20.201 Lecture #18 10/31/05 Page 1

20.201 Mechanisms of Drug Action

Lecture #18: Pharmacokinetics

October 31, 2005

Review

- Dose-response
- Protein binding, drug transport(ers)
- Metabolism
- NOW: PHARMACOKINETICS

Circulatory System and Drug Distribution

20.201 Lecture #18 10/31/05 Page 3

Image removed due to copyright restrictions.

Figure by MIT OCW.

Portal Circulation and Enterohepatic Circulation

20.201 Lecture #18 10/31/05 Page 4

• Unique circulation of blood from gut to liver: all venous blood from stomach and intestines proceeds via portal vein directly to liver.

• Poses problem for development of orally-active drugs: can achieve nearly complete removal of drug by metabolism in one pass through the liver.

Figure by MIT OCW.

Figure by MIT OCW.

Figure by MIT OCW⁻

Distribution of Drugs

Process by which drug leaves site of absorption and enters tissues

(1) Blood flow: rate varies widely as function of tissue structure/function:

Organ/Tissue	Resting Blood Flow (ml/min)	MI/min/100 g
Liver	1350 (27%)	95
Muscle	750 (15%)	4
Kidney	1100 (22%)	360
Heart	200 (4%)	70
Skin	300 (6%)	3
Brain	700 (14%)	50
Bronchi	100 (2%)	25
Other	500 (10%)	

(2) Capillary structure:

- Most capillaries are "leaky" and do not impede diffusion of drugs
- blood-brain barrier formed by high level of tight junctions between cells
- BBB is impermeable to most water-soluble drugs

(3) Plasma protein binding: Albumin!

Blood Cells

20.201 Lecture #18 10/31/05 Page 6

Classes		Cell Type	Products	Function	Size	Number	Lifetime
Erythrocytes		Erythrocytes	Hemoglobin	O ₂ transport	7.5x2.5 um	5x10 ⁶ /ul (M)	120 days
						4x10 ⁶ /ul (F)	
Leukocytes		Neutrophils	Oxidative	Bacterial	15 um	5000/ul	6-7 hr blood
			chemicals	phagocy tosis			1-4 d tissues
	Granulocytes	Eosinophils	Inflamm.	Parasite defense,	15 um	300/ul	
			modulating	mod. of			
			chemicals	inflamm.			
		Basophils	Histamine,	Allergic	15 um	100/ul	
			heparin	reactions			
		Monocytes	Lysosomal	Phagocytosis of	20 um	500/ul	12-100 hr blood
			enzymes	viruses,			
				protozoa, dead			
				cells			
	Mononuclear Leukocytes	B-Lymphocyte	Antibodies (IgG,		6-18 um	2-3000/ul	
			IgM, IgE)				
		T-Lymphocyte	Cytokines		6-18 um		
		Killer Cells	Cytokines, etc.		6-18 um		
Platelets		Platelets	Blood clotting	Clot formation	2-4 um	3x10 ⁵ /ul	10 days
			elements				

Proteins in blood

Molecule	Mol. Wt.	G/dL	μM	Function
Albumin	66,500	4.5	670	Chemical transport, plasmæncotic pressure
Globulins (α, β, γ) immunoglobulins (IgG, etc.) lipoproteins transferrin ceruloplasmin gluco/mucoprotein:haptoglobin coagulation factors (~10) steroid-bindfing globulin thyroid hormone-binding globulin	150,000 79,000 150,000 53,000	1.5-2 0.2 0.3 0.05	130 17 20 0.8	Humoral Immunity Lipid and chemical transport Iron transport Copper transport Binds to hemoglobin Clot formation Transport of steroid hormones Transport of thyroxine
macroglobulins α 1-acid glycoprotein	42,000	0.4-1	9	Acute phase reactant, chemical transport
Fibrinogen Complementproteins(~12)	400,000	0.5	12	Clot formation Antibody-dependent responses and bacterial immunity

Pharmacokinetics and the Distribution of Chemicals in the Body

- Definition of Pharmacokinetics/Toxicokinetics: quantitative temporal analysis of the processes of absorption, distribution, metabolism and elimination of a chemical in the body
- Compare to pharmacodynamics: mechanism by which a chemical or agent exerts its effects (*e.g.*, binding to receptor, interfering with cell wall formation)
- Uses:
 - ~ Pharmacology: need to determine how often to administer a drug to maintain therapeutic concentration in the blood
 - ~ Toxicology: need to define the association between the concentration of a chemical in the blood or in a tissue and the progression of disease
- Approaches to pharmacokinetic analysis:
 - ~ Simple compartment models
 - ~ Physiologically-based pharmacokinetic models

20.201 Lecture #18 10/31/05 Page 9

Pharmacokinetics: Basic Concepts

- (1) Enteral -
 - oral
 - sublingual
 - rectal

- (2) Parenteral -
 - intravenous (iv)
 - intramuscular (im)
 - subcutaneous (sc)

(3) Other -

- inhalation
- topical
- transdermal

Pharmacokinetics: Absorption

Quantitative aspects of absorption are important for GI, pulmonary and topical administration.

- (1) Transport
 - passive
 - active
- (2) pH effects
- (3) Physical factors
 - blood flow:
 - surface area: lungs, 140 m²; GI tract, 300 m² (small intestine); skin, 1.5-2 m²
 - contact time

Apparent Volume of Distribution

Hypothetical volume into which the drug is dissolved or distributed. Limited physical interpretation but useful concept to understand water compartments

Total Body Water ~60% of body weight

Definition - V_d = (total amount of drug)/(plasma concentration)

• Lipid soluble drugs have a high apparent volume of distribution

Basic Kinetics

20.201 Lecture #18 10/31/05 Page 13

- Use the example of chemical kinetics to develop concepts of pharmacokinetics
- Basic rate law for a reaction in which molecule A is converted to molecule B:

$$A \bullet B \qquad -\frac{dA}{dt} = \frac{dB}{dt} = k \bullet [A]^n$$

• Zero-order kinetics: n = 0

~
$$-dA/dt = k \cdot [A]^n$$
 becomes $-dA/dt = k \cdot 1$

~ Rearrange and integrate rate equation: $\int -dA = k \bullet dt$ $[A]_t = -k \bullet t + C \qquad t = 0 \Longrightarrow C = [A]_0$ $[A]_t = -k \bullet t + [A]_0$

- ~ Rate of the reaction is independent of substrate concentration
- ~ Rate constant k has units of concentration per unit time
- ~ Concentration versus time plot is linear

- Processes subject to zero order kinetics:
 - ~ "Saturable" process: ligand molecules completely occupy available binding sites
 - ~ Metabolic enzymes
 - ~ Transport proteins
- Metabolic enzymes
 - ~ Michaelis-Menten rate equation considerations:

$$V = dP/dt = \frac{V_{max} \cdot [S]}{(K_m + [S])}$$

~ When [S] >> K_m , all substrate binding sites occupied and enzyme operates at V_{max}

$$V = dP/dt = \frac{V_{max} \cdot [S]}{[S]}$$

- Examples of substrate/enzyme pairs frequently subject to zero-order kinetics in humans
 - ~ Aspirin glycine conjugation and phenolic glucuronidation
 - ~ Ethanol alcohol/aldehyde dehydrogenase
 - ~ Phenytoin CYP2C9; K_m ~ 5 mg/L; therapeutic range 10-20 mg/L
- Transport proteins are just enzymes, the product of which is movement of the substrate
 - ~ Glucose transporter in renal tubule cells (exceed filtered load of 320 ng/min)
 - ~ Acid transporters that handle salicylates

 \sim Half-life - time to decrease concentration by one-half

$$\ln(\frac{[A]_t}{[A]_0}) = \ln(\frac{1}{2}) = -0.693 = -k \bullet t \qquad t_{1/2} = \frac{-0.693}{k}$$

First-Order Processes in the Body

- Definition of a first-order process: a reaction or activity, the rate of which depends on the concentration of reactants or the chemical of interest
- Most of the processes of absorption, distribution, metabolism, elimination are first-order
- Absorption: Rate of diffusion depends on the concentration gradient, i.e., the concentration of the "reactant."

$$-\frac{\mathrm{d}\mathbf{Q}}{\mathrm{d}t} = \mathbf{P} \bullet \mathbf{A} \bullet \Delta \mathbf{C}$$

• Metabolism and transport proteins: Enzyme kinetics generally first -order, except under conditions of substrate saturation:

$$\frac{dProduct}{dt} = V = \frac{V_{max} \cdot [S]}{K_m + [S]}$$

when Km>>[S], then
$$\frac{dProduct}{dt} = V = \frac{V_{max}}{K_m} \cdot [S] = k_{met} \cdot [S]$$

- · Build an understanding of PK'S with simple models
- · More complicated physiologically-based models combine many simple models
- · Generally always consider elimination from blood with simple models
- Contributions to "elimination"

Injection

- Single compartment with I.V. injection
 - ~ Considers the body as a single box
 - ~ Rapid injection and presumed rapid ("instantaneous") distribution
 - ~ Sample compartment (blood) and quantify drug as a function of time
 - ~ Zero-order strongly linear region of concentration vs time plot
 - ~ First-order linear plot of In(concentration) vs time
 - ~ The rate constant, k, is now the elimination rate constant, \mathbf{k}_{el}
 - ~ Half-life = $0.693/k_{el}$

Time

First-order absorption

Single compartment with absorption from gut

- ~ Factor in kinetics of absorption from gut with kinetics of elimination from blood
- ~ Distribution no longer instantaneous
- ~ Assume first-order absorption from gut (why?)

~ As drug absorbed from gut, e^{-kabst} goes to zero and $[D]_p$ dominated by k_{el}

• Two compartments with I.V. injection

Tissue

Blood

injection

- ~ Injected drug distributes in blood "instantaneously"
- ~ Drug moves out of blood into tissue compartment: first-order (why?)
- ~ As blood concentration falls, higher tissue concentration drives return to blood (why?)
- ~ Examine plasma concentration versus time plot in this model

- Correlate single- and multi-compartment models
 - ~ Graph of [D_{]tissue} versus time from two compartment model is identical to graph of single compartment model with 1° absorption and 1° elimination
 - ~ Thus, string together single compartment models for each entry and exit component
 - ~ Don't hassle with the complexity of \geq 2 compartment models

Clearance

- Important concept in toxico- and pharmacokinetics
- Clearance represents the rate of removal of a chemical from blood, tissue, compartment or entire body
- Physical interpretation: volume of blood/tissue from which the chemical is removed in a set time period. Example: CI = 100 ml/min means that the chemical is completely removed from 100 ml of blood every minute.
- Parameter is independent of the mechanism of removal (*i.e.*, excretion, equilibrium binding in tissue, metabolism, *etc.*)
- Definitions:
- $CL = k_{el} \cdot V_d$ where k_{el} is the first-order rate constant for elimination of a chemical from the blood or tissue; V_d is the apparent volume of distribution of the chemical.
 - $CL = \frac{Dose}{AUC_0^{\infty}}$ where AUC is the area under the blood/tissue concentration versus time curve over the time period t = 0 to t = ∞ .

$$CL_{organ} = Q\left(\frac{C_A - C_V}{C_A}\right) = Q \bullet E$$

where Q is blood flow to the organ, C_A is the arterial blood concentration, C_V is the venous blood concentration and E is the extraction ratio

Time

Bioavailability

(1) Defined as the percentage (fraction) of administered drug entering the blood.

- AUC: area under the plasma concentration versus time curve
- Ratio of oral (or other route) AUC to intravenous AUC

$$CL_{organ} = Q\left(\frac{C_A - C_V}{C_A}\right) = Q \bullet E$$

 $F_{max} = 1 - E_H$ where F_{max} is bioavailabilities and E_U is the

where F_{max} is the maximum oral bioavailability for a drug given by mouth, and E_{H} is the hepatic extraction ratio

- (2) Influences
 - First pass metabolism
 - solubility hydrophilic implies poor diffusion; hydrophobic implies insoluble in aqueous media
 - · chemical stability penicillin and acid pH
 - drug formulation salt form, particle size, "excipients" all affect rate of dissolution
- (3) Bioequivalence relative bioavailability of two drugs

How to administer a drug

- Need to determine how frequently to give a drug so that we maintain blood concentration in the therapeutic range and below the toxic range
- Define the concept of steady-state concentration of drug in blood (C_{ss}):
 - ~ balance between dose rate (how many times a day), rate of absorption from gut and rate of elimination blood
 - ~ eventually reach a state in which drug concentration fluctuates within a narrow window (akin to chemical kinetics with formation balancing degradation)
- Achieve Css at ~4 half-lives: quantify average $[D]_p$ at t > 4 x $t_{1/2}$

• Solve equation below for T

$$C_{ss} = \frac{F \bullet dose}{CL \bullet T}$$

$$C_{ss} = \text{steady-state concentration (mg/mL)}$$

$$F = \text{fractional bioavailability}$$

$$CL = \text{blood clearance (mL/min)}$$

$$T = \text{dosage interval (min)}$$
Dose in mg
$$[D]_{p}$$

$$[$$