime Program Repair: Failure-Oblivious Comput-
ing [32] enables an application to survive common memory
error. It recompiles the application to discard out of bounds
writes, manufacture values for out of bounds reads, and
enable the application to continue along their normal exe-
cution path. RCV [27] enables an application to recover
from divide-by-zero and null-dereference errors on the fly.
When such an error occurs, RCV attaches the application,
applies fix strategy that typically ignores the offending
instruction, forces the application to continue along the
normal execution path, contains the error repair effect, and
detaches from the application once the repair succeeds.
SRS [28] enables server applications to survive memory
corruption errors. When such an error occurs, it enters a
crash suppression mode to skip any instructions that may
access corrupted values. It backs to normal mode once the
server moves to the next request.

Jolt [12] and Bolt [21] enable applications to survive in-
finite loop errors. When such an error occurs, they control
the execution of the application to jump out of the loop or
the enclosing function to escape the error.

ClearView [30] first learns a set of invariants from train-
ing runs. When a learned invariant is violated during the
runtime execution, it generates repairs that enforce the
violated invariant via binary instrumentation.

Rx [31] and ARMOR [13] are runtime recovery sys-
tems based on periodic checkpoints. When an error occurs,
Rx [31] reverts back to a previous checkpoint and makes
system-level changes (e.g, thread scheduling, memory allo-
cations, etc.) to search for executions that do not trigger the
error. ARMOR [13] reverts back to a previous checkpoint
and finds semantically equivalent workarounds for the
failed component based on user-provided specifications.

Error Virtualization [33, 34, 36, 35] is a general error
recovery technique that retrofits exception-handing capa-
bilities to legacy software. Failures that would otherwise
cause a program to crash are turned into transactions that
use a program’s existing error handling routines to survive
from unanticipated faults.

Input rectification [25] empirically learns input con-
straints from benign training inputs and then enforces
learned constraints on incoming inputs to nullify potential
errors. SIFT [26] can generate sound input filter constraints
for integer overflow errors at critical program points (i.e.,
memory allocation and block copy sites)

All of the above techniques aim to repair the application
at runtime to recover from or nullify the error. In contrast,
pDNA is designed to transfer correct code from donors to
recipients to directly eliminate the error. The final patched
application then executes with no dynamic instrumentation

12

overhead.

N-Version Programming: N-version programming [14]
aims to improve software reliability by independently de-
veloping multiple implementations of the same specifi-
cation. All implementations execute and the results are
compared to detect faulty versions. The expense of N-
version programming and a perception that the multiple
implementations may suffer from common errors and spec-
ification misinterpretations has limited the popularity of
this approach [22].

Rather than running multiple versions and comparing
the results, pDNA transfers correct logic to obtain a single
improved hybrid system. In comparison with traditional
N-version programming, pDNA therefore has a simpler
execution model (run a single hybrid system instead of mul-
tiple systems) and can leverage applications with overlap-
ping but not identical functionality. Also unlike traditional
N-version programming, pDNA is designed to work with
applications that are produced by multiple global, sponta-
neous, and uncoordinated development efforts performed
by different organizations. Our results indicate that these
development efforts can deliver enough diversity to enable
pDNA to find and transfer correct error checks.
Horizontal Gene Transfer: Horizontal gene transfer
is the transfer of genetic material between individual
cells [11]. Examples include plasmid transfer (which
plays a major role in acquired antibiotic resistance [11])
and virally-mediated gene therapy [18]. There are strong
analogies between pDNA’s logic transfer mechanism and
horizontal gene transfer — in both cases functionality is
transferred from a donor to a recipient, with significant
potential benefits to the recipient. The fact that horizon-
tal gene transfer is recognized as significant factor in the
evolution of many forms of life hints at the potential that
multi-application code transfer may offer for software sys-
tems.

6 CONCLUSION

In recent years the increasing scope and volume of soft-
ware development efforts has produced a broad range of
systems with similar or overlapping goals. Together, these
systems capture the knowledge and labor of many develop-
ers. But each individual system largely reflects the effort
of a single team and, like essentially all software systems,
still contains errors.

We present a new and, to the best of our knowledge,
the first, technique for automatically transferring logic
between systems to eliminate errors. The system that
implements this technique, pDNA, makes it possible to
automatically harness the combined efforts of multiple
potentially independent development efforts to improve

them all regardless of the relationships that may or may
not exist across development organizations. In the long
run we hope this research will inspire other techniques that
identify and combine the best aspects of multiple systems.
The ideal result will be significantly more reliable and
functional software systems that better serve the needs of
our society.

REFERENCES

(1]
(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

(14]

Anonymized reference.

Cwebp.
com/speed/webp/docs/cwebp.

Dillo. http://www.dillo.org/.

Feh - a fast and light Imlib2-based image viewer.
http://feh.finalrewind.org/.

Gnu gnash. https://www.gnu.org/
software/gnash/.

Hachoir. http://bitbucket.org/haypo/
hachoir/wiki/Home.

Imagemagick.
org/script/index.php.

mtpaint. http://mtpaint.sourceforge.
net/.

Swifdec. http://swfdec. freedesktop.
org/wiki/.

Viewnoir - the elegant image viewer.
xsisqgox.github.io/Viewnior/.

http://

M. Barlow. What Antimicrobial Resistance Has
Taught Us About Horizontal Gene Transfer. Methods
in Molecular Biology, 532:397-411, 2009.

M. Carbin, S. Misailovic, M. Kling, and M. C. Ri-
nard. Detecting and escaping infinite loops with jolt.
In Proceedings of the 25th European conference on
Object-oriented programming, ECOOP’11, pages
609-633. Springer-Verlag, 2011.

A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and
M. Pezze. Automatic recovery from runtime failures.
In Proceedings of the 2013 International Conference
on Software Engineering, pages 782-791.

L. Chen and A. Avizienis. N-version programming:
A Fault-tolerance approach to reliability of software
operation. In The Twenty-Fifth International Sympo-
sium on Fault-Tolerant Computing Highlights from
Twenty-Five Years. IEEE, 1995.

https://developers.google.

http://www.imagemagick.

13

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

[24]

L. De Moura and N. Bjgrner. Z3: an efficient smt
solver. In Proceedings of the Theory and practice
of software, 14th international conference on Tools
and algorithms for the construction and analysis
of systems, TACAS’08/ETAPS’08, pages 337-340,
Berlin, Heidelberg, 2008. Springer-Verlag.

Y. h. Eom and B. Demsky. Self-stabilizing java. In
Proceedings of the 33rd ACM SIGPLAN conference
on Programming Language Design and Implementa-
tion, PLDI ’12°, pages 287-298. ACM, 2012.

V. Ganesh, T. Leek, and M. Rinard. Taint-based
directed whitebox fuzzing. In ICSE *09: Proceedings
of the 31st International Conference on Software
Engineering. IEEE Computer Society, 2009.

M. A. Kay, J. C. Glorioso, and L. Naldini. Viral
vectors for gene therapy: the art of turning infec-
tious agents into vehicles of therapeutics. Nat Med,
7(1):33-40, Jan. 2001.

Y. Khmelevsky, M. Rinard, and S. Sidiroglou. A
source-to-source transformation tool for error fixing.
CASCON, 2013.

D. Kim, J. Nam, J. Song, and S. Kim. Auto-
matic patch generation learned from human-written
patches. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE *13°,
pages 802-811. IEEE Press, 2013.

M. Kling, S. Misailovic, M. Carbin, and M. Rinard.
Bolt: on-demand infinite loop escape in unmodified
binaries. In Proceedings of the ACM international
conference on Object oriented programming systems
languages and applications, OOPSLA ’12’, pages
431-450. ACM, 2012.

J. C. Knight and N. G. Leveson. An experimen-
tal evaluation of the assumption of independence in
multi-version programming. I[EEE Transactions on
Software Engineering, 12:96-109, 1986.

C. Le Goues, M. Dewey-Vogt, S. Forrest, and
W. Weimer. A systematic study of automated pro-
gram repair: Fixing 55 out of 105 bugs for $8 each.
In Proceedings of the 2012 International Conference
on Software Engineering, ICSE 2012, pages 3—13.
IEEE Press, 2012.

F. Logozzo and T. Ball. Modular and verified auto-
matic program repair. In Proceedings of the ACM In-
ternational Conference on Object Oriented Program-
ming Systems Languages and Applications, OOP-

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

SLA ’12°, pages 133-146, New York, NY, USA,
2012. ACM.

F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and
M. Rinard. Automatic input rectification. In Proceed-
ings of the 2012 International Conference on Soft-
ware Engineering, ICSE 2012, pages 80-90. IEEE
Press, 2012.

F. Long, S. Sidiroglou-Douskos, D. Kim, and M. Ri-
nard. Sound input filter generation for integer
overflow errors. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 14’ pages 439452,
New York, NY, USA, 2014. ACM.

F. Long, S. Sidiroglou-Douskos, and M. Rinard. Au-
tomatic runtime error repair and containment via
error shepherding. In Proceedings of the 35th ACM
SIGPLAN conference on Programming Language
Design and Implementation, PLDI *14’. ACM, 2014.

V. Nagarajan, D. Jeffrey, and R. Gupta. Self-recovery
in server programs. In Proceedings of the 2009 In-

ternational Symposium on Memory Management,
ISMM °09’, pages 49-58. ACM, 2009.

N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementa-
tion, PLDI*07. ACM, 2007.

J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe,
J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood,
S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin,
M. D. Ernst, and M. Rinard. Automatically patching
errors in deployed software. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating sys-
tems principles, SOSP *09, pages 87-102, New York,
NY, USA, 2009. ACM.

F. Qin, J. Tucek, Y. Zhou, and J. Sundaresan. Rx:
Treating bugs as allergies—a safe method to survive
software failures. ACM Trans. Comput. Syst., 25(3),
Aug. 2007.

M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu,
and W. S. Beebee. Enhancing server availability and
security through failure-oblivious computing. In
OSDI, pages 303-316, 2004.

S. Sidiroglou, Y. Giovanidis, and A. Keromytis. A
Dynamic Mechanism for Recovery from Buffer Over-
flow attacks. In Proceedings of the 8th Information
Security Conference (1SC), September 2005.

14

(34]

(35]

[36]

[37]

S. Sidiroglou and A. D. Keromytis. A Network Worm
Vaccine Architecture. In Proceedings of the IEEE
Workshop on Enterprise Technologies, June 2003.

S. Sidiroglou, O. Laadan, C. Perez, N. Viennot,
J. Nieh, and A. D. Keromytis. Assure: Automatic
software self-healing using rescue points. In ASP-
LOS, pages 3748, 2009.

S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D.
Keromytis. Building a reactive immune system for
software services. In Proceedings of the general
track, 2005 USENIX annual technical conference:
April 10-15, 2005, Anaheim, CA, USA, pages 149—
161. USENIX, 2005.

W. Weimer, T. Nguyen, C. Le Goues, and S. For-
rest. Automatically finding patches using genetic
programming. In Proceedings of the 31st Interna-
tional Conference on Software Engineering, ICSE
’09’, pages 364-374. IEEE Computer Society, 2009.

