Computer Science and Artificial Intelligence Laboratory Technical Report

MIT-CSAIL-TR-2014-020

October 1, 2014

Constraint Generation for the Jeeves Privacy Language

Eva Rose

Constraint Generation for the Jeeves Privacy Language

Eva Rose
Courant Institute, New York University*
evarose@cs.nyu.edu

September 30, 2014

Abstract

Our goal is to present a completed, semantic formalization of the Jeeves privacy language evaluation engine, based on the original Jeeves constraint semantics defined by Yang et al at POPL12 [23], but sufficiently strong to support a first complete implementation thereof. Specifically, we present and implement a syntactically and semantically completed concrete syntax for Jeeves that meets the example criteria given in the paper. We also present and implement the associated translation to λ_{J}, but here formulated by a completed and decompositional operational semantic formulation. Finally, we present an enhanced and decompositional, non-substitutional operational semantic formulation and implementation of the λ_{J} evaluation engine (the dynamic semantics) with privacy constraints. In particular, we show how implementing the constraints can be defined as a monad, and evaluation can be defined as monadic operation on the constraint environment. The implementations are all completed in Haskell, utilizing its almost one-to-one capability to transparently reflect the underlying semantic reasoning when formalized this way. In practice, we have applied the "literate" program facility of Haskell to this report, a feature that enables the source 䝯X to also serve as the source code for the implementation (skipping the report-parts as comment regions). The implementation is published as a github project [17].

[^0]
Contents

1 Introduction 3
2 The Jeeves syntax 8
3 The λ_{J} syntax 11
4 The λ_{J} translation 15
5 Scoping and symbolic normal forms 23
6 The constraint environment 25
7 The λ_{J} evaluation semantics 28
8 Running a Jeeves program 41
9 Conclusion 44
10 Future Directions 45
A Discrepancies from the original formalization 45
B Additional code 48
References 53
Index 55

1 Introduction

Jeeves was first introduced as an (impure) functional (constraint logic) programming language by Yang et al [23], which distinguish itself by allowing explicit syntax for automatic privacy enforcement. In other words, the syntax and semantics of the language is designed to support that a programmer composes privacy policies directly at the source level, by way of a special, designated privacy syntax over a not yet known context. It is worth noticing, that there is no semantic specification for Jeeves at the source level. Jeeves' semantics is entirely defined by a syntax translation to an intermediary constraint functional language, λ_{J}, together with a λ_{J} evaluation engine (defined over the same input-output function as source-level Jeeves). In order to run Jeeves with the argued privacy guarantees, it is therefore pivotal to have a correct and running implementation of λ_{J} evaluations as well as a correct Jeeves-to- λ_{J} syntax-translation, which is the main goal of this report. In Figure 1 we have illustrated how Jeeves' evaluation engine is logistically defined in terms of the λ_{J} language:

Figure 1: Running a Jeeves program
The explicit privacy constructs in Jeeves, and thus λ_{J} is in fact not just syntactic sugar for the underlying conventional semantics, but is interpreted independently in terms of logical constraints on the data access and writes. The runtime generated set of logical constraints that safeguards the policies, are defined as part of the usual dynamic and static semantics. As we show with our reformalization of the dynamic semantics, the constraint part of the semantics can in fact be defined as a monoid, thus following an othogonal evaluation pattern with respect to the underlying traditional evaluation semantics. An observation which not only makes it straighforward to implement, but makes privacy leak arguments straight forward to express and proof.

In this report, we have re-stated the original formalizations of the abstract syntax for sourcelevel Jeeves, as well as for λ_{J}, by way of algebraic and denotational (domain) specifications. As a new thing, we have added a concrete syntax for source-level Jeeves as an LL(1) grammar, along which we have re-adjusted the λ_{J} compilation to be specified as a syntax-directed translation. Furthermore, we are re-formulating the definition of the dynamic (evaluation) semantics by way of operational (natural) semantics. In the process, we have added a number of technical clarifying details and assumptions, as summarized in section A. Notably, we have imposed a formal (denotational) definition of a Jeeves aka λ_{J} "program", and semantically specified how programs should be evaluated at the top level. We should mention, that the treatment of types (and the associated static semantics) has been omitted, thus leaving it to the user not to evaluate ill-formed terms or recursively defined policies.

The implementation has been conducted in Haskell. Using that specific functional language, provides a particular elegant and one-to-one imlementation map of the denotational and operational specifications of Jeeves, aka λ_{J}. In fact, by having implemented the dynamic, operational semantics of λ_{J}, we have obtained a Jeeves/ λ_{J} interpreter. To implement the parser, we in fact used the Haskell monadic parser combinator library [10], which has been included in full in Appendix B.2. One limitation with the current implementation, however, is that we have not included a constraint solver, but merely outputs all constraints to be further analysed. It is, however, a minor technical detail to add an off-the-shelf constraint solver to the backend.

The presentation of the implementation in the report, has been done by using the literate programming facility of Haskell, as described in Notation 1.1. En bref, it permits us to use the source $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ of the report as the source code of the program. In the report, we have preceded each code fragments with the formalism it implements, so that the elegant, one-to-one correspondance between the formalism and the Haskell program serves as a convincing argument for the authenticity of the Jeeves implementation (and vice versa, in that the running program fragments support the formalizations). To ease readability we have furthermore been typesetting and color coding the Haskell implementation, also summarized in Notation 1.1.
1.1 Notation (The Haskell implementation). The Haskell program has been integrated with the report as specially designated Haskell sections by means of the literate programming facility for Haskell [6]. This facility (file extension .lhs), enables Haskell code and text to be intertwined, yet percieved either as program (like .hs extension) with text segments appearing as comments, or as a TeX report (like the .tex extension) where code fragments appear as text. All depending on which command is run upon the ensemble.

For convenience, the typesetting of the Haskell sections uses coloring for emphasis and prints the character sequences shown in the following table as special characters.

Symbol used in report	λ	++	\rightarrow	\leftarrow	\Rightarrow	\leq	\geq	\equiv	\circ	\gg	$>=$
Haskell source form	\backslash	++	$->$	$<-$	P>	$<=$	$>=$	$==$.	\gg	$\gg=$

Before we proceed, we will introduce the literate Haskell programming head.

1.2 Haskell (main program and imports).

- Evaluates Jeeves programs and generates policy constraints
- - Eva Rose evarose@mit.edu
- - CSAIL August 2012.
-- Imported data types
import Data.Map (Map,(!), insert, delete ,empty,union,member,assocs) import Char

The semantic and syntactic specification styles follow those of Plotkin [16], Kahn [13], Schmidt [20], Bachus and Naur [5], alongside the formal abbreviations, shorthands and stylistic elements which we have summarized in Notation 1.3.
1.3 Notation (Formal style summary). We have adopted the following conventions:

- the shorthand 'Sym …Sym' to denote a finite repetition of the pattern Sym, one or more times,
- the teletype font for keywords in source-level Jeeves, and sans serif for keywords in λ_{J}.

Before we describe how the report is structured we will recall, with two examples from the original paper, what programming with Jeeves looks like. The first being a simple naming policy example, and the second having to do with the tasks involved in accessing and managing papers for a scientific conference. Both will serve as our canonical examples throughout the report.
1.4 Example (Canonical examples). Figure 2 and Figure 3 consist of two Jeeves programming examples from Sec. 2.2 in [23, p.87], but as slightly altered versions. Among other things, we have fixed the format of a Jeeves program c.f. Definition 2.1. Furthermore, we have changed the examples in the following ways:

- tacitly omitted 'reviews' from the 'paper' record and from the policy definitions, as dealing with listings just introduce "noise" to the presentation without adding any significant insight,
- only to allow policies on the form "policy lx : e then lv in e"; we have thus moderated the original examples by adding "in p " to those policy definitions were the keyword "in" was missing,
- omitted types in accordance with our design decisions.

```
-- Jeeves example adapted from Yang etal. (POPL 2012).
let name =
    level a in
    policy a: !(context = "alice") then bottom in
        < "Anonymous" | "Alice" >(a)
let msg = "Author is " + name
print {"alice"} msg
print {"bob"} msg
```

Figure 2: Naming policy
The program in Figure 2 overall introduces a policy ('policy...: !(context="alice")...') which regulates what value the variable 'name' is assigned: either to '"Anonymous"' or to '"Alice"'. Let us first hone in on the (first order) logical policy condition '! (context="alice")'. This is simply a boolean expression stating to be true if the value of the designated, built-in variable 'context' is different from the string '"alice"', otherwise false. (The '!' stands for negation.) In the first case, 'bottom’ will select the first value of the pair ‘<"Anonymous", "Alice">’, whereas in the latter case, the second value will be chosen to be assigned to 'name'. Now hone in on the print-statements at the bottom of the program. The semantics tells that the 'context' variable first is automatically set to the string '"alice"' (by the 'print \{"alice"\}...' statement); subsequently to the string '"bob"' (by the 'print \{"bob"\}...' statement). These print-statements are also the ones responsible for the program output by printing the value of the variable 'msg', which in turn is designated by the values of 'name' (by the 'let msg = . . name' statement). In other words, the input-output functionality is given by the print statements. Thus, upon the input: 'alice' 'bob', the expected output of this program is: 'Author is Alice' 'Author is Anonymous'.

The program in Figure 3 overall introduces policies for managing access to conference papers, depending upon the formal role a person possesses. The policies to avoid leaking the name of a paper author at the wrong time in the review process, follows the basic principle of the naming policy in Figure 2, just in a more complex setting. The first let-statement of the program creates a paper record through the function 'mkpaper' with information on 'title', 'author', and 'accepted' status. By way of the level variables 'tp', 'authp', and 'accp', three leak policies are being added as conditioned values, each of which is being defined by the subsequent let-statements. Take for example the first of these: 'addTitlePolicy p tp;'. The policy states that if a viewer is not the author, and the viewer's role is neither that of a reviewer's or program chair, and finally, if not

```
-- Jeeves example adapted from Yang etal. (POPL 2012).
let mkPaper
    title author accepted =
    level tp, authp, accp in
    let p = { title = <""|title>(tp)
                ; author = <"Anonymized"|author>(authp)
                ; accepted = <"none"|accepted>(accp) } in
    addTitlePolicy p tp ; addAuthorPolicy p authp;
    addAcceptedPolicy p accp;
        p
let addTitlePolicy p a =
    policy a: ! (context.viewer.name = p.author
        || context.viewer.role = Reviewer
        || context.viewer.role = PC
        || context.stage = Public && isAccepted p) then bottom
    in p
let addAcceptedPolicy p a =
    policy a: ! (context.viewer.role = Reviewer
        || context.viewer.role = PC
        || context.stage = Public) then bottom
        in p
let addAuthorPolicy p n =
    policy n: ! (isAuthor p context.viewer
            || context.stage = Public && isAccepted p) then bottom
        in p
let alice = {name = "Alice"; role = PC}
let bob = {name = "Bob"; role = Reviewer}
let isAuthor p viewer = (p.author = viewer.name)
let isAccepted p = !(p.accepted = "none")
print {{viewer = alice; stage = Public}} mkPaper "MyPaper" "Alice" Accepted
print {{viewer = bob; stage = Public}} mkPaper "MyPaper" "Alice" Accepted
```

Figure 3: Conference management policies
the review process is over (the stage is then then 'public') or the paper has been accepted, then the title can only be released as "" (because the 'bottom' value selects the first of the title pair values in 'mkpaper', which is ""). Similarly for the other policy specifications. The next set of let specifications set the variables 'alice' and 'bob' with concrete review records, and the two boolean functions 'isAuthor' and 'isAccepted' are similarly set with concrete boolean expressions. Also here, the print-statements are responsible for assigning the 'context' variable with concrete viewer and stage information, and to output a record corresponding to a paper, through a call to "mkpaper", where the individual paper fields have been filtered by the specified policies.

We assume that the reader of this report is familiar with the core principles of the original Jeeves definition in Yang et al [23]. Furthermore, we assume an understanding of functional programming in Haskell [6, 12], as well as basic familiarity with algebraic specifications and semantics [5, 13, 16, 20].

Finally, we describe how the report is structured:

- In Sec. 2, (source-level) Jeeves is specified both by its abstract as well as a newly formulated concrete syntax. The concrete syntax is specified in terms of an LL(1) grammar along with the lexical tokens for Jeeves and their implementation in Haskell.
- In Sec. 3, (intermediary) λ_{J} is specified by its abstract syntax alongside its implementation in Haskell. Notably, the notion of a λ_{J} program has been added to the original syntax together with additional expression syntax (thunks). The ensemble is presented alongside its implementation in Haskell.
- In Sec. 4, we formally present the translation from Jeeves to λ_{J} as a derivation. The translation is given as a syntax directed compilation of the concrete Jeeves syntax to λ_{J}, together with its Haskell implementation. The implementation is in fact a set of Jeeves parsers, which builds abstract syntax trees in accordance with the abstract λ_{J} specification in Section 3.
- In Sec. 5, we formally present the symbolic normal forms with the addition of a static binding environment component. The implementation of those are presented together with operations on the environment, notably insertion and lookups.
- In Sec. 6, we specify the notion of a hard constraint algebra, and soft constraint algebra as well as the notion of a path condition algebra. We finally show how the set of hard and soft constraints can be implemented as a monad in Haskell, together with update and reset operations thereon.
- In Sec. 7, the λ_{J} evaluation engine is formally specified as a big step, compositional, nonsubstitution based operational semantics alongside our specification of a λ_{J} program evaluation. The Haskell implementation in terms of a λ_{J} interpreter is presented alongside the formalizations. The input-output functionality is equally specified, and a program outcome is defined in our setting as a series of "effects" written to output channels.
- In Sec. 8, we show how to load and run a jeeves program with our system, as well as how to use our system to translate a Jeeves program to λ_{J}.
- Finally, in section 9, we conclude our work, and discuss further directions in section 10.

We will describe in which way our formalizations deviates from the original formulations c.f. Yang et al [23] as we go along, and summarize the discrepancies in Appendix A.

2 The Jeeves syntax

In this section, we restate the Jeeves abstract syntax from the original paper [23, Figure 1], and a (new) formulation of a Jeeves concrete syntax. We also specify the basic algebraic sorts for literals that are assumed by the specifications, and present them as Jeeves lexical tokens for the λ_{J} translation in subsequent sections. The syntax specifications include some language restrictions and modifications compared to the original rendering in accordance with section A. Notably, restrictions on the shape of a Jeeves program, such that all let-statements (i.e., let constructs without an inpart) must be trailed by print-statements, and both are only to appear at the top-level of the program.

The abstract syntax merely serves as a quick guide to the Jeeves language just as in the original form [23, Figure 1]. It is presented as a complete, algebraic specification which describes Jeeves programs, expressions, and tokens in a top-down fashion, following Notation 1.3. The concrete syntax for source-level Jeeves has been formulated as an (unambiguous) LL(1) grammar from scratch. Thereby making it straightforward to apply the Haskell monadic parser combinator library [10] when implementing the λ_{J} translation function in subsequent sections. The syntax precisely states the way operator precedence and scoping is being handled, if not by the original specification [23, Figure 1], then by the original Jeeves program examples [23, Section 2] (for more details on discrepancies and differences, visit section AS).

The only Haskell implementation in this section is that of the Jeeves lexical tokens in Haskell 2.6.

2.1 Definition (abstract Jeeves syntax).

$$
\begin{aligned}
p \in P g m::= & \text { let } x \ldots x=e \\
& \vdots \\
& \text { let } x \ldots x=e \\
& \text { output e } e \\
& \vdots \\
& \text { output e } e \\
e \in E x p::=\quad & b|n| s|c| x|l x| \text { context } \\
& \mid e \text { op } e \mid \text { uop } e \\
& \mid \text { if } e \text { then } e \text { else } e \\
& \mid e \ldots e \\
& |<e| e>(l x) \\
& \mid \text { level } l x, \ldots, l x \text { in } e \\
& \mid \text { policy } l x: e \text { then } l v \text { in } e \\
& \mid \text { let } x \ldots x=e \text { in } e \\
& \mid\{x=e ; \ldots ; x=e\} \\
& \mid e . x \\
& \mid e ; \ldots ; e
\end{aligned}
$$

where $b \in$ Boolean, $n \in$ Natural, $s \in$ String, $c \in$ Constant, and $l x, x \in$ Identifier, $l v \in$ Level, op $\in O p$, uop $\in U O p$, output \in Outputkind

The where-clause lists the basic value sorts of the language. They cover the same algebras in source-level Jeeves and the λ_{J} level, except for Level, which only exists in the source-level language.

For that reason, we will duplicate the formal (meta) variables between the abstract and concrete syntax and between source and target language specifications. In Definition 2.5, they are specified as concrete, lexical tokens.
2.2 Definition (basic algebraic sorts). The sorts are Boolean for truth values, Natural for natural numbers, String for text strings, Constant for constants, and Identifier for variables. The Level sort denotes public vs. private confidentiality levels (originally formalized by ' T ' vs ' \perp '), the $O p$ sort denotes binary operations, and $U O p$ denotes unary operations. The Outputkind sort denotes the different channelings of output, here limited to print or sendmail.
2.3 Notation (Identifier naming conventions). We use x to denote a regular variable, and $l x$ to denote a level variable.

The concrete syntax description is specified in (extended) Backus-Naur form, with regular expressions for the tokens [5]. In order to ease the implementation of the Jeeves parser, we have specifically formulated the concrete syntax as an $\operatorname{LL}(1)$ grammar, ${ }^{1}$ because of the then direct applicability of the Haskell monadic parser combinator library [10].

2.4 Definition (concrete Jeeves syntax).

$$
\begin{align*}
& p::=l s t^{*} p s t^{*} \\
& \text { lst }::=\text { let } x x^{*}=e \\
& \text { pst }::=\text { output }\{e\} e \\
& e::=\text { lie } \mid \text { lie } ; e \mid \text { if } e \text { then } e \text { else } e \mid \text { let } x x^{*}=e \text { in } e \quad \text { (Expression) } \\
& \mid \text { level } l x(, l x)^{*} \text { in } e \mid \text { policy } l x: e \text { then } l v \text { in } e \\
& \text { lie }::=\text { loe } \Rightarrow \text { loe } \mid \text { loe } \\
& \text { loe :: = loe || lae |lae } \\
& \text { lae }::=\text { lae \&\& ce } \mid c e \\
& c e::=a e=a e|a e>a e| a e<a e \mid a e \\
& a e::=a e+f e|a e-f e| f e \\
& \text { fe }::=\text { fe pe } \mid \text { pe } \\
& \text { pe }::=\text { lit }|x| \text { context } \\
& |<a e| a e>(l x)|r e c| p e . x|!p e|(e) \\
& \text { lit }::=b|n| s \mid c \tag{Literal}\\
& \text { rec }::=\left\{x e(; x e)^{*}\right\} \mid\{ \} \tag{Record}\\
& x e::=x=p e \tag{Field}\\
& \text { (LogicalImplyExpression) } \\
& \text { (LogicalOrExpression) } \\
& \text { (LogicalAndExpression) } \\
& \text { (ComparisonExpression) } \\
& \text { (AdditiveExpression) } \\
& \text { (FunctionExpression) } \\
& \text { (PrimaryExpression) }
\end{align*}
$$

where $b \in$ Boolean, $n \in$ Natural, $s \in$ String, $c \in$ Constant, and $l x, x \in$ Identifier, $l v \in$ Level, op $\in O p$, uop $\in U O p$, output \in Outputkind

To simplify where potential privacy leaks may appear in a program, we restrict the Jeeves language semantics by imposing a number of simple restrictions. Notably, that statements are only allowed at the top-level of a program. There are two types of (source-level) Jeeves statements: simple let statements that define the global, recursively defined binding environment, and the

[^1]output statements, that induce (output) side effects. Because (output) side effects represent potential privacy leaks, we have simplified matters by only allowing output statements to be stated at the end of a program, thus textually after the global binding environment has been established. Even though this is simply a syntactic decision, it supports a programmer's intuition when to let the semantics apply in this way. By only allowing recursion to appear at the top-level of a Jeeves program, we hereby simplify how and where policy (constraint) side effects can appear, in accordance with a programmer's view.

We proceed by specifying the basic algebraic sorts from Definition 2.2, as concrete lexical tokens, together with their implementation in Haskell 2.6.

2.5 Definition (Jeeves lexical tokens).

2.6 Haskell (Jeeves lexical tokens). Lexical tokens are straight forwardly implemented as Haskell literals. Boolean and String literals are predefined in Haskell. Other literals are mapped to Haskell's Integer and String types.

type Natural	$=$ Integer	12
type Constant	$=$ String	13
type Identifier	$=$ String	14
type Level	$=$ String	15
type BinaryOp	String	16
type UnaryOp	$=$ String	17
type Outputkind	$=$ String	18

2.7 Remark. The implementation of Constant, Identifier, Level, BinaryOp, UnaryOp, and Outputkind does not really reflect the restrictions imposed by the regular expression definition in Definition 2.5. For example, by allowing constants or identifiers to start with a digit. We will instead address these restrictions by the (error) semantics.

Finally, we will re-visit the first of our canonical examples, the enforcement of a naming policy, from Example 1.4. The goal is to informally explain the overall syntactic structure of a simple Jeeves program, as a stepping stone to familiarize a programmer with the language.

2.8 Example (Jeeves name policy program).

```
let name =
    level a in
    policy a: !(context = alice) then bottom in < "Anonymous" | "Alice" >(a)
```

4. let msg = "Author is " + name
5. print \{alice\} msg
6. print \{bob\} msg

This program begins with a sequence of let-statements ('let name...', and 'let msg...'), trailed by a sequence of print-statements ('print alice msg', and 'print bob msg'). We expect the letstatements in line 1 and 4, by means of the underlying semantics, to set up a global (and recursively) defined binding environment (which we shall express as ['name' $\rightarrow \ldots$; 'msg' $\rightarrow \ldots$] in accordance with tradition). It is the print-statements, however, which are causing side effects in terms of printing the values of ' msg ' in line 5 and 6 . We notice that the build-up of constraints by the 'level a in policy a:...' expression in line 2 and 3 , is tacitly expected to be resolved by the semantics. The program captures in many ways the essence of Jeeves' unique capability to "filter" a program outcome: a naming policy, associated with the level variable ' a ', is explicitly defined in terms of a predicate ' n ! (context = alice)' in line 3 ('!' stands for negation), where 'context' is a keyword for the implicit, designated input variable that gets set by the print statements in line 5 and 6. The value of the predicate will in turn decide how the sensitive value '<"Anonymous"|"Alice">' evaluates to either '"Anonymous"' or '"Alice"'. The final outcome results in 'msg' being assigned in line 4 to the result of the policy expression evaluation. To summarize, we have that the inputoutput function is uniquely given by the print-statements in line 5 and 6 . The input is read from the expression, stated between the ' $\{$ ' and the ' $\}$ ', and assigned the designated 'context' variable (here, 'alice' and 'bob'). The output by the two print statements, however, is given by the expression trailing the curley braces (here, 'msg'). For further details on the meaning of this example, we refer to Example 1.4.

In Sec. 8, we show how to run this program with the system developed in this report.

3 The λ_{J} syntax

In this section, we re-state the λ_{J} abstract syntax from the original paper [23, Figure 2], adding a (new) formulation of a λ_{J} program, along a (new) type of expression (thunks). We specify λ_{J} programs, statements, and expressions algebraically in a top-down manner, following the stylistic guidelines in Notation 1.3. We do, however, redefine the notion of a λ_{J} value to be a property over the expression sort, and the error primitive to be redefined from a syntactic value to a semantic entity. Finally, the error primitive is redefined from a syntactic value to a semantic entity, and the () (unit) primitive is removed completely as a value. ${ }^{2}$ All which is necessary to maintain the role of λ_{J} as an intermediary language for Jeeves. The ensemble has been implemented in Haskell with code shown alongside the presentation of the concepts. The Haskell implementation of λ_{J} is designed as a one-to-one mapping from the λ_{J} syntax algebras to Haskell data types, where the basic algebraic sorts and the formal (meta) variables remain shared between the Jeeves and λ_{J} level, as specified in previous sections.

First, we define our notion of a λ_{J} program ' p '. It is specified as a list of mutually recursive (function) bindings ' $x=v e \ldots x=v e$ ' that constitutes the static environment for evaluating the output statements ' $s \ldots s$ '. (It is the 'letrec', which semantically specifies the recursive nature of the bind-

[^2]ings by its traditional meaning [9].) The Statement, Exp, and ValExp algebraic sorts are all being defined later in this section.

3.1 Definition (abstract λ_{J} program syntax).

$$
\begin{aligned}
p \in \text { Program }::=\text { letrec } & \\
& \text { in } \left.\begin{array}{l}
\\
\\
\\
\\
\end{array} \ldots \ldots s\right)
\end{aligned}
$$

where $x \in$ Identifier, ve \in ValExp, $s \in$ Statement, and ValExp \subseteq Exp
The list of bindings, $x=v e \ldots x=v e$, and statements, $s \ldots s$, are auxiliary algebraic sorts.
This definition has a straight forward implementation is Haskell:
3.2 Haskell (abstract λ_{J} program syntax). A program is implemented in terms of a combinator Bindings, and Statements data type. The letrec-defined environment is specifically implemented by the Binding list data type.

```
data Program = P_LETREC Bindings Statements deriving (Ord,Eq)
type Bindings = [Binding]
data Binding = BIND Var Exp deriving (Ord,Eq)
```

The Statement sort is defined as specified in the original paper [23, Figure 2], followed by is straight forward implementation:

3.3 Definition (abstract λ_{J} statement syntax).

$$
s \in \text { Statement }::=\text { output (concretize } e \text { with } e \text {) }
$$

where $e \in \operatorname{Exp}$, output \in Outputkind
3.4 Haskell (abstract λ_{J} statement syntax). The list of statements is straight forwardly implemented by the Statements list data type.
type Statements $=$ [Statement]
data Statement $=$ CONCRETIZE WITH Outputkind Exp Exp deriving (Ord,Eq)
We wish to address the issue of our introduction of thunks, and thereby our need for introducing the sub-sort ValExp of Exp in Definition 3.11. Let us for a moment side-step the fact that the letrecbindings in Definition 3.1 only are allowed to happen to value expressions (' $x=v e$ ') when the static binding environment is established, and instead assume that bindings are allowed to happen over all expressions (' $x=e$ ') as defined in Definiton 3.5. Because Jeeves, and whence λ_{J}, is defined to be an eager language, parsing of an expression ' e ', however, may cause significant, unintended behaviour at binding time, as illustrated by the following λ_{J} program:

$$
\begin{aligned}
& \text { letrec } x=(\text { ack } 100) 100 \\
& \quad \text { in print }(\text { concretize } 5 \text { with } 5)
\end{aligned}
$$

This program binds ' x ' to an instance of the Ackermann function, even though it clearly outputs the number 5 , regardless of the value of (ack 100) 100! The problem is that Ackermann with those
arguments is a number of magnitude 10^{20000} digits! ${ }^{3}$ An eager language will cause this enormous number to be calculated at binding time, leading to a halt before any print statement has been evaluated.

The established manner to handle scope is to introduce 'thunks' as a way of "wrapping up" undesired expressions with a syntactic containment annotation. Thereby allowing binding resolution to be delayed until the correct scope is established. Precisely as prohibiting "evaluation under lamba" is a common way of "wrapping up" function evaluation. Technically, to put it on weak head normal form.

Because the original λ_{J} syntax does not allow this, we have extended the expression sort with 'thunk e', and created a special subsort ValExp which contains expressions on weak head normal form. These features will in particular show up as useful features when specifying and implementing the λ_{J} translation. A correct version of the above program hereafter is:

$$
\begin{aligned}
& \text { letrec } x=\operatorname{thunk}((\text { ack } 100) 100) \\
& \text { in print }(\text { concretize } 5 \text { with } 5)
\end{aligned}
$$

We proceed by restating the abstract syntax according to the discussed considerations.

3.5 Definition (abstract λ_{J} expression syntax).

$$
\begin{aligned}
e \in \operatorname{Exp}:: & =b|n| s|c| x|l x| \text { context } \\
& |\lambda x . e| \text { thunk } e \\
& \mid e \text { op } e \mid \text { uop } e \\
& \mid \text { if } e \text { then } e \text { else } e \\
& \mid e e \\
& \mid \text { defer } l x \text { in } e \\
& \mid \text { assert } e \text { in } e \\
& \mid \text { let } x=e \text { in } e \\
& \mid \text { record } f i: e \cdots f i: e \\
& \mid e . f i
\end{aligned}
$$

where $b \in$ Boolean, $n \in$ Natural, $s \in$ String, $c \in$ Constant,
and $o p \in O p, u p \in U O p, l x, x \in V a r$, fi \in FieldName
Here, we have tacitly assume that the Identifier sort has been partitioned into two separate namespaces: $l x, x \in V a r$, and $f i \in$ FieldName, with the obvious meaning.
3.6 Remark (empty expression). The empty record is represented by the keyword record.
3.7 Remark (defer expression). The original defer expression syntax come in two forms (with types omitted): 'defer $l x\{e\}$ default v ' and 'let $l=$ defer $l x$ default true v in e ' in Yang et al [23, Figure 2,EDEFER] and [23, Figure 6,(TR-LEVEL)] respectively. The version we have chosen to formalize, is a modification in a couple of ways yet preserving the intended translation semantics. First, the 'default true' part is omitted from the syntax, because this contribution from the Jeeves translation is so trivial that it can be dealt with by the evaluation semantics instead c.f. Definition 7.36. Second, the contribution from ' $\{e\}$ ' is none according to Yang et al [23, Figure 6,(TR-LEVEL)]. Thus, we have allowed a modified version 'defer $l x$ in e^{\prime} as an expression and ajusted the semantics accordingly to still be in line with the intent of Yang et al [23].

[^3]3.8 Remark (assert expression). The original syntax, 'assert e ', has been modified in accordance with the original translation scheme in Yang et al [23, Figure 6] to include an 'in e ' part. (A fact that equally eliminates the need for the unit primitive () as originally stated in Yang et al [23, Figure 3].) These decisions render an assert expression on the form: 'assert $(e \Rightarrow(l x=b))$ in e '.
3.9 Definition (λ_{J} lexical tokens). Lexical tokens are the same as for Jeeves c.f. Definition 2.5. Level (' $l x$ ') tokens are by default logical variables at the λ_{J} level.
3.10 Haskell (abstract λ_{J} expression syntax). The algebraic constructors for the Exp sort are implemented as a one-to-one map to Haskell constructors for the Exp datatype. The Op sort is implemented by the datatype Op, and $U O p$ is implemented by UOp. The individual operations are implemented with (self-explanatory) Haskell constructors.

```
data \(\operatorname{Exp}=\mathrm{E} \_\)BOOL Bool | E_NAT Int | E_STR String | E_CONST String \(\quad 25\)
    | E_VAR Var | E_CŌNTEXT
    | E_LAMBDA \(\operatorname{Var} \operatorname{Exp} \mid E \_\)THUNK Exp
    | E_OP Op Exp Exp | E_UOP UOp Exp
    | E_IF Exp Exp Exp | E_APP Exp Exp
    | E_DEFER Var Exp | E_ASSERT Exp Exp
    | E_LET Var Exp Exp
    | E_RECORD [(FieldName,Exp)]
    | E_FIELD Exp FieldName
    deriving (Ord,Eq)
data \(O p=O P \_P L U S\left|O P \_M I N U S\right| O P \_L E S S \mid O P \_G R E A T E R \quad 36\)
    \(\mid O P\) _EQ |OP_AND \(\mid O P\) _OR |OP_IMPLY
    deriving (Ord,Eq)
data \(\mathrm{UOp}=\mathrm{OP} \_\)NOT deriving (Ord,Eq)
data FieldName \(=\) FIELD_NAME String deriving (Ord,Eq)
data Var \(=\) VAR String deriving (Ord,Eq)
data \(\mathrm{Op}=\mathrm{OP}\) _PLUS |OP_MINUS |OP_LESS |OP_GREATER 36
\(\mid O P\) _EQ |OP_AND | OP_OR|OP_IMPLY
deriving (Ord,Eq)
data \(\mathrm{UOp}=\mathrm{OP} \_\)NOT deriving (Ord,Eq)
data FieldName = FIELD_NAME String deriving(Ord,Eq)
data Var \(=\) VAR String deriving (Ord,Eq)
```

Finally, we need to characterize the notion of a value expression, among which is the notion of a thunk-expression as discussed above. As illustrated by the Ackermann program example, the problem is that "problematic" expressions might get unintentionally evaluated at compile-time instead of in a run-time scope, because the language is eager. To make sure that only expressions that are "safe" to bind in Definition 3.1 are in fact those allowed in the static binding environment, we introduce the notion of a value expression ('ve') as an expression on weak head normal form. To summarize, such expressions in λ_{J} may, as expected, take one of three forms:

- constant expressions (literals or records of values),
- non-constant functions (' $\lambda x . e$ '), or
- constant functions ('thunk e ').

To be precise, we specify an auxiliary value sort ValExp $\subseteq E x p$ with the purpose of syntactically capturing those sets of expressions, followed by its Haskell implementation:

3.11 Definition (value expressions).

$$
\begin{aligned}
& \text { ve } \in \operatorname{ValExp}::=b|n| s|c| \lambda x . e \mid \text { thunke } \mid \text { record } f i_{1}: v e_{1} \ldots f i_{m}: v e_{m} \\
& \quad \text { where } m \geq 1
\end{aligned}
$$

3.12 Haskell (value expressions). The λ_{J} value property is straight forwardly implemented as a Haskell predicate isValue over the Exp datatype.

isValue (E _ BOOL _) = True	44
isValue (E_NAT _) = True	45
isValue (E_STR _) = True	46
isValue (E_CONST _) = True	47
isValue ($\mathrm{E}_{\text {_LAMBDA _ _ }}$) = True	48
isValue (E_{-}THUNK _) = True	49
isValue (E_RECORD xes) = and [isValue e \| (_, e) ¢xes]	50
isValue _ = False	

4 The λ_{J} translation

In this section, we formally present a syntax directed translation of the concrete Jeeves syntax to λ_{J}, alongside its Haskell implementation. The translation follows the original outline in Yang et al [23, Fig. 6] on critical syntax parts, but has been extended to accomodate modifications as accounted for in Section A, 2, and 3. Specifically, we have added a translation from a Jeeves program to our notion of a λ_{J} program.

The translation is formalized as a derivation, marked by $\llbracket \rrbracket$ 』, over the program, expression, and token sorts. A derivation is a particular simple form of compositional translations that is characterized by the fact that syntax cannot be re-used, and side-conditions cannot be stated, which makes them particularly easy to reason about termination, and straightforward to implement.

The Haskell implementation is given as a set of Jeeves parsers, which builds abstract λ_{J} syntax trees in accordance with the abstract syntax outlined in Section 3. The parsers are implemented using the Haskell monadic parser combinator library [10], which is also included in Appendix B.2.

4.1 Definition (translation of Jeeves program).

where

$$
\begin{aligned}
e_{i}^{\prime \prime \prime}= & \begin{cases}\text { thunk } \llbracket e_{i} \rrbracket & \text { if } n_{i}=0 \wedge \llbracket e_{i} \rrbracket \notin \operatorname{ValExp} \\
\lambda x_{i 1} \ldots \lambda x_{i n_{i}} \cdot \llbracket e_{i} \rrbracket & \text { otherwise }\end{cases} \\
& 1 \leq i \leq m, m \in \mathbb{N}, n_{i} \in \mathbb{N}_{0}
\end{aligned}
$$

and

$$
k, m \in \mathbb{N}, f, x \in \operatorname{Var}, e, e^{\prime}, e^{\prime \prime}, e^{\prime \prime \prime} \in E x p, \text { output } \in \text { Outputkind }
$$

Using the introduced notation, we begin by explaining the specifics of a constant function (that is a function with no function arguments):
4.2 Remark (constant function). We tacitly assume that given $m \in \mathbb{N}$ functions, originally defined by m let-statements, and given some function ' $f_{i}, 1 \leq i \leq m$ ', we have that ' $n_{i}=0$ ', which corresponds to ' f_{i} ' being a constant function. In particular it entails that ' $e_{i}^{\prime \prime \prime}=\llbracket e_{i} \rrbracket$ ', where the expression-translation ‘ $\llbracket e_{i} \rrbracket$ ' is assumed to be some λ_{J} expression.

The where-clause specifies the shape of the translated expressions, symbolized by ' $e_{i}^{\prime \prime \prime}$ ', as it is statically bound in the recursive (function) binding environment by the equation ' $f_{i}=e_{i}^{\prime \prime \prime}$ ' (for some i where $m \in \mathbb{N}, 1 \leq i \leq m$). A problematic scoping situation might occur during translation, when ' f_{i} ' defines a constant function as discussed in detail in Section 3. Because ' $e_{i}^{\prime \prime \prime}$ ' may equal any expression form, we have to confine any impending static evaluation by wrapping all non-value expressions with a 'thunk'. It means vice versa, that constant functions which are in fact value expressions can be safely bound:
4.3 Remark (constant function translation). If for some $m \in \mathbb{N}, 1 \leq i \leq m$ we have $n_{i}=0$ (no function arguments), and $\llbracket e_{i} \rrbracket \in \operatorname{ValExp}$ (value expression), then the where-clause of the translation rule entails $e_{i}^{\prime \prime \prime}=\llbracket e_{i} \rrbracket$ (function is a constant value expression).

From Definition 3.11 follows immediately the following invariant:
4.4 Lemma (binding environment invariant). The right hand side of the letrec-function-bindings are all value expressions, i.e., for some $m \in \mathbb{N}$ we have

$$
\forall i \in \mathbb{N}, 1 \leq i \leq m, n_{i} \in \mathbb{N}_{0}: e_{i}^{\prime \prime \prime} \in \operatorname{ValExp}
$$

4.5 Haskell (translation of Jeeves program).

```
programParser :: FreshVars }->\mathrm{ Parser Program
programParser xs = do recb }\leftarrow\mathrm{ manyParser recbindParser xs1 success 53
                            psts }\leftarrow\mathrm{ manyParser outputstatParser xs2 success
                            return (P_LETREC recb psts)
    where ~(xs1,xs2) = splitVars xs
recbindParser :: FreshVars }->\mathrm{ Parser Binding
recbindParser xs = do token (word "let")
    f}\leftarrow\mathrm{ token ident
    e}\leftarrow\mathrm{ argumentAndExpThunkParser xs
    optional (token (word ";"))
    return (BIND (VAR f) e)
argumentAndExpThunkParser :: FreshVars }->\mathrm{ Parser Exp
argumentAndExpThunkParser xs = do vs }\leftarrow\mathrm{ many (token ident) -- accumulates function
```

token (word "=")

```
```

token (word "=")

```
```

else return (foldr f e vs) -- guaranteed to be a value by 7 the guard

```
```

 where
 f v1 e1 = E_LAMBDA (VAR v1) e173
    ```
outputstatParser ：：FreshVars \(\rightarrow\) Parser Statement ..... 75
```

outputstatParser xs = do output }\leftarrow\mathrm{ outputToken }\quad7
token (word "{") 77
e1 \leftarrowexpParser xs1 -- should evaluate to concrete value 78
token (word "}") 79
e2 \leftarrow expParser xs2
optional (token (word ";")) 81
return (CONCRETIZE_WITH output e2 e1) 82
where ~(xs1,xs2) = splitVars xs

The expression translation follows the concrete expression syntax structure in Definition 2．4， from which we have tacitly adopted all algebraic specifications．

4．6 Definition（translation of Jeeves expressions）．

$$
\begin{aligned}
& \llbracket e_{1} ; \ldots e_{n} ; e \rrbracket=\text { let } x_{1}=\llbracket e_{1} \rrbracket \text { in } . . . \text { let } x_{n}=\llbracket e_{n} \rrbracket \text { in } \llbracket e \rrbracket \\
& \text { where } x_{1} \ldots x_{n} \text { fresh, } 0 \leq n \\
& \text { 【if } e_{1} \text { then } e_{2} \text { else } e_{3} \rrbracket=\text { if } \llbracket e_{1} \rrbracket \text { then } \llbracket e_{2} \rrbracket \text { else } \llbracket e_{3} \rrbracket \\
& \llbracket \text { let } x x_{1} \ldots x_{n}=e_{1} \text { in } e_{2} \rrbracket=\text { let } x=\lambda x_{1} \ldots \lambda x_{n} . \llbracket e_{1} \rrbracket \text { in } \llbracket e_{2} \rrbracket \\
& \text { where } 0 \leq n \\
& \llbracket \text { level } l x_{1}, \ldots, l x_{n} \text { in } e \rrbracket=\operatorname{defer} l x_{1} \text { in } \ldots \text { in defer } l x_{n} \text { in } \llbracket e \rrbracket \\
& \text { where } 1 \leq n \\
& \llbracket \text { policy } l x: e_{1} \text { then } l v \text { in } e_{2} \rrbracket=\operatorname{assert}\left(\llbracket e_{1} \rrbracket \Rightarrow(l x=\llbracket l v \rrbracket)\right) \text { in } \llbracket e_{2} \rrbracket \\
& \llbracket e o p e \rrbracket=\llbracket e \rrbracket o p \llbracket e \rrbracket \\
& \llbracket f e p e \rrbracket=\llbracket f e \rrbracket \llbracket p e \rrbracket \\
& \text { 【 context】 }=\text { context } \\
& \llbracket<a e_{1}\left|a e_{2}\right\rangle(l x) \rrbracket=\text { if } l x \text { then } \llbracket a e_{2} \rrbracket \text { else } \llbracket a e_{1} \rrbracket \\
& \llbracket\left\{x_{1}=e_{1} ; \ldots ; x_{n}=e_{n}\right\} \rrbracket=\operatorname{record} x_{1}=\llbracket e_{1} \rrbracket \ldots x_{n}=\llbracket e_{n} \rrbracket \\
& \text { where } 0 \leq n \\
& \llbracket p e . x \rrbracket=\llbracket p e \rrbracket . x \\
& \llbracket!p e \rrbracket=!\llbracket p e \rrbracket \\
& \llbracket(e) \rrbracket=\llbracket e \rrbracket \\
& \llbracket l i t \rrbracket=l i t
\end{aligned}
$$

4．7 Remark（simple expression sequence translation）．An expression sequence＇e＇with only one ex－ pression is described by index＇$n=0$ ．
4．8 Remark（simple let expression translation）．A let expession＇let $x=e_{1}$ in e_{2}＇with only one vari－ able binding is described by index＇$n=0$＇．
4．9 Remark（empty record translation）．We represent an empty record by the index＇$n=0$＇，and its translation by the keyword record．

The expression translation is implemented as a Jeeves expression parser that builds abstract λ_{J} expression syntax trees, c.f., Definition 3.5. Recall that all parsers are implemented using the Haskell monadic parser combinator library [10], which is explicitly included in Appendix B.2.

4.10 Haskell (translation of Jeeves expressions).

```
expParser :: FreshVars -> Parser Exp 84
expParser xs = do es }\leftarrow manyParser1 semiUnitParser xs1 (token (word ";"))
            return (snd (foldr1 f (zip xs2 es)))
    where
        f (x1,e1) (x2,e2) = (x1, E_LET x1 e1 e2)
        88
    (xs1,xs2) = splitVars xs
    semiUnitParser xs = ifParser xs HH letParser xs H H levelParser xs HH policyParser xs 90
        H+ logicallmplyParser xs
ifParser xs = do token (word "if")
        e1 \leftarrow expParser xs1
        token (word "then")
        e2 \leftarrow expParser xs2
        token (word "else")
        e3 \leftarrow expParser xs3
        return (E_IF e1 e2 e3)
    where }\mp@subsup{}{~}{~}(xs1,xs2,xs3)= splitVars3 xs
letParser xs = do token (word "let")
            x}\leftarrow token iden
            xse1 }\leftarrow argumentAndExpParser xs
            token (word "in")
            e2 \leftarrow expParser xs2
            return (E LET (VAR x) xse1 e2)- - - -105
```



```
argumentAndExpParser xs = do vs \leftarrowmany (token ident) 109
                        token (word "=") 110
                        e \leftarrowexpParser xs 111
        return (foldr f e vs) 112
    where
    f v1 e1 = E_LAMBDA (VAR v1) e1
        114
levelParser xs = do token (word "level")
                        lx < levelldent 117
    lxs \leftarrow many commaTokenLevelldent 118
    token (word "in") 119
    e expParser xs1 120
    return (foldr f e (lx:|xs))
    where }12
    commaTokenLevelldent = do token (word ",") 123
        lx \leftarrow levelldent 124
        return lX 125
```

```
    f lx e = E_DEFER lx e }\quad12
    ~(xs1,lys) = splitVars xs
                127
policyParser xs = do token (word "policy") 129
    lx}\leftarrow levellden
    token (word ":")
    e1 \leftarrow expParser xs1 132
    token (word "then") 133
    lv \leftarrow levelToken 134
    token (word "in") 135
    e2 \leftarrow expParser xs2 
    return (E_ASSERT (E_OP OP_IMPLY e1 (E_OP OP_EQ (E_VAR lx) Iv)) 137
        e2)
    where
        ~(xs1,xs2) = splitVars xs 139
        logicallmplyParser xs = do loe }\leftarrow\mathrm{ logicalOrParser xs1 141
        loes }\leftarrow\mathrm{ optional ( logicallmplyTailParser xs2) 142
        return (foldl f loe loes) 143
    where 144
    f loe1 loe2 = E_OP OP_IMPLY loe1 loe2 145
    ~(xs1,xs2) = splitVars xs-
    logicallmplyTailParser xs = do token (word " }=>\mathrm{ ")
        loe }\leftarrow logicalOrParser xs 149
        return loe 150
        logicalOrParser xs = do lae \leftarrow logicalAndParser xs1 152
        laes \leftarrow many ( logicalOrTailParser xs2) 153
        return (foldl f lae laes) 154
    where 155
    f lae1 lae2 = E_OP OP_OR lae1 lae2 
    ~(xs1,xs2) = splitVars xs 157
logicalOrTailParser xs = do token (word " || ")
    lae \leftarrow logicalAndParser xs 160
    return lae 161
logicalAndParser xs = do ce \leftarrow compareParser xs1 163
    ces \leftarrow many (logicalAndTailParser xs2) 164
    return (foldl f ce ces) 165
    where 166
    f ce1 ce2 = E_OP OP_AND ce1 ce2 167
    ~(xs1,xs2) = splitVars xs 
logicalAndTailParser xs = do token (word "&& ")
    ce < compareParser xs 171
    return ce 172
```

compareParser xs = do ae \leftarrow additiveParser xs1 174
copae \leftarrow optional (compareTailParser xs2) 175
if (null copae) then return ae 176
else return (E_OP (fst (head copae)) ae (snd (head copae)))
where ~(xs1,xs2) = splitVars xs 178
compareTailParser :: FreshVars -> Parser (Op,Exp) 180
compareTailParser xs = do cop \leftarrow compareOperator 181
ae }\leftarrow\mathrm{ additiveParser xs 182
return (cop,ae) 183
compareOperator = wordToken "=" OP_EQ +H+ wordToken "<" OP_LESS + + wordToken ">" 185
OP _GREATER
additiveParser xs = (do fe \leftarrow functionParser xs1 187
aopae \leftarrow optional (additiveTailParser xs2) 188
if (null aopae) then return fe else return ((head aopae) fe))}18
H+ 190
(do aopae \leftarrow additiveTailParser xs 191
return (aopae (E_NAT 0)))}19
where ~(xs1,xs2) = splitVars xs 193
additiveTailParser :: FreshVars }->\mathrm{ Parser (Exp }->\mathrm{ Exp) 195
additiveTailParser xs = do aop \leftarrow additiveOperator 196
fe }\leftarrow\mathrm{ functionParser xs1 197
aopae \leftarrow optional (additiveTailParser xs2) 198
if (null aopae) then return (}\lambdax->\mathrm{ E_OP aop x fe) 199
else return (}\lambda\textrm{r}->\mathrm{ (head aopae) (E_OP aop x fe))
where ~(xs1,xs2) = splitVars xs 201
additiveOperator _ wordToken "+" OP PLUS +1+
wordToken "_ OP MINUS
functionParser xs = do pe \leftarrow primaryParser xs1 205
pes \leftarrow many (primaryParser xs2) 206
return (foldl E_APP pe pes) 207
where ~(xs1,xs2) = splitVars xs 208
primaryParser xs = do pe \leftarrow primaryTailParser xs 211
fis \leftarrow fLookup 212
return (foldl E_FIELD pe fis) 213
fLookup :: Parser [FieldName]
fLookup = many (do word "."
fi}\leftarrow\mathrm{ ident 217
return (FIELD_NAME fi))}21
219

```
```

primaryTailParser xs $=$ literalParser xs $H+$ regularldent $H+\quad 220$
wordToken "context" E_CONTEXT +1+ 221
sensiValParser xs H recordParser xs H H 222
unaryParser xs +H groupingParser xs 223
sensiValParser xs = do token (word "<")
e1 \leftarrow additiveParser xs1 226
token (word "|") 227
e2 \leftarrow additiveParser xs2 228
token (word ">") 229
token (word " (") 230
lx \leftarrow levelldent 231
token (word ")") 232
return (E_IF (E_VAR Ix) e2 e1) 233
where $\sim(x s 1, x s 2)=$ splitVars xs $\quad 234$
recordParser xs $=$ do token (word "\{") 236
fies \leftarrow manyParser fieldParser xs (token (word ";")) 237
token (word "\}") 238
return (E_RECORD fies) 239
fieldParser :: FreshVars \rightarrow Parser (FieldName,Exp) 241
fieldParser $x s=$ do fi \leftarrow token ident 242
token (word "=") 243
pe \leftarrow primaryParser xs 244
return (FIELD_NAME fi,pe) 245
unaryParser xs $=$ do token (word "!")
pe \leftarrow primaryParser xs $\quad 248$
return (E_UOP OP_NOT pe) 249
groupingParser xs $=$ do token (word " (") 251
e $\leftarrow \operatorname{expParser} x$ xs 252
token (word ")") 253
return e 254

```
4.11 Definition (translation of Jeeves lexical tokens). The Jeeves lexical tokens, specified in Definition 2.5, formally carries over to \(\lambda_{\mathrm{J}}\) as the identical token sets, except for Level tokens, which maps to Boolean in the following way:
\[
\llbracket t o p \rrbracket=\text { true } \quad \llbracket \text { bottom } \rrbracket=\text { false }
\]

\subsection*{4.12 Haskell (translation of Jeeves lexical tokens).}

The identity mapping of the Jeeves token set (except for level-tokens) to \(\lambda_{J}\) token set, is implemented by letting the parser "build" the equivalent implementation of those tokens (Haskell 2.6) directly as represented in \(\lambda_{J}\) (Haskell 3.10). Level tokens, however, are represented as boolean expressions c.f. Definition 4.11.

For reasons of efficiency, we do distinguish between the representation of "regular" variables (' \(x\) ') and "level" variables (' \(l x\) ') in our implementation, except when translating sensitive values.

Notice the definition of a "helper", the literalParser, which parses Jeeves literals directly.
```

literalParser xs = booleanToken +H naturalToken +1+ stringToken +H+ constantToken
booleanToken = wordToken "true" (E_BOOL True)
H+ wordToken "false" (E_BOOL False)
naturalToken = do n }\leftarrow\mathrm{ token nat
return (E_NAT n)
stringToken = do cs }\leftarrow\mathrm{ token string
return (E_STR cs)
constantToken = do cs }\leftarrow\mathrm{ token constant
return (E_CONST cs) 267
regularldent :: Parser Exp 269
regularldent = do }x\leftarrow\mathrm{ token ident
return (E_VAR (VAR x)) 271
levelldent :: Parser Var 273
levelldent = do lx }\leftarrow\mathrm{ token ident 274
return (VAR Ix) 275
levelToken :: Parser Exp 277
levelToken = wordToken "top" (E_BOOL True) +1+ wordToken "bottom" (E_BOOL False) 278
outputToken = token (word "print") +1+ token (word "sendmail") 280

We exploit that Haskell is a lazy language that permits cyclic data definitions to maintain an infinite supply of fresh variable names (a need reflected by Definition 4.6 and Definition 7.36).
4.13 Haskell (fresh variables). We implement an infinite supply of distinct variables (and infinite, disjoined, derived sublists) by the variable generator iterate. (The definition of iterate is in fact cyclic/infinite in its definition.)

```
type FreshVars = [Var] 281
vars :: FreshVars 283
vars = map (\n->VAR ("x"++show n)) (iterate (\n->n+1) 1) 284
splitVars :: FreshVars -> (FreshVars,FreshVars) 286
splitVars xs = (odds xs, evens xs) where 287
    odds ~(x:xs) = x : evens xs 288
    evens ~(x:xs) = odds xs 289
splitVars3 :: FreshVars }->\mathrm{ (FreshVars,FreshVars,FreshVars) 291
splitVars3 vs = (xs, ys, zs) where 292
    (xs,yzs) = splitVars vs 293
    (ys,zs)= splitVars yzs 294
```

Finally, we present a formal translation of the first of our canonical examples: the Jeeves naming policy program from Example 1.4 and 2.8.

4.14 Example (Name policy program translation).

```
\(\left[\begin{array}{l}\text { let } n a m e=\text { level } a \text { in policy } a:!(\text { context }=\text { alice }) \text { then bottom in }<" \text { Anonymous" } \mid " A l i c e ">(a) \\ \text { let } m s g=" \text { Author } \text { is } "+\text { name }\end{array}\right]\)
print alice \(m s g\)
print bob \(m s g\)
```

```
letrec name \(=\) thunk \((\) defer \(a\) in \((\) assert \((!(\) context \(=\) alice \()=>(a=\) false \())\) in \(\llbracket<"\) Anonymous" \(\mid "\) Alice" \(>(a) \rrbracket))\)
    \(m s g=\) thunk ("Author is " + name)
    in print (concretize msg with alice)
        print (concretize \(m s g\) with \(b o b\) )
        where
```

 \(\llbracket<"\) Anonymous" \(\mid "\) Alice" \(>(a) \rrbracket=\) if \(a\) then "Alice" else "Anonymous"

5 Scoping and symbolic normal forms

In this section we specify the notions of scope and symbolic normal forms of λ_{J} for use in later sections. According to Yang et al [23, Figure 3], dynamic expression evaluation generally speaking happens in 3 consecutive steps:

1. reduction all the way to temporary normal form that may still contain dynamic, unresolved symbolic sub-expressions and constraints, followed by
2. constraint resolution, which resolves the consequences of knowing the value of the input variable "context", to find a solution to the program constraint set, and finally,
3. completing the reduction of the temporary normal forms, instantiated with the constraint solution.

The semantic set of temporary normal forms, which are denoted symbolic normal forms in accordance with Yang et al [23, Figure 2], is specified by the algebraic Value sort in Definition 5.1. Depending on whether they contain unresolved residues, they are either categorized as symbolic values or concrete values. In order to semantically reflect lexical scoping during expression reduction, we have added the notion of a closure compared to [23, Fig. 2]). Generally speaking, a closure consists of a function expression, constant or non-constant, together with an environment component ρ, which holds the set of (static) variable bindings of that expression. In λ_{J}, such closures take the form: (thunk $e, \rho),(\lambda x . e, \rho)$. We define closures as concrete (symbolic) normal forms, i.e., as concrete values of the Value sort.

In the remainer of this section we formally present the symbolic normal forms followed by a specification of the static λ_{J} binding environment, all in tandem with their Haskell implementations. The former specification is presented as an algebraic specification in Definition 5.1, the latter as as a partial domain function in Definition 5.5.

5.1 Definition (symbolic normal forms).

$$
\begin{aligned}
v \in \text { Value }: & =\kappa \mid \sigma \\
\kappa \in \text { ConcreteValue }: & =b|n| s|c| \text { error } \\
& |(\lambda x . e, \rho)| \text { (thunk } e, \rho) \\
& \mid \text { record } x: \kappa \cdots x: \kappa \\
\sigma \in \text { SymbolicValue }:: & =x|l x| \text { context } \mid \sigma \cdot x \\
& \mid \sigma \text { op } v|v o p \sigma| \text { uop } \sigma \\
& \mid \text { if } \sigma \text { then } v \text { else } v \\
& \mid \text { record } x: \sigma x: v \cdots x: v \\
& \mid \text { record } x: v x: \sigma \cdots x: v \\
& \vdots \\
& \mid \text { record } x: v x: v \cdots x: \sigma
\end{aligned}
$$

where $b \in$ Boolean, $n \in$ Natural, $s \in$ String, $c \in$ Constant, and $x \in$ Identifier, $\rho \in$ Environment.
5.2 Remark (error normal form). Following Yang et al [23, Fig. 2], we have added error as a concrete normal form to reflect a semantically erroneous evaluation state.
5.3 Remark (record normal forms). We have added two distinct normal forms of the record data structures. A record where all fields are on concrete normal form (κ) is itself on concrete normal form (κ). A record where "at least" one field is on symbolic normal form (σ) is on symbolic normal form (σ).
5.4 Haskell (symbolic normal forms). The algebraic Value constructors for the Value sort are implemented as Haskell constructors for the Value datatype. The distinction between concrete and symbolic is implemented by the predicates isConcrete and isSymbolic over Value.

```
data Value = -- Concrete values 295
    V_BOOL Bool | V_NAT Int | V_STR String | V_CONST String | V ERROR 296
    | V_LAMBDA Var Exp Environment | V_THUNK Exp Environment _
    | V_RECORD [(FieldName,Value)] 298
    -- Symbolic values
    | V_VAR Var | V_CONTEXT 300
    | V_OP Op Value Value | V_UOP UOp Value 301
    | V_IF Value Value Value | V_FIELD Value FieldName 
    deriving (Ord,Eq)
```



```
isConcrete (V_NAT _) = True 306
isConcrete (V_STR _) = True 307
isConcrete (V_CONST _) = True 308
isConcrete (V_ERROR) = True 309
isConcrete (V_LAMBDA ___) = True 
isConcrete (V_THUNK _-) = True 
isConcrete (V_RECORD xvs) = all ( }\lambda\textrm{b}->\textrm{b})[\mathrm{ [isConcrete v | (_,v) }\leftarrowxvs] 312
```

isConcrete _ False $\quad{ }_{313}$
isSymbolic $v=$ not (isConcrete v)
5.5 Definition (static binding environment). The concept of a static binding environment ρ is formalized in terms of new semantic meta-notation on λ_{J} variables and values:

- ρ denotes an environment that maps variables to (constant or symbolic) values,
- $\rho[x \mapsto v]$ denotes an environment obtained by extending the environment ρ with the map x to v, and
- $\rho(x)$ denotes the value obtained by looking up x in the environment.

Environment ρ is recursively defined as a partial domain function c.f. Schmidt [20]:

$$
\begin{aligned}
& \rho: \text { variables } \rightarrow \text { Value }_{\perp} \\
& \text { For all } y \in \operatorname{DOM}(\rho[x \mapsto v]): \\
& \rho[x \mapsto v](y)={ }_{\text {def }} \begin{cases}v & \text { if } y=x \\
\rho(y) & \text { if } y \neq x\end{cases} \\
& \epsilon(y)==_{\operatorname{def}} \lambda y . \perp
\end{aligned}
$$

where ϵ denotes the empty environment, and the co-domain $V_{\text {alue }}^{\perp}$ is the (lifted) domain of semantic values.
5.6 Haskell (static binding environment). We use standard Haskell maps to implement the static binding environment in a straight forward manner.
type Environment $=$ Map Var Value

- $\rho(x)$ is implemented by rho! x
- $\rho[x \mapsto v]$ is implemented by insert $\mathrm{x} v$ rho
- ϵ, aka λy. \perp, is implemented by empty

6 The constraint environment

In this section, we describe the constraint environment which is created at the λ_{J}-level during program execution, in accordance with Yang et al [23, Fig. 3]. The ensemble of constraints has been defined as an additional component to the (static) binding environment of the dynamic λ_{J} semantics. As mentioned in the three step description of Section 5, the first part of a λ_{J}-evaluation causes constraints to be accumulated as the privacy enforcing expressions get evaluated, followed by a constraint resolution step, conditioned by the known value of the input. The actual constraint resolution is side stepped in the original semantics by Yang et al [23, Fig. 3], and simply reduced to the question of whether there exists a solution which solves the constraint set or not. Constraint programming systems in fact combines a constraint solver and a search engine in a very (monadic)
flexible way as described by others [21]. In this report, however, we simply analyse the monadic structure of the constraint set semantics.

A constraint environment is divided into two base sets of constraints: the current set of constraints denoted by the algebraic Σ sort (hard constraints), and the constraints on default values for logical variables, denoted by the algebraic Δ sort (soft constraints), following standard constraint programming conventions [14, 18].

The specification of the hard constraints, Σ, is a result of constraints build up in connection with a defer and assert expression evaluation, c.f. Yang et al [23, Fig. 3,(e-DEFER),(E-ASSERT)] as "the set of constraints that must hold for all derived outputs". An assert expression is specified by 'assert e_{1} in e_{2} ', where ' e_{1} ' is a logical expression by which privacy policies get introduced c.f. Yang et al [23, Fig. 6,(T-POLicy)] as hard constraints. The extension of Σ with privacy policies ' e_{1} ' is reflected by the (E-ASSETCONSTRAINT) and (E-ASSERT) rule. The extensions have the form ' $\mathcal{G} \Rightarrow v_{e_{1}}$ ', where ' $v_{e_{1}}$ ' is the result value from evaluating ' e_{1} ', and ' \mathcal{G} ' called the path condition is explained below. With the modifications and assumptions in Remark 3.7, a defer expression is specified by 'defer $l x$ in e ', where ' $\{v\}$ ' in the original syntax is left unspecified by the translation [23, Fig. 6,(TR-LEVEL),Fig. 3, (E-DEFER)]. In this syntax form, a defer expression merely has become a reflection of the introduction of level variables c.f. [23, Fig. 3,(E-DEFER)]. The extension of Σ thus becomes reflected by the logic expression ' $\mathcal{G} \Rightarrow\left[x \mapsto x^{\prime}\right]$ '. The (α) renaming ' $\left.x \mapsto \mapsto x^{\prime}\right]^{\prime}$ of ' x ' with a fresh (logical) variable ' x ', follows from the fact that the constraint sets have no notion of scope. Thus, all logical variable names must be declared as globally unique.

The specifications of the soft constraints, Δ, is another result of constraint build up in connection with a defer expression evaluation, as described by Yang et al [23, Fig. 3,(E-DEFER)] as "the constraints only used if consistent with the resulting logical environment". This build up, however, is concerned with any logical constraints imposed directly on the variables in terms of default values, etc. As explained in Remark 3.7, we tacitly assume the logical ' x ' variable to take the default value 'true' during translation according to Yang et al [23, Fig. 6], something which is directly reflected in Definition 7.36, as well as in the Δ specification in Definition 6.1. Since hard and soft constraints are extended in tandem c.f. Yang et al [23, Fig. 3, (E-DEFER)], we tacitly assume the default constraint is only imposed on a globally unique (fresh) variable name which we denote ' x '. Because we have introduced an additional lexical scoping mechanism (' ρ ') in our formalizations, we will handle renaming directly at the scoping level c.f. Definition 7.36, i.e., with ' $\rho\left[x \mapsto x^{\prime}\right]$ ' alone. This simplifies the specification of hard constraints and soft constraints as described by Definition 6.1.

A path condition consists of a conjunction of symbolic values and negated symbolic values, which is used to describe the trail (or path) of symbolic (unresolved) assumptions conditioning some expression evaluation. The only place during expression evaluation where the path condition is extended, c.f. Definition 7.32, is when a conditional expression in the style

$$
\text { 'if } \sigma_{1} \text { then } e_{2} \text { else (if } \sigma_{1}^{\prime} \text { then } e_{2}^{\prime} \text { else } e_{3}^{\prime} \text {)' }
$$

is evaluated. In this case, the conditions are symbolic values, which will depend on the constraint resolution later to be resolved. There are thus two possible ways a symbolic evaluation of this if-expression can take place. If ' σ_{1} ' is assumed to become true (the ' e_{2} ' is evaluated), or if ' $\neg \sigma_{1}$ ' is assumed to become true (the 'if σ_{1}^{\prime} then e_{2}^{\prime} else e_{3}^{\prime} ' is evaluated). The path condition simply keeps track of which assumptions have been made by making a conjunction of all such presumed conditions prior to an evaluation. In our example, we thus have that the path condition ' $\neg \sigma_{1} \wedge \sigma_{1}^{\prime}$ ', holds prior to ' e_{2}^{\prime} ' evaluation. In Definition 6.1, we specify a path condition this way and denote it \mathcal{G}. It is defined as an element of the algebraic PathCondition sort, together with the algebraic notation for the constraint environment, Σ (hard constraints), and Δ (soft constraints).

6.1 Definition (hard constraints, soft constraints, and path condition).

$$
\begin{aligned}
\Sigma & =\mathcal{P}(\mathcal{G} \Rightarrow v) \\
\Delta & =\mathcal{P}(\mathcal{G} \Rightarrow x=v) \\
\mathcal{G} \in \text { PathCondition }: & =\sigma|\neg \sigma| \mathcal{G} \wedge \mathcal{G} \\
\text { where } x \in \text { Identifier, } v & \in \text { Value, } \sigma \in \text { SymbolicValue. }
\end{aligned}
$$

\mathcal{P} denotes the powerset in accordance with usual mathematical convention.
6.2 Remark (default theory property). The pair (Δ, Σ) logically defines a (super-normal) default theory, where Δ is a set of default rules (soft constraints), and Σ is a set of first-order formulas (hard constraints) [1], [19].

The Haskell implementation of Σ and Δ are given straightforwardly as relational lists. The relations are established as lists of pairs and lists of triplets, respectively. A relation ' $\mathcal{G} \Rightarrow v^{\prime}$ ' is thus implemented by the data type (PathCondition, Value), and ' $\mathcal{G} \Rightarrow x=v^{\prime}$ ' is implemented by the data type (PathCondition, Var, Value). The Haskell implementation of a path condition is also given as a list. This is a list of Haskell representations of formulas or negated formulas which are presumed to hold during some specific expression evaluation.

6.3 Haskell (hard constraints, soft constraints, and path condition).

```
data Sigma \(=\) SIGMA [(PathCondition,Value)]
emptySigma \(=\) SIGMA []
unitSigma \(g \quad v=\) SIGMA \([(g, v)]\)
unionSigma (SIGMA map1) (SIGMA map2) = SIGMA (map1++map2)
data Delta \(=\) DELTA [(PathCondition,Var, Value)]
emptyDelta \(=\) DELTA []
unitDelta \(g(x, v)=\operatorname{DELTA}[(g, x, v)]\)
unionDelta (DELTA map1) (DELTA map2) = DELTA \((\operatorname{map} 1++\operatorname{map} 2)\)
data PathCondition \(=P\) _COND [Formula] deriving (Ord,Eq)
emptyPath \(=P_{\text {_ }}\) COND []
data Formula \(=\) F_IS Value
    | F_NOT Value
    deriving (Ord,Eq)
formulaConjunction \(f\left(P_{-}\right.\)COND \(\left.f s\right)=P{ }_{-}\)COND (f:fs)
```

We design the Haskell implementation of the constraint sets to explicitly restrict modifications to extensions with new constraints, because the evaluation rules (in the following section) only extend. To this end, we implement the constraint environment in Haskell by Constraints a, a monad over Sigma and Delta. We recall that a monad in Haskell is represented by a type class with two operators, return and bind (\gg) [22]. We implement two instances on the monad, unitSigmaConstraints and unitDeltaConstraints. The goal of these instances is to update /reset Sigma and Delta respectively.

6.4 Haskell (constraint environment).

```
-- Monadic notation... 336
data Constraints a = CONSTRAINTS Sigma Delta a 337
instance Monad Constraints where 338
    return \(v=\) CONSTRAINTS emptySigma emptyDelta \(v--\) the trivial monad, returning value \(v \quad 339\)
    (CONSTRAINTS sigma1 delta1 v 1\() \gg=f=\quad--\) the sequencing of two instances \(\quad 340\)
        CONSTRAINTS (unionSigma sigma1 sigma2) (unionDelta delta1 delta2) v2 341
            where (CONSTRAINTS sigma2 delta2 v2) \(=\mathrm{f} v 1\)
unitSigmaConstraints :: PathCondition \(\rightarrow\) Value \(\rightarrow\) Constraints Value 344
unitSigmaConstraints \(g\) v = CONSTRAINTS (unitSigma g v) emptyDelta V_ERROR 345
unitDeltaConstraints \(::\) PathCondition \(\rightarrow\) Var \(\rightarrow\) Value \(\rightarrow\) Constraints Value
unitDeltaConstraints \(\mathrm{g} \times \mathrm{v}=\mathrm{CONSTRAINTS} \mathrm{emptySigma} \mathrm{(unitDelta} \mathrm{~g}(\mathrm{x}, \mathrm{v})\) ) V_ERROR 348
6.5 Remark (constraint environment updates). From the evaluation semantics in Yang et al [23, Fig. 3,(E-DEFER),(E-ASSERT)] we observe that the only semantic (expression) rules that potentially will affect the constraint monad directly are those concerning the privacy policy rules, i.e., assert (when policy constraints are being semantically enforced), and defer (when confidentiality levels are being semantically differentiated/deferred) at the \(\lambda_{J}\)-level.

\section*{7 The \(\lambda_{J}\) evaluation semantics}

In this section we specify the dynamic \(\lambda_{J}\) semantics, which implements Jeeves as an eager constraint functional language. The specification of the evaluation engine follows the original idea by Yang et al [23, Fig. 3], but differs on a number of issues. Most significantly, we have reformulated the semantics as a compositional, environment-based, big step semantics, as opposed to the original noncompositional, substitution-based, small-step semantic formulation [23, Fig. 3]. Primarily, in order to enhance the ability to proof semantical statements, because proofs then can be carried inductively over the height of the proof trees (something which breaks down in general when substitution into subterms is allowed like in the original \(\lambda_{J}\) semantics). As something new, we have added a formal notion of a Jeeves, aka a \(\lambda_{J}\) program evaluation. Finally, we have added the notion of lexical variable scoping to manage static bindings. \({ }^{4}\) This has been done by enhancing the semantics with a (new) binding environment feature ( \(\rho\) and closures) as discussed in Section 5. The Haskell implementation is presented alongside each individual evaluation rule.

We begin by formalizing three peripheral semantic \(\lambda_{J}\) concepts needed to proceed with the actual evaluation semantics presentation. The input-output domain, the final set of solution constrains to be resolved, and the runtime (side) effects from running a \(\lambda_{J}\) program. We then proceed by a reformalization of the dynamic semantics as a big step, compositional, non-substitutional semantics as discussed above, alongside the associated Haskell implementation.

The first thing to formally consider is the input-output functionality of Jeeves. According to Yang et al [23, Fig. 3] the input and output at the Jeeves source level is specified by
\[
\text { print }\{\text { some-input }\} \text { some-output }
\]
statements, where the input is specified between the syntactical braces ( \(\}\) ), and the output is specified right after the braces. Thus, no input enters a Jeeves aka \(\lambda_{J}\) program at runtime but is given a

\footnotetext{
\({ }^{4}\) Lexical or static scoping means that declared variables only occur within the text of the declared program structure.
}
priori, as a static part of the program structure. A program outcome amounts semantically to "the effect" of running a set of Jeeves print statements. (In our setting, 'print' is in fact generalized to 'outputkind', thus accounts for several different channels like 'print', 'sendmail', etc.) According to Yang et al [23, Fig. 3, Fig. 6], the print statement translates to
\[
\text { print ( concretize } e_{v} \text { with } v_{c} \text { ) }
\]
where ' \(v_{c}\) ' is the translation of the some-input value, and ' \(e_{v}\) ' is the translation of the some-output expression. Input values are semantically concrete values ' \(v_{c}\) ' (as hinted by the subscript ' \(c\) '), that is either a literal or a record. Output values are semantically defined by the outcome of the ' \(e_{v}\) ' evaluation, which we here assume results in either a literal, a record, or error (all concrete, printable values) being channeled out. The input and output value domains are recursively defined by the algebras InputValue and OutputValue.

\subsection*{7.1 Definition (semantic input-output values).}
\[
\begin{aligned}
& i v \in \text { InputValue }::=\text { lit } \mid \text { record } f i_{1}: i v_{1} \ldots f i_{m}: i v_{m} \\
& \text { ov } \in \text { OutputValue }::=\text { lit } \mid \text { record } f i_{1}: o v_{1} \ldots f i_{m}: o v_{m} \mid \text { error } \\
& \quad \text { where lit } \in \text { Literal }, \text { error } \in \text { ConcreteValue }
\end{aligned}
\]

Error is the algebraic specification for erroneous program states.
7.2 Remark (related value domain). Formally we have that InputValue, OutputValue \(\subset\) ConcreteV alue. Notice, however, that the latter inclusion breaks slighly down as we extend the OutputValue domain in Definition 7.9.
7.3 Remark (output outcome). Though not explicitly stated by Yang et al, we have decided only to consider data structures as part of our semantic output value domain and omit (function) closures, despite ' \(\lambda x . e\) ' expressions technically are "first class citizens" in Jeeves. Whence only including values which are printable.
7.4 Remark (implementation). We do not include an explicit Haskell implementation of the inputoutput domains. The specification merely serves as an overview of this functionality.

The second thing to formally consider is the final set of solution constraints to be resolved upon completion of the evaluation of a print statement. According to Yang et al [23, Fig. 3], the dynamic evaluation of a print statement terminates with the application of either of two rules, the (e-concretizesat) or the (e-concretizeunsat). The decision upon which of the rules apply, depends on whether there exists a unique solution ' \(\mathcal{M}\) ' (for model) which solves the constrainst set, as expressed by the premise ' \(\operatorname{mOdEL}\left(\Delta, \Sigma \cup\left\{\mathcal{G} \wedge\right.\right.\) context \(\left.\left.=v_{c}\right\}\right)=\mathcal{M}\) ' such that the constraint solution run on the (possibly symbolic) output expression ' \(v_{v}\) ', instantiates to a (concrete) output value, as the premise ' \(c=\mathcal{M} \llbracket v_{v} \rrbracket\) ' suggests. \({ }^{5}\) We formalize the structure ' \(\operatorname{model}\left(\Delta, \Sigma \cup\left\{\mathcal{G} \wedge\right.\right.\) context \(\left.\left.=v_{c}\right\}\right)\) ' over the elements \(\Sigma\) (hard constraints), \(\Delta\) (soft constraints), ' \(\mathcal{G}\) ' (path condition) and ' \(v_{c}\) ' (concrete input value, here renamed ' \(\kappa\) ').

\subsection*{7.5 Definition (solution model).}
\[
\text { sol } \in \text { Solution }::=\operatorname{MODEL}(\Delta, \Sigma \cup\{\mathcal{G} \wedge \text { context }=\kappa\})
\]
where \(\mathcal{G} \in\) PathCondition, \(\kappa \in\) ConcreteValue.

\footnotetext{
\({ }^{5} \mathrm{~A}\) correct premise would have been 'true \(\vdash\left\langle\emptyset, \emptyset, \mathcal{M} \llbracket v_{v} \rrbracket\right\rangle \rightarrow\langle\emptyset, \emptyset, c\rangle\) ' in Yang et al [23, Fig. 3,(E-CONCRETIZESAT)].
}
7.6 Remark (mODEL tag). Because we do not specify a constraint solver in this formalization, we apply the tag MODEL as a syntactic constructor with no semantic meaning associated.
7.7 Remark (default theory property). We notice that the constraint set defined by '( \(\Delta, \Sigma \cup\{\mathcal{G} \wedge\) context \(\left.=v_{c}\right\}\) )' equally forms a (super-normal) default theory.
7.8 Haskell (solution model). The model construction is implemented as the special data type Solution, which is equivalent to the MODEL container, and a one-to-one implementation of the 'sol' (concretized constraint set) quadruple. We notice, that the implementation doesn't validate whether Value is concrete or not at this point (but the later evaluation rule does).
```

data Solution = MODEL Delta Sigma PathCondition Value
type Solutions = [Solution]
noSolutions :: Solutions
noSolutions = []

```

In accordance with Yang et al, we do not specify constraint resolution explicitly in our formalizations, but tacitly asume that the passage is deferred to later by delegating to an external, off-the-shelf SMT solver [3]. Thus, we have deliberately omitted the specification of the ' \(c=\mathcal{M} \llbracket v_{v} \rrbracket\) ' clause in our specifications. The ensemble, however, that is fed to the constraint solver, will take
the form of a new concrete value, which consists of two components, the final accumulated constraint set formalized by Solution together with the ' \(v_{v}\) ' (the evaluated output expression feeding into ' \(\mathcal{M} \llbracket v_{v} \rrbracket\) ' upon constraint resolution).
7.9 Definition (instantiation). Extend the output value algebra of Definition 7.1 with an additional form:
\[
\text { ins } \in \text { OutputV alue }::=\ldots \mid \text { InSTANTIATE }(\text { sol }, v)
\]
where sol \(\in\) Solution, \(v \in\) Value
7.10 Remark (the instantiate tag). To increase readability, we apply the tag instantiate as a syntactic constructor with no semantic meaning associated.
7.11 Haskell (instantiation). We implement the instantiation concrete value with the special data type Instantiate because it is only used at the outermost level of the evaluation.
data Instantiate \(=\) INSTANTIATE Solution Value
The third thing to formally consider is the runtime (side) effects from running a \(\lambda_{J}\) program. The original semantics does not include an explicit evaluation rule for a complete \(\lambda_{J}\) program evaluation, but specify the evaluation of each individual print statement, hinting that constraint solving happens per individual output statement [23, Fig. 3]. In other words, \(\lambda_{J}\) only supports constraint propagation per output posting. \({ }^{6}\) No constraints gets "carried over" from the runtime evaluation of one output statement to the other. Consequently, we formalize the effect of running a Jeeves aka \(\lambda_{J}\) program to be a list of independent writings to individual output channels. All formalized by the (program) Effect algebra.

\footnotetext{
\({ }^{6}\) Constraint propagation means that constraints are accumulated during the course of evaluation.
}

\subsection*{7.12 Definition (program effect).}
\[
\mathcal{E} \in E f f e c t::=(\text { output }, \text { ins })
\]
where output \(\in\) OutputKind, ins \(\in\) OutputValue
7.13 Haskell (Effects). The Effect algebra is implemented as the special data type Effect, which is equivalent to the EFFECT container, and a one-to-one implementation of 'output' and the instantiate output value 'ins'.
```

data Effect = EFFECT Outputkind Instantiate 355
type Effects = [Effect]
noEffects :: Effects
noEffects = []

```

Notice that the concrete value returned uses the dedicated Instantiate type.
With all preliminary concepts formalized and implemented, we can then proceed by formalizing the actual program runtime semantics. In this work, we formulate the \(\lambda_{J}\) evaluation semantic as a fixpoint semantics in the environment ' \(\rho\) '. Because we have build the semantics with trivial constructs, we know the existence of a least fixpoint, which how we are formulating our semantics [20].

In Section 3, we introduced the notion of a \(\lambda_{J}\) program, to specifically include an explicit ('letrec') recursion construct at the \(\lambda_{J}\) level, with the intent of building a recursive function environment in the top-scope, at runtime. The dynamic semantics of the letrec expression is aimed at being defined as the so-called ML letrec with the difference from ML that in \(\lambda_{J}\), the letrec is defined only to appear at the top level of a program [15]. \({ }^{7}\)

We are furthermore assuming that all output statements are evaluated after the program's recursive binding environment has been set up (something which is unclear in the original formalization, where let statements and print statements are presented in any mixed combination in the given examples.) For a more detailed treatment on the recursive binding feature, we refer to Section 5.

\subsection*{7.14 Definition (program evaluation rule).}
\[
\begin{gather*}
\rho_{0}, \mathcal{G}_{0} \vdash\left\langle\{ \},\{ \}, s_{0}\right\rangle \Rightarrow \mathcal{E}_{1} \\
\cdots  \tag{p-letrec}\\
\rho_{0}, \mathcal{G}_{0} \vdash\left\langle\{ \},\{ \}, s_{m-1}\right\rangle \Rightarrow \mathcal{E}_{m} \\
\vdash \text { letrec } f_{1}=v e_{1} \cdots f_{n}=v e_{n} \text { in } s_{0} \ldots s_{m-1} \Rightarrow\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{m}\right)
\end{gather*}
\]
where
\[
\begin{align*}
\rho_{0} & =\left[f_{1} \mapsto v_{1}, \ldots, f_{n} \mapsto v_{n}\right]  \tag{1}\\
\text { For all } 0 \leq i \leq n: & v_{i}
\end{aligned}=\left\{\begin{array}{ll}
\left(v e_{i}, \rho_{0}\right) & \text { if } v e_{i}=\lambda x . e \vee v e_{i}=\text { thunk } e \vee v e_{i}=x  \tag{2}\\
v e_{i} & \text { otherwise }
\end{array}\right] \begin{aligned}
& \mathcal{G}_{0} \tag{3}
\end{align*}=\{ \} \text {. }
\]
and \(f, v, x \in V a r, v e \in \operatorname{ValExp}, e \in \operatorname{Exp}, s \in\) Statement, \(\mathcal{E} \in E f f e c t\)

\footnotetext{
\({ }^{7}\) ML's letrec combinator defines names by recursive functional equations.
}
7.15 Remark (notation). To ease readability, we simply state ' \(\left[f_{1} \mapsto v_{1}, \ldots, f_{n} \mapsto v_{n}\right]\) ’ for the equivalent \({ }^{\text {' }}\left[\left[f_{1} \mapsto v_{1}, \ldots, f_{n} \mapsto v_{n}\right]\right.\) ' notation as expected according to Definition 5.5.

The program evaluation rule is composed as follows. The static, recursive binding environment ' \(\rho_{0}\) ', specifies the initial top-level scope of a \(\lambda_{\mathrm{J}}\) program. The path condition ' \(\mathcal{G}_{0}\) ', specifies the initial path constraints before execution of an output statement. In accordance with our early discussion, the execution environment, ' \(\rho_{0}, \mathcal{G}_{0}\) ', is the same before the execution of any output statement, regardless of the sequence in which they appear as 1 ) the recursive environment is assumed to be build up prior to any output statement execution, 2) constraints are not propagated from one output execution to the next.

According to Lemma 4.4, all function bindings, after translation of a Jeeves program to \(\lambda_{\mathrm{J}}\), is ensured to be on the (weak head normal) form ' \(f=v e\) ', where ' \(v e\) ' is a value expression. The "where" clause of the program rule describes when closures, formalized by ' \(v e, \rho\) )', are initially build during program evaluation, and when not. As expected, this happens when the binding is dispatched to either a \(\lambda\)-closure, a thunk-closure, or a free variable closure. Otherwise, the binding is to either a literal, context, or error.

\subsection*{7.16 Haskell (program evaluation rule).}
```

evalProgram :: FreshVars \rightarrow Program \rightarrow Effects
evalProgram xs (P _LETREC recbindings outputstms) $=$ effects
where
(CONSTRAINTS sigma delta effects) = evalStms xs rho0 emptyPath outputstms noEffects
rho0 $=$ foldr g empty recbindings
g (BIND fi (E_BOOL b)) rho = insert fi (V_BOOL b) rho 366
g (BIND fi (E_NAT n)) rho $=$ insert fi (V_NAT n) rho 367
g (BIND fi (E_STR s)) rho $=$ insert fi (V_STR s) rho $\quad 368$
$g($ BIND fi (E_CONST c)) rho $=$ insert fi (V_CONST c) rho

```

```

 \(g\left(B I N D\right.\) fi \(\left(E _\right.\)LAMBDA \(\times\)e \()\)) rho \(=\)insert fi \(\left(V _\right.\)LAMBDA \(\times\)e rho0) rho -- closure \(\quad 371\)
 g (BIND fi (E_THUNK e)) rho \(=\) insert fi (V_THUNK e rho0) rho -- closure \(\quad 372\)
 g (BIND fi (E_RECORD fes)) rho = insert fi (V_THUNK (E_RECORD fes) rho0) rho \(--\quad 373\)
 closure
 evalStms :. FreshVars \rightarrow Environment \rightarrow PathCondition \rightarrow Statements \rightarrow Effects \rightarrow Constraints
Effects
evalStms xs rho g [] effects = return effects ${ }_{378}^{378}$
elStis xs (tme (
effect \leftarrow evalStm xs1 rho g stm 381
effects2 \leftarrow evalStms xs2 rho g stms effects 382
return (effect : effects2) 383
where
$\sim(x s 1, x s 2)=$ splitVars $x s$
7.17 Definition (evaluation of a statement). The big step rule for evaluation of an (output) statement corresponds to the evaluations by the small step rules E-ConcretizeExp, E-ConcretizeSat,

E-ConcretizeUnsat in Yang etal. [23, Fig. 3], except for the fact that we do not seek to solve the constraint set to generate a solution ' \mathcal{M} ', but only seek to generate the set of constraints: MODEL is here merely a syntactic constructor and has no semantic significance unlike in Yang etal. [23, Fig. 3].

$$
\begin{gathered}
\rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, e_{1}\right\rangle \Rightarrow\left\langle\Sigma_{1}, \Delta_{1}, v_{1}\right\rangle \\
\rho, \mathcal{G} \vdash\left\langle\Sigma_{1}, \Delta_{1}, e_{2}\right\rangle \Rightarrow\left\langle\Sigma_{2}, \Delta_{2}, \kappa_{2}\right\rangle \\
\hline \rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, \text { output }\left(\operatorname{concretize} e_{1} \text { with } e_{2}\right)\right\rangle \\
\Rightarrow\left(\text { output, INSTANTIATE }\left(\operatorname{MODEL}\left(\Delta_{2}, \Sigma_{2} \cup\left\{\mathcal{G} \wedge \operatorname{context}=\kappa_{2}\right\}\right), v_{1}\right)\right)
\end{gathered}
$$

7.18 Remark (extended concretize syntax). Because 'print' at the Jeeves source-level has been generalized to 'output' in our formalization (with the tacit assumption that OutputKind carries over to λ_{J}), we have added 'output' as an explicit tag in our semantics compared to Yang et al [23, Fig. 3] to keep track of the writes to the various kinds of output channels.

7.19 Haskell (evaluation of a statement).

```
evalStm :: FreshVars }->\mathrm{ Environment }->\mathrm{ PathCondition }->\mathrm{ Statement }->\mathrm{ Constraints Effect }\mp@subsup{}{386}{
evalStm xs rho g (CONCRETIZE WITH output e1 e2) =
    (CONSTRAINTS sigma delta effect)
    where
        (CONSTRAINTS sigma delta (c,v)) = do v1 \leftarrowevalExp xs1 rho g e1
                                c2 \leftarrow evalExp xs2 rho g e2
                                return (c2,v1) -- = (c,v) by pattern matching
        effect | isConcrete c = EFFECT output (INSTANTIATE (MODEL delta sigma g c) v)
            otherwise = error ("Attempt}\mp@subsup{t}{\sqcup}{}\mp@subsup{t}{\sqcup}{
                value"++show c)
        ~(xs1,xs2) = splitVars xs
```

7.20 Definition (evaluation of expressions). The judgement

$$
\rho, \mathcal{G} \vdash\langle\Sigma, \Delta, e\rangle \Rightarrow\left\langle\Sigma^{\prime}, \Delta^{\prime}, v\right\rangle
$$

describes the evaluation of a λ_{J} expression ' e ' to a value ' v ' in the static environment ' ρ ', under pathcondition ' \mathcal{G} ', where Σ^{\prime} and Δ^{\prime} capture the privacy effects of the evaluation on the constraint sets Σ and Δ.

7.21 Haskell (evaluation of expressions).

evalExp :: FreshVars \rightarrow Environment \rightarrow PathCondition \rightarrow Exp \rightarrow Constraints Value
We proceed by presenting an environment-based, big step formulation and implementation of the dynamic expression semantics of λ_{J}. The semantics follows the syntax presented in Definition 2.1, and modifies and clarifies the original semantics [23, Figure 3].
7.22 Definition (evaluation of literals and context). There are no explicit rules for handling literals and context in [23, Figure 3]. We do, however, tacitly assume it to be the "identity mapping". The present rule evaluates a subset of simple normal form (expressions): ' b ', ' n ', ' ' s ', ' c ', 'context' to the eqivalent normal form (values).

$$
\overline{\rho, \mathcal{G} \vdash\langle\Sigma, \Delta, \mathrm{ve}\rangle \Rightarrow\langle\Sigma, \Delta, \mathrm{ve}\rangle} \quad \text { where } v e \in\{b, n, s, c, \text { context }\} \quad \text { (e-simple) }
$$

7.23 Haskell (evaluation of literals and simple expressions). The distinction between (normal form) expressions and values in Definition 7.22 becomes apparent when E_{-}constructors are translated into V_{-}constructors.

```
evalExp xs rho g (E_BOOL b) = return (V_BOOL b) 398
evalExp xs rho g (E_NAT n) = return (V_NAT n)
evalExp xs rho g (E_STR s) = return (V_STR s) 400
evalExp xs rho g (E_CONST c) = return (V_CONST c) 401
evalExp xs rho g (E_CONTEXT) = return (V_CONTEXT)
```

7.24 Definition (evaluation of variable expressions). There are no explicit rules for handling variables in [23, Figure 3]. The present rule shows how regular variables, but also level variables are handled in an environment-based semantics. For further specifics on the role of level variables in the environment, we refer to Definition 7.36.

$$
\begin{align*}
& \overline{\rho, \mathcal{G} \vdash\langle\Sigma, \Delta, x\rangle \Rightarrow\langle\Sigma, \Delta, \rho(x)\rangle} \quad \text { where } \rho(x) \neq\left(\text { thunk } e^{\prime}, \rho^{\prime}\right) \tag{e-var1}\\
& \frac{\rho^{\prime}, \mathcal{G} \vdash\left\langle\Sigma, \Delta, e^{\prime}\right\rangle \Rightarrow\left\langle\Sigma^{\prime}, \Delta^{\prime}, v^{\prime}\right\rangle}{\rho, \mathcal{G} \vdash\langle\Sigma, \Delta, x\rangle \Rightarrow\left\langle\Sigma^{\prime}, \Delta^{\prime}, v^{\prime}\right\rangle} \quad \text { where } \rho(x)=\left(\text { thunk } e^{\prime}, \rho^{\prime}\right) \tag{e-var2}
\end{align*}
$$

7.25 Haskell (evaluation of variable expressions).

```
evalExp xs rho \(g\left(E \_V A R x\right)=\) evalExp_VAR (if \(x\) 'member' rho then rho!x else error ("Undefined 403
    !"+ show \(x)\) )
where
    evalExp_VAR (V_THUNK e' rho') = evalExp xs rho' g e'
    evalExp VAR v = return v
```

7.26 Definition (evaluation of lambda expressions). There is no specific rule for lambda expressions alone in Yang etal. [23, Fig. 3]. The present big step rule, however, partially correspond to the binding-part of E-AppLAmbDA. In the current semantics, lambda expression evaluation builds a (concrete) closure normal form with the current environment and returns it as semantic value c.f. Definition 5.1.

$$
\begin{equation*}
\overline{\rho, \mathcal{G} \vdash\langle\Sigma, \Delta, \lambda x . e\rangle \Rightarrow\langle\Sigma, \Delta,(\lambda x . e, \rho)\rangle} \tag{e-lambda}
\end{equation*}
$$

7.27 Haskell (evaluation of lambda expressions).

evalExp xs rho $g\left(E _\right.$LAMBDA $\left.\times e\right)=$ return (V _LAMBDA $\times e$ rho $)$
7.28 Definition (evaluation of binary operator expressions). The big step rule for evaluation of a binary operator expression corresponds to the evaluations by the small step rules E-Op, E-Op1, and E-Op2 in Yang etal. [23, Fig. 3]. Definition 2.5 specifies the token set of the operator sort that we have included in this formalization.

$$
\begin{align*}
\rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, e_{1}\right\rangle & \Rightarrow\left\langle\Sigma^{\prime}, \Delta^{\prime}, \kappa_{1}\right\rangle \\
\left.\frac{\rho, \mathcal{G} \vdash\left\langle\Sigma^{\prime}, \Delta^{\prime}, e_{t}\right\rangle}{\rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta \Sigma^{\prime \prime}, \Delta^{\prime \prime}, \kappa_{2}\right\rangle} \quad \kappa \equiv e_{1} \text { op } e_{2}\right\rangle & \Rightarrow\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, \kappa\right\rangle \tag{e-op1}
\end{align*} \kappa \kappa_{1}
$$

$$
\begin{align*}
& \rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, e_{1}\right\rangle \Rightarrow\left\langle\Sigma^{\prime}, \Delta^{\prime}, v_{1}\right\rangle \\
& \frac{\rho, \mathcal{G} \vdash\left\langle\Sigma^{\prime}, \Delta^{\prime}, e_{t}\right\rangle}{\rho} \Rightarrow\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, v_{2}\right\rangle \tag{e-op2}\\
& \rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, e_{1} \text { op } e_{2}\right\rangle \Rightarrow\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, v_{1} \text { op } v_{2}\right\rangle
\end{align*} v_{1} \equiv \sigma_{1} \vee v_{2} \equiv \sigma_{2}
$$

7.29 Haskell (evaluation of binary operator expressions). Haskell 3.10 shows the implementation of the Op binary operator data type. Notice how we have implemented list concatenation by overloading the definition of OP_PLUS.

```
evalExp xs rho g (E_OP op e1 e2) = do 408
    \(\mathrm{v} 1 \leftarrow\) evalExp xs1 rho ge1
    \(\mathrm{v} 2 \leftarrow\) evalExp xs2 rho g e2
    return (evalExp_OP rho g op v1 v2)
    where
        \(\sim(x s 1, x s 2)=\) splitVars \(x s\)
    evalExp_OP rho gop v1 v2 | isConcrete v1 \&\& isConcrete v2 = (evalOpCC op v1 v2)
        | isSymbolic v1 || isSymbolic v2 \(=\left(\mathrm{V} \_\right.\)OP op v1 v2 \()\)
    evalOpCC \(::\) Op \(\rightarrow\) Value \(\rightarrow\) Value \(\rightarrow\) Value
    evalOpCC OP_PLUS (V_NAT n1) (V_NAT n2) \(=V_{\text {_ }}\) NAT \((\mathrm{n} 1+\mathrm{n} 2)\)
    evalOpCC OP_PLUS (V_STR s1) (V_STR s2) \(=\mathrm{V}_{-}\)-STR \((\mathrm{s} 1++\mathrm{s} 2)\)
    evalOpCC OP_MINUS (V_NAT n1) (V_NAT n2) \(=V_{\text {_ }}\) NAT \((n 1-n 2)\)
    evalOpCC OP_AND (V_BOOL b1) (V_BOOL b2) \(=V_{\text {_ BOOL }}(\mathrm{b} 1 \& \& b 2)\)
    evalOpCC OP_OR (V_BOOL b1) (V_BOOL b2) = V_BOOL (b1\|b2)
    evalOpCC OP \({ }_{-}^{-} \mathrm{IMPLY}^{-}\left(\mathrm{V}_{-} \mathrm{BOOL} \mathrm{b} 1\right)^{-}\left(\mathrm{V}_{-} \mathrm{BOOL} \mathrm{b} 2\right)=\bar{V}_{-}\)BOOL \(((\)not \(b 1) \| b 2)\)
    evalOpCC OP_EQ v1 v2 = V_BOOL (v1 \(\equiv \mathrm{v} 2)\)
    evalOpCC OP_LESS v1 v2 = V_BOOL (v1<v2)
    evalOpCC OP_GREATER v1 v2 = V_BOOL ( \(\mathrm{v} 1>\mathrm{v} 2\) )
```

7.30 Definition (evaluation of unary operator expressions). There are no specific rules concerning unary operator expressions in Yang etal. [23, Fig. 3]. The big step rules, however, are simpel to construct and require no further commenting. Definition 2.5 specifies the token set of the operator sort, which currently is the singleton set $\{!\}$ (negation).

$$
\begin{gather*}
\frac{\rho, \mathcal{G} \vdash\langle\Sigma, \Delta, e\rangle \Rightarrow\left\langle\Sigma^{\prime}, \Delta^{\prime}, \kappa\right\rangle}{\rho, \mathcal{G} \vdash\langle\Sigma, \Delta, \text { uop } e\rangle \Rightarrow\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, \kappa^{\prime}\right\rangle} \quad \kappa^{\prime} \equiv \text { uop } \kappa \tag{e-uop1}\\
\frac{\rho, \mathcal{G} \vdash\langle\Sigma, \Delta, e\rangle \Rightarrow\left\langle\Sigma^{\prime}, \Delta^{\prime}, \sigma\right\rangle}{\rho, \mathcal{G} \vdash\langle\Sigma, \Delta, \text { uop } e\rangle \Rightarrow\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, \text { uop } \sigma\right\rangle} \tag{e-uop2}
\end{gather*}
$$

7.31 Haskell (evaluation of unary operator expressions). Definition 3.10 shows the implementation of the UOp unary operator data type. (Currently a singleton with the OP_NOT constructor).
evalExp xs rho g (E_UOP uop e) $=$ do
$v \leftarrow$ evalExp xs rho ge
return (evalExp_UOP rho g uop v)

```
where
evalExp_UOP rho g uop v | isConcrete v = evalUOpC uop v 436
    | isSymbolic v = V_UOP uop v 437
evalUOpC :: UOp \(\rightarrow\) Value \(\rightarrow\) Value 439
evalUOpC OP_NOT (V_BOOL b) \(=_{\text {V_BOOL (not b) }}\) (
7.32 Definition (evaluation of conditional expressions). The big step rules for evaluation of a conditional expression corresponds to the evaluations by the small step rules E-Cond, ECondTrue, E-CondFalse, E-CondSymT, and E-CondSymF. Depending on the conditional, the semantics is implemented in two way: provided it evaluates to a boolean value, then the ifexpression behaves in a non-strict fashion. Provided the conditional evaluates to a symbolic normal form , however, then the if-expression behaves in a strict fashion as both branches are evaluated to normal forms. The latter underpins the primary reason for symbolic if-evaluation: to implement the semantics of sensitive values. The evaluation of each branch is in fact performed as separate evaluation steps under (opposing) symbolic/ logical conditions: ' \(\sigma \wedge \mathcal{G}\) ', and ' \(\neg \sigma \wedge \mathcal{G}\) ', and the generated constraint sets are successively being assembled into \(\Sigma^{\prime \prime \prime}\) and \(\Delta^{\prime \prime \prime} .^{8}\).
\[
\begin{gather*}
\rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, e_{1}\right\rangle \Rightarrow\left\langle\Sigma^{\prime}, \Delta^{\prime}, \text { true }\right\rangle \\
\rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, e_{2}\right\rangle \Rightarrow\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, v_{2}\right\rangle  \tag{e-cond1}\\
\frac{\rho \mathcal{G} \vdash\left\langle\Sigma, \Delta, \text { if } e_{1} \text { then } e_{2} \text { else } e_{3}\right\rangle \Rightarrow\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, v_{2}\right\rangle}{\rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, e_{1}\right\rangle \Rightarrow\left\langle\Sigma^{\prime}, \Delta^{\prime}, \text { false }\right\rangle} \\
\frac{\rho, \mathcal{G} \vdash\left\langle\Sigma^{\prime}, \Delta^{\prime}, e_{3}\right\rangle \Rightarrow\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, v_{3}\right\rangle}{\rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, \text { if } e_{1} \text { then } e_{2} \text { else } e_{3}\right\rangle \Rightarrow\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, v_{3}\right\rangle}  \tag{e-cond2}\\
\rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, e_{1}\right\rangle \Rightarrow\left\langle\Sigma^{\prime}, \Delta^{\prime}, \sigma\right\rangle \\
\rho, \sigma \wedge \mathcal{G} \vdash\left\langle\Sigma^{\prime}, \Delta^{\prime}, e_{2}\right\rangle \Rightarrow\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, v_{2}\right\rangle \\
\rho, \neg \sigma \wedge \mathcal{G} \vdash\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, e_{3}\right\rangle \Rightarrow\left\langle\Sigma^{\prime \prime \prime}, \Delta^{\prime \prime \prime}, v_{3}\right\rangle  \tag{e-cond3}\\
\frac{\rho \mathcal{G} \vdash\left\langle\Sigma, \Delta, \text { if } e_{1} \text { then } e_{2} \text { else } e_{3}\right\rangle \Rightarrow\left\langle\Sigma^{\prime \prime \prime}, \Delta^{\prime \prime \prime}, \text { if } \sigma \text { then } v_{2} \text { else } v_{3}\right\rangle}{}
\end{gather*}
\]

The if expession evaluation rule is implemented as follows.

\subsection*{7.33 Haskell (evaluation of conditional expressions).}
```

evalExp xs rho g (E_IF e1 e2 e3) = do
v1 \leftarrow evalExp xs1 rho g e1
evalExp_IF v1
where
-- (e-cond1)
evalExp_IF (V_BOOL True) = evalExp xs2 rho g e2
-- (e-cond2)
evalExp_IF (V_BOOL False) = evalExp xs2 roo g e3

```

\footnotetext{
\({ }^{8}\) Because constraints are assembled through set union, the order by which the branches are evaluated is insignificant.
}
```

-- (e-cond3)
evalExp_IF s1 | isSymbolic s1 = do
v2 \leftarrow evalExp xs21 rho (formulaConjunction (F_IS s1) g) e2
v3 \leftarrow evalExp xs22 rho (formulaConjunction (F_NOT s1) g) e3
return (V_IF s1 v2 v3)
~(xs1,xs2) = splitVars xs
~(xs21,xs22) = splitVars xs2

```
7.34 Definition (evaluation of application expressions). The big step rule for evaluation of an application expression corresponds to the evaluations described by the small step rules E-APp1, E-App2, and E-AppLambda in Yang etal. [23, Fig. 3]. It specifies how function application is carried out through call-by-value evaluation, but with the important difference that variable binding during \(\beta\)-reduction is handled on an environment basis ( \(\rho^{\prime}\left[x \mapsto v_{2}\right]\) ) instead of a substitution basis \((e[x \mapsto v])\), c.f. Henderson [9]. \({ }^{9}\) The present application rule reformulation is a direct consequence of letting lexical scoping be handled with closures as described in Section 5. Finally, we allow the capturing of an erroneous \(\lambda_{\mathrm{J}}\) application upon which the error normal form is returned as a semantic result.
\[
\begin{gathered}
\rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, e_{1}\right\rangle \Rightarrow\left\langle\Sigma^{\prime}, \Delta^{\prime}, v_{1}\right\rangle \\
\rho, \mathcal{G} \vdash\left\langle\Sigma^{\prime}, \Delta^{\prime}, e_{2}\right\rangle \Rightarrow\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, v_{2}\right\rangle \\
\frac{\rho^{\prime}\left[x \mapsto v_{2}\right], \mathcal{G} \vdash\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, e^{\prime}\right\rangle \Rightarrow\left\langle\Sigma^{\prime \prime \prime}, \Delta^{\prime \prime \prime}, v_{3}\right\rangle}{\rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, e_{1} e_{2}\right\rangle \Rightarrow\left\langle\Sigma^{\prime \prime \prime}, \Delta^{\prime \prime \prime}, v_{3}\right\rangle} \quad v_{1} \equiv\left(\lambda x \cdot e^{\prime}, \rho^{\prime}\right) \\
\rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, e_{1}\right\rangle \Rightarrow\left\langle\Sigma^{\prime}, \Delta^{\prime}, \sigma_{1}\right\rangle \\
\frac{\rho, \mathcal{G} \vdash\left\langle\Sigma^{\prime}, \Delta^{\prime}, e_{2}\right\rangle \Rightarrow\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, v_{2}\right\rangle}{\rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, e_{1} e_{2}\right\rangle \Rightarrow\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, \text { error }\right\rangle}
\end{gathered}
\]

\subsection*{7.35 Haskell (evaluation of application expressions).}
```

evalExp xs rho g (E_APP e1 e2) = do 460
v1 \leftarrow evalExp xs1 rho g e1 461
v2 \leftarrow evalExp xs2 rho g e2 462
v3\leftarrow evalExp_APP v1 v2 463
return v3 464
where 465
~(xs1,xs2,xs3) = splitVars3 xs
evalExp_APP (V_LAMBDA x e' rho') v2 = do 468
v}\leftarrow\mathrm{ evalExp xs3 (insert x v2 rho') g e' }46
return v 470
evalExp_APP __= return (V_ERROR) 472

```

\footnotetext{
\({ }^{9}\) "Environment based" instead of "substitution based" semantics prevents unforseable expression expansion, when code is substituted into terms at runtime, thus ensures that inductive argumentation can be applied to prove properties of the semantics.
}
7.36 Definition (evaluation of defer expressions). The big step rule for evaluation of a defer expression basically corresponds to the evaluations by the small step rules E-DefeerConstraint, and E-Defer in Yang etal. [23, Fig. 3]. The current defer syntax, i.e. 'defer \(l x\) in \(e\) ', presents three major differences from the original syntax, as described in Remark 3.7. We have modified the defer semantics accordingly, by making the evaluation step about "the body" \(e\), whilst removing now void evaluation steps for syntax which is no longer present, notably ' \(\{e\}\) ', ' \(\left\{v_{c}\right\}\) ' and 'default \(v_{d}\) '. The overall aim of the defer rule is to introduce (level) variables, say ' \(l x\) ', and their default values 'true' into the semantics, in a way that prevents name clashing in the constraint scopes. In this setting, we manage (level) variable names ' \(l x\) ' on the environment stack, by performing an \(\alpha\) renaming with "fresh" variables ' \(l x^{\prime}\) '. Default values 'true' for variables ' \(l x^{\prime \prime}\) are weighing in on any associated (policy) hard constraints by registering as soft contraints in the collected constraint set \({ }^{\prime} \Delta \cup\left\{\mathcal{G} \Rightarrow\left(l x^{\prime}=\right.\right.\) true \(\left.)\right\}\) '.
\[
\frac{\rho\left[l x \mapsto l x^{\prime}\right], \mathcal{G} \vdash\left\langle\Sigma, \Delta \cup\left\{\mathcal{G} \Rightarrow\left(l x^{\prime}=\text { true }\right)\right\}, e\right\rangle \Rightarrow\left\langle\Sigma^{\prime}, \Delta^{\prime}, v\right\rangle}{\rho, \mathcal{G} \vdash\langle\Sigma, \Delta, \operatorname{defer} l x \text { in } e\rangle \Rightarrow\left\langle\Sigma^{\prime}, \Delta^{\prime}, v\right\rangle} \text { fresh } l x^{\prime} \quad \quad \text { (e-defer) }
\]

To ensure that no bound variables escape into the contraint set we observe the following.
7.37 Lemma (environment scope invariant). For every instance of the judgement' \(\rho, \mathcal{G} \vdash\langle\Sigma, \Delta, e\rangle \Rightarrow\) \(\left\langle\Sigma^{\prime}, \Delta^{\prime}, v\right\rangle\) ' we have that the domain of ' \(\rho\) ' contains all free variables in ' \(e\) ', and no free variables from ' \(v\) '.

Proof. Proven by induction over proofs, where the base cases are the premises of Definition 7.14 and the step is shown for every inference rule.

The defer expression evaluation rule is implemented as follows.

\subsection*{7.38 Haskell (evaluation of defer expressions).}
```

evalExp ~ $(x: x s)$ rho $g\left(E _D E F E R I x e\right)=$ do 473
unitDeltaConstraints $\mathrm{g} \times$ (V_BOOL True)
$v \leftarrow$ evalExp xs (insert lx $\overline{\mathrm{lx}}$ ' rho) ge
return v
where $\mathrm{Ix}^{\prime}=\mathrm{V} _$VAR x

```
7.39 Definition (evaluation of assert expressions). The big step rule for evaluation of an assert expression corresponds to the evaluations by the small step rules E-AssertConstraint, and EAssert in Yang etal. [23, Fig. 3]. The current assert syntax, however, has extended the syntax with an 'in \(e_{2}\) ' part, as described in Remark 3.8. We have extended the semantics accordingly, by adding a separate evaluation step for ' \(e_{2}\) '. The overall aim of assert is to introduce policy constraints, given by the (constraint) expression ' \(e_{1}\) ', into the semantics. This is effectuated through evaluation of ' \(e_{1}\) ' to a symbolic normal form ' \(v_{1}\) ', followed by the introduction of those as hard constraints into the constraint environment as ' \(\Sigma\) ' \(\cup\left\{\mathcal{G} \Rightarrow v_{1}\right\}\) '.
\[
\begin{gather*}
\rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, e_{1}\right\rangle \Rightarrow\left\langle\Sigma^{\prime}, \Delta^{\prime}, v_{1}\right\rangle \\
\frac{\rho, \mathcal{G} \vdash\left\langle\Sigma^{\prime} \cup\left\{\mathcal{G} \Rightarrow v_{1}\right\}, \Delta^{\prime}, e_{2}\right\rangle \Rightarrow\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, v_{2}\right\rangle}{\rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, \text { assert } e_{1} \text { in } e_{2}\right\rangle \Rightarrow\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, v_{2}\right\rangle} \tag{e-assert}
\end{gather*}
\]

The assert expression evaluation rule is implemented as follows.

\subsection*{7.40 Haskell (evaluation of assert expressions).}
```

evalExp xs rho g (E_ASSERT e1 e2) = do
$\mathrm{v} 1 \leftarrow$ evalExp xs1 rho g e1 unitSigmaConstraints g v1
$\mathrm{v} 2 \leftarrow$ evalExp xs2 rho g e2
return v2
where
$\sim(x s 1, x s 2)=$ splitVars $x s$

```
7.41 Definition (evaluation of let expressions). There are no specific rules for \(\lambda_{J}\) let expressions in Yang etal. [23, Fig. 3]. In the current semantics, we implement dynamic let evaluation by eager evaluation, in that the binding argument ' \(e_{1}\) ', always is evaluated to a normal form ' \(v_{1}\) ' first, then stacked in the binding environment ' \(\rho\left[x_{1} \mapsto v_{1}\right.\) ' as the context in which "the body" ' \(e_{2}\) ' is evaluated. This is reflected by the order of the two separate evaluation steps in the following rule.
\[
\begin{gather*}
\rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, e_{1}\right\rangle \Rightarrow\left\langle\Sigma^{\prime}, \Delta^{\prime}, v_{1}\right\rangle \\
\frac{\rho\left[x_{1} \mapsto v_{1}\right], \mathcal{G} \vdash\left\langle\Sigma^{\prime}, \Delta^{\prime}, e_{2}\right\rangle \Rightarrow\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, v_{2}\right\rangle}{\rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, \text { let } x_{1}=e_{1} \text { in } e_{2}\right\rangle \Rightarrow\left\langle\Sigma^{\prime \prime}, \Delta^{\prime \prime}, v_{2}\right\rangle} \tag{e-let}
\end{gather*}
\]

\subsection*{7.42 Haskell (evaluation of let expressions).}
```

evalExp xs rho g (E_LET x1 e1 e2) = do
v1}\leftarrow evalExp xs1 rho g e1
evalExp xs2 (insert x1 v1 rho) g e2
where
~(xs1,xs2) = splitVars xs

```
7.43 Definition (evaluation of record expressions). There are no specific rules for record expressions in Yang etal. [23, Fig. 3]. In the current eager semantics, however, we implement record evaluation strictly in the field arguments, as a left-to-right evaluation of the field bodies \(e_{0} \ldots e_{n}\) to symbolic normal forms \(v_{0} \ldots v_{n}\).
\[
\frac{\rho, \mathcal{G} \vdash\left\langle\Sigma_{0}, \Delta_{0}, e_{1}\right\rangle \Rightarrow\left\langle\Sigma_{1}, \Delta_{1}, v_{1}\right\rangle \cdots \rho, \mathcal{G} \vdash\left\langle\Sigma_{n-1}, \Delta_{n-1}, e_{n}\right\rangle \Rightarrow\left\langle\Sigma_{n}, \Delta_{n}, v_{n}\right\rangle}{\rho, \mathcal{G} \vdash\left\langle\Sigma_{0}, \Delta_{0}, \text { record } x_{1}=e_{1} \ldots x_{n}=e_{n}\right\rangle \Rightarrow\left\langle\Sigma_{n}, \Delta_{n}, \text { record } x_{1}=v_{1} \ldots x_{n}=v_{n}\right\rangle} \quad n \geq 0 \text { (e-rec) }
\]
7.44 Remark (empty record). We have deliberately allowed \(n=0\), as a way to signify the empty record.

\subsection*{7.45 Haskell (evaluation of record expressions).}
```

evalExp xs rho g (E_RECORD fies) = do
fivs }\leftarrow\mathrm{ mapM eval1 (insertXss xs fies)
return (V_RECORD fivs)
where
insertXss xs [] = []
insertXss xs ((x,e):xes) = (x,e,xs1) : insertXss xs2 xes where ~
eval1 (x,e,xs)= do v \leftarrow evalExp xs rho g e
return (x,v)

```
7.46 Definition (evaluation of field expressions). There are no specific rules for field look up expressions in Yang etal. [23, Fig. 3]. In the current semantics, we implement field lookup strictly, in that the record expression part ' \(e\) ' of ' \(e . f_{i}\) ' is evaluated completely to symbolic normal form. If the evaluation renders a 'record' with all fields on normal form, the indicated field content is returned as semantic value. Otherwise, we return the normalized field lookup entity ' \(\sigma . f i\) ' as semantic value.
\[
\begin{array}{r}
\frac{\rho, \mathcal{G} \vdash\langle\Sigma, \Delta, e\rangle \Rightarrow\left\langle\Sigma_{1}, \Delta_{1}, \text { record } f i_{1}=v_{1} \ldots f i_{n}=v_{n}\right\rangle}{\rho, \mathcal{G} \vdash\left\langle\Sigma, \Delta, e . f i_{i}\right\rangle \Rightarrow\left\langle\Sigma_{1}, \Delta_{1}, v_{i}\right\rangle} \\
\frac{\rho, \mathcal{G} \vdash\langle\Sigma, \Delta, e\rangle \Rightarrow\left\langle\Sigma_{1}, \Delta_{1}, \sigma\right\rangle}{\rho, \mathcal{G} \vdash\langle\Sigma, \Delta, e . f i\rangle \Rightarrow\left\langle\Sigma_{1}, \Delta_{1}, \sigma . f i\right\rangle} \quad \sigma \neq \operatorname{record} f i_{1}=v_{1} \ldots f i_{n}=v_{n} \tag{e-field2}
\end{array}
\]

\subsection*{7.47 Haskell (evaluation of field expressions).}
```

evalExp xs rho $g\left(E _F I E L D\right.$ e fi $)=$ do 499
$\mathrm{v} 1 \leftarrow$ evalExp xs rho ge 500
return (evalVar_FIELD v1) 501
where
evalVar_FIELD (V_RECORD fivs) $=$ head $\left[\mathrm{v}^{\prime} \mid\left(\mathrm{fi}^{\prime}, \mathrm{v}^{\prime}\right) \leftarrow\right.$ fivs, fi $\left.{ }^{\prime} \equiv \mathrm{fi}\right]$
evalVar_FIELD v $\quad=($ V_FIELD $v \mathrm{fi})$

```

Like the semantics by Yang et al [23], we observe that the evaluation semantics constitutes a deterministic proof system.

Finally, we illustrate the program evaluation rule with the first of our canonical examples from Example 1.4, based on the translation to \(\lambda_{J}\) in Example 4.14. Because of the shere size, however, we only show selected parts of the proof tree.

\subsection*{7.48 Example (Name policy program evaluation).}

The main judgement has the following form:
\[
\begin{aligned}
& \rho_{0}, \mathcal{G}_{0} \vdash\langle\{ \},\{ \}, \operatorname{print}(\text { concretize } m s g \text { with alice })\rangle \Rightarrow \mathcal{E}_{1} \\
& \rho_{0}, \mathcal{G}_{0} \vdash\left\langle\{ \},\{ \}, \operatorname{print}(\text { concretize } m s g \text { with bob) }\rangle \Rightarrow \mathcal{E}_{2}\right. \\
& \hline
\end{aligned}
\]
\(\vdash\) letrec name \(=v e_{1}, \mathrm{msg}=v e_{2}\) in print(concretize \(m s g\) with alice)
(p-letrec)
\[
\operatorname{print}(\text { concretize } \mathrm{msg} \text { with } b o b) \Rightarrow \mathcal{E}_{1}, \mathcal{E}_{2}
\]
where
\[
\begin{aligned}
& \rho_{0}=\left[\text { name } \mapsto\left(v e_{1}, \rho_{0}\right), \mathrm{msg} \mapsto\left(v e_{2}, \rho_{0}\right)\right] \\
& \mathcal{G}_{0}=\{ \}
\end{aligned}
\]
and
\[
\begin{aligned}
& v e_{1}=\operatorname{thunk}(\operatorname{defer} a \text { in }(\text { assert }(!(\text { context }=\text { alice })=>(a=\text { false })) \text { in } \llbracket<" \text { Anonymous" } \mid " \text { Alice" }>(a) \rrbracket)) \\
& v e_{2}=\operatorname{thunk}(" \text { Author is" }+ \text { name })
\end{aligned}
\]
and
\[
\llbracket<" A n o n y m o u s " \mid " A l i c e ">(a) \rrbracket=\text { if } a \text { then "Alice" else "Anonymous" }
\]

\section*{8 Running a Jeeves program}

In this section, we show how to run a Jeeves program as it pertains to this document as a literate Haskell implementation of a Jeeves compiler and a \(\lambda_{J}\) evaluation engine. The main program is the Jeeves program evaluator. It consists of a parsing step, which converts from the Jeeves source language to \(\lambda_{J}\) abstract syntax, followed by an evaluation phase of the generated \(\lambda_{J}\) terms c.f. Figure 1. We also provide a way to run just the compile step to \(\lambda_{J}\) terms (i.e., without the output part in Figure 1 as the input part is a build-in feauture of Jeeves). We are dedicating the remainder of the section to show how to run the canonical "Naming Policy" program from Figure 2, and "Conference Management System" program from Figure 3, and how to interpret the results.

At first, we illustate the beginning of a session with the Hugs Haskell system [11], where this literate program [17] is loaded with the command :load "jeeves-constraints.lhs". (The program also runs with Glasgow Haskell.) In the remainder of this section, we will tacitly assume that loading has been successfully completed.

```

||___|| ||__|| ||__|| __|| Copyright (c) 1994-2005
||--|| ___| World Wide Web: http://haskell.org/hugs
|| || Bugs: http://hackage.haskell.org/trac/hugs
|| || Version: September 2006
Haskell 98 mode: Restart with command line option -98 to enable extensions
Type :? for help
Hugs> :load "jeeves-constraints.lhs"
Main>

```

A Jeeves program (and input) is evaluated with the invocation of the Jeeves evaluator by giving the command:
```

evaluateFile <filename>

```
which results in a sequence of (non-interfeering) 'Effects' in accordance with Definition 7.14 and Haskell 7.16. In appendix B. 3 it is outlined how the effect output is formatted. The implementation of evaluateFile is reflected in the following code snippet.

\subsection*{8.1 Haskell (Jeeves evaluator).}
```

-- TOP EVALUATOR 506
507
evaluate :: String }->\mathrm{ Effects 508
evaluate jeeves = effects
where 511
programParse = parse (programParser xs1) jeeves }\mp@subsup{}{512}{512
effects = if null programParse then noEffects else evalProgram xs2 (fst (head programParse) 513
)
(xs1,xs2) = splitVars vars

```
evaluateFile filename \(=\) do jeeves \(\leftarrow\) readFile filename \(\quad-\quad\) IO utility
    putStr (show (evaluate jeeves))
```

A Jeeves program (with input) is parsed/translated with the invocation of the Jeeves parser by giving the command:
parseFile <filename>

The parser output is a λ_{J} program that follows the specification in Definition 4.1 and Haskell 4.5. In appendix B. 3 it is outlined how the λ_{J} output is formatted in Haskell. The code for parseFile is listed in the Haskell B. 2 framework.

The program (with input) format has to adhere to the syntax specified in Definition 2.4, as illustrated by the Jeeves program examples in Figure 2 and Figure 3. In the following, we tacitly assume that two files have been created, testp1.jeeves and testp2.jeeves, which respectively contain those programs.

The (formatted) program output from running the program is a list of effects where each effect, according to Definition 7.17, is formally described by (output, instantiate (model $(\Delta, \Sigma \cup\{\mathcal{G} \wedge$ context $=\kappa\}), v)$). This output is formatted as follows by our implementation:

```
Effect "output"
    SOFT CONSTR = ...
    HARD CONSTR MODEL = ...
    SYMBOLIC VALUE = ...
```

where 'Effect' is a keyword, 'output' prints the value of output, 'SOFT CONSTR = ...' prints the soft constraint set Δ, 'HARD CONSTR MODEL $=\ldots$...' prints the instantiated hard constraint set $' \Sigma \cup\{\mathcal{G} \wedge$ context $=\kappa\}$ ', and 'SYMBOLIC VALUE $=\ldots$...' prints the symbolic value v. The order in which the (non-interferring) effects appear, reflects directly the order in which the print statements appear in the Jeeves program. We obviously has chosen to keep that ordering in the formatted program output, which is printed as a vertical list of the form ' $[$ <effect>, ..., <effect>]' where '<effect>' is formatted as described above. We depict how to run and what the formatted program output looks like for the Naming Policy Program from Figure 2. According to the theoretical program evaluation in Example 7.48, the program exactly evaluates to the expected constraint sets and values!

```
Main> evaluateFile "Tests/testp1.jeeves"
[
    EFFECT "print"
        SOFT CONSTR= {} U {True }=>\mathrm{ x x10=true},
        HARD CONSTR MODEL = {} \cup {True }=>\mathrm{ ( ( (context='alice') }=>\mathrm{ (x10=false))}
                            \cup {True ^ context='alice'}
        SYMBOLIC VALUE = ('Author is ' + (if x10 then 'Alice' else 'Anonymous'))
    EFFECT "print"
        SOFT CONSTR = {} \cup {True }=>\mathrm{ x20=true},
        HARD CONSTR MODEL = {} \cup {True }=>\mathrm{ ( ( (context='alice') }=>\mathrm{ (x20=false))}
                            \cup{True ^ context='bob'}
        SYMBOLIC VALUE = ('Author is ' + (if x20 then 'Alice' else 'Anonymous'))
    ]
```

We also depict how to run and what the formatted program output looks like for the Conference Management Policy program from Figure 3. Eventhough we have not made a formal proof of the
expected constraint sets and values, the result of the run at this point is relatively convincing according to common sense.

```
Main> evaluateFile "Tests/testp2.jeeves"
[
    EFFECT "print"
        SOFT CONSTR = {} U {True => x90=true} \cup {True => x58=true} \cup {True => x x26=true},
        HARD CONSTR MODEL = {}
            {True = ( }\neg((\mathrm{ (context.viewer.role=Reviewer)
                        \vee(context.viewer.role=PC)) \vee (context.stage=Public))
                    # (x90=false))}
            {True }=>\mathrm{ ( (ᄀ(((if x58 then 'Alice' else 'Anonymized')=context.viewer.name)
                        \vee ((context.stage=Public) ^ \neg((if x90 then Accepted else 'none')='none'))
                    # (x58=false))}
            {True }=>\mathrm{ ( }\neg(((context.viewer.name =(if x58 then 'Alice' else 'Anonymized')
                        V (context.viewer.role=Reviewer))
                            V (context.viewer.role=PC))
                            \vee ((context.stage=Public) ^ ᄀ((if x90 then Accepted else 'none')='none'))
                    => (x26=false))}
            U {True ^ context=(record viewer=(record name='Alice' role=PC) stage=Public) }
        SYMBOLIC VALUE = (record title=(if x26 then 'MyPaper' else '')
                                    author=(if x58 then 'Alice' else 'Anonymized')
                                    accepted=(if x90 then Accepted else 'none')
                            )
EFFECT "print"
    SOFT CONSTR = {} \cup {True }=>\mathrm{ x x180=true} }\cup{True => x116=true} \cup {True => x52=true}
    HARD CONSTR MODEL = {}
            {True }=>\mathrm{ ( }\neg(((context.viewer.role=Reviewer
                    \vee (context.viewer.role=PC)) \vee (context.stage=Public))
                    => (x180=false))}
            {True = ( }\neg(((if x116 then 'Alice' else 'Anonymized')=context.viewer.name
                        \vee ~ ( ( c o n t e x t . s t a g e = P u b l i c ) ~ \wedge ~ \neg ( ( i f ~ x 1 8 0 ~ t h e n ~ A c c e p t e d ~ e l s e ~ ' n o n e ' ) = ' n o n e ' ) ) ~
                    => (x116=false))}
            {True }=>\mathrm{ ( (ᄀ(((context.viewer.name=(if x116 then 'Alice' else 'Anonymized'))
                        V (context.viewer.role=Reviewer))
                        V (context.viewer.role=PC))
                        \vee ((context.stage=Public)
                        \wedge \neg((if x180 then Accepted else 'none')='none')))
                    # (x52=false))}
            U {True ^ context=(record viewer=(record name='Bob' role=Reviewer) stage=Public)}
        SYMBOLIC VALUE = (record title=(if x52 then 'MyPaper' else '')
                                    author=(if x116 then 'Alice' else 'Anonymized')
                                    accepted=(if x180 then Accepted else 'none')
            )
    ]
```

The formatted output from invoking the Jeeves parser is a λ_{J} program that follows the specification in Definition 4.1 and Haskell 4.5. In appendix B. 3 it is outlined how the λ_{J} output is
formatted. We depict how to run the Jeeves parser and what the formatted λ_{J} program looks like for the Naming Policy Program from Figure 2. According to the theoretical program translation in Example 4.14, the program exactly parses to the expected λ_{J} terms!

```
Main> parseFile "Tests/testp1.jeeves"
[(
letrec
    name = thunk ( (defer a in (assert ( }\neg\mathrm{ (context='alice') = (a=false)) in
                                    (if a then 'Anonymous' else 'Alice'))) );
    msg = thunk ( ('Author is '+name) );
in
    print: concretize msg with 'alice' ;
    print: concretize msg with 'bob' ;
,"")]
```

Because of the verbose nature of the parsing step, we will sidestep the equivalent outcome from parsing the Conference Mangagement Program.

9 Conclusion

We have presented the first complete implementation of the Jeeves evaluation engine. "Complete" in the sense that the evaluation of a program written in Jeeves syntax is in fact defined in terms of the λ_{J} evaluation semantics, as is directly reflected in our implementation. "Not-complete", however, in the sense that a static (type) verification step currently has been omitted. As part of the process, we have specifically obtained a tool that is able to generate privacy constraints for a given Jeeves program. The actual constraint solving phase, however, has in accordance with Yang et al [23] been assumed to happen at a later time and is thus not part of our formalization efforts directly.

The implementation consists the following Haskell components:

- abstract Haskell type definitions to define a concrete Jeeves syntax as well as the λ_{J} syntax;
- an LL(1)-parser that builds abstract λ_{J} syntax trees from the Jeeves source-language, thus translating Jeeves to λ_{J} terms;
- a λ_{J}-interpreter, implementing the operational evaluation semantics of λ_{J};
- an implementation of constraint evaluation as monadic operations on a monadic constraint environment.

With this implementation, we were able to both run and parse the canonical examples from Figure 2 and Figure 3 as they (almost) appear in the original paper by Yang et al [23] (after some syntactical corrections and adjustments) with the expected results. All in an easy-to-use fashion as explained in Section 8. We have achieved an elegant, yet precise program documentation by making use of Haskells' "literate" programming feature to incorporate the theoretical part of the report together with the actual program, ie, the source $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ of this report also serves as the source code of the program, as accounted for in Notation 1.1.

We have corrected a number of inconsistencies and shortcomings in the original syntax and semantics, together with certain limitations, in order to support an implementation, notably:

- added explicit syntax for a Jeeves and λ_{J} program;
- introduced explicit semantics for the letrec recursive operator in λ_{J}
- only allowing recursive functions at the top-level of a program;
- disallowing recursively defined policies;
- introduced explicit semantics for output side-effects;
- reformulated the dynamic operational semantics of λ_{J} to one that is entirely de-compositional and non-substitutional for convincingly proving program and privacy properties.
- identified the constraint set handling as being monadic with policies as the only constructs with side-effects on the constraint set (as expected).

We have published the implementation as a github project [17].

10 Future Directions

First of all, it is desirable to have the implementation "hooked up" to a constraint solver (with a Haskell interphase).

Even though the interpreter component of the implementation has the advantage of serving as a "proof of concept" as much as a practical, and theoretically transparent tool (the implementation of an operational semantics is by definition an interpreter), efficiency is of inherent concern. Efficiency can, in fact, be improved considerably by replacing the λ_{J} interpreter with a compilation step, that translates λ_{J} syntax trees to some efficient target code, whilst incorporating the semantic evaluation rules directly. Joelle Despeyreaux, for example, has outlined how to perform such a systematic translation from mini-ML, while incorporating the languages' operational semantics [4].

Redefining some of the Haskell parser mechanisms such as " ++ " is another area of optimization gains to explore. Because many of these pre-defined parser mechanisms allow backtracking, we have not been able to optimize our parser further, other than ensuring that the grammar productions that are parsed is on $\operatorname{LL}(1)$ form, which we found is not enough to avoid backtracking completely.

A study of how to optimize on the generated constraints prior to any automated constraint solving phase, could possible increase the efficiency (and correctness) of thereof.

A Discrepancies from the original formalization

In this section, we list the modifications and formalization decisions we have made compared to Yang et al [23] in order to clarify the syntax and semantics sufficiently to support an implementation.
A. 1 Discrepancy (Jeeves syntax). The original abstract syntax c.f. Yang et al [23, Fig. 1] has been extended in several ways c.f. Definition 2.1:

- the syntax of a program has been made explicit,
- let statements are made an explit part of the program syntax,
- let statements only appear at the top-level of a program,
- a policy expression must contain an "in" part,
- the syntax of let expressions has been made explicit,
- the syntax for expression sequences has been made explicit,
- generalized level expressions has been made explicit,
- record and field expressions have been made explicit.

As a consequence of only allowing (recursively defined) let statements at the top-level of a Jeeves program, we obtain the following notable limitations:

- we disallow recursively defined functions in symbolic values,
- we disallow cyclic data structures.

Finally, we have added a concrete syntax for Jeeves programs in Definition 2.4.
A. 2 Discrepancy (λ_{J} syntax). The original abstract syntax c.f. Yang et al [23, Fig. 2] has been extended in several ways c.f. Definition 3.1, Definition 3.3, Definition 3.5, as well as Definition 5.1:

- the syntax of a program has been made explicit,
- the recursive combinator 'letrec' has been added as a statement,
- the recursive combinator 'letrec' has been removed as an expression,
- output statements have been generalized,
- an explicit output tag to concretize statements has been added,
- the notion of a thunk expression has been added,
- the defer expression has been simplified (to reflect the translation),
- the assert expressions must contain an "in" part,
- the unit ('()') entity has been removed,
- records have been added as expressions (when their fields are expressions),
- field look-up has been added as an expression,
- concrete and symbolic values are not automatically defined as expressions.

As a consequence of only allowing letrec and output statements at the top-level of a λ_{J} program, we obtain the following notable limitations:

- a static, recursive scope of a program is only established at the top-level,
- a static, recursive scope of a program is established globally prior to side effect statements (output).

As mentioned, the category of concrete and symbolic normal forms is defined separately, though some syntactic entities appear both as an expression and as a value c.f. Definition 5.1:

- closures have been added as concrete values,
- strings and constants have been added as concrete values,
- records over concrete fields have been added as concrete value,
- records over symbolic fields have been added as symbolic value,
- field look-up over a symbolic record has been added as a symbolic value,
A. 3 Discrepancy (λ_{J} translation). The original translation c.f. Yang et al [23, Fig. 6] has been extended in several ways c.f. Definition 4.1, Definition 4.6, and Definition 4.11:
- the translation of a Jeeves program has been added,
- the translation of expression sequences has been added,
- the translation of if expressions has been added,
- the translation of let expressions has been added,
- a generalization of the level expression translation has been added,
- the (trivial) "default" part has been removed,
- binary operator expression translation has been added,
- function application translation has been added,
- record translation has been added,
- field look-up translation has been added,
- translation of literals and 'context' has been added,
- translation of logical (unary) negation has been added,
- translation of (syntactic sugary) paranthesis has been added.
A. 4 Discrepancy (evaluation semantics). The original evaluation semantics c.f. Yang et al [23, Fig. 3] has been extended and modified in several ways c.f. Definition 7.14, Definition 7.17 , and Definition 7.20:
- adding the notion of a binding environment (to manage evaluation scopes),
- reformulating the semantics as a least fixpoint semantics in the environment,
- formulating an evaluation semantics of a program (as a series of effects),
- reformulation from small-step to big-step semantics,
- reformulation from non-compositional to compositional semantics,
- reformulation from substitution-based to non-substitution based semantics,
- adding evaluation semantics for variable lookup,
－adding evaluation semantics for unary operation，
－added level variable handling to happen by the binding environment，
－added evaluation semantics for let expressions，
－added evaluation semantics for record expressions，
－added evaluation semantics for field look－up expressions．
We have furthermore added formalizations for the λ_{J} input－output domains（Definition 7．1）， and for the pre－constraint－solve output effect from running a program prior to any constraint solv－ ing（Definition 7．11）．

B Additional code

In this appendix we include various fragments of code that were not deemed key to the main presentation．

B． 1 Haskell（Literal lexical token parsers）．

```
spaces = many myspace -- white space and Haskell style comments in Jeeves 518
    where 519
        myspace = sat isSpace 
            +1
                                (do word " --" 522
                            many (sat (非'\n'))
                        return 'ь') 524
ident :: Parser String -- a lower case letter followed by alphanumeric chars }\mp@subsup{}{526}{
ident = do xs \leftarrow ident2 527
            if (isKeyword xs) then failure else return xs 528
    where
        ident2 = do x & sat isLower 530
            xs \leftarrow many (sat isAlphaNum)
            return (x:xs) 532
isKeyword idkey = elem idkey keywords 
keywords = ["top","bottom","if","then","else","lambda", 535
            "level","in","policy","error","context","let", 536
            "true","false","print","sendmail"] 537
-_ a sequence of digits
nat = do xs \leftarrow many1 (sat isDigit )
            return (read xs) 541
string :: Parser String -- strings can be in "" or ". 
string = do sat (三',"')
    s < many (sat (非'"')))}54
    sat (三''")
```

```
    return s 547
    +1+
        548
    do sat (三,\,,')
        s many (sat (\not\equiv ,\,',))
        sat (三,\,,)
        return S 552
        xs \leftarrow many (sat isAlphaNum) 555
        return (x:xs)
        556
```


B. 2 Haskell (parser framework).


```
parse :: Parser a }->\mathrm{ String }->[(a,\mathrm{ String )] 559
```

parse :: Parser a }->\mathrm{ String }->[(a,\mathrm{ String)] 559
parse (PARSER p) inp = p inp 560

```
parse (PARSER p) inp = p inp 560
```



```
            putStr (show (parse (programParser vars) jeeves)) 563
```

 putStr (show (parse (programParser vars) jeeves)) 563
 instance Monad Parser where 565
instance Monad Parser where 565
return v = PARSER (\lambdainp }->[(v,inp)]) 56
return v = PARSER (\lambdainp }->[(v,inp)]) 56
p>>f=PARSER (\lambdainp ->case parse p inp of
p>>f=PARSER (\lambdainp ->case parse p inp of
[] -> [] 568
[] -> [] 568
[(v,out)] -> parse (f v) out)
[(v,out)] -> parse (f v) out)
failure :: Parser a 571
failure :: Parser a 571
failure = PARSER (\lambdainp }->[])=57
failure = PARSER (\lambdainp }->[])=57
success :: Parser () 574
success :: Parser () 574
success = PARSER (\lambdainp }->[((),inp)]) 57
success = PARSER (\lambdainp }->[((),inp)]) 57
item :: Parser Char 577
item :: Parser Char 577
item = PARSER (\lambdainp }->\mathrm{ case inp of 578
item = PARSER (\lambdainp }->\mathrm{ case inp of 578
"" }->[
"" }->[
(x:xs)->[(x,xs)]) 580
(x:xs)->[(x,xs)]) 580

- choice operator
- choice operator
(H+) :: Parser a }->\mathrm{ Parser a }->\mathrm{ Parser a 583
(H+) :: Parser a }->\mathrm{ Parser a }->\mathrm{ Parser a 583
p ++ q = PARSER (\lambdainp ->case parse p inp of 584
p ++ q = PARSER (\lambdainp ->case parse p inp of 584
[] -> parse q inp 585
[] -> parse q inp 585
[(v,out)] ->[(v,out)])
[(v,out)] ->[(v,out)])
wordToken :: String }->\textrm{a}->\mathrm{ Parser a -- builds a token parser for a word tok to return r on 589
wordToken :: String }->\textrm{a}->\mathrm{ Parser a -- builds a token parser for a word tok to return r on 589
success
success
wordToken tok r = do token (word tok) 590
wordToken tok r = do token (word tok) 590
return r

```
return r
```

-- derived primitives 593
sat :: (Char }->\mathrm{ Bool) }->\mathrm{ Parser Char 594
sat p = do x }\leftarrow ite
595
if px then return x else failure

```

```

token :: Parser a }->\mathrm{ Parser a 599
token p = do spaces 600
v \leftarrow p 601
spaces 602
return v 603
word :: String }->\mathrm{ Parser String -- parses just the argument characters, incl. white spaces 605
word [] = return [] 606
word (c:cs) = do sat (三c) 607
word CS 608
return (C:Cs) 609
-- generic combinators 611
many :: Parser a }->\mathrm{ Parser [a] 612
many p = many1 p + + return [] 613

* Pal4
many1 :: Parser a }->\mathrm{ Parser [a] 615
many1 p = do v \leftarrowp 616
vs \leftarrow many p 617
return (v:vs) 618
optional :: Parser a }->\mathrm{ Parser [a] 620
optional p = optional1 p +H return [] 621
optional1 p = do v \leftarrowp 623
return [v] 624
manyParser :: (FreshVars }->\mathrm{ Parser a) }->\mathrm{ FreshVars }->\mathrm{ Parser b }->\mathrm{ Parser [a] }\mp@subsup{}{626}{626
manyParser p xs sp = manyParser1 p xs sp +H return [] 627
manyParser1 p xs sp = (do v \leftarrow p xs1 629
vs \leftarrow manyParserTail p xs2 sp 630
return (v:vs)) 631
where (xs1,xs2) = splitVars xs
manyParserTail p xs sp = (do sp - - parses separation tokens like ; , o etc 634
v}\leftarrow\textrm{p xs1 }\mp@subsup{}{635}{635
vs \leftarrow manyParserTail p xs2 sp l }\mp@subsup{}{636}{63
return (v:vs)) 637
H+ 638
return [] 639

```
\[
\text { where }(x s 1, x s 2)=\text { splitVars xs }
\]

\section*{B. 3 Haskell (pretty-printing \(\lambda_{J}\) syntax).}
```

instance Show Effect where 641
show (EFFECT output (INSTANTIATE (MODEL delta sigma g c) v)) =
"\n\mp@code{EFFECT}
"\n
"\n\mp@code{|பபபHARD}\mp@subsup{|}{பCONSTR}{\bulletINST}
show c ++"ப}" ++
"
mp@subsup{n}{பபபபSYMBOLIC}{+VALUE}
instance (Show a)=>Show (Constraints a) where }64
show (CONSTRAINTS sigma delta e) =
"CONSTRAINTS" ++
"
mp@subsup{n}{ப\sqcupSIGMA}{\sqcup}=\sqcup" ++show sigma ++
"\n}\mp@subsup{n}{\sqcup\sqcup}{}\mp@subsup{DELTA}{\sqcup}{=
"\n}\mp@subsup{n}{\sqcup\sqcup" + +show e}{
instance Show Value where -- pretty printing lambda J values
show (V_BOOL b) = if b then "true" else "false"
show (V_NAT i) = show i
show (V_STR s) = "," + + ++","
show (V_CONST s) = s
show (V_ERROR) = "error"
6 6 0
show (V_LAMBDA x e rho) = "(
"++show x++"."++show e++",RHO)"
show (V_THUNK e rho) = "(thunk}\sqcup\textrm{RHO})" / 66
show (V_RECORD fivs) = "(record" ++(if null fivs then "" else foldr1 (H) (map (}\lambda\mathrm{ (fi,e) (}\mp@subsup{}{6}{663
->("ч"++show fi++"="++show e)) fivs)) ++")"
show (V_VAR x) = show x
show (V_CONTEXT) = "context" }66
show (V_OP op v1 v2) = "("++show v1+Hshow op++show v2++")"

```

```

 show (V_IF v1 v2 v3) = "(if\sqcup" +Hshow v1 ++"ьthen
 v3 ++")"
 show (V_FIELD v fi) = show v++"."+Hshow fi
 instance Show Exp where - pretty printing lambda J expressions

```

```

 show (E_BOOL False) = "false"
 show (E_NAT n) = show n < 674
 show (E_STR s) = "'" ++s ++"'" -- todo: remove escape quotes
 show (E_CONST s) = s -- no quotes in a constant by definition 676
 show (E_VAR v) = show v < 677
 show (E_CONTEXT) = "context" 678
 show (E_LAMBDA v e) = "lambda\sqcup" + (show v) ++"." ++(show e) 679
 show (E_THUNK e) = "thunk
 show (E_OP op e1 e2) = "(" ++show e1 + show op ++show e2 ++")" 681
 show (E_UOP uop e) = show uop ++"ь" ++show e 682
    ```
```

 show (E_IF e1 e2 e3) = "(if
 +"")"
 show (E_APP e1 e2) = "(" ++show_APP e1 ++"ь" + +show e2 ++")"
 where
 show_APP (E_APP e1 e2) = "("+ show_APP e1 ++"ь" + show e2 ++")" }68
 show_APP e = show e 6 < 687
 show (E_DEFER v e) = "(defer " Hshow v ++"ьin
 show (E_ASSERT e1 e2) = "(assert\sqcup" Hoshow e1 ++"ьin
 show (E_LET x e1 e2) = "(let " + show x + "ப=ப" + show e1 + "ьin " H + show e2 ++") 690
 "
 show (E_RECORD fies) = "(record" H-(if null fies then "" else foldr1 (H) (map (}\lambda(\textrm{fi},\textrm{e})->\quad\mp@subsup{}{691}{
 ("ப"++show fi++"="++show e)) fies)) ++")"
 show (E_FIELD e fi) = show e ++"." H+show fi 692
 instance Show Binding where 694
show (BIND x e) = "ч" + show x ++"ப=ப" ++show e ++";\n" 695
instance Show Statement where (r) 697
show (CONCRETIZE_WITH output e1 e2) = "ь" + +output ++"ь(concretize
"ьwith
instance Show Program where }70
show (P_LETREC Is ps) = "\nletrec\n" ++concat (map show Is) ++"in\n" ++concat (map
show ps)
instance Show Op where
show OP PLUS = "+" 704
show OP_MINUS = "-"
show OP_AND = "ь^^" 706
show OP_OR = "ьVь" 707
show OP_IMPLY = "ь=>ь" 708
show OP_EQ = "=" 709
show OP_LESS = "<" 710
show OP_GREATER = ">" 711
nstance Show UOp where
show OP NOT = "\neg"
instance Show Var where }71
show (VAR s) = s
instance Show FieldName where 719
show (FIELD_NAME s) = s
instance Show PathCondition where }72
show (P_COND []) = "True"
show (P_COND ps) = "^"++ show ps

```
instance Show Sigma where \(\quad 726\)
    show (SIGMA list) \(=\) foldr \(f\) "\{\}" list \({ }_{727}^{727}\)
        where 728
```



```
instance Show Delta where 731
    show (DELTA list) \(=\) foldr \(f\) "\{\}" list \(\quad{ }_{732}\)
        where \(\quad 733\)
```



```
instance Show Formula where \({ }_{736}\)
    show (F_IS v) = show v \(\quad{ }_{737}\)
    show (F_NOT v) = " \(\mathrm{F}^{\prime}+\) + show v \(\quad 738\)
```


References

[1] Grigoris Antoniou. A tutorial on default logics. ACM Comput. Surv., 31(4):337-359, December 1999.
[2] Franz-Josef Brandenburg, Guy Vidal-Naquet, and Martin Wirsing, editors. STACS '87-4th Annual Symposium on Theoretical Aspects of Computer Science, volume 247 of Lecture Notes in Computer Science, Passau, Germany, February 1987. Springer.
[3] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In TACAS, pages 337-340, 2008.
[4] Joëlle Despeyroux. Proof of translation in Natural Semantics. In proceedings of the first Symp. on Logic In Computer Science, LICS'86. IEEE Computer Society, June 1986. Also appears as INRIA Research Report RR-514, April 1986.
[5] Peter Naur et al. Report on the algorithmic language algol 60. Communications of the ACM, 6(1):1-17, January 1963.
[6] Simon Marlow et al. Haskell 2010 language report. Technical report, http://www.haskell.org, 2010.
[7] John Field and Michael Hicks, editors. POPL 2012—Proceedings of the 39th ACM SIGPLANSIGACT Symposium on Principles of Programming Languages, Philadelphia, Pennsylvania, USA, January 2012. ACM.
[8] Carsten K. Gomard. A self-applicable partial evaluator for the lambda calculus: correctness and pragmatics. Transactions on Programming Languages and Systems, 14(2):147-172, 1992.
[9] P. Henderson. Functional Programming-Application and Implementation. Prentice-Hall, 1980.
[10] G. Hutton and E. Meijer. Monadic parsing in haskell. Journal of Functional Programming, 8(4):437-444, July 1998. Cambridge University Press, New York, NY, USA.
[11] Graham Hutton. Hugs system. Technical report, Glasgow, 2000.
[12] Graham Hutton. Programming in Haskell. Cambridge Univ Press, 2007.
[13] Gilles Kahn. Natural semantics. In Brandenburg et al. [2], pages 22-39.
[14] K. Marriott and P.J. Stuckey. Programming with Constraints: An introduction. MIT Press, Cambridge, Massachusetts, USA, 1998.
[15] Robin Milner, Mads Tofte, and Robert Harper. The definition of Standard ML. MIT Press, Cambridge, MA, USA, 1990.
[16] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report FN19, DAIMI, Aarhus University, Aarhus, Denmark, 1981. Reprinted with corrections in J. Log. Algebr. Program 60-61: 17-139 (2004).
[17] Eva Rose. Constraint generation for the jeeves privacy language. https://github.com/ drevarose/jeeves-in-haskell/blob/master/jeeves-constraints.lhs, 2014.
[18] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming. Elsevier, 2006.
[19] Chiaki Sakama. Inductive negotiation in answer set programming. In Matteo Baldoni, Tran Cao Son, M. Birna van Riemsdijk, and Michael Winikoff, editors, DALT, volume 5397 of Lecture Notes in Computer Science, pages 143-160. Springer, 2008.
[20] David Schmidt. Denotational Semantics. Allyn and Bacon, 1986.
[21] Tom Schrijvers, Peter Stuckey, and Philip Wadler. Monadic constraint programming. J. Funct. Program., 19(6):663-697, November 2009.
[22] Philip Wadler and Peter Thiemann. The marriage of effects and monads. ACM Trans. Comput. Logic, 4(1):1-32, January 2003.
[23] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for automatically enforcing privacy policies. In Field and Hicks [7], pages 85-96.

Index

call-by-value evaluation, 37
concrete values, 23
eager evaluation, 39
hard constraints, 38
soft contraints, 38
strictly, 39, 40
symbolic values, 23
λ_{J} abstract syntax, 11
λ_{J} program, 11
λ_{J} value property, 15
λ_{J} program evaluation, 28
λ_{J} program, 11
thunks, 13
Ackermann function, 12
basic algebraic sorts, 9
big step semantics, 28
binding environment, 12, 28
Canonical examples, 5
closure, 23
concrete syntax, 46
ConcreteValue, 24
constant value expression, 16
constraint environment, 2, 25, 26
constraint propagation, 30
constraint resolution, 23
constraint scopes, 38
constraints on default values, 26
current set of constraints, 26
derivation, 15
eager, 28
eager language, 12
effect, 31
Effects, 31
effects, 28, 30
environment-based, 28
evaluateFile, 41
evaluation of
expressions, 33
a statement, 32
application expressions, 37
assert expressions, 38
binary operator expressions, 34
conditional expressions, 36
defer expressions, 38
field expressions, 40
lambda expressions, 34
let expressions, 39
literals and context, 33
record expressions, 39
unary operator expressions, 35
variable expressions, 34
evaluation semantic, 31
fixpoint semantics, 31
fresh, 17, 38
fresh variable names, 22
hard constraints, 26
hard constraints, soft constraints, and path condition, 27
Haskell monadic parser combinator library, 8, 9
Identifier naming conventions, 9
input, 28
input-output domain, 28
input-output function, 3, 11
input-output values, 29
instantiation, 30
Jeeves abstract syntax, 8
Jeeves concrete syntax, 8
Jeeves lexical tokens, 8
Jeeves program, 8
least fixpoint, 31
level variable, 9
level variables, 34
lexical scoping, 23, 37
lexical tokens, 10
lexical variable scoping, 28
literate program, 41
ML letrec, 31
monad, 27
name clashing, 38
output, 28
parseFile, 42
path condition, 26
privacy enforcement, 3
privacy leaks, 9
program evaluation rule, 31
regular variable, 9
regular variables, 34
Running a Jeeves program, 2, 41
sensitive value, 11
sensitive values, 36
side effects, 10
small-step semantic, 28
soft constraints, 26
solution constraints, 29
solution model, 29
substitution-based, 28
symbolic normal forms, 23, 24
SymbolicValue, 24
syntax directed translation, 15
thunks, 11
translation of Jeeves lexical tokens, 21
value expression, 14
value expressions, 16
value sort, 14
weak head normal form, 13, 14

[^0]: *This work was conducted whilst at CSAIL, Massachussets Institute of Technology, 2012.

[^1]: ${ }^{1} \mathrm{LL}(1)$ grammars are context-free and parsable by LL(1) parsers: input is parsed from left to right, constructing a leftmost derivation of the sentence, using 1 lookahead token to decide on which production rule to proceed with.

[^2]: ${ }^{2}$ The unit primitive only appears in the E-ASSERT rule in [23, Figure 3], hiding the fact that the Jeeves translation only generates assert expressions which include an "in e" part [23, Figure 6]. Thus eliminating the need for a unit.

[^3]: ${ }^{3}$ In comparison, the estimated age of the earth is approximately 10^{17} seconds.

