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Lecture 13

Unit Roots

Review from last time

Let yt be a random walk

yt = ρyt + εt , ρ = 1

where εt is a martingale difference sequence (E[εt|I ] = 0), with 1
t E[ε2 I ε4t 1] σ2 a.s. and E < K < .T

Then

∑

t | − → t ∞
{εt} satisfy a functional central limit theorem,

1
ξT (τ) = √

[τT ]

T

∑

εt

t=1

⇒ σW (·)

We showed last time that:
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and our OLS estimator and t-statistic have non-standard distributions:

dW
T ρ̂− ρ) ⇒

∫

W
( ∫

W 2dt

t ⇒
∫

WdW
√

∫

W 2dt

This is quite different from the case with |ρ| < 1. If

xt = ρxt−1 + εt , |ρ| < 1

then,
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and the OLS estimate and t-stat converge to normal distributions:

√
T (ρ̂ − ρ) ⇒N(0, (1 − ρ2))

t ⇒N(0, 1)
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Adding a constant

Suppose we add a constant to our OLS regression of yt. This is equivalent to running OLS on demeaned yt.
Let ym

t = yt − ȳ. Then,

ρ̂ − 1 =

∑

ym
t−1εt

∑

(ym
t−1)

2

Consider the numerator:

1 1
y

T

∑

m
t−1εt = (

T

∑

yt−1 − ȳ)εt

1
= y

T

∑

t−1εt − ȳε̄

ȳε̄ = 1 y
T 3/2

∑

1
t−1 √ εt. We know that 1

T
y

T 3/2

∑

t−1 ⇒ σ
∫

Wdt, and 1√ ε
T

∑

t ⇒ σW (1). Also, from before

we know that 1 yT

∑

t−1εt ⇒ σ2
∫

WdW . Combining this, we have:

1
W

T

∑

ym
t σ2

1ε− t ⇒
(∫

(s)dW (s) − W (1)

∫

W (t)dt

)

We can think of this as the integral of a demeaned Brownian motion,

∫

W (s)dW (s) − W (1)

∫

W (t)dt =

∫ (

W (s) −
∫

W (t)dt

)

dW (s)

=

∫

W m(s)dW (s)

The limiting distributions of all statistics (ρ̂, t, etc) would change. In most cases, the change is only in
replacing W by W m. one also can include a linear trend in the regression, then the limiting distribution
would depend on a detrended Brownian motion.

Limiting Distribution

Let’s return to the case without a constant. The limiting distribution of the OLS esitmate is T (ρ̂ 1)
R

WdW

− ⇒
2 . This distribution is skewed and shifted to the left. If we include a constant, the distribution is evenR

W dt

more shifted. If we also include a trend, the distribution shifts yet more. For example, the 2.5%-tile without
a constant is -10.5, with a constant is -16.9, and with a trend is -25. The 97.5%-tiles are 1.6, 0.41, and -1.8,
respectively. Thus, estimates of ρ have bias of order 1 . This bias is quite large in small samples.T

The distribution of the t-statistic is also shifted to the left and skewed, but less so than the distribution
of the OLS estimate. The 2.5%-tiles are -2.23, -3.12, -3.66 and of the 97.5%-tiles are 1.6, 0.23, and -0.66 for
no constant, with a constant, and with a trend, respectively.

Allowing Auto-correlation

So far, we have assumed that εt are not correlated. This assumption is too strong for empirical work. Let,

yt = yt−1 + vt

where vt is a zero-mean stationary process with an MA representation,

∞

vt =
∑

cjεj

j=0
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where εj is white noise. Now we need to look at the limiting distributions of each of the terms we looked at
before (

∑

vt,
∑

yt 1vt,
∑

y2
t , etc). v−

∑

t is a term we already encountered in HAC estimation:

1√
T
∑

vt N
T t=1

⇒ (0, ω2)

where ω2 is the long-term variance,

∞

ω2 = γ c(1)2j = σ2 ω2

j=

∑

≡
−∞

For linearly dependent process, vt, we have the following central limit theorem:

1
ξT (τ) = √

[Tτ ]

T

∑

vt

t=1

⇒ ωW (·)

This can be proven by using the Beveridge-Nelson decomposition. All the other terms converge to things
similar to the uncorrelated case, except with σ replaced by ω. For example,

y√ = ξT (t/T )
T

⇒ ωW (t/T )

1
y

T 3/2

∑

t−1 ⇒ ω

∫

W (s)ds

An exception is:

1 1
y

T

∑

t−1vt =
1

y2

2T T − v
2T

∑

2
t

1⇒ (ω2W (1)2
2

− σ2
v)

⇒ω2

∫

ω2

WdW +
− σ2

v

2

This leads to an extra constant in the distribution of ρ̂:

T (ρ̂− 1) ⇒
∫

WdW − 1 ω2−σ2

v

2 ω2

∫

W 2dt

so it is impossible to just look up critical values in a table. Phillips & Perron (1988) suggested corrected
statistics:

1

T (ρ̂ − 1) +
ω̂2

2 − σ̂2
v

1

W

yT 2

∑

2
t

⇒
∫

dW

2

∫

W 2dt

where ω̂ is an estimate of the long-run variance, say Newey-West, and σ̂2
v is the variance of the residuals.

Augmented Dickey Fuller

Another approach is the augmented Dickey-Fuller test. Suppose,

p

yt =
∑

ajyt−j + εt

j=1
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where z = 1 is a root,

p

1−
∑

ajz
j =0

j=1

1 =
∑

aj

Suppose we factor a(L) as

p

1 −
∑

ajL
j = (1 − L)b(L)

with b(L) =
∑p−1 j

j=1 βjL . We can write the model as

j

∆yt =
∑

βjyt−1 + εt

i=1

This suggests estimating:

j

yt = ρyt−1 +
∑

βjyt−1 + εt

i=1

and testing whether ρ = 1 to see if we have a unit root. This is another way of allowing auto-correlation
because we can write the model as:

a(L)yt =εt

b(L)∆yt =εt

∆yt =b(L)−1εt

yt = yt−1 + vt

where vt = b(L)−1εt is auto-correlated.
The nice thing about the augemented Dickey-Fuller test is that the coefficients on ∆yt−j each converge

to a normal distribution at rate
√

T , and the coefficient on yt−1 converges to a non-standard distribution
without nuisance parameters. To see this, let xt = [yt−1, ∆yt−1, ..., ∆yt−p+1] and let θ = [ρ, β1, ..., βp−1]

′.
ˆConsider: θ − θ = (X ′X)−1(X ′ε). We need to normalize this so that it converges. Our normalizing matrix

will be


T ... 0√
Q =

 0






T 0
. .. .. .

0
√







T





Multiplying by Q gives:

ˆQ(θ − θ) =(Q−1(X ′X)−1Q−1)−1(Q−1X ′ε)

The denominator is:

1

Q−1(X ′X)−1Q−1 =







yT 2

∑

2 1
t−1 y

T 3/2

∑

t−1∆yt−1 ...
1 y

T 3/2

∑

t−1∆y 1
t−1 X̃T

′X̃



...
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Note that 1 →py
T 3/2

∑

t−1∆yt−j 0. Also, we know that 1 yT 2

∑

2
t−1 ⇒ ω2

∫

W 2dt, so

ω2 W 2dt 0 ...
1 ˜ ˜

Q− (X ′X)−1 0Q−1


∫

⇒ EX ′X





...





Similarly,

1

Q−1X ′ε =

(

yT

∑

t−1εt
1√

σω WdW
∆yt jεt ˜ ˜N(0, E[X X ]σ2

T

( ∫

∑

−

)

⇒ ′

)

Thus,

σ
T (ρ̂− 1) ⇒ W

ω

∫

dW

or

∫

W 2dt

ω̂
T (ρ̂ − 1)

T (ρ̂
=

− 1)

σ̂

W

ˆ1 −
∑

βj

⇒
∫

dW
∫

W 2dt

Other Tests

Sargan-Bhargrava (1983) For a non-stationary process, the variance of yt grows with time, so we could
look at:

1 yT 2

∑

2
t−1

1 ∆T

∑

y2
t−1

1

when εt is an m.d.s., this converges to a distribution,
P

T2
y2

t−1

1

2
2 W (dt). For a stationary process, this

∆yT

P

t−1

⇒
converges to 0 in probability.

∫

Range (Mandelbrot and coauthors) You could also look at the range of yt, this should blow up for
non-stationary processes for a random walk, we have:

1√ (max ytT
− min yt)

√

1
⇒ supW (λ)

∑

∆y2 λ
− inf W (λ)

λ
T t

Test Comparison

The Sargan-Bhargrava (1983) test has optimal asymptotic power against local alternatives, but has bad size
distortions in small samples, especially if errors are negatively autocorrelated. The augmented Dickey-Fuller
test with the BIC used to choose lag-length has overall good size in finite samples.
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