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Lecture 13
Unit Roots

Review from last time
Let y; be a random walk
ye=pyrte,p=1

where ¢, is a martingale difference sequence (E[e;|I;] = 0), with + > E[€7|I;_1] — 02 a.s. and Fef < K < oc.
Then {e;} satisfy a functional central limit theorem,
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We showed last time that:
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and our OLS estimator and t-statistic have non-standard distributions:
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This is quite different from the case with |p| < 1. If
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and the OLS estimate and t-stat converge to normal distributions:

VT(p—p) =N(0, (1 - p%))
t=N(0,1)
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Adding a constant

Suppose we add a constant to our OLS regression of y;. This is equivalent to running OLS on demeaned y;.
Let yi* =y — 9. Then,
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Consider the numerator:
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e = ﬁ Zyt 1%615 We know that ﬁ Yy—1 = o [ Wdt, and ﬁ > e = oW(1). Also, from before
we know that £ > 116, = 02 [ WdW. Combining this, we have:

TZyt Let =02 </W )W (s /W dt>

We can think of this as the integral of a demeaned Brownian motion,

/ W (s)dW (s / W(t)dt = / (W(s)— / W(t)dt) AW (s)
= [wrsaws)

The limiting distributions of all statistics (g, ¢, etc) would change. In most cases, the change is only in
replacing W by W™. one also can include a linear trend in the regression, then the limiting distribution
would depend on a detrended Brownian motion.

Limiting Distribution

Let’s return to the case without a constant. The limiting distribution of the OLS esitmate is T'(p — 1) =
o
more shifted. If we also include a trend, the distribution shifts yet more. For example, the 2.5%-tile without
a constant is -10.5, with a constant is -16.9, and with a trend is -25. The 97.5%-tiles are 1.6, 0.41, and -1.8,
respectively. Thus, estimates of p have bias of order % This bias is quite large in small samples.

The distribution of the t-statistic is also shifted to the left and skewed, but less so than the distribution
of the OLS estimate. The 2.5%-tiles are -2.23, -3.12, -3.66 and of the 97.5%-tiles are 1.6, 0.23, and -0.66 for

no constant, with a constant, and with a trend, respectively.

This distribution is skewed and shifted to the left. If we include a constant, the distribution is even

Allowing Auto-correlation
So far, we have assumed that €; are not correlated. This assumption is too strong for empirical work. Let,
Yt = Yt—1 + U

where v; is a zero-mean stationary process with an MA representation,

o0
Ve = E Cj€j
Jj=0



Augmented Dickey Fuller 3

where €; is white noise. Now we need to look at the limiting distributions of each of the terms we looked at
before (3" ve, > yr—1vt, Yy, etc). Y v is a term we already encountered in HAC estimation:

T
1
— ) v = N(0,w?)
where w? is the long-term variance,
o0
w? = Z v = o*c(1)? = w?
Jj=—00

For linearly dependent process, v¢, we have the following central limit theorem:
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This can be proven by using the Beveridge-Nelson decomposition. All the other terms converge to things
similar to the uncorrelated case, except with o replaced by w. For example,

% = & (t/T) = wW (t/T)
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An exception is:
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This leads to an extra constant in the distribution of p:
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so it is impossible to just look up critical values in a table. Phillips & Perron (1988) suggested corrected
statistics:

where @? is an estimate of the long-run variance, say Newey-West, and 62 is the variance of the residuals.

Augmented Dickey Fuller
Another approach is the augmented Dickey-Fuller test. Suppose,

p
ye =Y ajyij+er
j=1
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where z = 1 is a root,

P
1— Z ajzl =0
j=1
1= Z a;
Suppose we factor a(L) as
p .
1= a;I7 = (1-L)b(L)

with b(L) = Zf;; B;L7. We can write the model as

J
Ay, Zﬂ Yt—1 + €

i=1

This suggests estimating;:

j
ve=py1+ Y Bigi1t+e
i=1

and testing whether p = 1 to see if we have a unit root. This is another way of allowing auto-correlation
because we can write the model as:

a(L)y: =€
b(L)Ay: =€
Ay, =b(L) e,
Yt = Y1+ ¢

where v; = b(L) "¢, is auto-correlated.

The nice thing about the augemented Dickey-Fuller test is that the coefficients on Ay,_; each converge
to a normal distribution at rate v/T, and the coefficient on y;_; converges to a non-standard distribution
without nuisance parameters. To see this, let z; = [yi—1, Ayi—1, ..., AYr_py1] and let 6 = [p, b1, ...,6p,1]'.

Consider: § — 0 = (X'X)"1(X’¢). We need to normalize this so that it converges. Our normalizing matrix
will be

T .. 0
0

3

Multiplying by @ gives:

QU -0)=Q ' (X'X)TQTH QX'

The denominator is:
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Note that —t> > yi—1Ay—; — 0. Also, we know that - > y?_; = w? [ W2dt, so

w? [ W2dt 0
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Similarly,
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Other Tests

Sargan-Bhargrava (1983) For a non-stationary process, the variance of y; grows with time, so we could
look at:

1 2

Tz oY1
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when €; is an m.d.s., this converges to a distribution, IS5 a7 .~ J W?2(dt). For a stationary process, this
T Jt—1

converges to 0 in probability.

Range (Mandelbrot and coauthors) You could also look at the range of y;, this should blow up for
non-stationary processes for a random walk, we have:

—=(max y; — miny,)
VT = sup W(A) — ir/{f W(N\)
VT oAy A
Test Comparison

The Sargan-Bhargrava (1983) test has optimal asymptotic power against local alternatives, but has bad size
distortions in small samples, especially if errors are negatively autocorrelated. The augmented Dickey-Fuller
test with the BIC used to choose lag-length has overall good size in finite samples.
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