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Lecture 14

More Non-Stationarity

We have seen that there’s a discrete difference between stationarity and non-stationarity. When we have
a non-stationary process, limiting distributions are quite different from in the stationary case. For example,
let €; be a martingale difference sequence, with E(eZ|I;_1) = 1, Fe} < k < co. Then &p (1) = ﬁ Zy::q] € =

W(-). Then there is a sort of discontinuity in the limiting distribution of an AR(1) at p = 1:

| Unit Root | Stationary
Process Yt = Yp—1 + € Tp = pTi—1 + €
o e A Wdw N
Limiting distribution of p | T(p — 1) = W T(p—p)= N(0,1—p?)
Limiting distribution of ¢ t = LWAW t= N(0,1)
Jw?2dt

In finite samples, the distribution of the ¢-stat is continuous in p € [0, 1]. However, the limit distribution is
discontinuous at p = 1. This must mean that the convergence is not uniform. In particular, the convergence
of the t-stat to a normal distribution is slower, the closer p is to 1. Thus, in small samples, when p is close
to 1, the normal distribution badly approximates the unknown finite sample distribution of the ¢-statistic.
A more precise statement is that we have pointwise convergence, i.e.

sup | P(t(p, T) < ) — B(x)] — 0 ¥p < 1

but not uniform convergence, i.e.

sup sup|P(t(p,T) < z) — ®(x)| /0
pe(0,1) =

where ®(-) is the normal cdf.

Just how bad is the normal approximation? If you construct a 95% confidence interval based on a normal
approximation, then without a constant the coverage is 90%, with a constant 70%, and with a linear treand
35%.

Local to Unity Asymptotics
Local to unity asymptotics is one way to try to construct a better approximation. Let:

Ty =pxe—1+e€ ,t=1,...,T
p=exp(¢/T)=1+¢/T,c<0

This model is not meant to be a literal way of describing the world. It is just a device for building a better
approximating limiting distribution. It can be shown that:

L[]
VT

= S.(7) (1)

where $¢(7) is an Ornstein-Ulenbeck process.

Definition 1. Ornstein-Ulenbeck process: S.(7) = [ e“"=*)dW (s), so S¢(r) ~ N(0, %)
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We will not prove ([l), but we will sketch the idea. First, observe that
t
L i S
VT ; rT
t
::zzzec@/ng/T>:Z_
i=1 VT

Defining &7 (7) as usual we have:

t
LTt _ e(t/T=5/T) Agn (i

=) ¢ ¢r(5/T)
then taking 7 = t/T we have:

L) _

vT  Jo
Finally, assuming convergence of the stochastic integral (which we could prove if we took care of some
technical details), gives:

T dep(s)ds

Ty T c(t—s) o
— = e dW (s)ds = S.(7)
i
Using this result, the limiting distribution of OLS will be (omitting several technical steps):
I3 ()
[ S2(s)ds
I Se(s)dW (s)
[ S2(s)ds
If ¢ = 0, t¢ is a Dickey-Fuller distribution. If ¢ — —o0, the ¢t = N(0,1). This was shown by Phillips (1987).
The convergence to this distribution is uniform (Mikusheva (2007)),

sup sup |P(t(p,T) < z) — P(t* < zlp=e“T)| = 0as T — oo
pel0,1] =

T(p—p)

tp:ec/T =t =

Figure [l illustrates this convergence

Confidence Sets

We usually construct confidence sets by inverting a test. Consider testing Ho : p = po vs p # po. We

construct a confidence set as C(z) = {po : hypothesis accepted}. So, for example in OLS, we take t = SZ__(%)

and

p—p
<)
=[p — 1.96se(p), p + 1.96se(p)]

To construct confidence sets using local to unity asymptotics, we do the exact same thing, except the quantiles
of our limiting distribution depend on py, i.e.

C(z) ={po: —1.96 <

< 1.96}

p—
5e(7)
where ¢1(po,T) and g2(po,T) are quantiles of t¢ for ¢ = T log po.

This approach was developed by Stock (1991). It only works when we have an AR(1) with no auto-
correlation. Some correction could be done in AR(p) to construct a confidence set for the largest autoregres-
sive root.

hS)

C(z) ={po : q1(po,T) < <qi(po,T)}
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Figure 1: Local to Unity Asymptotics
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Grid Bootstrap
This was an approach developed by Hansen (1999). It has a local to unity interpretation. Suppose

p—1
Ty = pTy—1 + Z BiAz_j + ¢

Jj=1
where p will be the sum of AR coefficients; it is a measure of persistence. For the grid bootstrap we:
e Choose grid on [0, 1]
e Test Hy: p= pg vs p # po for each point on grid

1. Regress x; on x;—1 and Axy_1,...Axi_py1 to get p, t,y,-stat
2. Regress x; — poxi—1 on Azy_1,...Az¢_pp1 to get Bj
3. Bootstrap:

— €/ from residuals of step 1

— Form x} = poxi_; + Z@Awt_j + ¢ do OLS as in step 1

— Repeat, use quantiles of bootstrapped t-stats as critical values to form test

e All pg for which the hypothesis is accepted form a confidence set

Bayesian Perspective

From a Bayesian point of view, there is nothing special about unit roots if one assumes a flat prior. Sims
and Uhlig (1991) argue that all the attention paid to unit roots is non-productive. Phillips (1991) has a
reply that looks more carefully at the idea of uninformative priors. Sims and Uhlig (1991) had put a uniform
prior on [0, 1]. Phillips points out that this puts all weight on the stationary case. He argues that a uniform
prior is not necessarily uninformative, and point out that a Jeffreys prior would put much more weight
(asymptotically almost unity weight) on the non-stationary case. In this case Bayesian conclusions look
more like frequentists’. There is a Journal of Applied Econometrics issue about this debate.
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