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Simulated MM and Indirect Inference

Indirect Inference

Suppose we are interested in parameter β ∈ C with true value β0. We observe data {xt}T
t=1. We have a

model that we can simulate to generate {yj(β)}S
j=1. We don’t necessarily believe that our model is the true

DGP, but we do think our model can explain some features of the data. These features we want to explain
can be written as a function θ({xt}). Let

θ̂T =θ({xt})
θ̂β

s =θ({yj(β)})

We’ll assume that θ() is an extremum estimator.

θ̂T =θ({xt}) = arg maxQT (
θ

{xt}, θ)

θ̂β
s =θ({yj(β)}) = arg maxQS(

θ

{yj(β)}, θ)

For example, θ could be simple sample means or moments, or regression coefficients, or more generally
β θ̂ ˆparameters from some sort of auxillary model. We estimate by matching T to β

θS

ˆ ˆ= arg min − ˆ( β β
β θT θS)′W ˆ

T (θT
β

− θ̂S)

This estimator is discussed by Smith (1993) for the case where QT (·, θ) is a pseudo-loglikelihood. Gourierox,
Monfort, and Renault (1993) consider a more general setup. We will go through Smith’s setup. QT (·, θ) is
a pseudo-loglikelihood:

T

QT ({xt}, θ) =
∑

log f(xt, ..., xt−p; θ)
t=p

We call this a pseudo-loglikelihood because we can allow f to be misspecified, ie f need not be the ture
density of xt. Assume

1. xt and yt(β) ∀β are stationary and ergodic

2. ∃ a unique β d
0 such that (xt, ..., xt+p) = (ys(β0), ..., ys+p(β0)) so θ(xt) = θ(ys(β0)) = θ0

3. f is well-behaved (has several continuous, well-bounded derivatives)

4. argmax E log f(y (β), ..., y (β); θ) = θβ = h(β) and θβ
θ s s p is the unique maximizer for each β−

ˆUnder these assumptions, θβ
s → θβ ˆ= h(β) and θT → θ0 = h(β0)
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For the asymptotic distribution, we need some notation. Let:

Aβ(θ) =E∇2 log f({y(β)}, θ)

Bβ(θ) =Γβ
∞

0 (θ) +
∑

(Γβ( β
θ θk ) + Γ−k( ))

k=1

where Γβ(θ) = cov(∇ log f(y βk s( ), θ), log f(ys k(β), θ)). Assume a CLT:−

1√ Q
T
∇ s({y(β)}, θ) ⇒ N(0, Bβ(θ))

then

√
S ˆ(θβ

s − θβ) ⇒N(0, A−1Bβ βA−1
β )

√
T ˆ(θT − θ0) ⇒N(0, A(θ0)

−1B(θ0)A(θ0)
−1)

We get this sandwhich form for the variance because we have not assumed that the likelihood is correctly
specified. If the likelihood (f) is correctly specified, then the information equality would hold and A = B.
These results follow from the general theory of extremum estimators.

Extremum Estimators

Extremum estimators are very common in econometrics.

θ̂ = arg min QT ({xt}, θ)

Most estimators, such as least squares, GMM, and MLE, fit into this framework. Under some regularity
conditions (including Q is differentiable and ∇Q satisfies a CLT), if QT ({xt}, θ) →a.s. Q (θ) uniformly and∞

θ0 = arg min Q (θ)∞

θ̂ →pthen θ ˆ
0 and θ is asymptotically normal. As with GMM, we can show this by taking a Taylor expansion

of the first order condition:

ˆ0 =∇QT ({xT }, θ)
=∇Q ˆ

T ({xT }, θ0) + (θ − θ0)∇2QT ({xT }, θ0) + op

√ 1

T ˆ(θ − θ0) =
√ Q

T
∇ T ({xT }, θ0)

1 ,
T
∇2QT ({xT } θ0)

⇒N(0, A−1BA−1)

More Indirect Inference

ˆ ˆSo far, we have shown that θT and θβ
s are consistent and asymptotically normal. Now, we want to show that

β̂ is consistent and asymptotically normal. We need some additional assumptions:

1. hs(β) and h(β) are continuous and several times differentiable. Let J(β) = ∇h(β).

2. ∇ p
hs(β) → ∇h(β) uniformly in β

3. S = τT
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→pβ̂Then β and

√ 1→pT ˆ(β β) ⇒ N

(

0, (1 + )Σ(β0)
τ

)

where Σ(β0) = K−1J ′WΩ(θ 1
0)WJK− , Ω(θ0) = A(θ0)

−1B(θ0)A(θ0)
−1 and K(β0) = J(β0)

′WJ(β0).

Proof. As usual, this is just sketch and not fully rigorous. Consider the FOC for

β̂ ˆ ˆ ˆ= argmin( T − β β
θ θ )′WT (θT − θ̂S S)

β

ˆ= argmin(θT − hS(β))′W θ̂T ( T
β

− hS(β))

We have:

∂
0 = h ˆ

s(β)′W ˆ
t(θT h

∂β
− ˆ

s(β))

ˆ ˆTaking a Taylor expansion of hs(β) ≈ hs(β0) + ∇hs(β0)(β − β0), taking the limit, and multiplying by
√

T :

0 =J ′W
√

T ˆ(θT − hs(β0)) + J ′WJ
√

T ˆ(β − β0)

J ′WJ
√

T ˆ(β − β0) =J ′W
√

T ˆ(θT − hs(β0))

=J ′W ˆ(θT

√
− θ0 + θ0 − hs(β0))J

′WJ T ˆ(β − β0)

1⇒J ′W (N(0, Ω) + √ N(0, Ω))
τ

Also, as usual, the efficient choice of W = Ω−1 with a feasible estimate WT
∗ ˆ= Ω−1 ˆwhere Ω is formed

from some consistent estimate of θ0.

Test of Overidentifying Restrictions

If dim(θ) = n > dim(β) = k, then we can test the overidentifying restrictions with

1Zt =T
1 + 1 θ̂( T

τ

− h ˆ
s(βT ))′W ˆ

T (θT − h ˆ
s(βT ))

1
=T

1 + 1 θ̂( T − θ̂β
s )′W ˆ

T (θT

τ

− θ̂β
s )

⇒χ2
n−k

Example

Suppose we have a DSGE model where someone is maximizing something. For example

maxE0

∑

ωt c
−γ − 1

γ

s.t. ct + it = Aλtk
α
t

kt+1 = (1 − δ)kt + it

λ 2
t = ρλt−1 + εt εt ∼ N(0, σ )

This model has many parameters (ω, γ, A, α, δ, ρ, σ2) and would be very difficult to write down a likelihood
or moment functions. Moreover, we don’t really believe that this model is the true DGP and we don’t want
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to use it to explain all aspects of the data. Instead we just want the model to explain some feature of the
data, say the dynamics as captured by VAR coefficients. Also, although it is hard to write the likelihood
function for this model, it is fairly easy to simulate the model. The we can use indirect inference as follows:

1. Estimate (possibly misspecified) VAR from data

2. Given β, simulate model, estimate VAR from simulations, repeat until minimize objective function

Calibration

This was the method for evaluating models proposed by Kydland and Prescott. It has been very widely
used. The steps are

1. Ask a question: either an assessment of a theoretical implication of a policy or testing the ability of a
model to mimic features of actual data

2. Pick a class of models

3. Write down the equations

4. Your model should have implications to some questions with known answers (eg the labor share is
70%). You calibrate your parameters to match these answers. Kydland and Prescott describe this step
as follows:

Some economic questions have known answers, the model should give approximately correct
answers to them ... Data are used to calibrate the model economy ... to mimic the world as
closely as possible along a limited number of dimensions. Calibration is not an attempt to
assess a size of something; it’s not estimation ... The parameter values selected are not the
ones that provide the best fit in some statistical sense. (Kydland and Prescott)

5. Run an experiment to see if you model matches other aspects of the data.

This method was meant to get away from the way that statisticians put too much structure on the data.
People criticize this method as not being rigorous and giving difficult to communicate results. There is no
formal criteria for whether the model matches well in step 5. The judgement of good and bad fit is subjective.
Hansen and Heckman argued that calibration can be thought of an informal version of estimation, so we
might as well use the formal theory so that we have standard errors and formal testing. In fact when all of
our calibration is take from moments in the data, calibration is the same a just-identified simulated GMM. If
the calibration involve estimates taken from other studies, we can still use the simulated GMM framework,
but we need to take into account the standard errors of the parameters taken from other studies.
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