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Lecture 20

Filtering

State-Space Models

The Kalman filter is widely used to compute state-space models. These often appear in macro, as well as
other areas of economics.

Example 1. For example, suppose, GDP growth, yt is given by

yt =µt + εt

µt =µt−1 + ηt

σ2 0
where µt is the slow moving component of GDP growth and εt is noise with (εt, ηt) ∼ iid N

(

0,

(

ε

0 σ2
η

))

Example 2. Markov Switching

yt =β0 + β1St + εt

St ∈{0, 1}

P (St = 1|St−1 = 0) =1 − q

P (St = 1|St−1 = 1) =p

If yt is GDP growth, we might think of St as representing whether or not we’re in a boom.

Some questions we might want to answer in these examples include:

1. Estimate parameters: e.g. in example 1 estimate σε and ση

2. Extract trend: e.g. in example 1 estimate µt

3. Forecasting

We can estimate the parameters by maximum likelihood. Often, it useful to write the joint likelihood of
(y1, y2, ..., yT ) as a product of conditional densities,

T

f(y1, ..., yT ; θ) = f(y1; θ)
∏

f(yt|yt−1, ..., y1; θ)
t=2

In a state space model, we have an unobserved state variable, αt, and measurements, yt. The state variables
are distributed according to a state equation,

F (αt|αt−1,Yt−1)

where Yt−1 are all measurable ({y1, ..., yt−1}) variables up to time t − 1. and the measurable variables have
a measurement equation,

f(yt|αt,Yt−1)

For the likelihood, we need f(yt|Yt−1). We can compute this by integrating out αt. The general steps are:
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1.

f(yt|Yt−1) =

∫

f(yt|αt,Yt−1)f(αt|Yt−1)dαt

2. Prediction equation

f(αt|Yt−1) =

∫

F (αt|αt−1,Yt−1)f(αt−1|Yt−1)dαt−1

3. Updating equation

f(yt|αt,Yt−1)f(αt|Yt−1)
f(αt|Yt) =

f(yt|Yt−1)

On a theoretical level, this process is clear and straightforward. We go from f(α1|Y0) to f(y1|Y0) to f(α1|Y1)
to f(α2|Y1) to finally get f(y2|y1), the conditional likelihood. However, in practice, it is usually difficult
to compute these integrals. There are two cases where the integration is straightforward. With normal
distributions, we can use Kalman filtering. With discrete distributions, the integrals are just sums. For
other situations, it is very difficult, one approach is called particle filtering.

Kalman Filtering

Suppose we have a state model:

αt = Tαt−1 + Rηt (1)

and a measurement:

yt = Zαt + Sξt (2)

(

η Q
with t

ξt

)

∼ iid N

(

0,

(

0
0 H

))

. Then,

F (αt|αt−1) ∼
′N(Tαt−1, RQR )

f(yt|αt,Yt−1) ∼N(Zα ′
t, SHS )

If α1 is normal, then since αt’s and yt’s are linear combinations of normal errors, the vector, (α1, ..., αT , y1, ..., yT )
is normally distributed. We will use the general fact that if

[

x1 Σ
x

]

∼ 1
N

2

([

µ 11

µ2

]

,

[

Σ 12

Σ21 Σ22

])

then
x1|x2 ∼ N ˜(µ,˜ Σ)

with µ̃ = µ1 + Σ12Σ
−1
22 (x2 − µ ˜

2) and Σ = Σ −
11 − Σ12Σ

1
22 Σ21

Using this result, we see that each of the distributions in the general steps above are normal. Since the
normal distribution is characterized by mean and variance, we need only compute them. Let us introduce
the following notation:

αt|Yt−1 ∼N(αt|t−1, Pt|t−1)

αt|Yt ∼N(αt|t, Pt|t)

yt|Yt−1 ∼N(yt|t−1, Ft)
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From equation (1), we see that

αt|t−1 =Tαt−1|t−1 (3)

P ′
t|t−1 =E ((αt − αt−1)(αt − αt−1) |Yt−1) = TP ′

t−1|t−1T + RQR′ (4)

These two equations can be used in step 2 above (prediction equation).
Now, looking at (2), we’ll get the equations that we need for step 1.

yt|t−1 =Zαt|t−1 (5)

Ft =E
(

(yt − yt|t−1)(yt − yt|t−1)
′|Yt−1

)

= ′ZPt|t−1Z + ′SHS (6)

Note that so far we have only used the linearity of of (1) and (2).
For the updating step 3, we will need to use normality.

(

αt

yt

)

|Yt−1 ∼ N

((

αt|t−1 Pt|t−1 ?
,

yt|t−1

) (

? Ft

))

where ? = Pt|t−1Z
′. We can use this and the general fact about normals to write the posteriority density of

αt given Yt.

αt|Yt = αt|(yt,Yt−1) ∼N(αt|t, Pt|t)

∼N(αt|t−1 + ′ −1Pt|t−1Z Ft ( 1yt − yt|t 1)
′ −

− , Pt|t−1 − Pt|t−1Z Ft ZPt|t−1) (7)

So, starting from some initial α1|0 and P1|0 we use (5) and (6) to get y1|0 and F1 (the conditional density
of y1). Then using (7), we can get α1|1 and P1|1. From there, we use (3) and (4) to get α2|1 and P2|1.
Repeating in this way, we can compute the entire likelihood (conditional on the initial conditions). We could
just go ahead and use this procedure for computing the likelihood and then estimate the parameters by MLE.
However, there are a few loose ends that we have not dealt with. There are unknown initial conditions that
we haven’t talked about. Also, our data is not iid, so the usual results about the consistency and efficiency
of MLE do not apply. We will talk about these issues next time.

Kalman Smoother

The Kalman filter uses data on the past and current observations, Yt, to predict αt. This is what we want
for computing the likelihood. However, you might want to estimate αt. For this, you want to use all the
data to predict αt. This is called the Kalman smoother. The idea is as follows: let

E(αt|YT ) = αt|T

We know that (αt, αt+1)|Yt is normal, so

E(αt|
−1αt+1,Yt) =αt|t + cov(αt, αt+1)P +1t

(α − α )+1| +1 t tt +1|t

=αt|t + Jt(αt+1 − αt+1|t)

where J ′ −1
t = Pt|tT P

t+1|t so then,

E(αt|αt+1,YT ) =αt|t + Jt(αt+1|T − αt+1|t)

where we used the fact that YT is richer than Yt. From this, we receive:

E(αt|YT ) =αt|t + Jt(αt+1|T − αt+1|t)

Starting from t = T and repeating in this way, we can compute αT |T , αT−1|T , ..., α1|T .
Things to remember: the Kalman filter and smoother are linear in data. The Kalman filter is a recursive

procedure running forward. After that, we can run the Kalman smoother backward.
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