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Breaks and Cointegration

Breaks

Suppose yt = β′
txt−1 + εt, where βt =

{

β t ≤ t0
, xt is stationary, and E[εt|It] = 0. We want to test

β + γ t > t0
H0 : γ = 0. There is a nuisance parameter, t0, which is identified under the alternative, but not under the
null hypothesis. If we knew t0, we could just do an F-test.

t0
FT (

SSR1,T
) =

− (SSR1,t0 + SSRt0+1,T )

T
χ2 if t0 = [δT ]

(SSR1,t0 + SSRt0+1,T )/(T − k)
⇒ k

where SSRt,s is the sum of squared residuals from OLS using the sample from time t to time s, and k is the
number of restrictions (the dimension of γ). This test is valid when t0 is known.

When t0 is not known, we must use a different test. One test-statistic is the Quant statistic

t0
Q = sup FT (

[δT ]≤t0≤[(1−δ)T ]

) (1)
T

Andrews (1993) derived the distribution of this statistic. Other test statistics are the mean Wold :

1
MW =

T−τ

T − 2τ
t

∑ t0
FT (

0=r

) , τ = [δT ] (2)
T

and the Andrews-Ploberger (1994)

AP = ln

[

1
T−τ

T − 2τ
t

∑

exp
0=r

(

1 t0
FT (

2
)

T

)

]

(3)

ˆTo derive the limiting distribution of these statistics, we must look at the behavior of SSR. Let β be the
OLS estimate from the sample from t = 1, .., τ .

τ

SSR =
∑

(y − β̂′ 2
1,τ t xt−1)

t=1

τ

=
∑

ˆ ˆε2t − ˆ2(β − β)′
∑

xt−1εt + (β − β)′
∑

x ′
t−1xt−1(β

t=1

− β)

ˆThen, since (β − β)′ = (
∑τ

x x′ −
t=1 t−1 t−1)

1(
∑τ

t=1 xt−1εt), we have

τ τ τ τ

=
∑

ε2t
t

− (
=1

∑

xt−1εt)
′(

t=1

∑

xt−1x
′
t−1)

−1(
t=1

∑

xt−1εt)
t=1
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Applying a functional central limit theorem (for which we need some additional assumptions, e.g. sufficient
conditions would be that x and ε are independent and xt are iid with finite fourth moments), we have

1√
[δT ]

xt−1εt = ξT (δ) σΣ1/2
xx Wk( )

T

∑

t=1

⇒ ·

where W 2
k(·) is k-dimensional Brownian motion, and σ is the variance of εt. Also, a law of large numbers

implies 1
∑T p

t=1 x ′
t−1xt−1 → Σxx. If we make additional assumptions, then uniformly in τ , we’ll have:T

1
ΨT (δ) =

[Tδ]
∑

xt−1x
′ p

T t−1

t=1

→ δΣxx

Combining this, we have, for [δT ] = τ :

τ
1

SSR1,τ −
∑

ε2t =(
t=1

√
τ

T

∑

xt−1εt)
′ 1
(

t=1

τ

T

∑

xt−1x
′
t−1)

−1 1
(

t=1

√
τ

T

∑

xt−1εt)
t=1

=ξT (δ)′ΨT (δ)−1ξT (δ)

σ2

⇒ Wk(δ)′Wk(δ)
τ

Now, looking at the numerator of F , we have

T̃ (τ) =SSR1,T − (SSR1,t0 + SSRt0+1,T )

2

(

′ Wk(τ)′Wk(τ)⇒σ −Wk(1) Wk(1) +
(Wk(1)

+
− WK(τ))′(Wk(1) − Wk(τ))

τ 1 − τ

)

⇒σ2 (Wk(τ) − τWk(1))′(Wk(τ) − τWk(1))

τ(1 − τ)

Bk(τ) = Wk(τ) − Wk(1) is called a Brownian bridge. It is a linear transformation of a Brownian motion
that is required to be 0 at t = 0 and t = 1. The denominator of the F -statistic converges to σ2, thus

B
FT (τ) ⇒ k(τ)′Bk(τ)

τ(1 − τ)

Also,

B
Q ⇒ k(τ)′Bk(τ)

sup
δ≤τ≤1−δ τ(1 − τ)

We can simulate this distribution to find critical values. The test for H0 : break vs. Ha : no breaks can be
performed by calculating the Q statistic in sample and comparing it to the simulated critical values. We will
reject large values of Q. An alternative approach is bootstrapping the Q statistic.

Recursive Estimation

Let:

τ τ

β̃(τ/T ) =(
∑

xt−1x
′
t−1)

−1(
t=1

∑

xt−1yt)
t=1



Unit Root with a Break 3

˜ ˜One can calculate estimates of β recursively and look at their stability. If β changes a lot, it is a sign of a
break. Formally, we need to find the asymptotic distribution. Suppose H0 : no breaks is true and β is the
true coefficient. Then,

√ 2
σΣ

−1/
W (τ)˜ xx k

T (β(τ) − β) = Ψ (τ)−1
T ξT (τ) ⇒

τ

The problem is the nuisance parameters, β and Σxx. We can eliminate them from the asymptotic distribution
˜by estimating β by β(1) and looking at the associated t-statistic:

1
tt(τ) = σ̂−1

ε ( x
T

∑

t−1x
′
t−1)

1/2
√ W˜T (β(τ/T ) − β̃(1)) ⇒ k(τ)

W
τ

− k(1)

and as above, you can use test statistic supδ≤τ | W )tT (τ)| and critical values simulated from sup k(τ
τ Wτ − k(1).

There are many ways to test for breaks, and the way to derive the limiting distribution of test statistics is
by using the FCLT.

Unit Root with a Break

Consider a unit root process with possible break in trend. The model is y∗
t = yt + dt where yt is a random

walk and dt = c + γ1 ∗
t>t0 . How do we then test for a unit root? If the trend in misspecified (yt regressed

on const, y∗
t−1), then you are likely to accept a unit root, where there is not one. The intuition is that both

a break and a unit root lead to permanent changes in yt. Perron (1989) found that if you allow for breaks
during the Great Depression (1929) and during the oil shocks (1973), then you reject the null of unit root
in most macro series. Some people objected to this by arguing that it is not fair to treat the break dates as
known. If you test for unit roots without assuming the break dates are known, then you cannot reject the
null of unit root in most series.

Cointegration

Spurious Regression

Let xt and yt be two independent random walks,

yt = yt−1 + zt

xt = xt−1 + ut

where zt and ut are iid and independent of each other. Suppose we run OLS of yt on xt.

yt = βxt + et

The true value of β is 0. Then,

1

β̂ =
yT 2

∑

txt

1 xT 2

∑

2
t

let

1
ξT (τ) = √ x

T

(

[τT ]

y[τT ]

)

⇒ W (τ)

where W (τ) is a 2-dimensional Brownian motion. Also,

1 ∑
ξT (t/T )ξT (t/T )′

T
⇒
∫

W (τ)W (τ)′dτ
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Thus,

1

β̂ =
yT 2

∑

txt

1

W

xT 2

∑

2
t

⇒
∫

1W2dt

ˆThat is, β is not consistent. You won’t receive zero even in

∫

W 2
2 dt

p
very large samples. Moreover, R2 → 1. The

important point here is that with non-stationary regressors, we get non-standard limit distributions.

Usual Cointegration

Let us have two random walks, xt and yt, such that a linear combination of them is stationary. This situation
is called cointegration.

yt =βxt + et

xt =xt−1 + ut

ˆwith cov(et, ut) = φ. Despite this correlation, β will be consistently estimated. Moreover, β is super-
consistent.

1
ˆT (β − β) =

xT

∑

tet

1 xT

∑

2
t

1

=
xT

∑

t−1et + 1 uT

∑

tet

1 xT

∑

2
t

⇒
∫

W2dW1 + φ

ˆHo

∫

W 2
2 dt

wever, since φ = 0, the limiting distribution is shifted. As a result, β has a finite sample bias of order 1 ,T
which could be large. In addition, one can show that the limit of the t-statistic would also depend on φ, and
thus, not be free of nuisance parameters. This makes inference difficult.
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