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Lecture 8

Bootstrap

A good reference is Horowitz (2004)

Introduction

We have a sample z = {zi, i = 1, ..., n} ∼ F0 from a distribution F0. We have a statistic of interest, T (z)
whose distribution we want to compute (perhaps because we want to do some hypothesis tests). Let

P (T (z) ≤ t) = Gn(t, F0)

be the cdf of T (z) from a sample of size n. Gn is some complicated function of F0, which we do not know.
We want to approximate Gn. One way to do this would be to use the asymptotic distribution of Gn. Let’s
say Gn(t, F0) → G (t, F∞ 0).

Example 1. zi iid with Ez 2 2 2
i = µ, Ezi = σ . Suppose we know σ and we’re estimating the mean by

T (z) = 1 zn

∑

i. We know

√
n(T (z) − µ) ⇒ N(0, σ2)

so we can use the normal distribution to compute p-values for hypothesis testing and to compute confidence
intervals. For example, a 95% confidence interval would be [T (z)

√− nZ1−α/2, T (z)
√− n 1 α/2], where α

is the α quantile of the normal distribution N(0, σ2
Z − Z

).

The bootstrap is another approach to approximating G (t, F∞ 0).

Bootstrap

ˆInstead of using the asymptotic distribution to approximate Gn(·, F0), we use Gn(·, F0) ≈ Gn(·, Fn) where
F̂ (t) = 1

n

∑n
1i=1 (x ≤ t) is the empirical cdf. In practice, we simulate to compute Gn(· ˆ, Fn). A generaln

algorithm for the bootstrap with iid data is

{ } ˆ1. Generate bootstrap sample zb
∗ = z1

∗
b, ..., znb

∗ independently drawn from Fn for b = 1..B. By this, we
mean that zib

∗ are drawn independently with replacement from {zi}n
i=1.

2. Calculate Tb
∗ = T (zb

∗)

ˆ3. Gn(t, Fn) = 1 ∑B
1 ˆ

b=1 (Tb
∗ ≤ t). We will let Zq be the qth quantile of Gn(t, Fn)B

There are many modifications of the bootstrap. In particular, there are many different ways to sample from
F̂n.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B7GX7-4DXJCWR-1C&_user=501045&_coverDate=12%2F31%2F2001&_rdoc=5&_fmt=summary&_orig=browse&_srch=doc-info(%23toc%2320479%232001%23999949999%23565140%23FLP%23display%23Volume)&_cdi=20479&_sort=d&_docanchor=&_ct=13&_acct=C000022659&_version=1&_urlVersion=0&_userid=501045&md5=358ee086c9dd9c6699de00fc82385864


Consistency 2

Consistency

Theorem 2. Conditions sufficient for bootstrap consistency are:

ˆ1. limn Pn[ρ(F0, Fn) > ε] = 0, ∀ε > 0, where ρ() is some metric (the exact metric depends on the→∞

application)

2. G (τ, F ) is continuous in τ∞

3. ∀τ and Hn s.t. ρ(Hn, F ) → 0, we have Gn(τ, Hn) ⇒ G (τ, F )∞

| − | →pUnder these conditions the bootstrap is weakly consistent, i.e. supτ Gn(τ, Fn) Gn(τ, F0) 0.

Remark 3. The bootstrap can also be consistent under weaker conditions.

Remark 4. We never said that G (τ, F ) should be normal, but in the majority of applications it is.∞

Example 5. Consider the same setup as the previous example. Consider calculating two different statistics
from the bootstrap:

T1(z) =
√

n(z̄ − µ)

T2(z) =
√ z̄

n

(

− µ
√

s2(z)

)

The bootstrap analogs of these are

T1
∗
,b(z) =

√
n(z̄∗ − z̄)

T2
∗
,b(z) =

√ z̄
n

(

∗ − z̄
√

s2(z∗)

)

We can use these two statistics to compute two different confidence intervals.
Hall’s interval is: [z̄ −Z1 1

1−α/2
√ , z̄ +

n
Z1 1

α/2
√ ]

n

t-percentile: [z̄ −Z2
1−α/2

√

s2(z) , z̄ +n Z2
α/2

√

s2(z) ]n

where Z i
α are quantiles of Ti,b

∗ (z)

Definition 6. A statistic is (asymptotically) pivotal if its (asymptotic) distribution does not depend on any
nuisance parameters.

The t-statistic (T2(z) above) is pivotal, T1(z) is not.

Asymptotic Refinement

The bootstrap usually provides an asymptotic refinement for the distribution of pivotal statistics.
One usually proves this using an Edgeworth expansion (or its analog). In our case, under some technical

assumptions (moment and Cramer conditions) we have:

z̄
P (

− µ√
s(z)

1
n ≤ t) = Φ(t) + √ 1

h1(t, F0) +
n

1
h2(t, F0) + O(

n
)

n3/2

z̄∗
P (

− z̄√
s(z∗)

1
n ≤ t) = Φ(t) + √ 1ˆh1(t, Fn) +

n

1ˆh2(t, Fn) + O(
n

)
n3/2

Taking the difference between these two equations we have:

z̄
P (

− µ√
s(z)

z̄∗
n ≤ t) − P (

− z̄√
s(z∗)

1
n ≤ t) =√ 1ˆh

n

(

1(t, F0) − h1(t, Fn)
)

+ O(
1

) = O(
n

)
n



Bias Correction 3

ˆThe fact that h1() is uniformly continuous and Fn − F0 = O( 1√ ) tells us that 1
n

√ ˆh
n

(

1(t, F0) − h1(t, Fn)
)

=

O( 1 ). That is, when we bootstrap a pivotal statistic in our simple example, the accuracy of the approximationn
is O( 1 ), whereas the accuracy of the asymptotic approximation is O( 1

n
√ ). This gain is accuracy is called

n

asymptotic refinement.
Note that for this argument to work, we needed our statistic to be pivotal because otherwise, the first term

in the Edgeworth expansion would not be the same for the true distribution and the bootstrap distribution.
Consider:

P ((z̄ − µ)
√ 1

n ≤ t) =Φ(t/σ) + O(√ )
n

P ((z̄∗ − z̄)
√ 1

n ≤ t) =Φ(t/s(z)) + O(√ )
n

The difference is

P ((z̄ − µ)
√

n ≤ t) − P ((z̄∗ − z̄)
√ 1

n ≤ t) =Φ(t/σ) − Φ(t/s(z)) + O(√ )
n

1≈φ(x/σ)
1

(σ
σ2

− s(z)) + O(√ 1
) = O(

n
√ )

n

Bias Correction

Suppose, Ez = µ and we’re interested in a non-linear function of µ, say θ = g(µ). One approach would be
ˆ ˆto take an unbiased estimate of µ, say z̄ and plug it into g(), θ = g(z̄). θ is consistent, but it will not be

ˆunbiased unless g() is linear. The bias is Bias = Eθ − g(µ). We can estimate the bias using the bootstrap:

1. Generate bootstrap sample, zb
∗ = {zib

∗ }

2. Estimate θb
∗ = g(z̄b

∗)

3. Bias∗ = 1
B

∑B
b=1 θb

∗ − θ̂ ≈ Bias

˜ ˆ4. Use θ = θ − Bias∗ as your estimate

Remark 7. This procedure required a consistent estimator to begin with.

Remark 8. In general, if something does not work with traditional asymptotics, the bootstrap cannot fix
your problem. For example, if we have an inconsistent estimate, the bootstrap bias correction does not fix
anything. Also, if we have weak instruments, so that our asymptotic distribution is a poor approximation,
then the bootstrap also gives us a poor approximation.

Bootstrap and GMM

The constraints of our model should also be satisfied in our bootstrap replications of the model. For example,
with GMM our population moment condition,

Eh(zi, θ) = 0

should hold in our bootstrap replications,

ˆE∗h(zi
∗, θ) = 0

1 ˆh
n

∑

(zi, θ) = 0



Bootstrap Variants and OLS 4

If the model is overidentified, this condition won’t hold. To make it hold, we redefine

1
h̃(zi

∗, θ) = h(zi
∗, θ) − ˆ,

n

∑

h(zi θ)

˜and use h() to compute the bootstrap estimates, θb
∗.

More generally, we need to make sure that our null hypothesis holds in our bootstrap population.

Bootstrap Variants and OLS

Model:

yt = xtβ + et

ˆestimate by OLS β and êt. Now we want to bootstrap. There are at least three ways to sample:

• Take zi = {(xi, êi} (xi is always drawn with êi). This approach preserves any dependence there might
be between x and e. For example, if we have heteroskedasticity.

• If xt is independent of et, we can sample them independently. Draw x∗
t from {xt} and independently

draw e∗t from {êt}. This is likely to be more accurate than the first approach when we really have
independence.

• Parametric bootstrap: Draw x∗
t from {xt}, and independently draw e∗t from N(0, σ̂2)

Remark 9. In time series, all of these approaches might be inappropriate. If {xt, et} is auto-correlated, then
these approaches would not preserve the time dependence among errors. One way to proceed is to use the
block bootstrap, i.e. sample contiguous blocks of {xt, et} together.
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