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Abstract

With the growth of theoretical cryptography, more and more attention has been
given to expanding the models in which encrypted messages are sent (leading to
constructions such as identity-based encryption) and the additional functionalities
supported by encryption schemes (such as homomorphic operations). This thesis
explores the relations between several of these primitives and models, both in terms
of generic constructions, and constructions based on specific hardness assumptions.

First, we define bounded-collusion identity-based encryption (BC-IBE), a variant
of IBE in which the adversary is only allowed to make a limited number of key queries.
This restriction allows more general constructions; specifically, we give three distinct
generic constructions of BC-IBE from public-key encryption with short ciphertext
size. Each of these constructions requires slightly different properties of the underlying
public-key scheme; we give specific instantiations of each of these constructions, thus
achieving BC-IBE from the DDH, LWE, NTRU, and QR assumptions.

Second, we explore the relationship between obfuscation and fully-homomorphic
encryption. We define a notion of secure obfuscation for a family of functions known
as the f-reencryption functionality, and prove that a secure obfuscator for this func-
tionality generically yields a fully-homomorphic encryption scheme. Furthermore,
we relate this new definition to previous definitions of obfuscation, and give an in-
stantiation of such an obfuscator based on the LWE assumption, yielding an FHE
construction.

Thesis Supervisor: Shafi Goldwasser
Title: RSA Professor of Computer Science and Engineering
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Chapter 1

Introduction

Modern cryptography is moving at an exciting pace. The entire field of cryptography-
rigorously analyzed as a discipline-is only a few decades old, and is continuously
covering more ground. Cryptographers consider more and more complex interactions,
functionalities, and adversarial models. At the same time, the basic primitives and
definitions in the field are being scrutinized and evaluated. While we consider more
complicated functionalities, we ultimately want to show reductions from these more
complex functionalities to simpler protocols, ideally in a generic fashion.

The best-known basic cryptographic functionality is encryption, a process designed
to protect privacy of information. The notion of public-key encryption (PKE), first
introduced in the classic paper of Diffie and Hellman [29], depicts a simple model
in which one user wishes to send messages to a second user, such that the messages
cannot be read by an eavesdropper.

The basic PKE model, while extremely useful, satisfies a basic and specific use
case: privacy of messages sent to one party, in a world in which their public key is
known a priori to any potential senders. It does not encompass a wide variety of
other use cases; for example:

" The case where a sender knows the identity of the desired recipient, but does
not know a trustworthy source for the recipient's public key;

" The case where a sender wishes to encrypt to a user before that user ever joins
a multi-user cryptographic system (and thus does not even have a key);

" The case where a user wants to do more than simply ensure privacy of a static
message; for example, they want to allow others to compute on private data, or
allow others to perform a computation that is itself kept secret.

Thus, over the past few decades, cryptographers have developed many new notions of
encryption, with new models, definitions, functionalities, and security notions. Two
such ideas which are central to the work studied in this thesis are identity-based
encryption and fully-homomorphic encryption.

Identity-based Encryption In order to overcome the issue of public key distri-
bution, Shamir proposed the model of identity-based encryption [68]. This model
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describes a world with many users, each of whom has an identity (frequently an arbi-
trary string). A central authority publishes public parameters common to the entire
system, and one can encrypt messages to any user knowing only the global public
parameters and the user's identity (in particular, without requiring a user-specific
public key). The user can obtain a secret key associated with their identity from the
central authority, allowing them to decrypt.

Identity-based encryption schemes were first constructed in the random oracle
model by Boneh and Franklin [11], under specific number-theoretic hardness assump-
tions. A line of work expanded the known IBE results ([23, 9, 74, 42, 12, 47, 21, 21,
...), and constructions are now known under several specific hardness assumptions,
both in the standard and random oracle models. However, no generic IBE construc-
tion is known, and the breadth of specific IBE constructions is not nearly as wide as
that of PKE constructions.

Fully-Homomorphic Encryption A separate question from the model of users
in the system is the question of what functions one can compute on encrypted data.
It has long been known that some encryption schemes exhibit partial homomorphism.
That is, one can perform certain operations on the ciphertexts in order to perform
known operations on the underlying plaintexts. For example, the ElGamal public-key
cryptosystem [351 is multiplicatively homomorphic; one can combine two ciphertexts
to obtain an encryption of the product of the underlying plaintexts.

The idea of fully-homomorphic encryption was first proposed by Rivest, Adelman,
and Dertouzos [65]. A fully-homomorphic encryption scheme allows arbitrary com-
putations to be performed on encrypted data. The existence of fully-homomorphic
encryption schemes remained an open question for three decades, until Gentry gave a
construction in 2009 [431. Since then, a line of work ([73, 25, 26, 18, 17, 14, 46, 45, 481,
...) has made FHE simpler, more efficient, and based on worst-case assumptions, as
well as coming up with additional uses for the primitive.

For example, one can use FHE to delegate computation to an untrusted server.
Such an application inherently protects the privacy of the data being computed on
(since it is always encrypted); however, FHE can also be used to verify that the server
has performed the computation correctly [411. It has also been employed outside of
this direct outsourcing-of-computation use case, such as to achieve succinct functional
encryption [50].

Modern encryption relies on hardness assumptions. A major goal of cryptography
is to characterize the assumptions needed to construct specific primitives, and to give
constructions based on the weakest and most general assumptions possible. In order
to make these connections, we rely on reductions between problems-that is, a way
to translating a successful attack on the cryptographic construction to a method of
solving a given problem. This problem can either be a specific computational problem
that we assume to be hard, or can be a violation of the security of a simpler function-
ality. In the realm of encryption, public-key cryptography is known to be generically
achievable from trapdoor permutations (and trapdoor predicates). However, no such
generic constructions are known for IBE or FHE-the only known constructions of

12



these schemes are based on specific hardness assumptions stemming from number
theory, geometry, and coding theory.

We would like to use generic assumptions for several reasons: from a theoretical
perspective, we would like to characterize the abstract properties that enable us to
construct cryptographic objects. From a more practical perspective, if a specific hard-
ness assumption turns out to be false, we can substitute a different assumption into
a generic assumption. (For example, if scalable quantum computers are built, then
they will be able to efficiently factor large integers and take discrete logarithms 169],
but no efficient way to solve lattice-based assumptions is known.) Much of this thesis
is thus geared toward the goal of generically characterizing IBE and FHE.

1.1 Roadmap to This Thesis

This thesis will give a number of generic relations and constructions between several
newer, more complex encryption primitives, in hopes of better characterizing the rela-
tions between these primitives and their place in the larger landscape of cryptography.
The following subsections give a high-level overview of the results of each chapter;
each chapter additionally contains similar prefatory material such that it can also be
read as a standalone work.

1.2 Bounded-Collusion Identity-Based Encryption

Chapter 2 will describe a variant of identity-based encryption known as bounded-
collusion identity-based encryption (BC-IBE). It will describe three different generic
constructions of BC-IBE from PKE schemes, and provide a number of concrete in-
stantiations starting from specific PKE schemes (that each rely on a specific hardness
assumption). This chapter is based on joint work with Goldwasser and Lewko 1511
and joint work with Tessaro 172].

Identity-Based Encryption

An identity-based encryption scheme is defined as a 4-tuple of algorithms
(IBEGen, IBEExtract, IBEEnc, IBEDec). A central authority uses IBEGen to create the
global parameters of the system (including both public parameters and a master secret
key). That authority can then use the IBEExtract algorithm with its master secret
key to generate secret keys for specific identities. One can encrypt using IBEEnc
knowing only the global public parameters and a user's identity, and a user can
decrypt messages encrypted to their identity by using IBEDec with their identity-
specific secret key.

The security model for identity-based encryption assumes the possibility of collu-
sion. That is, other valid users of the system (with their own identities) might pool
their resources in order to try to gain information about messages encrypted to an
honest user. This is theoretically modeled by allowing the adversary in the security
game to obtain secret keys for arbitrary identities, representing a collusion of those
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users. The formal security game is detailed in Figure 2-2; in essence, one still wishes
the adversary to gain no information about messages to any user for whom he did
not specifically request the key.

The IBE model was first proposed by Shamir in 1984 168], and the first construc-
tions were proposed in 2001 by Boneh and Franklin [11] and by Cocks 1231, both in
the random oracle model. Subsequent work [19, 8, 9, 74, 12, 47, 21, 2] gave additional
constructions in the random oracle and standard models, based on several different
specific hardness assumptions. To date, IBE schemes have been constructed using
the Decisional Bilinear Diffie-Hellman assumption and similar assumptions in bilin-
ear groups, the Learning With Errors Assumption, and the Quadratic Residuosity
assumption.

Bounded-Collusion IBE

As an attempt to come up with constructions under a wider range of assumptions,
cryptographers began looking at a variant of IBE known as Bounded- Collusion IBE
(BC-IBE). In this model, one only guarantees security against an adversary who
obtains secret keys associated with at most t identities, where the size of the pa-
rameters of the system are allowed to depend on t. Falling short of achieving full
security, the bounded-collusion model can be a realistic assumption in many settings,
and is in fact a necessary restriction to achieve the more general notion of functional
encryption 154]. Additionally, it has been studied in other settings, notably broadcast
encryption and revocation (e.g. [37, 38, 39, 59, 61, 56, 301).

The first construction of BC-IBE came in [33], in the context of their study of the
problem of a bounded number of secret key exposures in public-key encryption. To
remedy the latter problem, they introduced the notion of key-insulated PKE systems
and show its equivalence to IBEs semantically secure against a bounded number of
colluding identities. This equivalence, coupled with constructions of key-insulated
PKEs by [33], yields a generic combinatorial construction which converts any semantic
secure PKE to a bounded-collusion semantic secure IBE, without needing a random
oracle. This paper gave a general reduction from any semantically secure public-key
cryptosystem to a BC-IBE scheme. However, their construction suffers from a large
ciphertext-size blowup - the resulting ciphertext length is a factor w(t) larger than
that of the underlying encryption scheme.

PKE systems with key homomorphism.

In recent years, several PKE schemes were proposed with interesting homomorphisms
over the public keys and the underlying secret keys. These were constructed for the
purpose of showing circular security and leakage resilience properties. In particular,
for both the scheme of Boneh, Halevi, Hamburg, and Ostrovsky [131 and the scheme
of Brakerski and Goldwasser [16], it can be shown that starting with two valid (public-
key, secret-key) pairs (pki, ski), (pk2, sk 2 ), one can obtain a third valid pair as (pki -
pk2 , ski + sk 2 ). Similar homomorphisms can be considered for other cryptosystems
as well, such as the classic ElGamal cryptosystem [35] and the encryption scheme of
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Regev 164].
One elegant example of the usefulness of homomorphism in cryptography was

demonstrated by Rothblum [66], who used the homomorphism of an encryption
scheme to change from private-key to public-key.

New Results

In this section, we seek for generic constructions of BC-IBE. In doing so, we use
the key-homomorphic properties above in order to achieve small ciphertext size. We
explore systems which rely on encryption schemes that solely satisfy the standard
security notion of semantic security in addition to some syntactical, non-security-
related, properties which can be easily verified. In addition, we see if efficiency can
be improved by starting from stronger security assumptions. Our constructions have
the added benefit of conceptual simplicity, and the resulting instantiations from con-
crete assumptions either outperform or abstract existing BC-IBE constructions along
different axes.

In summary, we make several main contributions:

1. We give a generic approach (the GLW construction) that can be used to con-
struct BC-IBE with short ciphertexts from any PKE satisfying certain syntactic
properties. We prove selective security of this construction assuming semantic
security of the PKE scheme using a mapping # satisfying cover-freeness (a no-
tion introduced in 136] and used in several other works, e.g. [59, 27, 32], among
others). While being strictly weaker than the notion of full security, selective
security is sufficient for some applications. In particular, using the transforma-
tion of Boneh et al. [10], we can construct a bounded-CCA -secure PKE scheme
from any selectively-secure BC-IBE scheme.

2. Whenever the underlying semantically-secure scheme satisfies an additional
new property - which we call weak multi-key malleability - we prove that the
GLW construction achieves full BC-IBE security, i.e., confidentiality holds even
with respect an identity chosen adaptively after learning the parameters of the
schemes as well as secret keys for at most t other identities. Roughly, our
malleability property states that given the encryption of c = Enc(pk, m) of an
unknown message m under a known public-key pk, and given an additional
public-key / secret-key pair (pk', sk'), we can efficiently produce a ciphertext
which is indistinguishable from an encryption of m under pk - pk'. An example
scheme with this property is ElGamal encryption - hence we directly obtain a
DDH-based BC-IBE scheme from ElGamal encryption.

3. We provide a new, alternative construction that relies on a different form of mal-
leability (which we simply call multi-key malleability), and does not require any
explicit key-homomorphic structure. Intuitively, our notion requires that given
c = Enc(pk, m) for an unknown message m, and another public key pk', we can
obtain a new ciphertext c which decrypts to m under a combination of the secret
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keys sk and sk' associated with pk and pk'. We provide an efficient instantiation
based on NTRU [57], exploiting its multi-key homomorphic properties recently
observed by Lopez-Alt et al. [60]. This is of particular interest due to the fact
that no fully-secure NTRU-based IBE scheme is known to date. Moreover, our
constructions support homomorphic evaluation of ciphertexts, and this is the
only construction of identity-based fully homomorphic encryption beyond the
recent result by Gentry, Sahai, and Waters 148].

4. Finally, we give another construction of BC-IBE given a PKE that exhibits key-
homomorphic structure and satisfies a security notion called linear related-key
security, a new notion that is slightly stronger than standard semantic security.
At a high level, this property entails that a cryptosystem remains secure even if
an adversary obtains several keys that have a known relationship with the target
secret key, as long as the target key is linearly independent of the others. We use
an algebraic technique to prove this property in several cryptosystems that is
reminiscent of hash proofs 128]. By assuming this stronger security property, we
are able to use a t-wise linearly independent mapping # instead of a cover-free
map, resulting in smaller public parameter size.

In each of these constructions, the ciphertext size is small (comparable to a single
ciphertext of the underlying public-key system), and we provide concrete instantia-
tions based on several common hardness assumptions (such as DDH, QR, LWE, and
NTRU).

1.3 Obfuscation and Fully-Homomorphic Encryption

Chapter 3 will investigate the relation between obfuscation and fully-homomorphic
encryption. Namely, it will provide a new definition of obfuscation for a specific
functionality (the f-reencryption functionality), and show that a secure obfuscation
under that definition generically implies a fully-homomorphic encryption scheme. We
then provide a concrete example of such an obfuscated reencryption for an LWE-
based PKE scheme, obtaining an FHE scheme. This chapter is based on joint work
with Tessaro, which was subsequently merged with work by Alwen, Barbosa, Farshim,
Gennaro, and Gordon [3].

Fully-Homomorphic Encryption.

The discovery of fully-homomorphic encryption schemes (FHE) has been a key de-
velopment in modern cryptography. FHE schemes allow arbitrary computation on
encrypted data without decrypting. The notion was first proposed by Rivest, Adle-
man, and Dertouzos [65], but it took more than three decades for the first schemes
to be developed. Several FHE schemes have now been developed, first under some-
what nonstandard lattice assumptions [43, 701, then under hardness assumptions for
approximate GCD [73, 25, 261, and finally under various forms of the Learning With
Errors assumption [18, 17, 15, 14, 46, 45, 481 or other lattice-based assumptions [44].
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At the same time, no general construction is known from smaller primitives, even
for the case of leveled FHE schemes. A d-leveled FHE scheme allows computation of
depth-d circuits on encrypted data, allowing its public key size to be a polynomial
function in d. In this paper, we address the question of finding a primitive which
allows a generic construction of FHE on top of a suitable encryption scheme, and
revisit existing works in terms of instantiations of this blueprint.

A (Possibly-)Related Primitive: Obfuscation

Another cryptographic primitive, separate from encryption, is obfuscation. Obfus-
cation attempts to formally characterize the high-level idea of being able to run an
algorithm without knowing what it is doing. That is, one can take a computation
(frequently represented as a circuit, though obfuscation for other computation models
such as RAM programs and Turing machines have also been studied) and generate
an obfuscated computation of the same type. The obfuscated program should have
the same input/output behavior as the original program, but should give no other
information about the computation. This allows the computation to be performed by
an untrusted party. The idea of allowing a computation to be performed by a party
while simultaneously "hiding" some information about the computation from them is
reminiscent of FHE, and indeed we will draw a formal connection between the two in
Chapter 3.

Multiple different definitions of obfuscation exist, with various constructions and
possibility/impossibility results. The foundational treatment of obfuscation was per-
formed by Barak et al [51, in which they formally define both virtual-black-box (VBB)
obfuscation and indistinguishability obfuscation (iO). Virtual black-box obfuscation is
a very strong definition that captures the intuition that someone viewing the obfus-
cated circuit knows nothing about what computation is being performed other than
the input/output behavior (and an upper bound on the size of the circuit); it states
that having the obfuscated circuit is equivalent to being able to query an oracle that
simply computes the function and returns the answer. Indistinguishability obfusca-
tion states that if two circuits have exactly the same input/output behavior, then
their obfuscations are indistinguishable.1 Both of these notions have sparked a series
of works detailing both constructions and uses of obfuscation [75, 20, 67, 40]. There
are also impossibility results known for VBB obfuscation [5]. Of note, in some natural
extensions of VBB it is impossible to obfuscate pseudorandom functions and other
natural cryptographic functionalities [24]. While no such impossibility is known for
indistinguishability definition, this latter definition places requirements on how the
input computations behave on every input.

Both the VBB and iG definitions are limited to obfuscating deterministic com-
putations. Cryptographic functionalities require randomness, and furthermore are

'This is also known as "best-possible obfuscation" [531, since if any strong notion of obfuscation

(such as VBB) is possible for a certain functionality, indistinguishability obfuscation provides equiv-
alent guarantees. This is due to the fact that an iO-obfuscated circuit for that functionality will by
definition be indistinguishable from the iO-obfuscation of the circuit obfuscated under the strongest
possible method.
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generally concerned with average-case security-that is, while there may be "weak"
instances of a functionality, a random instance will be secure with overwhelming
probability. Average-case definitions of secure obfuscation, tailored for cryptographic
usages, have been explored by Hohenberger et al 1581 and subsequently by Chandran
et al [22], and defining, instantiating, and using obfuscation remains a very active
area of research. In Chapter 3 we will define these notions in more detail, for the
purpose of constructing an FHE scheme.

Obfuscating re-encryption.

Our approach relies on the notion of obfuscated re-encryption, which has been devel-
oped in parallel to FHE. While obfuscation of general functions is impossible 151, there
have been several positive results detailing function families that can be obfuscated

(e.g. [75, 34, 20], among many others). In particular, there has been a line of research
on obfuscation that is secure on average (that is, for a random function from a fam-
ily), rather than for any function in the family ([49, 1], and others); this definition
is particularly relevant to cryptographic applications that use randomized functions.
Hohenberger et al [581 show a method to obfuscate a re-encryption functionality-that
is, a functionality which allows for decryption under one key and encryption under
a second-such that the re-encryption procedure can be delegated to a third party
who does not learn anything about the re-encrypted messages. Chandran et al 122]
extended this work even further, and consider functional re-encryption, in which the
second encryption key is a function of the underlying message, in the context of obfus-
cation of the function (and hiding the message). However, such functionalities have
generally only been defined for single-input functions.

New Results

1. Our first contribution is to introduce and define the notion of many-to-one
functional re-encryption and its obfuscation. More specifically, for a function
f, this functionality allows an evaluator to take multiple ciphertexts ci, ... , cq
encrypting messages m 1,... , mq under the same key pk for some public-key
cryptosystem PKE, and computes an encryption of f(mi,..., mq) under a dif-
ferent key for some possibly different cryptosystem PKE'.

Clearly, this functionality is by itself uninteresting, as it can be trivially realized
by decrypting the input messages, computing the function, and encrypting the
result. However, this functionality becomes interesting if it can be obfuscated
and hence delegated to a user without revealing the corresponding secret key.
For this reason, we also define a notion of obfuscation for this functionality,
which is substantially different than the one proposed by previous works on re-
encryption, despite its similar "average-case" perspective: At a high level, our
first definition states that for a random circuit computing the re-encryption and
for an observer who knows the public key of the source scheme, the obfuscation
of that circuit and the public key of the target scheme are indistinguishable from
the output of a simulator that only knows the public-key of the source scheme.
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We also consider a stronger notion, where the simulator does not simulate the
public key of the target scheme, but obtains it externally. We show that the
latter definition is in fact implied by the definition from [58].

2. As one application of many-to-one functional encryption, our second contri-
bution is to show a generic construction of leveled FHE given a semantically-
secure encryption scheme such that the corresponding multi-input functional re-
encryption functionalities for a complete set of operations (e.g., for the NAND
operation) can be obfuscated with respect to the new notions introduced in this
paper.

As an application, we show that Regev-style encryption [64] admits such obfus-
cated re-encryption for multiplication, which, combined with our main result
and the existing additive homomorphism of the encryption yields a level FHE
scheme. This scheme corresponds to the one recently proposed by Brakerski [14],
for which we provide a more modular abstraction. We also reinterpret the tech-
nique of "bootstrapping" ([43] and followup work) as specific implementations
of our generic construction.
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Chapter 2

Bounded-Collusion Identity-Based

Encryption

2.1 Introduction

The last decade in the lifetime of cryptography has been quite exciting. We are wit-
nessing a paradigm shift, departing from the traditional goals of secure and authen-
ticated communication and moving towards systems that are simultaneously highly
secure, highly functional, and highly flexible in allowing selected access to encrypted
data. As part of this development, different "types" of encryption systems have been
conceived and constructed to allow greater ability to meaningfully manipulate and
control access to encrypted data, such as bounded and fully homomorphic encryp-
tion (FHE), identity-based encryption (IBE), hierarchical identity-based encryption
(HIBE), functional encryption (FE), attribute based encryption (ABE), and others.
As is typical at any time of rapid innovation, the field is today at a somewhat chaotic
state. The different primitives of FHE, IBE, HIBE, FE, and ABE are being imple-
mented based on different computational assumptions and as of yet we do not know
of general constructions.

One way to put some order in the picture is to investigate reductions between
the various primitives. A beautiful example of such a result was recently shown by
Rothblum [66], who demonstrated a simple reduction between any semantically secure
private key encryption scheme which possesses a simple homomorphic property over
its ciphertexts to a full-fledged semantically secure public key encryption scheme. The
homomorphic property requires that the product of a pair of ciphertexts ci and c2 ,
whose corresponding plaintexts are mi and M 2 , yields a new ciphertext c -c2 which
decrypts to Mi1 + M 2 mod 2.

In this section, we continue this line of investigation and show how public-key en-
cryption schemes which posses a linear homomorphic property over their keys can be
used to construct an efficient identity-based encryption (IBE) scheme that is secure
against bounded collusions. The main idea is simple. In a nutshell, the homomor-
phism over the keys will give us a way to map a set of public keys published by
the master authority in an IBE system into a new user-specific public key that is
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obtained by taking a combination of the published keys. We explore several different
methods for taking this combination, and the security properties of each. In the most
general case, this combination is simply a subset of the available keys; we are then
able to reduce the semantic security of the resulting bounded-collusion IBE system
to the semantic security of the underlying PKE system. We also investigate using a
linear combination of the published keys as the user-specific key. By taking a linear
combination instead of a subset, we are able to achieve smaller public parameters
than a strictly combinatorial approach would allow. In this case, the challenge will
be to prove that the resulting cyptosystem is secure even in the presence of a specified
number of colluding users. For this, we rely on an algebraic hash proof property.

Each of our constructions allows the total number of potential identities to be
exponential in the size of the public parameters of the IBE.

To explain our results in the context of the known literature, let us quickly review
some relevant highlights in the history of IBEs. The Identity-Based Encryption model
was conceived by Shamir in the early 1980s [68]. The first constructions were proposed
in 2001 by Boneh and Franklin [11] based on the hardness of the bilinear Diffie-
Hellman problem and by Cocks [23] based on the hardness of the quadratic residuosity
problem. Both works relied on the random oracle model. Whereas the quadratic
residuosity problem has been used in the context of cryptography since the early
eighties [52], compufational problems employing bilinear pairings were at the time of
[111 relative newcomers to the field. Indeed, inspired by their extensive usage within
the context of IBEs, the richness of bilinear group problems has proved tremendously
useful for solving other cryptographic challenges (e.g. in the area of leakage-resilient
systems).

Removing the assumption that random oracles exist in the construction of IBEs
and their variants was the next theoretical target. A long progression of results
ensued. At first, partial success for IBE based on bilinear group assumptions was
achieved by producing IBEs in the standard model provably satisfying a more relaxed
security condition known as selective security [19, 81, whereas the most desirable
of security guarantees is that any polynomial-time attacker who can request secret
keys for identities of its choice cannot launch a successful chosen-ciphertext attack
(CCA) against a new adaptively-chosen challenge identity. Enlarging the arsenal
of computational complexity bases for IBE, Gentry, Peikert, and Vaikuntanathan
[47] proposed an IBE based on the intractability of the learning with errors (LWE)
problem, still in the random oracle model. Ultimately, fully (unrelaxed) secure IBEs
were constructed in the standard model (without assuming random oracles) under the
decisional Bilinear Diffie-Hellman assumption by Boneh and Boyen [9 and Waters
[74], and most recently under the LWE assumption by Cash, Hofheinz, Kiltz, and
Peikert [21] and Agrawal, Boneh, and Boyen 121. While a standard-model construction
of IBE under an "interactive quadratic residuosity" assumption was achieved by Boneh
et al [12], constructing a fully secure (or even selectively secure) standard-model IBE
based on classical number theoretic assumptions such as DDH in non-bilinear groups
or the hardness of quadratic residuosity assumptions remains open.
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BOUNDED-COLLUSION IBEs. The security model for IBE assumes that the adversary
can adaptively obtain an arbitrary number of secret keys for users in the system, and
requires that messages encrypted to any other user still be indistinguishable to the
adversary. This models the idea that an individual's messages are still secure even if an
arbitrary number of other users of the system collude against that user. As an attempt
to come up with constructions under a wider range of assumptions, cryptographers
began looking at a variant of IBE known as Bounded-Collusion IBE (BC-IBE). In
this model, one only guarantees security against an adversary who obtains secret keys
associated with at most t identities, where the size of the parameters of the system
are allowed to depend on t. Falling short of achieving full security, the bounded-
collusion model can be a realistic assumption in many settings, and is in fact a
necessary restriction to achieve the more general notion of functional encryption [54].
Additionally, it has been studied in other settings, notably broadcast encryption and
revocation (e.g. 137, 38, 39, 59, 61, 56, 301).

The first construction of BC-IBE came in 133], in the context of their study of the
problem of a bounded number of secret key exposures in public-key encryption. To
remedy the latter problem, they introduced the notion of key-insulated PKE systems
and show its equivalence to IBEs semantically secure against a bounded number of
colluding identities. This equivalence, coupled with constructions of key-insulated
PKEs by [33], yields a generic combinatorial construction which converts any semantic
secure PKE to a bounded-collusion semantic secure IBE, without needing a random
oracle. This paper gave a general reduction from any semantically secure public-key
cryptosystem to a BC-IBE scheme. However, their construction suffers from a large
ciphertext-size blowup - the resulting ciphertext length is a factor w(t) larger than
that of the underlying encryption scheme.

PKE SYSTEMS WITH KEY HOMOMORPHISM. In recent years, several PKE schemes
were proposed with interesting homomorphisms over the public keys and the un-
derlying secret keys. These were constructed for the purpose of showing circular
security and leakage resilience properties. In particular, for both the scheme of
Boneh, Halevi, Hamburg, and Ostrovsky [131 and the scheme of Brakerski and Gold-
wasser [161, it can be shown that starting with two valid (public-key, secret-key) pairs
(pki, ski), (pk2, sk 2 ), one can obtain a third valid pair as (pkl -pk2 , ski+ sk 2 ). Similar
homomorphisms can be considered for other cryptosystems as well, such as the classic
ElGamal cryptosystem 135] and the encryption scheme of Regev [64J.

New Results In this section, we seek for generic constructions of BC-IBE. In doing
so, we use the key-homomorphic properties above in order to achieve small cipher-
text size. We explore systems which rely on encryption schemes that solely satisfy
the standard security notion of semantic security in addition to some syntactical,
non-security-related, properties which can be easily verified. In addition, we see if
efficiency can be improved by starting from stronger security assumptions. Our con-
structions have the added benefit of conceptual simplicity, and the resulting instan-
tiations from concrete assumptions either outperform or abstract existing BC-IBE
constructions along different axes.
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In summary, we make several main contributions:

1. We give a generic approach (the GLW construction) that can be used to con-
struct BC-IBE with short ciphertexts from any PKE satisfying certain syntactic
properties. We prove selective security of this construction assuming semantic
security of the PKE scheme using a mapping # satisfying cover-freeness (a no-
tion introduced in 136] and used in several other works, e.g. [59, 27, 32j, among
others). While being strictly weaker than the notion of full security, selective
security is sufficient for some applications, as discussed below.

2. Whenever the underlying semantically-secure scheme satisfies an additional
new property - which we call weak multi-key malleability - we prove that the
GLW construction achieves full BC-IBE security, i.e., confidentiality holds even
with respect an identity chosen adaptively after learning the parameters of the
schemes as well as secret keys for at most t other identities. Roughly, our
malleability property states that given the encryption of c = Enc(pk, in) of an
unknown message m under a known public-key pk, and given an additional
public-key / secret-key pair (pk', sk'), we can efficiently produce a ciphertext
which is indistinguishable from an encryption of m under pk - pk'. An example
scheme with this property is ElGamal encryption - hence we directly obtain a
DDH-based BC-IBE scheme from ElGamal encryption.

3. We provide a new, alternative construction that relies on a different form of mal-
leability (which we simply call multi-key malleability), and does not require any
explicit key-homomorphic structure. Intuitively, our notion requires that given
c = Enc(pk, m) for an unknown message m, and another public key pk', we can
obtain a new ciphertext c which decrypts to m under a combination of the secret
keys sk and sk' associated with pk and pk'. We provide an efficient instantiation
based on NTRU [57], exploiting its multi-key homomorphic properties recently
observed by Lopez-Alt et al. [601. This is of particular interest due to the fact
that no fully-secure NTRU-based IBE scheme is known to date. Moreover, our
constructions support homomorphic evaluation of ciphertexts, and this is the
only construction of identity-based fully homomorphic encryption beyond the
recent result by Gentry, Sahai, and Waters [481.

4. Finally, we give another construction of BC-IBE given a PKE that exhibits key-
homomorphic structure and satisfies a security notion called linear related-key
security, a new notion that is slightly stronger than standard semantic security.
At a high level, this property entails that a cryptosystem remains secure even if
an adversary obtains several keys that have a known relationship with the target
secret key, as long as the target key is linearly independent of the others. We use
an algebraic technique to prove this property in several cryptosystems that is
reminiscent of hash proofs 128]. By assuming this stronger security property, we
are able to use a t-wise linearly independent mapping < instead of a cover-free
map, resulting in smaller public parameter size.
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In each of these constructions, the ciphertext size is small (comparable to a single
ciphertext of the underlying public-key system), and we provide concrete instantia-
tions based on several common hardness assumptions (such as DDH, QR, LWE, and
NTRU).
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FROM IBE TO CCA-SECURITY. A somewhat related problem is that of building
bounded-CCA secure public-key encryption 127]: Concretely, for t-bounded CCA se-
curity, semantic security must hold also for attackers which can decrypt up to t
ciphertexts other than the challenge ciphertext for which we attempt to break con-
fidentiality. We note that by re-interpreting a result of Boneh et al. 110], every con-
struction of a BC-IBE scheme selectively secure against t-collusions directly yields a
t-bounded CCA secure PKE. Hence, our BC-IBE constructions also directly yield bet-
ter bounded-CCA-secure constructions, in terms of ciphertext size and/or conceptual

simplicity. When applying our framework to the ElGamal scheme, for example, we
obtain a construction which is equivalent to the one proposed in [271, for which a di-
rect security proof was given. Moreover, our instantiation from NTRU is indeed more

efficient than the best fully CCA-secure construction from NTRU given by Steinfeld
et al. [71].

2.2 Overview of the Techniques

The basic idea is to exploit homomorphism over the keys in a PKE system PKE. The
high-level overview is as follows.

Start with a PKE PKE with the following properties:

1. The secret keys are vectors of elements in a ring R with operations (+,-) and
the public keys consist of elements in a group G.

2. If (pki, ski) and (pk2, sk 2) are valid keypairs of PKE and a, b E R, then ask, +
bsk 2 is also a valid secret key of PKE, with a corresponding public key that can
be efficiently computed from pki, pk2, a, b. (For the schemes we present, this
public key will usually be computed as pka . pkb).

We note that many existing cryptosystems have this property, or can be made to have
this property with trivial modifications, including [131, 116], and 1281.

The trusted master authority in an IBE will then choose n pairs of (pki, ski)
(i = 1, ..., n) using the key generation algorithm of PKE, publish the n pki values, and
keep secret the corresponding n ski's. Each identity is mapped to a vector #(ID) E Rn

(we abuse terminology slightly here since R is only required to be a ring and not a
field, but we will still call these "vectors"). The secret key for the identity is computed
as a coordinate-wise linear combination of the vectors ski,... , sk, with coefficients
idi, . . . , idn respectively, i.e.

n

SKID := Z(ski -q(ID)[i])
i=1

where all additions take place in R.
Anyone can compute the matching public key PKID using the key homomorphism

and the published pk values. Since by the key homomorphism (PKID, SKID) is still a
valid key pair for the original PKE, encryption and decryption can function identically
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Game CPA for PKE = (Gen, Enc, Dec): Game CCA for PKE = (Gen, Enc, Dec):

(pk, sk) 4- Gen (pk, sk) 4 Gen
b 4- {0, 1} b4 {0, 1}

(moI, mi1 , st) 4- A(pk) (MoI, Mi1 , st) 4 A Dec(sk,-)(pk)

c* 4 Enc(pk, Mb) c* 4 Enc(pk, Mb)
b' 4 A (c*, st) b' 4 ADec(sk,-) (C* St)
Win iff b' = b Win iff b' = b.

Figure 2-1: Semantic Security for Public-Key Encryption. Security games
defining semantic security of public-key encryption against chosen-plaintext attacks
(left) and against chosen-ciphertext attacks (right). On the right, we tacitly assume
that in the second phase of the game, the decryption oracle Dec(sk, -) answers to
queries c* with I. Also, in both games, the challenge ciphertext c* is set to I if

Imol # Imil.

to before. The encryptor simply runs the encryption algorithm for PKE using PKID,
and the decryptor runs the decryption algorithm for PKE using SKID.

The details come in the choice of mapping function # as well as the specifics of the
properties required by PKE. Different mapping functions yield different parameters
(in terms of e.g. public parameter size), and induce different security requirements
on PKE. At the same time, our different constructions demonstrate multiple different
syntactic properties of PKE, each of which is sufficient to construct a BC-IBE scheme.

2.3 Preliminaries

SECURITY OF PKE. We define security against chosen-plaintext attacks (for short,
IND-CPA security) [52, 6] for a PKE scheme PKE = (Gen, Enc, Dec) via the security
game depicted on the left of Figure 2-1. It involves an adversary A which is initially
given the public key pk, and subsequently outputs a pair of equal-length messages m0 ,
mi. The adversaries continues after receiving a challenge ciphertext c* 4 Enc(pk, mb)
for a random secret bit b, and then finally outputs a guess b' for b. We say that PKE
is (T, E)-ind-cpa-secure if all attackers A with time complexity at most T guess the
right bit (i.e., b' = b) with probability at most . Moreover, it is simply ind-
cpa secure if for all polynomials p, there exists a negligible function v such that the
scheme is (p(k), v(k))-ind-cpa-secure for all values of the security parameter k. We
also consider security against chosen ciphertext attacks (for short, IND-CCA security),
where the adversary is additionally able to decrypt ciphertexts under the constraint
that a decryption query for the challenge ciphertext is never asked. (The associated
game is on the right of Figure 1.) We say that PKE is (T, t, E)-ind-cca-secure if any
attacker with time complexity T and making at most t decryption queries guesses b
with probability at most '. The asymptotic notion of t-ind-cca-secure is defined
accordingly.
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2.3.1 Identity-based Encryption

Recall that an identity-based encryption (IBE) scheme for identity set ID is a 4-
tuple of algorithms IBE = (IBEGen, IBEExtract, IBEEnc, IBEDec) satisfying the follow-
ing syntactical properties:

" IBEGen is the randomized parameter generator algorithm which returns a pair

(msk, pp), where msk is the so-called master secret key, and pp are the public
parameters.

* The extraction algorithm IBEExtract, on input the master secret-key msk and a
valid identity ID E ID returns a secret key skID 4 IBEExtract(msk, ID) associ-
ated with this identity.

" The encryption algorithm IBEEnc takes as inputs the public parameters pp, an
identity ID E ID, and a message m, and returns a ciphertext c 4- IBEEnc(pp, ID, m)
such that for the associated deterministic algorithm IBEDec,
IBEDec(skID, IBEEnc(pp, ID, m)) = m with overwhelming probability for each
(pp, msk) output by Gen and skID output by IBEExtract(msk, ID).

The notion of IND-CPA security is extended to the setting of IBE. The adversary,
given the public parameters pp, can obtain keys skID for identities ID of its choice
(via so-called extraction queries), and outputs at some point a pair of equal-length
challenge messages m, mi, together with a challenge identity ID* for which no ex-
traction query has been issued. It then obtains an encryption of Mb for the challenge
identity ID* and for a random bit b. The adversary is asked to guess b, constrained
on not asking a key extraction query for ID*. The game is given in Figure 2-2, on
the right. We also consider a weaker security notion, called selective IND-CPA se-
curity, for which the corresponding security game is given on the left of Figure 2-2.
Here, the adversary is required to choose its challenge identity beforehand, and only
subsequently learns the public parameters and is given access to the IBEExtract oracle.

In analogy to the case of conventional PKE, we say that IBE is (T, t, E)-cpa-secure
if all r-time adversaries A making t extraction queries output b with probability at
most ' in the CPA-security game above. Similarly, we define (T, t, e)-selective-cpa-
secure likewise for the selective-CPA game above, as well as the asymptotic notions
of t-cpa and t-selective-cpa security.

2.4 From PKE to Bounded-Collusion IBE: General
Conditions and Construction 1

We start with a public key scheme and an efficiently computable mapping 0 on
identities that jointly have the following useful properties. We separate the public
keys of the PKE into public parameters (distributed independently of the secret key)
and user-specific data; the latter is referred to as the "public key".
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Game selective-CPA for IBE: Game CPA for IBE:
(pp, msk) 4- IBEGen (pp, msk) 4- IBEGen
b -{, 1} b 4-{0, 1}
(ID*, st) 4- A (mo, mi1, ID*, st) 4- ABEExtract(msk,-)(pp)

(mo, Mi1, st') A IBEExtract(msk)(pp, st) c* 4- IBEEnc(pp, ID*, IMb)
c* 4 IBEEnc(pp, ID*, Mb) b' - AIBEExtract(msk,)(C*, st)
b' 4 AIBEExtract(msk,-) (c* s)

Figure 2-2: Semantic Security for IBE. Security games defining semantic security
of identity-based encryption, for selective attacks (left) and for full security (right).
In both games, we assume that extraction queries for ID* are answered by L, and
that c* = I if Imo l # Imil, or (for full security) if ID* was previously queried to
Extract(msk, .).

SECRET-KEY TO PUBLIC-KEY HOMOMORPHISMS. Throughout this section, we (tac-
itly) consider only public-key cryptosystems PKE = (Gen, Enc, Dec) with the property
that secret and public keys are elements of groups G and H, respectively. For conve-
nience and ease of distinction, we will denote the group operations on G and H as +
and -, respectively.

Definition (Secret-key to public-key homomorphism). We say that PKE admits a
secret-key to public-key homomorphism if there exists a map p : G -+ H such that:

(i) p is a homomorphism, i.e., for all sk, sk' E G, we have p(sk+sk') = p(sk).p(sk');

(ii) Every output (sk, pk) of Gen satisfies pk = p(sk).

We stress that we are not requiring that every element sk E G is a valid secret key
output by Gen. This will be important in our LWE instantiation below. In this case,
we still want to make sure that decryption is correct: In particular, we say below
that p. satisfies n-correctness if for any n' < n valid secret keys ski,. . . , skn, output by
Gen, the probability P[Dec(sk, Enc(p(sk), m)) #i m] is negligible for all messages m,
where the probability is over the coins of Enc and where sk = ski + - -- + skn'. (This
property is implicitly satisfied for all n if all elements of G are valid secret keys.)

Also note that the map p does not need to be efficiently computable for our
applications, even though the map is often very efficient. Additionally, we observe
that in case the scheme depends on some explicit public parameter (like a generator
or a matrix, as will be the case in our examples below), p is indeed allowed to be
parameter-dependent.

THE GLW CONSTRUCTION. We first present a generic approach to build a bounded-
collusion secure IBE from a public-key encryption scheme admitting a secret-key to
public-key homomorphism (based on work with Goldwasser and Lewko [51]). Specif-
ically, let PKE = (Gen, Enc, Dec) be such a public-key encryption scheme with ho-
momorphism p : G -+ H satisfying n-correctness, and let # : ID -+ {0, 1}' be a
polynomial-time computable function, called the identity map. (With a slight abuse
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of notation, it will be convenient to consider the output # as a subset of {1,..., n},
encoded in the canonical way as an n-bit string.) Then, the GLW construction for PKE
and # gives rise to the following IBE scheme IBE = (IBEGen, IBEExtract, IBEEnc, IBEDec)
with identities from the set ID defined as follows:

IBEGen IBEExtract(msk = sk, ID) IBEEnc(pp = pk, ID, m) IBEDec(skID, c)
(pk, sk) 4- Genn skID = ZiE&(ID) sk[i] pkID = Hj(ID) pk[i] m' +- Dec(skID, c)
msk +- sk Return skID c * $ Enc(pkID, m) Return m'
pp & pk Return c
Return (msk, pp)

The notation (pk, sk) +_- Gen" denotes running Gen n times, with independent ran-
dom coins, and pk, sk are vectors such that (pk[i], sk[i]) is the output of the i-th
execution of Gen. First note that correctness of IBE follows trivially from the correct-
ness of PKE and the existence of a secret-key to public-key homomorphism It with
n-correctness, since pkID = p(skID) holds for all IDaA2s and skID is the sum of at most
n valid secret keys. We stress that a central advantage of the above construction is
that IBE ciphertexts are ciphertexts of the underlying encryption scheme PKE. Also,
note that if PKE relies on some public parameters, these are generated once and used
across all uses of Gen, Enc, and Dec.
INSTANTIATING THE IDENTITY MAP. We still need to discuss how the map # is
instantiated; different instantiations will require different properties of the underlying
PKE scheme, and will result in different parameters for the BC-IBE. In the first
few constructions of this paper, we rely on constructions based on cover-free sets,
following previous work on bounded-collusion IBE [33], bounded-CCA security [27],
and bounded security for FDH signatures 132]. Concretely, let 2 [n be the set of subsets
of [n] := {1,.. . ,n}.

Definition (Cover-free sets). We say that # : ID 2 [n] is (t, s)-cover free if |#(x) =
s for all x C ID, and moreover #(xt) \ U'- #(xi) - 0 for all distinct x 1 , ... , xt E ID,
i.e., the set #(xt) is not covered by the union of #(x 1 ),. .. ,(xt_1).

In general, we will equivalently think of # as a map ID -* {O, 1}, where we
output the characteristic vector of the associated set, instead of the set itself. The
following gives the currently best-known construction of cover-free sets.

Theorem 1 (127]). For all integers t > 1, there exists a polynomial-time computable
(t, s)-cover-free map # : ID -+ {0, 1}", where n = 16t2 log JID| and s = 4t log ID1.

In Section 2.6 we will use a weaker requirement of # that only requires linear
independence of the vectors q(x),..., #(xt). In this case, the output length n can be
reduced to 0(t log IID1), or even 0(t) if we allow both identities as well as components
of O(x) to be elements of Z, for some large prime p. The properties and parameters
of this alternate choice of #, along with the resulting implications for the PKE used,
will be discussed in that section.
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2.4.1 Security

Selective Security of the GLW Construction We start with selective secu-
rity, which will be important to obtain bounded CCA-secure cryptosystems with
short ciphertexts, as we explain below in Section 2.7. In the following, let PKE =
(Gen, Enc, Dec) be an arbitrary public-key encryption scheme which admits secret-key
to public-key homomorphism, and let IBE be the IBE scheme resulting from the above
construction, using an underlying identity map q.

Theorem 2 (Selective ID Security of GLW). Assume that PKE is ind-cpa-secure, and
that 0 is (t + 1, s)-cover free. Then, the GLW construction is t-selective-cpa-secure.

Proof. Let A be a selective-cpa adversary for IBE which outputs b' = b with prob-
ability at least (1 + nE)/2, and which makes at most t extraction queries. We con-
struct an ind-cpa adversary B for PKE from A, guessing the bit b with probabil-
ity 1'. Concretely, the adversary B first runs A, obtaining the challenge identity
ID*, and chooses an index i* uniformly at random from the set S* = {i : id* = 1},
where O(ID*) = [id*, ... , id*]. It then gets a public key pk* from the underlying CPA

game, and computes (pk[j], sk[j]) +'- Gen for all j E [In] \ {i*}. Finally, it sets

pk[i*] = pk* - (]H- pk[j]- d

The adversary B then gives pp = pk to A and runs it until it outputs a pair

(mo, mi). In particular, A's extraction queries for ID # ID* E ID are replied by
computing [idi, ... , id,] = 9 (ID) and, if idi* = 0, returning skID := Ej idi -sk[i]. Note
that if idi* = 1, then B cannot answer the extraction query, as it does not know any

corresponding sk[i*]. In this case, it returns 1, and sets a flag bad to true. When the
adversary A outputs a pair (no, mi) of messages of equal length, B forwards them
to the CPA, obtaining a challenge ciphertext c* , which it then gives back to A, and
its simulated execution is continued until it outputs a bit b'. To conclude, B outputs
the bit b' if bad is not set to true, and returns a random bit otherwise. Note that we

have pkID* = pk* by our definition.
Since 0 is (t + 1, s)-cover-free, we know that there exists at least one i* such that

idi. = 1, but idi* = 0 for all vectors O(ID) corresponding to the (at most t) extraction
queries ID , ID*. Intuitively, such an index i* is chosen hence with probability at
least 1/ IS* 1/s > 1/n, and conditioned on this, the simulation is easily seen to be
perfect. Formally, we let WinPKE and WinIBE be the events that B and A guess the
bit in the respective security games. Then,

P [WinPKE] = P [WinPKE A -bad] + P [WinPKE A bad]

> P [-,bad] - P [WinPKE I -bad] + P [bad] - P [WinPKE bad]

Now, clearly, P [bad] = 1 - P [,bad], and P [WinPKE bad] > ', since B outputs a
random bit if bad is true. Moreover, one can verify that P [,bad] > , and, as
the simulation is perfect, P [WinPKE I ,bad] = P [WinIBE]. Formalizing these last two
argument actually requires some (standard) extra work, using the fact that all random
coins are independent of the choice of i*, but we dispense with the details. Plugging
in terms into the above concludes the proof. I

32



2.4.2 Full Security of GLW

We note that the above proof strategy used in Theorem 2 fails when we do not
know the challenge identity ID* at the point in time when the reduction B sets the
public parameters pp. However, an additional syntactic requirement on the underlying
cryptosystem PKE yields full security, as we show below. This requirement is captured
by the following definition.

Definition (Weak Multi-Key Malleability). We say that PKE is weakly n-key mal-
leable if there exists an efficient algorithm Simulate such that for all messages m, all
I C [n], and all i E I, the probability distributions Do and D1 are computationally
indistinguishable, where with (pk, sk) 4- Gen', Db consists of (pk, sk[[n] \ {i}], cb)
such that

(1) co 4- Enc(Hi pk[i], m);

(2) c 4- Enc(pk[i], m), c1 4- Simulate(i, I, c, pk, sk[[n] \ {i}).

In other words, given a ciphertext c encrypting with public key pk[i] (where i is
part of some set I) an arbitrary unknown message m, we can efficiently generate a
ciphertext c' encrypting the same message m under the product of the keys pk[j] for
j E I without knowing the secret key sk[i], but still possibly using sk[j] for j = i.
The resulting ciphertext has the right distribution in the eyes of a computationally
bounded distinguisher.

Theorem 3 (Full Security of GLW). Assume that PKE is ind-cpa-secure and weakly
n-key malleable, and that # is (t + 1, s)-cover free. Then, the GLW construction is
t-cpa-secure.

Proof Sketch. We only sketch the reduction - the analysis is similar to the one in
the proof of Theorem 2. Let A be an ibe-cpa adversary for IBE which guesses the
underlying bit b with probability at least (1 + n . e)/2, and which makes at most t
extraction queries. We construct an ind-cpa adversary B for PKE from A, winning
with probability at least 16. Concretely, the adversary B starts by choosing an
index i* uniformly at random from the set [n]. It then gets a public key pk* from the
underlying IND-CPA game, and computes (pk[j], sk[j]) 4- Gen for all j E [n] \ {i*}.
Finally, it sets pk[i*] = pk*. It then gives pp = pk to A and starts its execution, until
it outputs a target identity ID* as well as a message pair (mo, mi). In particular, A's
extraction queries for ID E {0, 1} are replied by computing [idi, . .. , ida] = #(ID) and,
if idi. = 0, returning skID = E idisk[i]. Note that if idi. = 1, then B cannot answer
the extraction query. In this case, it returns I, and sets the flag bad to true. Given
ID* and (mo, mi), let O(ID*) = [id*, .. ., id*]. If id* = 0, then bad is set to true, and
I is returned to A. Otherwise, B forwards (mo, mi) to the ind-cpa game, obtaining a
challenge ciphertext c. Given this, it outputs c* 4- Simulate(i*, #(ID*), c, pk, sk[[n] \
{i*}]), which it then gives back to A, continuing it execution, until A outputs a
bit b'. To conclude, B outputs the bit b' if bad is false, and returns a random bit
otherwise. Unlike in Theorem 2, this simulation is not (necessarily) perfect, since we
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only require computational indistinguishability from Simulate. However, this will only
affect A's output with negligible probability (or else (B, A) would serve as an efficient
distinguisher for the output of Simulate), and thus B's overall success probability is
still nonnegligibly greater than 1 .

2.4.3 Instantiation from DDH

We present a simple instantiation of the above paradigm based on the DDH assump-
tions and the ElGamal cryptosystem. The resulting scheme has smaller ciphertexts
than earlier BC-IBE schemes [51, 33], both requiring three group elements.

Concretely, let G be a group with prime order IG = q. Recall that the Decisional
Diffie-Hellman (DDH) assumption demands that the distributions (g, ga, gb, gab) (for

g 4 G, a, b 4 Zq) and (g , bc gC) (where c 4- Zq) are computationally indistin-
guishable. For the same group G, the ElGamal cryptosystem has as a public parameter
an element g 4 G, secret key sk 4- Zq , and public key pk = gsk. For a message

m E G, the encryption algorithm is Enc(pk, m) = (gr, m.pkr), where r 4- Zq , whereas
Dec(sk, (ci, c2 )) = c2 . c-sk. ElGamal is easily shown to be ind-cpa-secure under the
DDH assumption. Moreover, we observe the following two properties of the ElGamal
cryptosystem:

1. ElGamal admits a secret-key to public-key homomorphism p : Z- - G where
p(x) = gx, and n-correctness is satisfied for any n.

2. Moreover, it satisfies (perfect) weak n-key malleability: Namely, just consider
the algorithm that for all I C [n], i E I, and secret- and public-key vectors sk
and pk, outputs

c* = Simulate(i, I, pk, sk[[n] \ {i}], (ci, c2 )) = (ci, c2 Zh14i sk[j] (2.1)

In particular, the resulting IBE scheme with identities ID obtained by plugging
ElGamal into the GLW construction, for any (t + 1, s)-cover-free map q : ID -4

{O, 1}n, is as follows, and Theorem 3 implies its t-ibe-cpa security under the DDH
assumption. (The decryption algorithm remains the same as in the original ElGamal
scheme.)

IBEGen IBEExtract(msk = sk, ID) IBEEnc(pp = (g, pk), ID, m)

g 4- G [idi, ... , idn] <- #(ID) [idi, ... , ida] <- #(ID)

sk 4 Z, pk[i] - gsk[i] skID - En 1 idi ' ski] r 4 z

pp +- (g, pk), msk +- sk Return skID C + (gr, m- f_1 pk[]r-idi)
Return (pp, msk) Return c

2.4.4 Instantiation from LWE

We now turn to a somewhat more involved example based on the GPV cryptosys-
tem [47]. For ease of exposition, we omit a too-detailed discussion of parameters in
the following.
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THE LWE ASSUMPTION. Let us first recall the learning with errors (LWE) problem,
introduced by Regev [641. Let n, q be parameters. For any noise distribution x on
7Zq, and vector s E Zg, the oracle LWEqnx(s) samples a fresh random n-dimensional

vector a 4 Z', as well as noise e 4- x, and returns (a, a s+e). The LWE assumption
with noise x states that for every PPT distinguisher D,

P [s 4- Zn : DLWEq,-,X(s) - s $ Zn : DLWEqnU(s) - 1 negl(n) (2.2)

where U is the uniform distribution on Z. (In other words, in addition to a, the
oracle LWEq,n,u(s) simply returns uniform random samples, independent of s.) In
general, the error distribution x is chosen to be a discrete Gaussian on Zq.

THE GPV CRYPTOSYSTEM. The following is a variant of the cryptosystem suggested
by Gentry, Peikert, and Vaikuntanathan 147] (and is in fact the dual of Regev's

PKE [64]): For a public random parameter A 4- Z"'X, where m > n -log q+w(log n),
the secret key sk = s consists of a vector s 4- {0, 1}' (i.e., the secret key is selected
among binary vectors), whereas the public key is pk = As. Then, encryption of

a message b E {0, 1} is by first computing r 4- Z, e 4- Xy, e' 4- X' (for some
distribution x' related to X and to be specified below), and then outputting the
ciphertext

c = (rTA +eT, rTpk + e'+ b - (q - 1)/2)

For decryption of a ciphertext c = (ci, c 2 ) one takes the secret key s, compute c 2 -c 1 s,
and checks whether the outcome is closer to 0 or (q - 1)/2 (modulo q). The noise
distribution must guarantee that this is indeed true with overwhelming probability.
We omit the details of this discussion, but this essentially accounts to showing that
e - eTs is not too large.

One can show the above cryptosystem to be secure if the LWE assumption with
distributions X and x' is true. (Note that the original GPV cryposystem has x = X',
but this distinction will be necessary for our analysis below.)

SECRET-KEY TO PUBLIC-KEY HOMOMORPHISM. In order to build an IBE scheme via

the GLW-construction, we first observe that the cryptosystem admits a secret-key to
public-key homomorphism p: Z' Z' such that p(s) = As. Note that for any two
valid secret keys sk, sk' E {0, 1}" it is not necessarily true that sk + sk' is still a valid
secret key. However, for any f, it is still true that p satisfies f-correctness as long as
x and x' are appropriately bounded.

WEAK MULTI-KEY-MALLEABILITY. For weak f-key malleability, we specify the algo-
rithm Simulate such that, for all I C [], i E I, c = (ci, c2 ), sk = (Si, , ..., se) and
pk = [As1 , ..., Ase], we have

c = Simulate(i, I, pk, sk[[e] \ {i}], (ci, c2 )) = C2 + C1 - S
jEI\{il
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Note that in contrast to the above DDH-based example, simulation is not perfect.
Indeed, the output of Simulate can indeed be rewritten as

r= rT A+e Tr TAZs +eT I sj + e'+ b(q - 1)/2))
jEI jEI\{i}

whereas the term eT EjEl\{i} s3 is missing in the real ciphertext co.

However, statistical indistinguishability of (pk, sk[[f] \ {i}], Cb) for b = 0, 1 is
achieved by choosing x' to be a distribution with a much larger variance than x.
If elements sampled by x are bounded by B with overwhelming probability, then
e T EjEI\{i} si is at most II -n-B. We know that if X' is a discrete Gaussian distribution
with standard deviation #q, then the statistical distance of x' and x'+ eT ZjEI\{i} Sj

is at most I -n - B/(q) [31, Lemma 3]. Thus, we wish to choose q large enough
such that this factor is negligible, yet the LWE problem with distributions X and
x' is still hard. If we choose q = 2'6, / = 2 n2, and B = 2 e/

4 for some constant
E > 0, and I = poly(n), we can make the statistical distance smaller than any inverse
polynomial in n while retaining subexponential hardness in the LWE assumption. We
can thus reduce the security of this PKE scheme to the hardness of subexponential
approximations of certain lattice problems [63].

THE FINAL LWE-BASED IBE SCHEME. Consequently, every (s, t+1)-cover-free map
# : ID -+ {0, 1}e, every n > m log q + w(n), and noise distributions x, x' as above
yield the following scheme with identity set ID, which, by Theorem 3, is t-ibe-cpa
secure under the LWE assumption for distribution x:

IBEGen IBEExtract(msk = sk, ID) IBEEnc(pp = (A, pk), ID, b)
A $ -Zmxn [idi, ... , ide] +- #(ID) [idi, ... , idn] - (ID)

sk[1],... , sk[(] skID +- Z idi - sk[i] pk = E _f id - pk[i]
pk[i] +- A sk[i] (i =1 ) Return skID r1-Z1 . I eq I- '

pp +- (A, pk), msk +- sk c + rT - A + e

Return (pp, msk) c 2 +- rT pk+e'+b.(q-1)/2
Return c

Also, we note that if we are only interested in proving selective security using Theo-

rem 2, then weak e-key malleability is unnecessary, and we can fix x = x'. This allows
to choose a polynomial modulus, avoiding the subexponential LWE assumption.

2.5 Construction 2: Multi-Key Malleability

2.5.1 Bounded-IBE Construction

We present a further construction of BC-IBE from PKE schemes which satisfy a
different notion of key malleability than the one given above, which we first introduce.
Our notion requires that given an encryption of a message under one public key, we are
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asking for the ability to produce a new ciphertext of the same message which decrypts
under a combination of secret keys (e.g., the product) for which we only know the
corresponding public keys. Note that we are only asking for decryptability under
the combination of the secret keys. In particular, in contrast to the above notion of
weak key-malleability, the distribution of the resulting ciphertext may not be a valid
encryption under some well-defined combination of the corresponding public keys,
and moreover, we require ability to compute this ciphertext without knowledge of
any secret keys.

Definition (Multi-Key Malleability). Let PKE = (Gen, Enc, Dec) be a public-key en-
cryption scheme. We say that PKE is n-key malleable if there exist algorithms Modify
and Combine such that the following properties hold:

(i) For all valid messages m, all I C [n], and all i G I, the following probability is
negligible (taken over the coins of Enc):

p (pk, sk) 4- Gen", c 4- Enc(pk[i], m), Dec(Combine(I, sk), c') / m .
[c' - Modify(i, I, pk, c)

(ii) For all I C [n], Combine(I, sk) does not depend on sk[i] for i I.

(iii) For all I C [n] and all valid public-key / secret-key vectors (pk, sk), for all i, j E
I, the values Modify(i, I, pk, Enc(pk[i], m)) and Modify(j, I, pk, Enc(pk[j], m))
are equally distributed.

We note that Property (iii) above is not really necessary (a computational relax-
ation would suffice), but will make the presentation somewhat simpler and is true in
the only instantiation we give below.

THE IBE CONSTRUCTION AND ITS SECURITY. For an identity map I :D -

{ 0, 1}n, we now propose a construction of an identity-based encryption scheme IBE
(IBEGen, IBEExtract, IBEEnc, IBEDec) from an n-key malleable encryption scheme PKE =

(Gen, Enc, Dec). The decryption algorithm is unaltered, i.e., IBEDec = Dec, and more-
over the construction consists of the following algorithms. (Note that the choice of i
as min{q(ID)} below within IBEEnc is purely arbitrary.)

IBEGen IBEExtract(msk = sk, ID) IBEEnc(pp = pk, ID, m)

(pk, sk) $ Genn skID <- Combine(#(ID), sk) i <- min{q#(ID)}
msk <- sk Return skID c' 4 Enc(pk[i], m)
pp <- pk c <- Modify(i, 0(ID), pk, c')
Return (msk, pp) Return c

Correctness of the scheme follows by Property (i) above. The following theorem
establishes security of our new construction.

Theorem 4. Assume that PKE is ind-cpa-secure and n-key malleable, and that 4 is
(t + 1, s)-cover free. Then, IBE is t-ibe-cpa-secure.
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Proof. Let A be an ibe-cpa-adversary for IBE making t extraction queries and which
succeeds with probability "+ in guessing the right bit b. We build an ind-cpa

2$
adversary B for PKE as follows: The adversary B initially chooses an index i* -

[n], and is then given pk*. It sets pk[i*] = pk, and then samples (pk[i], sk[i]) -

Gen for all i # i* , and then runs A with public parameters pp = pk. Then, A's
extraction queries for ID are simulated as follows: If i* q(ID), then it returns
Combine(#(ID), sk). (Note that this can be done by Property (ii), since the output
of Combine does not depend on sk[i*].) Else it returns I if i'* E #(ID), and sets a
flag bad to true. Moreover, on input a triple (mo, m1 , ID*), B forwards m, mi to
the ind-cpa game, obtaining c 4- Enc(pk*, mb), and then, if i* E #(ID*) and c / 1,
it gives c* = Modify(i*, #(ID*), pk, c) back to A. If c = 1, then it sets c* = 1.
Otherwise, it gives simply I back and sets bad to true. Finally, B outputs A's final
output b' if bad was never set, and a random bit is returned otherwise.

We now turn to the analysis of the success probability of B in winning the ind-cpa
game for PKE. Let bad be the event that the bad flag is set, and let good be its
complement. First note that P [b'= b good] > 1+, because as long as the bad flag
is never set, all extraction queries have been replied as in the original ibe-cpa game.
Also note that P [b' = b bad] > 1/2, since in this case B outputs a uniform bit b'.

It remains to prove a lower bound on the probability of good happening. Note
that since # is (t + 1, s)-cover-free, then there must exist an index i E #(ID*) such
that i §' #(ID) for all (at most t) extraction queries ID 4 ID*. If i* takes such a
value, then the bad flag is never set, i.e., good holds. It is not hard to show that
the probability that such an index is hit is at least -, even though this requires some
(standard) work (which we omit) due to the fact that i* is chosen before A's execution
starts. To conclude, we obtain

,1 1+Ine ( 1 1+P [b' = b] > + - =
n 2 n 2 2 '

which contradicts ind-cpa security of PKE. El

2.5.2 NTRU-Based Instantiation and Fully-Homomorphic IBE
We provide an instantiation of the above constructing using the multi-key homomor-
phic properties of NTRU-based public-key encryption [60], which we first review. For
some parameters r, n and q (where q is a prime), consider the ring of polynomials
R = Z[X]/(xr + 1), and let X be a B-bounded distribution on R, i.e., with overwhelm-
ing probability, y samples a polynomial from R whose coefficients are all at most B
in absolute value. All operations on polynomials are to be understood as over the
ring Rq = R/qR. The NTRU cryptosystem is such that key generation Gen samples

f, g 4 x subject to the constraint that f - 1 (mod 2), and sets pk = 2g/f and
sk = f. (Possibly, f needs to be resampled until it admits an inverse in Rq, and X is
such that this happens with good probability.) The message b E {0, 1} is encrypted
as

Enc(pk, m) = h - pk + 2e + b ,
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where h, e +- x. Finally, decryption, given c, outputs Dec(sk, c) = sk -c (mod 2). To
see why decryption is correct, note that

sk-c-= f .(2h.g/f +2e+b) - 2h.g+2e.f +f -b (mod q) .

If B < Vq/2/r, then all coefficients from h -g and e -f are of size at most r 2B2 < q/2.
Consequently, 2hg and 2ef only have even coefficients, and are 0 modulo 2. And
finally, f - b clearly always equals b modulo 2.

The scheme was proven ind-cpa-secure under a fairly ad-hoc assumption in [601,
where it was also shown to have strong homomorphic properties we address below,
and which we exploit for our construction.

THE IBE SCHEME. We turn now to building an IBE scheme from the above NTRU-
based PKE scheme PKE using the above generic approach. In the following, we assume
that r is our security parameter, q = 2e for some constant E < 1, B = poly(r), and
n = O(r6) for some constant 6 < 1.

We first show e-key malleability exploiting the multi-key homomorphic properties
of NTRU shown in [601. To this end, we define the algorithm Combine which given
I C [f] and sk E R' outputs

Combine(I, sk) = fJ sk[i]
iEI

Moreover, we also define the (randomized) function Modify, which given I C [C], i E I,
cERq , and pk E R', outputs

Modify(i, I, c, pk) = c + 1 h - pk[j]
jEI\{i}

where hj for j E I \ {i} are sampled independently from the B-bounded distribution
x as above. Now, Properties (ii) and (iii) in Definition 2.5.1 are immediate to verify.
Moreover, for Property (i), fix I C [C] and i E I, and pk, sk E R' , each consisting of
f B-bounded polynomials as components, then define c as

c = Modify(i, I, Enc(pk[i], b), pk) = 1h - pk[j] + 2e + b,
jEI

and observe that

Dec(Combine(I, sk), c) = sk[i] ( h -pk[j] + 2e + b (mod 2).
\iEI / jEi

In particular,

(lsk[i] - h.pk[j]+2e +b =5 2h-g. ]1 f,+ 2e. J fe +b. ( .
iEI / \jEi jEI iEI\{j} iEI / iEI
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Note that in the above sum, only products of at most II + 1 B-bounded polynomials
occurs. The coefficients of the resulting products have size at most r"I1 - BIII+1, which

(given previous parameter choices) is smaller than q/2 as long as III = o(n'). This
yields correct decryption as no wraparound (modulo q) occurs.

THE FINAL SCHEME. Overall, this yields to the following scheme, for any identity
mapping # : ID -+ {0, i}e which is (s, t + 1)-cover-free for some s = o(ne), which is
t-ind-cpa secure by Theorem 4.

IBEGen IBEExtract(msk = sk, ID) IBEEnc(pp = pk, ID, m)

fi, ... , fa - x, skID i HE4(ID) sk[i] hi, ... , hn, e x
fi 1 (mod 2), fi E R* Return skID c - j'( pki]h -2etm

91, - -- ,gn X Return c
msk +-- (fi, . .. , fn)
pp 4 (2gi/fi,..., 2gn/fn)
Return (msk, pp)

FULLY-HOMOMORPHIC IBE. The above instantiation has additionally the property
of being fully-homomorphic in the following sense: Given encryptions
IBEEnc(ID, mi),.. ., IBEEnc(ID, mt), and a function f : {0, 1 }t -+ {0, 1}, we can com-
pute a ciphertext which decrypts to f(m1, . . . , mt) under skID using the homomorphic-
evaluation procedures given in [60].

We note that in general one can provide a construction, along the lines given
above, from multi-key fully-homomorphic encryption to fully-homomorphic identity-
based encryption for bounded collusions. We defer a full discussion,noting in passing
that the above is the only instantiation of this paradigm we are aware of.

2.6 Construction 3: Smaller Parameters using Lin-
ear Independence

In the previous constructions we used a cover-free map # to map identities to subsets
of a set of keys (expressed using the 0-1 characteristic vector). However, since we
have a homomorphism over the keys, we can alternately use a different q that maps
identities to linear combinations of keys. Instead of the cover-freeness property (where
a group of t keys obtained by the adversary does not "cover" any honest user's key),
we will require # to be t-wise linearly independent. That is, a group of t keys obtained
by the adversary, viewed as t vectors of coefficients of the underlying keys, does not
contain any honest user's key in its span. As we will see, this will enable smaller
public parameters than constructions using cover-free maps, at the cost of stricter
security requirements on the underlying PKE.

2.6.1 Linear Related-Key Security

We define the stronger notion of security we require, which we call linear related-key
security. Here we assume that the secret keys are linear combinations of underlying
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Game LRKA for PKE = (Gen, Enc, Dec) Oracle LinComb(sk, -)

(pki, ski), ... (pka, skn) 4 Genn On input i' E Rn (R is the ring of sks):

b 4- {,1} Return H =1 vlski

(in, m 1 , &, st) 4- ALinComb(sIC,-)

c* 4 Enc(1I vipki,mb)
b' $ A(c*, st)
Win iff b' = b and V' 0 span(queries(A))

Figure 2-3: Linear Related-Key Security for Public-Key Encryption. Security
game defining linear related-key security of public-key encryption against chosen-
plaintext attacks (left) and against chosen-ciphertext attacks (right). Secret keys are
now linear combinations of values in the secret key space; the adversary is allowed
to request arbitrary linear combinations as well as specifying the linear combination
corresponding to the challenge key. Once again, the challenge ciphertext c* is set to
I if |mol f Imi l.

hidden values. The adversary is allowed to request arbitrary linear combinations of
these values, as well as specifying which combination to use as the challenge key.

If the coefficients in each of these linear combinations are viewed as vectors of
elements in the secret key space, then we want ciphertexts to remain indistinguishable
if they are encrypted to a vector that is outside of the span of the vectors queried by
the adversary. A game-based definition is given in Fig. 2-3.

2.6.2 Mapping Identities to Linearly Independent Vectors

To employ our strategy of transforming PKE schemes with homomorphic proper-
ties over keys into IBE schemes with polynomial collusion resistance, we first need
methods for efficiently mapping identities to linearly independent vectors over various
fields. This can be done using generating matrices for the Reed-Solomon codes over
Z and dual BCH codes overZ2.

Lemma 5. For any prime p and any t + 1 < p, there exists an efficiently-computable
mapping : 4 +1 such that for any distinct x1,.x2,...xt+l G Z, the vectors

#(X 1 ), #(x 2 ), ...4(xt+1) are linearly independent.

Proof. Let O(x) = (1, x, x2, ... X). Clearly, this is efficiently computable.
Consider the matrix formed by taking any t + 1 distinct elements x 1, x 2 , ... xt+1 of

Z, and letting their images under # form the rows. This is a Vandermonde matrix;
it therefore has a well-known formula for the determinant

]I (X - Xj)
1<i<jst+1

which is nonzero modulo p (since the elements are distinct). Thus, the Vandermonde
matrix is full rank, and therefore O(X 1), #(x 2 ), ...#(xt+i) are linearly independent over
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Lemma 6. For any positive integer k and any t + 1 < 2 k, there exists an efficiently-
computable mapping # : {0, I}k _+ {0, 1}(t+1)k such that for any distinct x 1 , x 2 , ... Xt+i l

{0, 1}', the vectors #(xi), #(x 2 ), ..-. (xt+1 ) are linearly independent over Z2-

Proof. Let g(x) = (1, x, x2, ...xt), where multiplication occurs over GF(2k). Let O(x)
be the bitwise expansion of g(x) (that is, the output is considered as k(t + 1) bits
instead of t + 1 elements of {0, I}k). Here, we represent each element GF(2k) as an
element of Z, and this representation is an additive homomorphism. Clearly, q is
efficiently computable.

Again we consider the matrix A formed by taking the images of t + 1 distinct
arbitrary elements x 1, x 2 , -.. xt+1 as rows. Assume that this matrix has rank at most t
over Z2. Then there exists some nonzero linear combination of rows that sums to the
zero vector; that is, that there is some nonzero vector v over Z2 such that vT -A = 6r
modulo 2.

Consider the Vandermonde matrix B over GF(2k) whose rows are g(x1), g(x 2 ),
g(xt+i). Since addition over GF(2k) corresponds directly to bitwise addition over

GF(2)k, the bitwise computations will be the same when computing vT -A and vT -B,
and we can conclude that vT - B = 6r over GF(2k) as well. (Here, the 0,1 entries
of v are interpreted as 0,1 in GF(2k)). However, this is a contradiction, since B is
a square Vandermonde matrix with distinct rows over GF(2k), and is thus full rank
(similarly to the proof of Lemma 5). Therefore, A must be full rank over Z2, and
thus the vectors #(x 1 ), #(x 2 ), ...#(xt+1) are linearly independent. El

2.6.3 Construction

Given a PKE scheme PKE = (Gen, Enc, Dec) and an identity mapping # having the
properties defined above, we now construct a bounded-collusion IBE scheme. We let
t denote our collusion parameter, and n will be the dimension of the image of /.

IBEGen(1A) -+ PP, MSK The setup algorithm for the IBE scheme calls the key
generation algorithm of the PKE scheme to generate n random ski, pk1 , ... , sk, pkn
pairs, sharing the same public parameters. The public parameters PP of the IBE
scheme are defined to be these shared public parameters as well as pki,..., pkn. The
master secret key MSK is the collection of secret keys ski,... , skn.

IBEExtract(ID, MSK) -+ SKID The key generation algorithm takes an identity in
the domain of # and first maps it into Rn as O(ID) = (idi,.. . , ida). It then com-
putes SKID as an R-linear combination of ski, ... , skn, with coefficients idi, ... , id,:
SKID E idiski.

IBEEnc(m, PP, ID) -+ CT The encryption algorithm takes in a message in the mes-
sage space of the PKE scheme. From the public parameters PP, it computes a public
key corresponding to SKID using the linear key homomorphism property (we note
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that the mapping q is known and efficiently computable). It then runs the PKE
encryption algorithm on m with this public key to produce CT.

IBEDec(CT, SKID) - m The decryption algorithm runs the decryption algorithm
of the PKE, using SKID as the secret key.

Theorem 7. When a PKE scheme PKE = (Gen, Enc, Dec) with linear key homomor-
phism and a compatible (t + 1)-wise linearly-independent identity mapping # satisfy
linear related-key security, then the construction defined in Section 2.6.3 is a CPA-
secure bounded-collusion IBE scheme with collusion parameter t.

Proof. Given the construction in Section 2.6.3, we note that the security game for
LRKA-security (Fig. 2-3) exactly corresponds to the security game for IBE CPA-
security (Fig. 2-2). That is, the IBE adversary first takes public parameters, which in
the construction above simply consist of a vector of public keys (as in LRKA-security).
It makes oracle queries for IBE secret keys, which are simply linear combinations of
PKE secret keys. The challenge ciphertext is constructed in the same manner.

Finally, note that the IBE adversary is constrained to make at most t oracle
queries, which must all be distinct from the challenge identity id*. Since # is (t + 1)-
wise linearly-independent, it is thus the case that #(id*) ' span(queries(A)). Thus,
we have a direct reduction between the security games; the reduction can essentially
pass the oracle and challenge queries of the IBE adversary to the LRKA challenger
unaltered, only applying # to translate IBE identities into LRKA vectors. L

2.6.4 Linear Hash Proofs

The major tool we will use to prove linear related-key security is linear hash proofs.
This technique is inspired by the paradigm of hash proof systems, which were first
introduced by Cramer and Shoup as a paradigm for proving CCA security of PKE
schemes [28]. Hash proof systems have recently been used in the context of leakage-
resilience as well (1621, for example), extending to the identity-based setting in 14].
We note that the primitive of identity-based hash proof systems introduced in [4]
takes a different direction than our work, and the instantiation they provide from the
quadratic residuosity assumption relies on the random oracle model.

We deviate from the original hash-proof paradigm in several respects. In hash
proof systems, a single public key corresponds to many possible secret keys. There are
two encryption algorithms: a valid one and an invalid one. Valid ciphertexts decrypt
properly when one uses any of the secret keys associated to the public key, while
invalid ciphertexts decrypt differently when different secret keys are used. Our linear
hash proof property will consider several public keys at once, each corresponding
to a set of many possible secret keys. The adversary will be given these public
keys, along with some linear combinations of fixed secret keys corresponding to the
public keys. We will also have valid and invalid encryption algorithms. Our valid
ciphertexts will behave properly. When an invalid ciphertext is formed for a public
key corresponding to a linear combination of the secret keys that is independent
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of the revealed combinations, the invalid ciphertext will decrypt "randomly" when
one chooses a random key from the set of secret keys that are consistent with the
adversary's view.

To define this property more formally, we first need to define some additional
notation. We consider a PKE scheme with linear key homomorphism which comes
equipped with a compatible identity map q and an additional algorithm InvalidEn-
crypt which takes in a message and a secret key sk and outputs a ciphertext (note
that the invalid encryption algorithm does not necessarily need to be efficient). The
regular and invalid encryption algorithms produce two distributions of ciphertexts.
We call these valid and invalid ciphertexts. Correctness of decryption must hold for
valid ciphertexts.

We let (ski,pki), (sk 2 ,pk 2 ), ... , (sk,,pk,,) be n randomly generated key pairs,
where all of ski,..., sk, are d-tuples in a ring R (here we assume that the key gen-
eration algorithm chooses R, d and then generates a key pair. We fix R and then
run the rest of the algorithm independently n times to produce the n key pairs). We
define S to be the n x d matrix with entries in R whose ith row contains ski.

For notational convenience, we also define a (very large) matrix 1 E RlD xn. Let
the rows of (D be (1),. .. , O(IDI) for our (yet-to-be-defined) identity map #.

Fix any t + 1 distinct rows of the matrix of identity vectors P, denoted by
(ii), . . . , #(it+i). We let skIDi,+1 denote the secret key #(it+i) - S and pkIDit+1 de-

note the corresponding public key (computed via the key homomorphism). We let
KerR(01), .. ., (it)) denote the kernel of the t x n submatrix of 1 formed by these
rows; that is, it consists of the vectors 'U E Rl such that 0(ij) v-= 0 for all j from 1
to t.

Now we consider the set of possible secret key matrices given the public and secret
key information available to an adversary who has queried identities i4, ..., it. We let
W denote the set of matrices in Rnxd whose columns belong to KerQ(i), .... , (it
and whose rows wi satisfy that ski + wi has the same public key as ski for all i.
Since W's columns are orthogonal to the identity vectors q(ii),... , (it), adding an
element of W to S does not change any of the secret keys 0(ij)S. Furthermore, by
construction, adding an element of W to S does not change the public keys associated
with the scheme.

We define the subset S of R xd to be the set of all matrices in S + W := {S +
WolWo E W}, intersected with the set of all matrices of n secret keys that can
be generated by the key generation algorithm (i.e. those with components in R').
Intuitively, S is the set of all possible n x d secret key matrices that are "consistent"
with the n public keys pki,. . . ,pkn and the t secret keys 0(ii) - 5, ... , (it) - S. In
other words, after seeing these values, even an information-theoretic adversary cannot
determine S uniquely - only the set S can be determined.

We say that a PKE scheme with linear key homomorphism is a linear
hash proof system with respect to the identity map # if the following two
requirements are satisfied. We refer to these requirements as uniform decryption of
invalid ciphertexts and computational indistinguishability of valid/invalid ciphertexts.
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Uniform Decryption of Invalid Ciphertexts Recall that there are many possi-
ble secret keys corresponding to each public key. Any of these keys should correctly
decrypt a valid ciphertext; however, when a uniformly-selected key is used to decrypt
an invalid ciphertext, we want the resulting distribution of decrypted messages to
be (close to) uniform over the message space. Formally, given a public key and a
ciphertext that is the output of InvalidEncrypt, we want the distribution of possible
input messages to be statistically close to uniform.

Given ciphertext c* and public key pkIDil , we require that the probability that
C* was created by running InvalidEncrypt on any particular message is statistically
close to uniform over the message space given that the secret key is chosen uniformly
from (it+1) - S. That is, for any mo, m 1 E .M,

Pr [m molsk < - S(it+1) -, c* = InvalidEnsk(m)]

~ Pr[m = m 1 |sk + q(it+1) -S,c* = InvalidEncek(m)

Computational Indistinguishability of Valid/Invalid Ciphertexts Second,
we require valid and invalid ciphertexts are computationally indistinguishable in the
following sense. For any fixed (distinct) (i), ... , 0(it+1), we consider the following
game between a challenger and an attacker A:

Gamehp: The challenger starts by sampling (ski,pki),..., (ska,pk,) as above,
and gives the attacker the public parameters and pki,...,pks. The attacker may
adaptively choose distinct rows 0(ii), ... ,(it+1) in <D in any order it likes. (For
convenience, we let $(it+1) always denote the vector that will be encrypted under,
but we note that this may be chosen before some of the other 0(i)'s.) Upon setting an
q(ij) for j= # t + 1, the attacker receives q(ij) -S. When it sets 0(it+i), it also chooses
a message m. At this point, the challenger flips a coin ,3 E {0, 1}, and encrypts m to
the public key corresponding to q(it+1) S as follows. We let pkch denote the public
key corresponding to (it+1) - S. If 3 = 0, it calls Encrypt with m, pkch. If 3 1,
it calls InvalidEncrypt with m, 4(it+i) S. It gives the resulting ciphertext to the
attacker, who produces a guess 0' for 3.

We denote the advantage of the attacker by Adv, = P[O = 0'] - . We require

that AdVo' be negligible for all PPT attackers A.

Theorem 8. If a PKE scheme PKE is a linear hash proof system with respect to
identity map # (that is, if it satisfies uniform decryption of invalid ciphertexts and
computational indistinguishability of valid and invalid ciphertexts), then it satisfies
LRKA-security.

Proof. We first change from the real security game defined in Section 2.6.1 (Figure
2-3) to a new game LRKA' in which the challenger calls the invalid encryption al-
gorithm to form an invalid ciphertext. We argue that if the adversary's advantage
changes by a non-negligible amount, this violates the computational indistinguisha-
bility of valid/invalid ciphertexts. To see this, we consider a PPT adversary A whose
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advantage changes non-negligibly. We will construct a PPT adversary A' against
Gamehp. The challenger for Gameh, gives A' the public parameters and pki, . . . , pkn,
which A' forwards to A. When A requests a secret key for an identity corresponding
to q(ij), A' can forward q(ij) to its challenger and obtain the corresponding secret
key. When A declares m, m, and some ID* corresponding to q(it+i), A' chooses a
random bit b E {0, 1} and sends Mb, 0(it+1) to its challenger. It receives a ciphertext
encrypting Mb, which it forwards to A. We note here that the t + 1 distinct identities
chosen by A correspond to distinct rows of <D. If the challenger for A' is calling the
regular encryption algorithm, then A' has properly simulated the real security game
for A. If it is calling the invalid encryption algorithm, then A' has properly simulated
the new game, LRKA'. Hence, if A has a non-negligible change in advantage, A' can
leverage this to obtain a non-negligible advantage in Gamehp.

In LRKA', we argue that information-theoretically, the attacker's advantage must
be negligible. We observe that in our definition of the linear hash proof property, the
subset S of Rnxd is precisely the subset of possible MSK's that are consistent with
the public parameters and requested secret keys that the attacker receives in the
game, and each of these is equally likely. Since the invalid ciphertext decrypts to an
essentially random message over this set (endowed with the uniform distribution), the
attacker cannot have a non-negligible advantage in distinguishing the message. l

2.6.5 QR-based Construction

We now present a PKE scheme with linear key homomorphism and a compatible
identity mapping # such that this is a linear hash proof system with respect to #
under the quadratic residuosity assumption.

Quadratic Residuosity Assumption We formally state the QR assumption. We
let A denote the security parameter. We let N = pq where p, q are random A-bit
primes. We require p, q = 3 (mod 4), i.e. N is a Blum integer. We let JN denote
the elements of Z* with Jacobi symbol equal to 1, and we let QRN denote the set
of quadratic residues modulo N. Both of these are multiplicative subgroups of Z*,
with orders 'N) and '(N) respectively.1 We note that '(N) is odd, and that -1 is an2 4 4
element of JN, but is not a square modulo N. As a consequence, JN is isomorphic to
{ +1, -1} x QRN. We let u denote an element of QRN chosen uniformly at random,
and h denote an element of IN chosen uniformly at random. For any algorithm A,
we define the advantage of A against the QR problem to be:

AdvN Pr [A(N,'u) = 1] - Pr [A(N, h) = 1]|.

We further restrict our choice of N to values such that QRN is cyclic. We note
that this is satisfied when p, q are strong primes, meaning p = 2p' + 1, q = 2q' + 1,
where p, q, p', q' are all distinct odd primes. This restriction was previously imposed

'Note that here p denotes Euler's totient function, whereas we will use # for the identity-mapping
function.

46



in [281, where they note that this restricted version implies the usual formulation of
the quadratic residuosity assumption if one additionally assumes that strong primes
are sufficiently dense. We say that the QR assumption holds if for all PPT A, AdvA
is negligible in A.

Furthermore, we note that this definition is equivalent to one in which A receives
a random element h of JN\QRN instead Of JN-

QR-based PKE Construction We define the message space to be {-1, 1}. The
public parameters of the scheme are a Blum integer N = pq, where primes p, q =
3 mod 4 and QRN is cyclic, and an element g that is a random quadratic residue
modulo N. Our public keys will be elements of ZN, while our secret keys are elements
of the ring R : Z. We define the subset R' to be [p(N)]. We will later provide bounds
for appropriate settings of p(N).

" Gen(1A): The generation algorithm chooses an element sk uniformly at random
in [p(N)]. This is the secret key. It then calculates the public key as pk = gsk.

" Encpk(m): The encryption algorithm chooses an odd r E [N 2 ] uniformly at
random, and calculates Enc(m) = (g, m -pkr).

" Decok(cl, c2 ): The decryption algorithm computes m c2 - (cak)1.

We additionally define the invalid encryption algorithm:

e InvalidEncsk(m): The invalid encryption algorithm chooses a random h E JN\QRN
(i.e. a random non-square). It produces the invalid ciphertext as (h, m - hsk).

Key Homomorphism Considering N, g as global parameters and only pk = gk
as the public key, we have homomorphism over keys through multiplication and ex-
ponentiation in G for public keys and arithmetic over the integers for secret keys.

For secret keys ski, sk 2 E Z and integers a, b E Z, we can form the secret key
sk3 := ask, + bsk 2 and corresponding public key pk3 = pka -pk' in G.

Compatible Mapping and Resulting IBE Construction Our compatible map
# is obtained from Lemma 6 (Section 2.6.2). We may assume that our identities are
hashed to {0, I}k for some k using a collision-resistant hash function, so they are in
the domain of #. The image of each identity under # is a vector with 0,1 entries
of length n = k(t + 1), where t is our collusion parameter. For every t + 1 distinct
elements of {0, I}k, their images under $ are linearly independent (over Z2 as well as
Q).

A formal description of our construction follows. This is an instance of the general
construction in Section 2.6.3, but we state it explicitly here for the reader's conve-
nience. We assume that messages to be encrypted are elements of {-1, +1}, and
identities are elements of {0, I}k. For each identity ID, we let IDT denote the row
vector of length n over {0, 1} obtained by our mapping from {0, I}k to binary vectors
of length n.
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IBEGen The setup algorithm chooses a Blum integer N such that QRN is cyclic and
a random element g E QRN- It then generates n key pairs of the PKE
((pki, ski), (pk2 , sk 2 ), ...(pkn, skn)) using the common g, and publishes the public keys
(along with N, g) as the public parameters. The master secret key consists of the
corresponding secret keys, ski,.. . , skn. These form an n x 1 vector S with entries in
[p(N)] (the it" component of S is equal to ski for i = 1... n).

IBEExtract(ID) The key generation algorithm receives an ID E {0, I}k. By Lemma
6 (Section 2.6.2), we then have a mapping # that takes this ID to a vector (idi, id2 , ...idn),
such that the vectors corresponding to t + 1 different ID's are linearly independent.
The secret key for ID will be an element of Z, which is computed as a linear combina-
tion of the values ski,. . . , skn, with coefficients idi, ... , id respectively. We express

n

this as SKID := Z(sk- idi), where the sum is taken over Z. Since the mapping 0

provided in Section 2.6.2 produces vectors (idi, ... , ida) with 0,1 entries, the value of
SKID is at most p(N)n. Since n will be much less than p(N), this will require roughly
log p(N) bits to represent.

n

IBEEnc(ID, m, PP) We let PKID :=l(pkidi). Anyone can compute this using the

multiplicative key homomorphism and the published pki values. Since by the key
homomorphism (PKID, SKID) is still a valid keypair for the original PKE, encryption
and decryption can function as for the PKE. In other words, the encryptor runs the
encryption algorithm for the PKE scheme with PKID as the public key to produce
the ciphertext CT.

Note that for ciphertexts, we now have

EncPKlD (m) = M - ((PKID)r))

= gm. - (pkdr) = (gmf gidsk.r

(91 i=1 
i=(9

All arithmetic here takes place modulo N.
This can alternately be expressed as: EncPKD (M) = r, m - g(ID)TSr) where

S = (ski)nx 1 is a vector over Z containing the n PKE secret keys of the master secret
key.

IBEDec(CT, SKID) The decryption algorithm runs the decryption algorithm of the
PKE with SKID as the secret key.

2.6.6 Security of the IBE

We now prove security of IBE scheme up to t collusions. This will follow from Theorem
7 and the theorem below.
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Theorem 9. Under the QR assumption, the PKE construction in Section 2.6.5 is
a linear hash proof system with respect to 4 when p(N) is sufficiently large. When
log (N) = Q(n 2 log n), p(N) = N' for some constant f suffices.

We note that when p(N) = Ne, our secret keys are of size 0(log N) = 0(A). We
prove this theorem in two lemmas.

Lemma 10. Under the QR assumption, computational indistinguishability of valid
and invalid ciphertexts holds.

Proof. We suppose there exists a PPT adversary A with non-negligible advantage in
Gamehp. We will create a PPT algorithm B with non-negligible advantage against
the QR assumption. We simplify/abuse notation a bit by letting 01,... , Ot+ denote
the distinct rows of 4D that are chosen adaptively by A during the course of the game
(these were formerly called #(i 1), . . . 1))

B is given (N, h), where N is a Blum integer such that QRN is cyclic and h is
either a random element of IN\QRN or a random element of QRN. Crucially, B does
not know the factorization of N. 1 sets g to be a random element of QRN.

It chooses an n x 1 vector S = (ski), whose entries are chosen uniformly at random
from [p(N)]. For each i from 1 to n, the ith entry of S is denoted by ski. It computes
pki = gski mod N and gives the public parameters PP = (N, g, pki, . . . , pk") to A.
We note that B knows the MSK = S, so it can compute $1 - S,... , qt - S and give
these to A whenever A chooses the vectors #1,...,

At some point, A declares a message m and a vector qt+i corresponding to identity

ID*. B encrypts m using the following ciphertext: (h, m - h(ID*T)s

We consider two cases, depending on the distribution of h.

Case 1: h is random in QRN When h is a random square modulo N, we claim
that the ciphertext is properly distributed as a valid ciphertext. More precisely, we
claim that the distribution of h and the distribution of gr for a random odd r E [N 2]

are negligibly close. This follows from the fact that QRN is cyclic of order (N), and
the reduction of a randomly chosen odd r E [N 2 ] modulo -(N) will be distributed4
negligibly close to uniform.

Case 2: h is random in JN\QRN In this case, 13 has followed the specification of
the invalid encryption algorithm.

Thus, if A has a non-negligible advantage in distinguishing between valid and
invalid ciphertexts, then B can leverage A to obtain non-negligible advantage against
the QR assumption. L

Lemma 11. Uniform decryption of invalid ciphertexts holds when p(N) is sufficiently
large. When log(N) = Q(n 2 log n), p(N) = N' for some constant f suffices.

Proof. We choose S with uniformly random entries in [p(N)]. We then fix any t + 1
distinct rows of <D, denoted by O1,... , qt+i. We must argue that the value of Ot+1 ' S
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modulo 2 is negligibly close to uniform, conditioned on 01 -S, ,t -S and S modulo
(N) . To see why this is an equivalent statement of the uniform decryption of invalid

ciphertexts property for our construction, note that the decryption of an invalid
ciphertext is computed as follows. We let sk denote the secret key the ciphertext was
generated with, and sk* denote another secret key for the same public key used for
decryption: Dec(sk*, (h, mhsk)) = M(_-),k-k*, since sk - sk* mod yp(N)/4 in order
to both have the same public key. If we think of S as fixed and S as the set of vectors
with entries in [p(N)] that yield the same values of q1 - S,... , t - S and S modulo
W(N) #

4 , we can restate our goal as showing that the distribution of Ot+1 - S' mod 2 is
negligibly close to uniform, where S' is chosen uniformly at random from S.

We know by Lemma 6 that the vectors #1,... ,t+1 are linearly independent as
vectors over Z2. This implies that these vectors are linearly independent as vectors
over Q as well. We let KerQ( 1 ,... , #t) denote the (n -t)-dimensional kernel of these
vectors as a subspace of Qn.

Our strategy is to prove that this space contains a vector j with integer entries
that is not orthogonal to qt+1 modulo 2. Then, for every S' in S + W, 4' +
is also in S + W. Here we are using the notation from Section 2.4 where we defined
W. In this instance, S + W is the set of vectors yielding the same values as S for
01 -S, ... , t -S and S modulo (N. S is then the intersection of S+ W with the set
of vectors having all of their entries in [p(N)].

To complete the argument, we need to prove that for most elements of S' E S (all
but a negligible proportion), S'+N) ' will also be in S (i.e. have entries in [p(N)]).
This will follow from showing that there exists a 'with reasonably bounded entries,
and also that the set S contains mostly vectors whose entries stay a bit away from
the boundaries of the region [p(N)].

We will use the following lemmas.

Lemma 12. Let A be a t x n matrix of rank t over Q with entries in {0, 1}. Then
there exists a basis for the kernel of A consisting of vectors with integral entries all
bounded by niti.

Proof. This is an easy consequence of Theorem 2 in [71, which implies the existence
of a basis with entries all bounded in absolute value by Vdet(AAT). We note that
AAT is a t x t matrix with integral entries between 0 and n. Dividing each row by
n, we obtain a matrix with rational entries between 0 and 1, and can then apply
Hadamard's bound [55] to conclude that the determinant of this rational matrix has
absolute value at most t2. Thus, the determinant of AAT has absolute value at most
ntti. Applying Theorem 2 in [7], the lemma follows. LI

Lemma 13. We suppose that M is d x n matrix with integral entries all of absolute
value at most B and rank d over Q. Then there exists another d x n matrix M' with
integral entries of absolute value at most 2d-B that has the same rowspan as M over
Q and furthermore remains rank d when its entries are reduced modulo 2.

Proof. We provide the following algorithm for obtaining M' from M. This is a vari-
ant of Gaussian elimination, tailored to ensure linear independence modulo 2 while
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avoiding increasing the entries by too much. The main idea is as follows: we start
by dividing the first row of M by a power of 2 to ensure that it contains integer
entries with at least one of them being odd. We relabel coordinates (swap columns)
to move this entry to the top left corner of M. We then proceed to add the first row
to the later rows as necessary in order to obtain first column entries which are all
even except for the first. We then consider the second row and proceed iteratively.

However, because we sometimes need to divide a row by a power of 2, we design
our algorithm to "fix" the earlier entries in a row which were previously set to be even
and then become odd upon dividing. To ensure that this process both terminates
and does not end up increasing the entries by too much, we alternate between adding
and subtracting the higher rows. Our algorithm is formally stated below. We let xij
denote the current value of the i, j entry of our matrix as the algorithm runs. The
matrix is initialized to M.

Algorithm

For i = 1 to d:
Set z = (zI, z2, ...zi 1) to be a length-(i - 1) list of integers, all entries initialized

to -1.
While (row i contains all even entries)

Divide row i by a power of 2 to obtain integer entries, at least one odd.
For j = 1 to i - 1:

If xij is odd:
Add zj times row j to row i.
Set z1 = -z.

Row i now has an odd entry in some position > i. Swap columns so that this
entry is in column i.

For k = i + 1 to d:
If Xi is odd, add row i to row k.

end

We now establish the following properties of this algorithm.

Claim 1 Throughout the execution of the algorithm, for all i from 1 to d we have:

max jxjjj < 2- 1 B.

We prove this claim by induction on i. For i = 1, all the algorithm does is
potentially divide the first row by a power of two and swap columns. This will
maintain that entries have absolute value at most B. We now assume the claim for
< i - 1 and we show it holds for i.

We note that at the beginning of the while loop for row i, the contents of row i have
only been changed by adding in rows j for j < i. Since each row has been added at
most once and has entries of size at most 2j- 1B, the entries of row i up to the start of
the while loop for i are always bounded in absolute value by B+21 B+- - -+2'-2B+B =
2'-'B, as required.
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Now we consider the execution of the while loop for row i. If at the start of the
loop row i has an odd entry, then the loop will never run, and the bound therefore
holds (note that by construction the first i - 1 entries of row i will be even, so the
odd entry will be in column i or greater as needed).

Otherwise, consider row i after some number of iterations of the while loop. Define
w as the total power of 2 divided out of row i over all iterations up to this point (that
is, 2w is the product of all values divided out by the first line of the while loop so
far), 0 jk as the total power of 2 that had been divided out by the k-th time row
j was added or subtracted from row i, and kj as the total number of times row J
has been added or subtracted up to the current point. Since row i is divided by at
least 2 at the beginning of each iteration, and each of the rows 1 through (i - 1) is
added or subtracted from row i at most once per iteration of the loop, we know that
aYk < aj(k+1) for all k, and that 0ajk < w for all k. Furthermore, we can express
element xip (for arbitrary 3 E [1, n]) as

i-1 kj

x= Mi ±J: ( (-1)'2 i'xj3) /2w

j=1 (f=1

In this expression, mi 3 denote the original entries of M, and we have accounted for
all the changes that occur to row i both before the while loop for i and up to the
current point in this loop's execution. Note that Ekj (-1) 2il is an alternating sum
of strictly increasing values; thus it is bounded in absolute value by its last term.
Thus we have

f i-1

xI | |mi31| + 2 x"kj | I /2w
j=1
i-1

< | mi,3 + E 2|xjJ) /2W
j=1

< B+ 2w2j-1 B /2w

j=1

= B(1 + 2w(2-1 - 1))/2w

< 2" 'B

Claim 2 The algorithm terminates in a finite number of steps.
We suppose for contradiction that the algorithm does not terminate. This means

the while loop for some row i does not terminate. By Claim 1, the entries of row i
remain bounded throughout the process, so there are a finite number of states of row
i during the infinite while loop. Hence there must be a cycle of repeating states. We
let ri denote the state of row i at some point in this cycle. The algorithm proceeds
by adding/subtracting rows 1 through i - 1 (which are unchanging throughout this
loop) and dividing by powers of 2. If we do not need to divide by any powers of 2,
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then the while loop will terminate. Since we arrive back at ri, we must have that ri
is a rational linear combination of itself and the first i - 1 rows. The coefficient of ri
in this combination will be at most 1, and hence the rational combination of the first
i - 1 rows must be non-zero. This contradicts linear independence of the rows of M
over Q. (Note that we never encounter an ri with all zero entries because of linear
independence.)

Claim 1 and Claim 2 show that the algorithm correctly finds a basis modulo 2
with entries bounded by 2d-1B. We can undo the coordinate-relabeling performed
by the algorithm; since the other operations are simply linear combinations of rows,
the new matrix spans the same space as M. Thus, we have the desired M'. L]

Combining these two lemmas, we may conclude that there exists a basis for
Ker(Q(q 1,... , Ot) with integral entries all having absolute value at most C := 2-t-n2t4
that remains of rank n - t when reduced modulo 2. Now, if all of these basis vectors
are orthogonal to Ot+1 modulo 2, then these form a (n - t)-dimensional space that is

contained in the kernel of the (t + 1)-dimensional space generated by 01,. .. , Ot, Ot+i
in Z2 . This is a contradiction. Thus, at least one of the basis vectors is not orthogonal
to Ot+l modulo 2. Since it is orthogonal to 0,. . . , qt over Q and has integral entries
of absolute value at most C, this is our desired '.

Now, the set of vectors S can be described as the intersection of the set

<p(N)-
S + 4Kerz(o1, .. I - Ot)4

with the set of vectors with coordinates all in [p(N)], where Kerz( 1 , . . . , qt) denotes

the vectors in KerQ(01,..., qt) with integral entries. Since we have a bound C on the
size of entries an integer basis for the kernel, we can argue that if the coordinates of
S are sufficiently bounded away from 0 and p(N), then there will be many vectors in
5, negligibly few of which themselves have entries outside of (N) C, p(N) - ,()C).
Both this bound and the probability that S is indeed sufficiently bounded away from
0 and p(N) depend only on the relationship between n and p(N). We prove the
following lemma regarding these parameters:

Lemma 14. With p(N), n, , S, and S defined as above, when log N = Q (n2 log n),
we can set p(N) = N' for some constant f so that the fraction of S' E S such that
S' + '7) is not also in S is negligible with all but negligible probability over the
choice of S.

Proof. We first derive a lower bound on the number of elements of 5 that holds with
all but negligible probability. We let E denote a positive integer that we will set
later so that with all but negligible probability, all of the entries of S lie in the range
(E, p(N) - E). From now on, we will assume this bound on the entries of S.

We let K be our basis from Lemma 13 multiplied by cP7) (so all of these have

entries bounded in absolute value by I(C). We note that integral combinations

of elements in K will be contained in (N)Kerz(i,..., Ot), which is an (n - t)-

dimensional lattice in Z". We let 01,.. . , On-t denote vectors in K, and a1 ,.. . , an-t
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be integers. We consider
n-t

S + aj,

which is guaranteed to be in S whenever

n-t 4E
- p(N)C

We let D 4E . The number of a1 ,..., ant satisfying this condition is lower

bounded by the number of ordered (n - t)-tuples of non-negative integers that sum
to a value < D. This is calculated as (UnD+n-t) Hence, the number of elements of S is
at least:

D~ -)> D -. (2.3)
n-t - n- t

Now we provide an upper bound on the number of points in S which have a
coordinate in [0, 0N C] U [p(N) - NC]. We note that E will be chosen to ensure to

that E > C, so that S has no coordinates in this range. We fix a basis b1,. . ,

for Kerz(01, ... , t). Then every element of S can be expressed in the form:

(p(N) L-b
S+ 4 aib',

for coefficients ac E Z. We let B denote the n - t x n matrix formed by letting
bi,..., bnt be its rows.

We consider a fixed coordinate j E [n]. If the jth column of B is all zeros,
then it is impossible for the jt' coordinate of an element of S to be in the range
[0, PC]U[p(N)-OC], since the j"' coordinate of S is not in this range. Otherwise,
the J'th column of B is non-zero, and can be selected along with some other columns
with indices i, ... , in_t_ to form a full rank n - t x n - t submatrix. Thus, if we
fix values for the i1 ,..., iZn_ 1 and j coordinates, there is at most one set of values
of a1 , ... , an-t such that these coordinates appear for an element of S. To get an
element of S with jth coordinate in [0, N C] U [p(N) - *(p) C] and all remaining

coordinates in [p(N)], we have at most 2Cp(N)nt 1 ((p(N) possible settings

of these n - t coordinates. Hence, an upper bound on the number of points in S
which have a coordinate within '(N) C of the boundary of the region [p(N)] is:

4

n(2C)p(N) -t--i npe (2.4)
<p(N)

Combining (2.3) and (2.4) , we obtain the following upper bound on the fraction of
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elements of S that have at least one coordinate in the range [0, N C]U[p(N) -N C]:

n(2C)p(N)n-t14n-t-1(n - t)n-t

((N )-t-l Dn-t

Recalling that D = 4E and ignoring a constant, we can rewrite this as

- tnt(Nnt
np( N )Cn-t+1 (n - 0 n"-t p( N n"-t-1

En-t

Since C = 2-t1n2ti 2"0 we can loosely bound this as

2n2 n2n2 p(N)p(N)n-t-1(
En-t (2.5)

We now choose
E1:= 1(N) p(N)1-2(n'- t.

Then (2.5) becomes < 2n2
p( )

We must set p(N) so that this is negligible in the security parameter A. For this,
it suffices to set p(N) > 2'" clogn 1), for some constant c and some quantity neg(A)neg(A)'
that is negligible in A. We must also ensure that this yields a value of E for which
all of the entries of S will be at least E away from the boundary of [p(N)] with all
but negligible probability. By a union bound, the probability of this failing is upper
bounded by:

2nE 2np(N)n-I
p(N) p(N)2(-n-t)

For this to be negligible, it suffices to set p(N) > <p(N) 2 (( . We can
satisfy both requirements by defining a p(N) that is bigger than both constraints.
We observe that p(N) = N' for some constant f will suffice in the case that log N =
Q(n 2 log n).

Thus, ignoring negligible factors, we can consider S as partitioned into pairs of
the form S' and S'+ 'N .For each S', the values of Ot+l S' and t+l (S'+ - )

modulo 2 are different. Thus, the distribution of qt+1 S' mod 2 over S' C S is
sufficiently close to uniform. 0

2.7 Applications: Bounded CCA Security with Short
Ciphertexts

In this section, we revisit the generic transform by Boneh, Canetti, Halevi, and
Katz [10] in the context of BC-IBE, and use it to obtain constructions of bounded-
CCA2 secure encryption schemes with short ciphertexts from any semantically secure
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scheme with a secret-key to public-key homomorphism.

ONE-TIME SIGNATURES. Recall that a one-time signature scheme SS = (Gen, Sign, Verify)
consists of a parameter generator algorithm Gen, outputting a pair consisting of the
signing key sk and the verification key vk, and a signing algorithm Sign and verification
algorithm Verify such that for any message m, Sign returns a signature o = Sign (sk, m)
such that Verify(vk, a) = true with overwhelming probability for the associated veri-
fication key vk. We say that SS is strongly one-time secure if for all PPT adversaries
A, there exists a negligible function v such that

(sk, vk) <- Gen, (m, st) +$ A(vk),
P o- = Sign(sk, m), : (m, -) / (m', -') A Verify(vk, m', a') = true < v(k)

L(m', o-) 4- A(st, -)

where k is the corresponding (implicit) security parameter.

THE BCHK TRANSFORM. In the following, let IBE = (IBEGen, IBEExtract, IBEEnc, IBEDec)
be an IBE scheme and let SS = (Genss, Sign, Verify) be a strong signature scheme.
Boneh et al [101 presented the following construction of an encryption scheme PKE =

(Gen, Enc, Dec) from IBE:

Gen Enc(pk, m) Dec(sk, (vk, c, o-))

(pp, msk) + IBEGen (sk', vk') 4- Genss If Verify(vk, c, -) = f alse then
(s' ins-+IGns

pk pp c +$ IBEEnc(pp, vk', m) Else
sk +- sk $ Else
Return (pk,sk). o- 4- Sign (sk', c) skvk +- IBEExtract(sk, vk)

Return (vk', c, a). m +- IBEDec(sky,, c)
Return m

Chosen-ciphertext security of this construction was proven in [10, Theorem 1].
Their proof considers two cases: in order to defeat the CCA security of the above
construction, an adversary must either forge a signature for SS or defeat the selective
security of IBE. They thus provide reductions in two different security games: one
with a signature oracle (for the former case), and one with an IBE challenger (for the
latter).

Of note is that in their reduction for the IBE case, the reduction makes at most
one IBEExtract query for each decryption query it receives from the adversary, and no
other parameters change. Thus, their proof carries through exactly in the bounded-
collusion case, yielding:

Theorem 15. If IBE is t-selective-ibe-cpa-secure, and if SS is strongly one-time se-
cure, then PKE is t-CCA secure.

APPLICATIONS. Using previous results, we directly obtain bounded-CCA PKE con-
structions from DDH, QR, NTRU, and (standard) LWE using the constructions of
the previous sections. In particular, note that only standard LWE is required as we
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only need selective security to instantiate the above paradigm. Moreover, the result-
ing DDH construction is essentially equivalent to the one presented in [27], and our
construction thus provides an abstraction to obtain the same construction.

As an example, we give the t-CCA PKE based on the NTRU assumption that
comes from applying Theorem 15 to the BC-IBE of Section 2.5.2. (Here the param-
eters q, x, R* are defined as in that section.)

Gen Enc(pk, m) Dec(sk, (vk, c, a))

f,. -- , fn *X, (skss, vkss) * Genss If Verify(vk, c, a) = f alse
f, = 1 (mod 2), fi E R* h$,...,hae then

g 1 , .... ,gn X c +- Zk pk[i] - hi- E I
sk (fi, .. ., f ) +2e + m sk k l- H co(k) sk[]
pk +- (2g I/f , . . ., 2gn/f ) O -- Sign (skss, c) skv k - C ( msk 2)
Return (pk, sk). Return (vkss, c, a). I Return s

The ciphertext size of the CCA scheme generated by the BCHK transform is the
same as the ciphertext size of the IBE scheme (and hence of the NTRU encryption
scheme), plus a verification key and signature. Steinfeld et al. [711 show a (fully) CCA-
secure construction based on NTRU; their ciphertext contains k ciphertexts of the
underlying NTRUEncrypt algorithm (where k = 6(1) is a parameter that depends
on the hardness assumption used, but is at least 4), and additionally a verification
key, a signature, and a blinded message. Since the NTRUEncrypt ciphertexts are
polynomials in Rq, they will typically be much larger than the other values. Thus, we
obtain a constant-factor improvement in ciphertext size by moving to the bounded-
query model, in addition to the conceptual simplicity of the proof.

2.8 Open Problems

It remains to find additional constructions within this framework based on other as-
sumptions; in particular, the only known lattice-based constructions make use of the
combinatorial constructions rather than the linear hash proof construction (which
affords smaller public parameters). It would also be interesting to extend this frame-
work to accommodate stronger security requirements, such as CCA-security. Finally,
constructing a fully collusion-resistant IBE from the QR assumption in the standard
model remains a challenging open problem.

Separate from the question of constructions is the question of techniques. In these
BC-IBE constructions we use homomorphism over the keys to reduce the ciphertext
size; though many PKE keys are used in the system, the ciphertext in each BC-
IBE construction consists of a single PKE ciphertext. Additional applications of
homomorphism over the key space would be exciting developments.
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Chapter 3

Obfuscating Functional
Re-encryption, and its Connection to
Fully Homomorphic Encryption

3.1 Introduction

FULLY-HOMOMORPHIC ENCRYPTION. The discovery of fully-homomorphic encryp-

tion schemes (FHE) has been a key development in modern cryptography. FHE
schemes allow arbitrary computation on encrypted data without decrypting. The
notion was first proposed by Rivest, Adleman, and Dertouzos [651, but it took more
than three decades for the first schemes to be developed. Several FHE schemes have
now been developed, first under somewhat nonstandard lattice assumptions 143, 70],
then under hardness assumptions for approximate GCD [73, 25, 26], and finally under
various forms of the Learning With Errors assumption [18, 17, 15, 14, 46, 45, 48] or
other lattice-based assumptions [44].

At the same time, no general construction is known from smaller primitives, even

for the case of leveled FHE schemes. A d-leveled FHE scheme allows computation of
depth-d circuits on encrypted data, allowing its public key size to be a polynomial
function in d. In this paper, we address the question of finding a primitive which
allows a generic construction of FHE on top of a suitable encryption scheme, and
revisit existing works in terms of instantiations of this blueprint.

OBFUSCATING RE-ENCRYPTION. Our approach relies on the notion of obfuscated re-

encryption, which has been developed in parallel to FHE. While obfuscation of general
functions is impossible [5], there have been several positive results detailing function
families that can be obfuscated (e.g. [75, 34, 20], among many others). In particular,
there has been a line of research on obfuscation that is secure on average (that is, for
a random function from a family), rather than for any function in the family ([49, 11,
and others); this definition is particularly relevant to cryptographic applications that
use randomized functions. Hohenberger et al [58] show a method to obfuscate a re-
encryption functionality-that is, a functionality which allows for decryption under
one key and encryption under a second-such that the re-encryption procedure can be
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delegated to a third party who does not learn anything about the re-encrypted mes-
sages. Chandran et al 122] extended this work even further, and consider functional
re-encryption, in which the second encryption key is a function of the underlying mes-
sage, in the context of obfuscation of the function (and hiding the message). However,
such functionalities have generally only been defined for single-input functions.

MANY-TO-ONE FUNCTIONAL RE-ENCRYPTION. Our first contribution is to introduce
and define the notion of many-to-one functional re-encryption and its obfuscation.
More specifically, for a function f, this functionality allows an evaluator to take
multiple ciphertexts cl, .. ., cq encrypting messages m1 , ... , mT under the same key pk
for some public-key cryptosystem PKE, and computes an encryption of f(mi,.. , mq)
under a different key for some possibly different cryptosystem PKE'.

Clearly, this functionality is by itself uninteresting, as it can be trivially realized
by decrypting the input messages, computing the function, and encrypting the result.
However, this functionality becomes interesting if it can be obfuscated and hence
delegated to a user without revealing the corresponding secret key. For this reason, we
also define a notion of obfuscation for this functionality, which is substantially different
than the one proposed by previous works on re-encryption, despite its similar "average-
case" perspective: At a high level, our first definition states that for a random circuit
computing the re-encryption and for an observer who knows the public key of the
source scheme, the obfuscation of that circuit and the public key of the target scheme
are indistinguishable from the output of a simulator that only knows the public-key
of the source scheme. We also consider a stronger notion, where the simulator does
not simulate the public key of the target scheme, but obtains it externally. We show
that the latter definition is in fact implied by the definition from [58].

FHE FROM MANY-TO-ONE FUNCTIONAL RE-ENCRYPTION. As one application of
many-to-one functional encryption, our second contribution is to show a generic con-
struction of leveled FHE given a semantically-secure encryption scheme such that the
corresponding multi-input functional re-encryption functionalities for a complete set
of operations (e.g., for the NAND operation) can be obfuscated with respect to the
new notions introduced in this paper.

As an application, we show that Regev-style encryption [64] admits such obfus-
cated re-encryption for multiplication, which, combined with our main result and the
existing additive homomorphism of the encryption yields a level FHE scheme. This
scheme corresponds to the one recently proposed by Brakerski [141, for which we pro-
vide a more modular abstraction. We also reinterpret the technique of "bootstrapping"
([43] and followup work) as specific implementations of our generic construction.

3.2 Preliminaries

3.2.1 Public-Key Encryption and Semantic Security

We start by introducing our notation to describe public-key encryption schemes.
Specifically, a public-key encryption scheme is a triple of algorithms PKE = (Gen, Enc, Dec),
where:
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" the randomized algorithm Gen is the key generation algorithm, which takes as
input the security parameter 1', and outputs a public-key / secret-key pair
(pk, sk) 4- Gen(1k).

" Enc is the randomized encryption algorithm, and Dec is the deterministic de-
cryption algorithm.

We assume that PKE is correct if for all valid public-key / secret-key pairs (pk, sk), and
all messages m, the probability P [Dec(sk, Enc(pk, m)) m m] is negligible, where the
probability is taken over the random coins of the encryption algorithm Enc. Moreover,
we say that PKE is semantically secure if for all PPT distinguishers D and all messages
m, we have

P [(pk, sk) 4 Gen(1) : D(pk, Enc(pk, m))) = 1

- P [(pk, sk) 4- Gen(1) : D(pk, Enc(pk, 0))) = 1 < negl(n) .

3.2.2 Fully-Homomorphic Encryption

A fully homomorphic encryption (FHE) scheme is an encryption scheme which allows
for arbitrary computation on encrypted data. Namely, it consists of a tuple FH E =
(Gen, Enc, Dec, Eval) such that Gen outputs a triple of keys (pk, sk, evk), where evk is
the additional evaluation key. The correctness requirements for (Gen, Enc, Dec) are as
in traditional public-key encryption. Moreover, Eval is the evaluation algorithm and
is such that for every circuit f with q inputs, and messages min, ... I mq, we have

Dec(sk, Eval(evk, f, Enc(pk, mi),... , Enc(pk, inq))) = f(mi, -.. , nm) ,

where (pk, sk, evk) 4- Gen. Informally, we say that FHE is leveled (with d levels), if
it only evaluates circuits of depth d (in some well defined circuit model), and the
parameters are allowed to depend on d. Finally, we say that FH E is semantically
secure, if for all PPT distinguishers D and all messages m, we have

P [(pk, sk, evk) 4- Gen(1') : D(pk, evk, Enc(pk, m))) = 1i

- P [(pk, sk, evk) 4- Gen(1) : D(pk, evk, Enc(pk, 0))) = 11 < negl(n) .

FHE constructions in the literature include [43, 70, 73, 25, 18, 17, 44, 15, 14, 46,
26, 45, 481.

3.3 Many-to-one Functional Re-encryption and its
Obfuscation

In this section, we introduce the notion of many-to-one functional re-encryption, as
well as a new notion of obfuscation for this functionality which, while tailored at our

61



applications, exhibits natural connections to previous notions.

3.3.1 Many-to-one Functional Re-encryption

We start by defining circuits providing many-to-one functional re-encryption. In the
most general case, we are given two public-key encryption schemes PKE and PKE'
(where potentially, but not necessarily, PKE = PKE'). We are interested in families
of circuits Rf indexed by valid secret keys sk for PKE and valid public keys pk'sk,pk'

for PKE' which, given encryptions of messages m 1 ,...,mq under PKE, produce an
encryption of f(mi,...,mq) for PKE'. Of course, a canonical implementation of
such circuit simply decrypts c, ... , cq, and then re-encrypts f(ml, ... , mT) with fresh
randomness. However, we will not make any further assumptions on these circuits,
i.e., they may be randomized or not, and we require them to work in a more general
sense, where any q ciphertexts cl,... , cq decrypting to m 1,..., mq under sk will result
in a ciphertext decrypting to f(mi,... , mq).

Definition. Let PKE = (Gen, Enc, Dec) and PKE' = (Gen', Enc', Dec') be public-key
encryption schemes. Let M and M' be the message spaces of PKE and PKE', respec-
tively, and let f : M4 q M' be a function. A f-re-encryption functionality from PKE

to PKE' is a family of (possibly randomized) circuits RI = {R k ') indexed by

secret keys sk of PKE and public keys pk' of PKE' such that for all valid ciphertexts
c,...,cq for PKE,

Dec'(sk', R ,c,. cq)) = f (Ml, . .. m) ,

with overwhelming probability over the random choices of (pk, sk) 4- Gen, (pk', sk') 4
Gen', and Rff, where mi = Dec(sk, ci) for i = 1, . . , q.

Without loss of generality, it will be convenient to assume that the description of
the circuit Rf allows one to recover the value of sk and pk' efficiently.sk,pk'

Note that in the case where q =1 and f is the identity, this notion corresponds
to the traditional setting of re-encryption introduced by Hohenberger et al [58]. In
contrast, the more general setting of functional re-encryption introduced by Chandran
et al [22] is different, in that it considers multiple recipients with different keypairs,
and a function applied to an attribute associated with the ciphertext determines the
recipient of the encryption. In their setting, however, no transformation is applied to
the plaintext itself.

3.3.2 Obfuscation for Many-to-one Functional Re-encryption

We now define our new notion of secure obfuscation as specifically applied to the
many-to-one re-encryption regime, i.e., to a f-re-encryption functionality R from
a source scheme PKE to a target scheme PKE'. Following earlier work on obfusca-
tion [75, 34, 1, 58, 20], we want the obfuscated circuit to perform the same com-
putation as the original circuit. However, at the same time, we want to argue that
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an adversary does not learn any useful information from the obfuscated circuit be-
yond what it would learn by evaluating its functionality in purely black-box manner.
This latter requirement is defined using a simulation-based approach, in contrast to
indistinguishability-based obfuscation as in e.g. I1.

We note that for the case of one-argument functions, our notion will differ from
the one proposed by Chase et al [22], while still following the same average-case view-
point. Intuitively, our notion attempts to capture at the same time the fact that
the obfuscated re-encryption functionality does not reveal any information beyond
black-box access to the functionality and the fact that black-box access to the func-
tionality does not reveal any information about the messages being encrypted. Still,
our notion is connected to (and in many cases implied by) the notion defined in these
earlier work, as we explain below.

For now, more concretely, let Obf be a PPT algorithm whose input and output
are both circuits. Obf is a secure obfuscator for re-encryption circuit family RI if the
following definition is satisfied.

Definition (Re-encryption Obfuscation). We say that Obf securely obfuscates
the f-re-encryption functionality RI from PKE to PKE' if the following two properties
hold:

SCorrectness: For any C E RI, the statistical distance A(Obf (C) (x), C(x))
is negligible for all inputs x.

" Simulatability: There exists a PPT simulator S such that for all PPT distin-
guishers D and security parameter n,

P[(sk, pk) 4- Gen(1n), (pk', sk') 4- Gen'(1) : D(pk, pk', Obf(Rf ,k) -

-P[(sk, pk) 4- Gen(1) : D(pk, S(pk)) = 1]1 < negl(n)

where the probabilities are taken over the coins of Gen and S.

This notion is somewhat different than those found in the existing literature on
obfuscation; let us discuss this notion a little bit further. Generally, one defines
obfuscators as being secure whenever the resulting obfuscation does not help more in
computing the function implemented by the underlying circuit than black-box access
to the function itself. We note that the definition provides a very strong guarantee,
in that it says that an attacker, given pk, pk' and the obfuscation Obf(Rf ,) does
not learn anything beyond the public key pk of the source scheme. Note that the
obfuscation may be a randomized circuit itself, and that the correctness requirements
assumes honest evaluation of the circuit, i.e., using honestly generated random coins.

We stress that the simulator is required to simulate the public-key pk' together
with the obfuscation Obf(Rf,). We also discuss a stronger notion of obfuscation
where the simulator is restricted to use an externally generate public key pk' for the
target scheme.

Definition (Strong Re-encryption Obfuscation). We say that Obf strongly se-
curely obfuscates the f-re-encryption functionality R from PKE to PKE' if correct-
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ness as above holds, and additionally, the following stronger simulatability requirement
holds:

e Strong Simulatability: There exists a PPT simulator S such that for all PPT
distinguishers D and security parameter n,

p (pk, sk) A Gen(1'), D(pk, pk', Obf= 11
-(pk', sk') A Gen'(1) (kpk/))

_p (pk, sk) A Gen()' : D(pk, pk', S(pk, pk')) 1 <negl(n)
-(pk', sk') - Gen'(1")

where the probabilities are taken over the coins of Gen and S.

RELATION TO EARLIER DEFINITIONS. As mentioned above, previous works on re-
encryption [58, 221 considered a different notion of average-case obfuscation which ap-
pears at first incomparable to ours, in which the simulator must simulate Obf(Rfk ,pk),

given black-box access to Rf and knowing the public keys pk, pk'. Formally, when
translated to our setting of multi-input functional re-encryption, the requirement of
these earlier works is as follows:

e Virtual Black-boxness: There exists a PPT simulator S such that for all
PPT distinguishers D and security parameter n,

(pk, sk) AGen(1")' : DRsk,pk'(pk, pk', Obf(Rfk,)) 1[(pk', sk') A Gen'(1") ' J

_ [(pk, sk) A Gen(1I), : D skpk' (pk, pk', skk'(pk, pk'))= 1 < negl(n)
[(pk', sk') A Gen(1") kp'(kp)

where the probabilities are taken over the coins of Gen and S.

We will now prove that strong virtual black-boxness implies our strong obfusca-
tion notion above for natural re-encryption functionalities, hence making it a some-
what stronger notion. More concretely, we say that the f-re-encryption functionality
RI = {Rf ,} is simulatable if there exists a simulator S' such that for all PPT
distinguishers D, we have

P [(pk, sk) A Gen(1n), (pk', sk') A Gen'(1n) : D sk,pk' (pk, pk') = 11

-P [(pk, sk) A Gen(1), (pk', sk') A Gen'(1") : Ds'(pk,pk') (pk, pk') = 1 < negl(n)

For example, the canonical re-encryption functionality is simulatable by semantic
security, provided we can efficiently test if a ciphertext input to the functionality is
decryptable given pk only. Then, we can show the following:
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Lemma 16. Assume that the obfuscator satisfies the virtual black-boxness property
and the f -reencryption functionality R is private. Then, the obfuscator satisfies the
strong simulatability property.

Proof. As our new simulator S for the strong simulatability property, we use the sim-
ulator S for virtual black-boxness, taking pk and pk' as inputs, and use S' guaranteed
to exist by simulatability of the functionality 1V to answer S's queries, i.e., for short,
5(-, -) = Ss'(., .). Then, if there exists an attacker D violating strong obfuscabil-
ity, distinguishing with non-negligible advantage E, then D also violates the virtual
black-boxness property (without making oracle queries) with distinguishing advan-
tage E - negl(n). This is because by the simulatability of RI, the probabilities that D
outputs one when interacting with either of (pk, pk', S(pk, pk')) = (pk, pk', Ss'(pk, pk'))

and (pk, pk', sk,pk(pk, pk'))) are negligibly close.

3.4 Fully Homomorphic Encryption from Many-to-
one Functional Re-encryption

In this section, we connect the notion of obfuscated many-to-one functional re-encryption
with FHE, by presenting a generic construction from the former to the latter. In par-
ticular, we assume the possibility of obfuscating functional-re-encryption for specific
families of functions, which we will discuss first.

3.4.1 Universal Operations and Circuits

We define the notion of an (unobfuscated) re-encryption circuit that applies a univer-
sal operation to its inputs. In particular, for a message space M ={Mn}N (e.g.,
M = {0, 1}), let F = {F} be a universal class of functions, i.e., such that F' is small
enough (i.e., polynomial in n, though usually constant) and such that every function
M4, q Mn can be computed by circuits having gates implementing functions from
Fn. For example, we could have M {0, 1} for all n E N, and Fn simply contains
the NAND function. Similarly, if M = Fq for some prime power q depending on n,
then F could consists of addition and multiplication in Fq.

As usual, the gates of the circuit with F-gates can be divided into layers: any
gate whose inputs consist only of input bits to the entire circuit is defined to be in
layer 0, and any gate whose input consists only of outputs of layer-i gates is in layer
i + 1. Without loss of generality, we can consider circuits where each layer-i gate only
outputs to layer i + 1.

3.4.2 Main Construction

For i E {0, 1,. .. , d}, let PKE = (Geni, Enci, Deci) be public-key encryption schemes
(later to be assumed semantically secure) with common message space M, and let F
be a universal family of functions for M. Also, for all f E F and i E {0, 1, ... , d- 1},
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let R = {, } be the a f-re-encryption functionality from PKEi to PKE2 i+.

Moreover, assume we have an obfuscator Obff for Rf.
We construct a d-leveled FHE scheme FHE = (Gen, Enc, Dec, Eval) as follows:

* Gen(I"): Run Gen(') to generate (pki, ski) <$- Gen(') for all i = 0,1, . .., d.
Let the public key pk = (pkO,...pkd), and let the evaluation key
evk = ({Obff(Rf ),...Obf _1 (Rf{ Bed). The secret key is

sk = (sko, ...skd).

* Encpk(m): Return c = Enc 4 (m).

* Decsk(c): Run DecSkd(c). (For depths i less than d, other ski may be
used.)

* Evalevk(B, c, ... ,cq), where B is a circuit consisting of F gates of
depth at most d and with q inputs: Start with ci,. . ., cq as val-
ues on the q input wires, and for each r-ary gate f with inputs at

layer i = 0, 1,..., d - with value c',... C', on the input layers, run
Obff(Rs pk+) on inputs c', ... ., c', and assign the resulting value c"
to the output wire.

Remark. In many situations, the encryption schemes PKEi may present some par-
tial homomorphism properties, i.e., it may allow for computing some function f E F

(e.g., addition in Fq) without resorting to re-encryption. In these situations, the
obvious efficiency improvements can be made for the scheme, avoiding the use of
re-encryption to compute f gates. We dispense with a formal specification of the
construction in this case.

3.4.3 Security

We will prove the following theorems, which are the main result of this section.

Theorem 17 (Security of the Main Construction). Assume that PKEO is se-
mantically secure, and that for all i E {0,... , d - 1} and f E F, the obfuscators Obff
strongly securely obfuscate the f re-encryption functionality Rif. Then the Main Con-
struction above is a semantically-secure d-leveled FHE scheme.

The following result shows that if F = {f}, i.e., only one function is contained,
then we can instead use the weaker notion of (non-strong) obfuscation.1

Theorem 18 (Security of the Main Construction - Single Function Case).
Assume that PKEO is semantically secure, and that for all i E {0, ... , d - 1}, the

obfuscator Obff securely obfuscates the f re-encryption functionality Rf. Then the
Main Construction above is a semantically-secure d-leveled FHE scheme.

1There are multiple reasons why F may only contain one function: EIther f is the NAND function
or the underlying scheme already provides some level of homomorphism (e.g. additions).
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For both theorems, note that correctness is obvious by the definition of the re-
encryption functionality and the correctness properties of the obfuscators. We are
going to focus on proving the second theorem, as the proof is in fact more complicated
than in the first case.

Therefore, as the core of our proof, we wish to show that the above construction
achieves semantic security. Specifically, we show that for all PPT D,

P[(sk, pk, evk) +- Gen(1') : D(Encpk(m), pk, evk) = 1
-P[(sk, pk, evk) +- Gen(1") : D(Encpk(0), pk, evk) = 1]1 < negl(n)

where the probability is taken over the random coins of Gen and of the encryptions.

To this end, we first prove a useful lemma to show that we can securely chain
together obfuscators to perform multiple operations on an underlying message.

Lemma 19. For all m E M, there exists PPT simulator S* such that

IP[(pk, evk, sk) 4- Gen(1) : D(Encpk (m), pk, evk) = 1]

- P[(sko, pko) $ Gen(')(1) : D(Enc 4 (m), pkO, S*(pko)) = 1]1 < negl(n)

where the probabilities are taken over the coins of Gen, Gen(0 ), the encryptions, and
the simulator S*.

Proof. The real distribution (Encpk(m), pk, evk) can be rewritten explicitly as

(Enc0 (m), pkO, Obf(R pklIObf{(R Pk), pk 2,..., Obf_1 (R Ulpkd), pkd)

We now use a hybrid argument to show that this distribution is computationally
indistinguishable from the simulated distribution

(Enc 4 (m), pkO, S*(pko))

for a simulator S* which is given below.
To do this, we construct a series of distributions, and argue that a polynomial-

time distinguisher cannot notice a difference at each step, except with negligible
probability.

Distribution 0 The distinguisher is given the "real-world view"

(Encpko(m), pkO, Obff(Rf ), pkI, Obf{(Rf;,Pk2), pk2 , ...Obfd(R$p ), pk)

Distribution 1 Let Sd-i be the simulator guaranteed by the security of Obf_
The distinguisher is given

(Encpko (m), pk, Obf b(R(') p2 ... Obf _f(Rfd _1) pk -, Sd_1(pkd_))0sko pkl P'i b(skl,pk2),p 2 d- skd-2,pkd- d d-1
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That is, the only change from Distribution 0 is that (Obf_ 1 (R d-1), pkd) is re-
placed by Sd_1(pkl ).

By definition, we know that (pkd_, Obfl(R2 d), pkd) is computationally in-
distinguishable from (pkd_1, Sd_1(pkd1)). The only remaining element of these distri-

butions that depends on the values (skdl, pkd_1) is Obff'd 2 (Rfdk_2 k). Note that

this value only depends on pkdl and not skd_1. Thus, since we are already giving
pkd_1 in the clear, an adversary gains no additional information about skd_1 by seeing

Obf- 2 (Rfj k_2). The other elements of the distribution are independent of the
keys at index d - 1 and d, so we know that the Distribution 0 is computationally
indistinguishable from Distribution 1.

Distribution 2 Again, let Sd_1 be the simulator guaranteed by the security of
Obff_1, and let Sd_2 be the simulator guaranteed by the security of Obf.-2 Define

Sd-2 as a function that applies S-2 to its input to get a pair, then applies Sd-1 to the
second element of that pair to get another pair, and outputs the 4-tuple that consists
of both pairs. The distinguisher is given

(EncpkO(m), pkO, Obff (Rf ), pki, Obf{(R' pk1), pk 2 , ..

pk_ 3 , Obff_ 3(Rfdk- ), pk_ 2 , Sd-2(pk _2))

This step is different from the previous step since the "pkd-l" used to generate the

last two elements is now itself simulated instead of being output by Gen(d- 1) directly.
However, if an adversary could distinguish Distribution 2 from Distribution 1, he could
use S' to break break the security of the obfuscator itself (by generating the encryption
and pko, ... , pkd_ 3 himself, using the challenge as pkd- 2, x, y, and running Sd-1(y) to
generate the final two elements). Thus, Distribution 2 must be computationally
indistinguishable from Distribution 1.

We continue replacing pairs with a simulator in this manner until we reach:

Distribution d In Distribution d, we have replaced d (obfuscated circuit, public
key) pairs with simulated values, yielding

(Encpko (m), pkO, S*(pko))

as desired. By hybrid argument, since each adjacent pair of distributions are com-

putationally indistinguishable, Distribution 0 and Distribution d are computationally
indistinguishable. E

We therefore know that the security of the obfuscation algorithm implies that
we can use many obfuscated re-encryption algorithms in succession without breaking

security. From here on, proving the semantic security of the main construction is
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straightforward. Indeed, assume an adversary has both pk and evk. We know that

(Encpk (n), In, Obf-(Rf'p ), pk1 , Obf{(Rfk'k), pk 2, ..., Obff1(Rf d- 1k), pkd)

-c (Encpk (M), pk0 , S*(pko))

for some S*. Furthermore, since S* is efficient, we know that the output of S*(pko)
can give no more information about sko to the adversary than pko itself can (since
the adversary could have simply run S* on his own). Since the original encryp-
tion scheme is semantically secure, we thus know that (Encpko (m), pko, S*(pko)) ~c
(Encpk0 (0), pko, S*(pko)) to any PPT adversary. Thus, such an adversary can only
have negligible advantage at distinguishing encryptions of m and of 0, and the FHE
is semantically secure.

3.5 Example Construction

In this section, we exercise our framework by taking the public-key system of Regev

[64], which is semantically secure under the Learning With Errors assumption, and
give a secure obfuscation algorithm for the multiplication-re-encryption functionality
from this scheme to itself. This scheme is naturally additively homomorphic; thus,
by the main theorem, this implies a (leveled) fully-homomorphic encryption scheme.
Note that the resulting construction is essentially that of [14]; however, we believe that
viewing the problem as one of obfuscated re-encryption provides a cleaner approach.

3.5.1 A Public-Key Encryption Scheme

The basic public-key encryption scheme is due to Regev 164]. It is parameterized by
n, M, q, X from the LWE assumption used. We will refer to this scheme as PKEnq,X.

* Gen(1k): Choose vector s' Z Z, matrix A 4- Zmn and vector e 4
xm . Compute b = A -s'+e. Output secret key s = (s', -1) and public
key (A, b).

e Encpk(m): Given m E {0, 1}, choose r 4 {0, 1}m and output
(A T r, (b, r) + [1j -m).

* Deck(c): Compute ((s, c) (mod q)). Output 0 if this value is closer to
0 and 1 if this value is closer to [1J (mod q).

This encryption scheme is semantically secure under the LWEq,x assumption 164].
Furthermore, it is clearly additively homomorphic over GF[2] (for appropriate choice
of x), since ((s, ci + c2 ) (mod q)) = [-J - (Mi + M 2 ) - (e, r1 + r 2 ) (mod q).

3.5.2 Re-encryption and Obfuscation

Re-encryption functionality. We consider the family of circuits R', the re-
encryption-with-multiplication circuits from PKEn,q,X to PKEn,q,X/. (The values n
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and q could change as well, if desired.) A circuit R'Pk E RX contains the secret
key sk = s of a scheme in PKEn,q,X and the public key pk' = (A', b') of a scheme
in PKEn,,,,X, hardwired inside. It takes as input two ciphertexts and applies Deck(-)
to each of them to obtain two bits. It multiplies these two bits (corresponding to a
logical and), runs Encpk/(.) on the result, and outputs the resulting ciphertext.

Construction of Obf. To construct our obfuscator, we first define transformations
BitDecomp and PowersOf2 (used previously in [17, 15, 14, 48]). If v = (v 1 , v 2 , ...ve) E

Z, then:

" BitDecompq(v) = (v1,o,v 1 ,1, ... v1, 1gq,V2o, ...Voigq]), where vij is the J-th least
significant bit of vi (that is, vi = EZ 2jvi,j).

* Powersqf2q(v) = (vi, 2v1 , 4v,, ...2[l q - Vv, V2,e2V2... 2F [q . V,).

In the following, we will generally omit the subscript q. Of note is that for any
uvEZq, (u, v) = (BitDecomp(u), PowersOf2(v)).

We will describe the transformation we want Obf to perform first, and then define
its circuit output. We first compute 9 = 2(BitDecomp(s) 0 BitDecomp(s)), a rationalq
vector of length ((n + 1) [lg q] )2. Here 0 denotes the tensor product.

We then use pk' = (A', b') to "encrypt"2 each element of PowersOf2(s). That is, we
choose R +-$ {0, 1 }((n+1)2 [lgq]3 )xm and compute D = [A'lb']T -R+q[01PowersOf2(s)]T,
where 0 is an m x n matrix of zeroes. (Note that D is an integer matrix.)

Define ~Z = 2(PowersOf2(ci) 0 Powersf2(c 2)). Obf will extract s and (A', b') fromq
its input. Then it constructs a randomized circuit that chooses a random R as defined
above and computes the corresponding D. The circuit takes in two input ciphertexts
ci and c 2 , computes D - BitDecomp([~]), and outputs this value. Obf outputs this
circuit as the obfuscation of RP.

2 As in [17], this is not true encryption, since the encrypted values are not bits; thus, they cannot
be decrypted properly. However, the operation is the same, and the intuition that these values are
"encrypted" may be useful.
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Correctness. The circuit Obf(R' ) calculates

D-BitDecomp([LE)

= [A'lb']T - R - BitDecomp([1) + q [0O1PowersOf2(g)]T - BitDecomp([1)2
= [A'Ibi]T - r' + (0n, (s, LE))2

= [A'lb']T- r' + (on, (BitDecomp(s) ® BitDecomp(s), -(PowersOf2(c 1) 9 PowersOf2(c 2)))) + e'
q

2
= [Afb']T r' + -(0n, (s, cI) - (s, c2 )) + e1

q

= [A'lb']T - r' + 2(0n, ((el, ri) + qmi)((e 2, r2 ) + iM 2 )) + e'
q 2 2

= [A'b'T - r' + q(0"n mim 2 )+ e' + e'

We wish to show that this is statistically close to the output of R', (which is a
fresh encryption of mim 2). There are two differences: the fact that r' is not a binary
vector, and the presence of an additional additive error term (e' + e'2)-

For the first difference, note that [A'lb'IT - r' E Zn, and that both A' and R
are chosen randomly. There are 2 m choices of r" E {o, 1}". Thus, for a value
m = Q(n lg q), with high probability there exists r" E {0, 1}m such that [A'jb']T -r' -
[A' Ib']IT - r''.

For the second difference, we note that both e' and e' are "small". Specifically, e'
comes from rounding error; each element is rounded by at most 1/2, so its magnitude
is bounded3 by |BitDecomp(s) 0 BitDecomp(s) I1 -I <; ((n + 1)([lg q] + 1))2/2. e'2 is
due to the presence of el and e 2 in the original ciphertexts; however, the presence of
the 2 coefficient means that this term is bounded by O(mE), where E is the originalq
error bound of X. Note that the magnitude of (el + e2 ) is independent of q aside from
a logarithmic factor; thus, we can choose the LWE parameters (in particular, q and

x') such that the output distributions of the obfuscated and unobfuscated circuits are
statistically close.

Simulatability. We show a simulator S that satisfies the strong simulatability
condition for this construction, as defined in section 3.2. Recall that Obf(R,"k,)
constructs a circuit that only depends on the values (sk, pk') through a matrix D,
defined as [A'jb']T R + 1[01PowersOf2(s)] T . The simulator S simply chooses R *-

{0, l}((n+1)2 [1gq13 )xm and returns a circuit that uses [A'lb']T . R in place of D.

Note that this is simply a Regev encryption of 0 under the key pk'; indistinguisha-
bility holds by the semantic security of the original Regev scheme.

3 Bounding this error is the reason to introduce BitDecomp and PowersOf2-this allows the vector
BitDecomp(s) 9 BitDecomp(s) to be binary.
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3.6 Bootstrapping

Many existing FHE schemes, starting with that of Gentry [43], operate on the princi-
ple of "bootstrapping". That is, they first define a "somewhat homomorphic" scheme,
which is capable of homomorphically evaluating its own decryption circuit plus a
single operation under a single key. They then provide a chain of encrypted keys
under this scheme, where the i-th decryption key is encrypted under the (i + 1)st key.
This construction allows for (leveled) fully-homomorphic evaluation: given a cipher-
text encrypted under the i-th key, the evaluator encrypts the ciphertext under the
(i + 1)st key and then homomorphically evaluates the decryption circuit on the new
ciphertext and the encrypted i-th key, followed by one operation. The net result is
an encryption under key i + 1 of the operation applied to the plaintext corresponding
to the input.

The general bootstrapping paradigm can be seen under our framework as provid-
ing an obfuscated re-encryption-with-operation functionality. Specifically, given the
keys pki+1 , ski, one can construct a circuit that encrypts its input under pki+1 , runs
the decryption operation homomorphically using a hardcoded value Encpkia (ski),
and then homomorphically performs one operation. This circuit performs the same
computation as decrypting, performing the operation, and encrypting (by the cor-
rectness of the FHE scheme), and does not leak any information about the encrypted
data (by the semantic security of the FHE scheme). Thus, at a high level it is an
obfuscated re-encryption-with-operation circuit under our definition. However, our
definition is more general, since we do not require starting with a "somewhat homo-
morphic" encryption scheme, but any semantically-secure encryption scheme with a
securely-obfuscatable f-re-encryption functionality.
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Chapter 4

Conclusion

Encryption has developed rapidly in the past few decades, in models, definitions, and
functionalities. From a theoretical perspective, it is of great importance to under-
stand the relationships between various cryptographic primitives in this more complex
world.

We take strides to better characterize identity-based encryption by describing
bounded-collusion IBE and providing multiple generic constructions from public-key
encryption. These constructions explore the idea of using homomorphisms over keys,
which reduces the ciphertext size. We additionally show a number of instantiations of
these methods based on a variety of well-known cryptographic hardness assumptions.

Additionally, in the realm of characterizing encryption schemes with additional
functionality, we give a generic construction of fully-homomorphic encryption starting
from a new definition of obfuscation. This provides a mathematical formalization for
an intuitive connection between these functionalities-that computing on encrypted
data is equivalent to decrypting, computing, and reencrypting, as long as the latter
processes are collectively obfuscated.

These advances provide not only generic and concrete constructions of crypto-
graphic primitives, but also new characterizations of these models of encryption.
These new ways of thinking about encryption provide a lens with which to analyze
the relations between these technologies as they continue to develop.
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