MIT OpenCourseWare
http://ocw.mit.edu

14.384 Time Series Analysis

 Fall 2008For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
14.384 Time Series Analysis, Fall 2007

Professor Anna Mikusheva
Paul Schrimpf, scribe
October 25, 2007
Lecture 14

More Non-Stationarity

We have seen that there's a discrete difference between stationarity and non-stationarity. When we have a non-stationary process, limiting distributions are quite different from in the stationary case. For example, let ϵ_{t} be a martingale difference sequence, with $E\left(\epsilon_{t}^{2} \mid I_{t-1}\right)=1, E \epsilon_{t}^{4}<k<\infty$. Then $\xi_{T}(\tau)=\frac{1}{\sqrt{T}} \sum_{t=1}^{[\tau T]} \epsilon_{t} \Rightarrow$ $W(\cdot)$. Then there is a sort of discontinuity in the limiting distribution of an $A R(1)$ at $\rho=1$:

	Unit Root	Stationary
Process	$y_{t}=y_{t-1}+\epsilon_{t}$	$x_{t}=\rho x_{t-1}+\epsilon_{t}$
Limiting distribution of ρ	$T(\hat{\rho}-1) \Rightarrow \frac{\int W d W}{\int W^{2} d t}$	$T(\hat{\rho}-\rho) \Rightarrow N\left(0,1-\rho^{2}\right)$
Limiting distribution of t	$t \Rightarrow \frac{\int W d W}{\sqrt{\int W^{2} d t}}$	$t \Rightarrow N(0,1)$

In finite samples, the distribution of the t-stat is continuous in $\rho \in[0,1]$. However, the limit distribution is discontinuous at $\rho=1$. This must mean that the convergence is not uniform. In particular, the convergence of the t-stat to a normal distribution is slower, the closer ρ is to 1 . Thus, in small samples, when ρ is close to 1 , the normal distribution badly approximates the unknown finite sample distribution of the t-statistic. A more precise statement is that we have pointwise convergence, i.e.

$$
\sup _{x}|P(t(\rho, T) \leq x)-\Phi(x)| \rightarrow 0 \forall \rho<1
$$

but not uniform convergence, i.e.

$$
\sup _{\rho \in(0,1)} \sup _{x}|P(t(\rho, T) \leq x)-\Phi(x)| \nrightarrow 0
$$

where $\Phi(\cdot)$ is the normal cdf.
Just how bad is the normal approximation? If you construct a 95% confidence interval based on a normal approximation, then without a constant the coverage is 90%, with a constant 70%, and with a linear treand 35%.

Local to Unity Asymptotics

Local to unity asymptotics is one way to try to construct a better approximation. Let:

$$
\begin{aligned}
x_{t} & =\rho x_{t-1}+\epsilon_{t}, t=1, \ldots, T \\
\rho & =\exp (c / T) \approx 1+c / T, c<0
\end{aligned}
$$

This model is not meant to be a literal way of describing the world. It is just a device for building a better approximating limiting distribution. It can be shown that:

$$
\begin{equation*}
\frac{x_{[\tau T]}}{\sqrt{T}} \Rightarrow \Im_{c}(\tau) \tag{1}
\end{equation*}
$$

where $\Im_{c}(\tau)$ is an Ornstein-Ulenbeck process.
Definition 1. Ornstein-Ulenbeck process: $\Im_{c}(\tau)=\int_{0}^{\tau} e^{c(\tau-s)} d W(s)$, so $\Im_{c}(\tau) \sim N\left(0, \frac{e^{2 \tau c}-1}{2 c}\right)$

We will not prove (11), but we will sketch the idea. First, observe that

$$
\begin{aligned}
\frac{x_{t}}{\sqrt{T}} & =\sum_{j=1}^{t} \rho^{j} \frac{\epsilon_{j}}{\sqrt{T}} \\
& =\sum_{j=1}^{t} e^{c(t / T-j / T)} \frac{\epsilon_{j}}{\sqrt{T}}
\end{aligned}
$$

Defining $\xi_{T}(\tau)$ as usual we have:

$$
\frac{x_{t}}{\sqrt{T}}=\sum_{j=1}^{t} e^{c(t / T-j / T)} \Delta \xi_{T}(j / T)
$$

then taking $\tau=t / T$ we have:

$$
\frac{x_{[\tau T]}}{\sqrt{T}}=\int_{0}^{\tau} e^{c(\tau-s)} d \xi_{T}(s) d s
$$

Finally, assuming convergence of the stochastic integral (which we could prove if we took care of some technical details), gives:

$$
\frac{x_{t}}{\sqrt{T}} \Rightarrow \int_{0}^{\tau} e^{c(\tau-s)} d W(s) d s \equiv \Im_{c}(\tau)
$$

Using this result, the limiting distribution of OLS will be (omitting several technical steps):

$$
\begin{aligned}
T(\hat{\rho}-\rho) & \Rightarrow \frac{\int \Im_{c}(s) d W(s)}{\int \Im_{c}^{2}(s) d s} \\
t_{\rho=e^{c / T}} & \Rightarrow t^{c}=\frac{\int \Im_{c}(s) d W(s)}{\sqrt{\int \Im_{c}^{2}(s) d s}}
\end{aligned}
$$

If $c=0, t^{c}$ is a Dickey-Fuller distribution. If $c \rightarrow-\infty$, the $t^{c} \Rightarrow N(0,1)$. This was shown by Phillips (1987).
The convergence to this distribution is uniform (Mikusheva (2007)),

$$
\sup _{\rho \in[0,1]} \sup _{x}\left|P(t(\rho, T) \leq x)-P\left(t^{c} \leq x \mid \rho=e^{c / T}\right)\right| \rightarrow 0 \text { as } T \rightarrow \infty
$$

Figure 1 illustrates this convergence

Confidence Sets

We usually construct confidence sets by inverting a test. Consider testing $H_{0}: \rho=\rho_{0}$ vs $\rho \neq \rho_{0}$. We construct a confidence set as $C(x)=\left\{\rho_{0}\right.$: hypothesis accepted $\}$. So, for example in OLS, we take $t=\frac{\hat{\rho}-\rho}{\text { s.e. }(\hat{\rho})}$ and

$$
\begin{aligned}
C(x) & =\left\{\rho_{0}:-1.96 \leq \frac{\hat{\rho}-\rho}{s e(\hat{\rho})} \leq 1.96\right\} \\
& =[\hat{\rho}-1.96 \operatorname{se}(\hat{\rho}), \hat{\rho}+1.96 \operatorname{se}(\hat{\rho})]
\end{aligned}
$$

To construct confidence sets using local to unity asymptotics, we do the exact same thing, except the quantiles of our limiting distribution depend on ρ_{0}, i.e.

$$
C(x)=\left\{\rho_{0}: q_{1}\left(\rho_{0}, T\right) \leq \frac{\hat{\rho}-\rho}{\operatorname{se}(\hat{\rho})} \leq q_{1}\left(\rho_{0}, T\right)\right\}
$$

where $q_{1}\left(\rho_{0}, T\right)$ and $q_{2}\left(\rho_{0}, T\right)$ are quantiles of t^{c} for $c=T \log \rho_{0}$.
This approach was developed by Stock (1991). It only works when we have an $A R(1)$ with no autocorrelation. Some correction could be done in $A R(p)$ to construct a confidence set for the largest autoregressive root.

Figure 1: Local to Unity Asymptotics
$\mathrm{N}(0,1)$

Grid Bootstrap

This was an approach developed by Hansen (1999). It has a local to unity interpretation. Suppose

$$
x_{t}=\rho x_{t-1}+\sum_{j=1}^{p-1} \beta_{j} \Delta x_{t-j}+\epsilon_{t}
$$

where ρ will be the sum of $A R$ coefficients; it is a measure of persistence. For the grid bootstrap we:

- Choose grid on $[0,1]$
- Test $H_{0}: \rho=\rho_{0}$ vs $\rho \neq \rho_{0}$ for each point on grid

1. Regress x_{t} on x_{t-1} and $\Delta x_{t-1}, \ldots \Delta x_{t-p+1}$ to get $\hat{\rho}, t_{\rho_{0}-\text { stat }}$
2. Regress $x_{t}-\rho_{0} x_{t-1}$ on $\Delta x_{t-1}, \ldots \Delta x_{t-p+1}$ to get $\hat{\beta}_{j}$
3. Bootstrap:
$-\epsilon_{t}^{*}$ from residuals of step 1

- Form $x_{t}^{*}=\rho_{0} x_{t-1}^{*}+\sum \hat{\beta}_{j} \Delta x_{t-j}+\epsilon_{t}^{*}$ do OLS as in step 1
- Repeat, use quantiles of bootstrapped t-stats as critical values to form test
- All ρ_{0} for which the hypothesis is accepted form a confidence set

Bayesian Perspective

From a Bayesian point of view, there is nothing special about unit roots if one assumes a flat prior. Sims and Uhlig (1991) argue that all the attention paid to unit roots is non-productive. Phillips (1991) has a reply that looks more carefully at the idea of uninformative priors. Sims and Uhlig (1991) had put a uniform prior on $[0,1]$. Phillips points out that this puts all weight on the stationary case. He argues that a uniform prior is not necessarily uninformative, and point out that a Jeffreys prior would put much more weight (asymptotically almost unity weight) on the non-stationary case. In this case Bayesian conclusions look more like frequentists'. There is a Journal of Applied Econometrics issue about this debate.

