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Abstract

Our goal is to present a completed, semantic formalization of the Jeeves privacy language
evaluation engine, based on the original Jeeves constraint semantics defined by Yang et al at
POPL12 [23], but sufficiently strong to support a first complete implementation thereof. Specif-
ically, we present and implement a syntactically and semantically completed concrete syntax for
Jeeves that meets the example criteria given in the paper. We also present and implement the as-
sociated translation to λJ, but here formulated by a completed and decompositional operational
semantic formulation. Finally, we present an enhanced and decompositional, non-substitutional
operational semantic formulation and implementation of the λJ evaluation engine (the dynamic
semantics) with privacy constraints. In particular, we show how implementing the constraints
can be defined as a monad, and evaluation can be defined as monadic operation on the con-
straint environment. The implementations are all completed in Haskell, utilizing its almost
one-to-one capability to transparently reflect the underlying semantic reasoning when formal-
ized this way. In practice, we have applied the "literate" program facility of Haskell to this report,
a feature that enables the source LATEX to also serve as the source code for the implementation
(skipping the report-parts as comment regions). The implementation is published as a github
project [17].

∗This work was conducted whilst at CSAIL, Massachussets Institute of Technology, 2012.
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1 Introduction

Jeeves was first introduced as an (impure) functional (constraint logic) programming language by
Yang et al [23], which distinguish itself by allowing explicit syntax for automatic privacy enforcement.
In other words, the syntax and semantics of the language is designed to support that a programmer
composes privacy policies directly at the source level, by way of a special, designated privacy syntax
over a not yet known context. It is worth noticing, that there is no semantic specification for Jeeves
at the source level. Jeeves’ semantics is entirely defined by a syntax translation to an intermediary
constraint functional language, λJ , together with a λJ evaluation engine (defined over the same
input-output function as source-level Jeeves). In order to run Jeeves with the argued privacy
guarantees, it is therefore pivotal to have a correct and running implementation of λJ evaluations
as well as a correct Jeeves-to-λJ syntax-translation, which is the main goal of this report. In Figure 1
we have illustrated how Jeeves’ evaluation engine is logistically defined in terms of the λJ language:

Jeeves program

λJ translation
��

input // λJ program // output

Figure 1: Running a Jeeves program

The explicit privacy constructs in Jeeves, and thus λJ is in fact not just syntactic sugar for the
underlying conventional semantics, but is interpreted independently in terms of logical constraints
on the data access and writes. The runtime generated set of logical constraints that safeguards the
policies, are defined as part of the usual dynamic and static semantics. As we show with our re-
formalization of the dynamic semantics, the constraint part of the semantics can in fact be defined
as a monoid, thus following an othogonal evaluation pattern with respect to the underlying tradi-
tional evaluation semantics. An observation which not only makes it straighforward to implement,
but makes privacy leak arguments straight forward to express and proof.

In this report, we have re-stated the original formalizations of the abstract syntax for source-
level Jeeves, as well as for λJ , by way of algebraic and denotational (domain) specifications. As
a new thing, we have added a concrete syntax for source-level Jeeves as an LL(1) grammar, along
which we have re-adjusted the λJ compilation to be specified as a syntax-directed translation. Fur-
thermore, we are re-formulating the definition of the dynamic (evaluation) semantics by way of
operational (natural) semantics. In the process, we have added a number of technical clarifying
details and assumptions, as summarized in section A. Notably, we have imposed a formal (deno-
tational) definition of a Jeeves aka λJ "program", and semantically specified how programs should
be evaluated at the top level . We should mention, that the treatment of types (and the associated
static semantics) has been omitted, thus leaving it to the user not to evaluate ill-formed terms or
recursively defined policies.

The implementation has been conducted in Haskell. Using that specific functional language,
provides a particular elegant and one-to-one imlementation map of the denotational and opera-
tional specifications of Jeeves, aka λJ . In fact, by having implemented the dynamic, operational
semantics of λJ , we have obtained a Jeeves/ λJ interpreter. To implement the parser, we in fact
used the Haskell monadic parser combinator library [10], which has been included in full in Ap-
pendix B.2. One limitation with the current implementation, however, is that we have not included
a constraint solver, but merely outputs all constraints to be further analysed. It is, however, a minor
technical detail to add an off-the-shelf constraint solver to the backend.
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The presentation of the implementation in the report, has been done by using the literate pro-
gramming facility of Haskell, as described in Notation 1.1. En bref, it permits us to use the source
LATEX of the report as the source code of the program. In the report, we have preceded each code
fragments with the formalism it implements, so that the elegant, one-to-one correspondance be-
tween the formalism and the Haskell program serves as a convincing argument for the authenticity
of the Jeeves implementation (and vice versa, in that the running program fragments support the
formalizations). To ease readability we have furthermore been typesetting and color coding the
Haskell implementation, also summarized in Notation 1.1.

1.1 Notation (The Haskell implementation). The Haskell program has been integrated with the
report as specially designated Haskell sections by means of the literate programming facility for
Haskell [6]. This facility (file extension .lhs), enables Haskell code and text to be intertwined, yet
percieved either as program (like .hs extension) with text segments appearing as comments, or as
a TeX report (like the .tex extension) where code fragments appear as text. All depending on which
command is run upon the ensemble.

For convenience, the typesetting of the Haskell sections uses coloring for emphasis and prints
the character sequences shown in the following table as special characters.

Symbol used in report λ ++ → ← ⇒ ≤ ≥ ≡ ◦ � �=
Haskell source form \ ++ -> <- => <= >= == . >> >>=

Before we proceed, we will introduce the literate Haskell programming head.

1.2 Haskell (main program and imports).

1

2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3−− Evaluates Jeeves programs and generates policy constraints
4−− Eva Rose <evarose@mit.edu>
5−− CSAIL August 2012.
6−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7

8−− Imported data types
9import Data.Map (Map,(!),insert , delete ,empty,union,member,assocs)
10import Char

The semantic and syntactic specification styles follow those of Plotkin [16], Kahn [13], Schmidt [20],
Bachus and Naur [5], alongside the formal abbreviations, shorthands and stylistic elements which
we have summarized in Notation 1.3.

1.3 Notation (Formal style summary). We have adopted the following conventions:

• the shorthand ’Sym · · · Sym’ to denote a finite repetition of the pattern Sym, one or more
times,

• the teletype font for keywords in source-level Jeeves, and sans serif for keywords in λJ.

Before we describe how the report is structured we will recall, with two examples from the
original paper, what programming with Jeeves looks like. The first being a simple naming policy
example, and the second having to do with the tasks involved in accessing and managing papers
for a scientific conference. Both will serve as our canonical examples throughout the report.
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1.4 Example (Canonical examples). Figure 2 and Figure 3 consist of two Jeeves programming
examples from Sec. 2.2 in [23, p.87], but as slightly altered versions. Among other things, we
have fixed the format of a Jeeves program c.f. Definition 2.1. Furthermore, we have changed the
examples in the following ways:

• tacitly omitted ’reviews’ from the ’paper’ record and from the policy definitions, as dealing
with listings just introduce "noise" to the presentation without adding any significant insight,

• only to allow policies on the form "policy lx : e then lv in e"; we have thus moderated
the original examples by adding "in p" to those policy definitions were the keyword "in" was
missing,

• omitted types in accordance with our design decisions.

-- Jeeves example adapted from Yang etal. (POPL 2012).

let name =
level a in
policy a: !(context = "alice") then bottom in

< "Anonymous" | "Alice" >(a)

let msg = "Author is " + name

print {"alice"} msg
print {"bob"} msg

Figure 2: Naming policy

The program in Figure 2 overall introduces a policy (‘policy. . . : !(context="alice"). . . ’) which
regulates what value the variable ‘name’ is assigned: either to ‘"Anonymous"’ or to ‘"Alice"’. Let
us first hone in on the (first order) logical policy condition ‘!(context="alice")’. This is simply a
boolean expression stating to be true if the value of the designated, built-in variable ‘context’ is
different from the string ‘"alice"’, otherwise false. (The ‘!’ stands for negation.) In the first case,
‘bottom’ will select the first value of the pair ‘<"Anonymous","Alice">’, whereas in the latter case,
the second value will be chosen to be assigned to ‘name’. Now hone in on the print-statements at the
bottom of the program. The semantics tells that the ‘context’ variable first is automatically set to the
string ‘"alice"’ (by the ‘print {"alice"}. . . ’ statement); subsequently to the string ‘"bob"’ (by
the ‘print {"bob"}. . . ’ statement). These print-statements are also the ones responsible for the
program output by printing the value of the variable ‘msg’, which in turn is designated by the values
of ‘name’ (by the ’let msg = ... name’ statement). In other words, the input-output functionality
is given by the print statements. Thus, upon the input: ‘alice’ ‘bob’, the expected output of this
program is: ‘Author is Alice’ ‘Author is Anonymous’.

The program in Figure 3 overall introduces policies for managing access to conference papers,
depending upon the formal role a person possesses. The policies to avoid leaking the name of a
paper author at the wrong time in the review process, follows the basic principle of the naming
policy in Figure 2, just in a more complex setting. The first let-statement of the program creates a
paper record through the function ‘mkpaper’ with information on ‘title’, ‘author’, and ‘accepted’
status. By way of the level variables ‘tp’, ‘authp’, and ‘accp’, three leak policies are being added
as conditioned values, each of which is being defined by the subsequent let-statements. Take for
example the first of these: ‘addTitlePolicy p tp;’. The policy states that if a viewer is not the
author, and the viewer’s role is neither that of a reviewer’s or program chair, and finally, if not
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-- Jeeves example adapted from Yang etal. (POPL 2012).

let mkPaper
title author accepted =
level tp, authp, accp in
let p = { title = <""|title>(tp)

; author = <"Anonymized"|author>(authp)
; accepted = <"none"|accepted>(accp) } in

addTitlePolicy p tp ; addAuthorPolicy p authp;
addAcceptedPolicy p accp;

p

let addTitlePolicy p a =
policy a: ! (context.viewer.name = p.author

|| context.viewer.role = Reviewer
|| context.viewer.role = PC
|| context.stage = Public && isAccepted p) then bottom

in p

let addAcceptedPolicy p a =
policy a: ! (context.viewer.role = Reviewer

|| context.viewer.role = PC
|| context.stage = Public) then bottom

in p

let addAuthorPolicy p n =
policy n: ! (isAuthor p context.viewer

|| context.stage = Public && isAccepted p) then bottom
in p

let alice = {name = "Alice"; role = PC}

let bob = {name = "Bob"; role = Reviewer}

let isAuthor p viewer = (p.author = viewer.name)

let isAccepted p = !(p.accepted = "none")

print {{viewer = alice; stage = Public}} mkPaper "MyPaper" "Alice" Accepted

print {{viewer = bob; stage = Public}} mkPaper "MyPaper" "Alice" Accepted

Figure 3: Conference management policies

6



the review process is over (the stage is then then ‘public’) or the paper has been accepted, then
the title can only be released as "" (because the ‘bottom’ value selects the first of the title pair
values in ‘mkpaper’, which is ""). Similarly for the other policy specifications. The next set of let
specifications set the variables ‘alice’ and ‘bob’ with concrete review records, and the two boolean
functions ‘isAuthor’ and ‘isAccepted’ are similarly set with concrete boolean expressions. Also
here, the print-statements are responsible for assigning the ‘context’ variable with concrete viewer
and stage information, and to output a record corresponding to a paper, through a call to "mkpaper",
where the individual paper fields have been filtered by the specified policies.

We assume that the reader of this report is familiar with the core principles of the original Jeeves
definition in Yang et al [23]. Furthermore, we assume an understanding of functional programming
in Haskell [6, 12], as well as basic familiarity with algebraic specifications and semantics [5, 13,
16, 20].

Finally, we describe how the report is structured:

• In Sec. 2, (source-level) Jeeves is specified both by its abstract as well as a newly formulated
concrete syntax. The concrete syntax is specified in terms of an LL(1) grammar along with
the lexical tokens for Jeeves and their implementation in Haskell.

• In Sec. 3, (intermediary) λJ is specified by its abstract syntax alongside its implementation
in Haskell. Notably, the notion of a λJ program has been added to the original syntax to-
gether with additional expression syntax (thunks). The ensemble is presented alongside its
implementation in Haskell.

• In Sec. 4, we formally present the translation from Jeeves to λJ as a derivation. The trans-
lation is given as a syntax directed compilation of the concrete Jeeves syntax to λJ, together
with its Haskell implementation. The implementation is in fact a set of Jeeves parsers, which
builds abstract syntax trees in accordance with the abstract λJ specification in Section 3.

• In Sec. 5, we formally present the symbolic normal forms with the addition of a static binding
environment component. The implementation of those are presented together with opera-
tions on the environment, notably insertion and lookups.

• In Sec. 6, we specify the notion of a hard constraint algebra, and soft constraint algebra as
well as the notion of a path condition algebra. We finally show how the set of hard and
soft constraints can be implemented as a monad in Haskell, together with update and reset
operations thereon.

• In Sec. 7, the λJ evaluation engine is formally specified as a big step, compositional, non-
substitution based operational semantics alongside our specification of a λJ program evalu-
ation. The Haskell implementation in terms of a λJ interpreter is presented alongside the
formalizations. The input-output functionality is equally specified, and a program outcome is
defined in our setting as a series of "effects" written to output channels.

• In Sec. 8, we show how to load and run a jeeves program with our system, as well as how to
use our system to translate a Jeeves program to λJ.

• Finally, in section 9, we conclude our work, and discuss further directions in section 10.

We will describe in which way our formalizations deviates from the original formulations c.f.
Yang et al [23] as we go along, and summarize the discrepancies in Appendix A.
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2 The Jeeves syntax

In this section, we restate the Jeeves abstract syntax from the original paper [23, Figure 1], and
a (new) formulation of a Jeeves concrete syntax. We also specify the basic algebraic sorts for
literals that are assumed by the specifications, and present them as Jeeves lexical tokens for the λJ
translation in subsequent sections. The syntax specifications include some language restrictions and
modifications compared to the original rendering in accordance with section A. Notably, restrictions
on the shape of a Jeeves program, such that all let-statements (i.e., let constructs without an in-
part) must be trailed by print-statements, and both are only to appear at the top-level of the
program.

The abstract syntax merely serves as a quick guide to the Jeeves language just as in the original
form [23, Figure 1]. It is presented as a complete, algebraic specification which describes Jeeves
programs, expressions, and tokens in a top-down fashion, following Notation 1.3. The concrete syn-
tax for source-level Jeeves has been formulated as an (unambiguous) LL(1) grammar from scratch.
Thereby making it straightforward to apply the Haskell monadic parser combinator library [10]
when implementing the λJ translation function in subsequent sections. The syntax precisely states
the way operator precedence and scoping is being handled, if not by the original specification [23,
Figure 1], then by the original Jeeves program examples [23, Section 2] (for more details on dis-
crepancies and differences, visit section AS).

The only Haskell implementation in this section is that of the Jeeves lexical tokens in Haskell 2.6.

2.1 Definition (abstract Jeeves syntax).

p ∈ Pgm ::= let x . . . x = e
...
let x . . . x = e

output e e
...
output e e

e ∈ Exp ::= b | n | s | c | x | lx | context
| e op e | uop e
| if e then e else e
| e . . . e
| < e |e > (lx)
| level lx, . . . , lx in e

| policy lx : e then lv in e
| let x . . . x = e in e
| {x = e; . . . ;x = e }
| e.x
| e; . . . ;e

where b ∈ Boolean, n ∈ Natural, s ∈ String, c ∈ Constant,
and lx, x ∈ Identifier, lv ∈ Level, op ∈ Op, uop ∈ UOp, output ∈ Outputkind

The where-clause lists the basic value sorts of the language. They cover the same algebras in
source-level Jeeves and the λJ level, except for Level, which only exists in the source-level language.
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For that reason, we will duplicate the formal (meta) variables between the abstract and concrete
syntax and between source and target language specifications. In Definition 2.5, they are specified
as concrete, lexical tokens.

2.2 Definition (basic algebraic sorts). The sorts are Boolean for truth values, Natural for natural
numbers, String for text strings, Constant for constants, and Identifier for variables. The Level
sort denotes public vs. private confidentiality levels (originally formalized by ‘>’ vs ‘⊥’), the Op sort
denotes binary operations, and UOp denotes unary operations. The Outputkind sort denotes the
different channelings of output, here limited to print or sendmail.

2.3 Notation (Identifier naming conventions). We use x to denote a regular variable, and lx to
denote a level variable.

The concrete syntax description is specified in (extended) Backus-Naur form, with regular ex-
pressions for the tokens [5]. In order to ease the implementation of the Jeeves parser, we have
specifically formulated the concrete syntax as an LL(1) grammar,1 because of the then direct appli-
cability of the Haskell monadic parser combinator library [10].

2.4 Definition (concrete Jeeves syntax).

p :: = lst∗ pst∗ (Program)

lst :: = let x x∗ = e (LetStatement)

pst :: = output {e} e (OutputStatement)

e :: = lie | lie ; e | if e then e else e | let x x∗ = e in e (Expression)
| level lx (, lx)∗ in e | policy lx : e then lv in e

lie :: = loe⇒ loe | loe (LogicalImplyExpression)

loe :: = loe || lae | lae (LogicalOrExpression)

lae :: = lae && ce | ce (LogicalAndExpression)

ce :: = ae = ae | ae > ae | ae < ae | ae (ComparisonExpression)

ae :: = ae+ fe | ae− fe | fe (AdditiveExpression)

fe :: = fe pe | pe (FunctionExpression)

pe :: = lit | x | context (PrimaryExpression)

| <ae|ae> (lx) | rec | pe.x | !pe | (e)
lit :: = b | n | s | c (Literal)

rec :: = {xe (; xe)∗ } | {} (Record)

xe :: = x = pe (Field)

where b ∈ Boolean, n ∈ Natural, s ∈ String, c ∈ Constant,
and lx, x ∈ Identifier, lv ∈ Level, op ∈ Op, uop ∈ UOp, output ∈ Outputkind

To simplify where potential privacy leaks may appear in a program, we restrict the Jeeves lan-
guage semantics by imposing a number of simple restrictions. Notably, that statements are only
allowed at the top-level of a program. There are two types of (source-level) Jeeves statements:
simple let statements that define the global, recursively defined binding environment, and the

1LL(1) grammars are context-free and parsable by LL(1) parsers: input is parsed from left to right, constructing a
leftmost derivation of the sentence, using 1 lookahead token to decide on which production rule to proceed with.
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output statements, that induce (output) side effects. Because (output) side effects represent po-
tential privacy leaks, we have simplified matters by only allowing output statements to be stated
at the end of a program, thus textually after the global binding environment has been established.
Even though this is simply a syntactic decision, it supports a programmer’s intuition when to let the
semantics apply in this way. By only allowing recursion to appear at the top-level of a Jeeves pro-
gram, we hereby simplify how and where policy (constraint) side effects can appear, in accordance
with a programmer’s view.

We proceed by specifying the basic algebraic sorts from Definition 2.2, as concrete lexical tokens,
together with their implementation in Haskell 2.6.

2.5 Definition (Jeeves lexical tokens).

b ::= true | false (Boolean)

n ::= [0-9]+ (Natural)

s ::= " [¬"\n]∗ " (String)

c ::= [A-Z] [A-Za-z0-9]∗ (Constant)

lx, x ::= [a-z] [A-Za-z0-9]∗ (Identifier)

lv ::= top | bottom (Level)

op ::= + | - | < | > | = | && | || | => (BinaryOp)

uop ::= ! (UnaryOp)

output ::= print | sendmail (Outputkind)

2.6 Haskell (Jeeves lexical tokens). Lexical tokens are straight forwardly implemented as Haskell
literals. Boolean and String literals are predefined in Haskell. Other literals are mapped to Haskell’s
Integer and String types.

12type Natural = Integer
13type Constant = String
14type Identifier = String
15type Level = String
16type BinaryOp = String
17type UnaryOp = String
18type Outputkind = String

2.7 Remark. The implementation of Constant, Identifier, Level, BinaryOp, UnaryOp, and Out-
putkind does not really reflect the restrictions imposed by the regular expression definition in
Definition 2.5. For example, by allowing constants or identifiers to start with a digit. We will
instead address these restrictions by the (error) semantics.

Finally, we will re-visit the first of our canonical examples, the enforcement of a naming policy,
from Example 1.4. The goal is to informally explain the overall syntactic structure of a simple
Jeeves program, as a stepping stone to familiarize a programmer with the language.

2.8 Example (Jeeves name policy program).

1. let name =
2. level a in
3. policy a: !(context = alice) then bottom in < "Anonymous" | "Alice" >(a)
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4. let msg = "Author is " + name

5. print {alice} msg
6. print {bob} msg

This program begins with a sequence of let-statements (‘let name. . . ’, and ‘let msg. . . ’), trailed
by a sequence of print-statements (‘print alice msg’, and ‘print bob msg’). We expect the let-
statements in line 1 and 4, by means of the underlying semantics, to set up a global (and recur-
sively) defined binding environment (which we shall express as [‘name’ → . . . ; ‘msg’ → . . . ] in
accordance with tradition). It is the print-statements, however, which are causing side effects in
terms of printing the values of ‘msg’ in line 5 and 6. We notice that the build-up of constraints by
the ‘level a in policy a:. . . ’ expression in line 2 and 3, is tacitly expected to be resolved by the
semantics. The program captures in many ways the essence of Jeeves’ unique capability to "filter"
a program outcome: a naming policy, associated with the level variable ‘a’, is explicitly defined in
terms of a predicate ‘n!(context = alice)’ in line 3 (‘!’ stands for negation), where ‘context’ is a
keyword for the implicit, designated input variable that gets set by the print statements in line 5 and
6. The value of the predicate will in turn decide how the sensitive value ‘<"Anonymous"|"Alice">’
evaluates to either ‘"Anonymous"’ or ‘"Alice"’. The final outcome results in ‘msg’ being assigned
in line 4 to the result of the policy expression evaluation. To summarize, we have that the input-
output function is uniquely given by the print-statements in line 5 and 6. The input is read from the
expression, stated between the ‘{’ and the ‘}’, and assigned the designated ’context’ variable (here,
‘alice’ and ‘bob’). The output by the two print statements, however, is given by the expression
trailing the curley braces (here, ‘msg’). For further details on the meaning of this example, we refer
to Example 1.4.

In Sec. 8, we show how to run this program with the system developed in this report.

3 The λJ syntax

In this section, we re-state the λJ abstract syntax from the original paper [23, Figure 2], adding
a (new) formulation of a λJ program, along a (new) type of expression (thunks). We specify λJ
programs, statements, and expressions algebraically in a top-down manner, following the stylistic
guidelines in Notation 1.3. We do, however, redefine the notion of a λJ value to be a property over
the expression sort, and the error primitive to be redefined from a syntactic value to a semantic
entity. Finally, the error primitive is redefined from a syntactic value to a semantic entity, and the ()
(unit) primitive is removed completely as a value.2 All which is necessary to maintain the role of λJ
as an intermediary language for Jeeves. The ensemble has been implemented in Haskell with code
shown alongside the presentation of the concepts. The Haskell implementation of λJ is designed as
a one-to-one mapping from the λJ syntax algebras to Haskell data types, where the basic algebraic
sorts and the formal (meta) variables remain shared between the Jeeves and λJ level, as specified
in previous sections.

First, we define our notion of a λJ program ‘p’. It is specified as a list of mutually recursive (func-
tion) bindings ‘x= ve . . . x= ve’ that constitutes the static environment for evaluating the output
statements ‘s . . . s’. (It is the ‘letrec’, which semantically specifies the recursive nature of the bind-

2The unit primitive only appears in the E-ASSERT rule in [23, Figure 3], hiding the fact that the Jeeves translation
only generates assert expressions which include an "in e" part [23, Figure 6]. Thus eliminating the need for a unit.
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ings by its traditional meaning [9].) The Statement, Exp, and V alExp algebraic sorts are all being
defined later in this section.

3.1 Definition (abstract λJ program syntax).

p ∈ Program ::= letrec
x= ve . . . x= ve

in
s . . . s

where x ∈ Identifier, ve ∈ V alExp, s ∈ Statement, and V alExp ⊆ Exp

The list of bindings, x= ve . . . x= ve, and statements, s . . . s, are auxiliary algebraic sorts.

This definition has a straight forward implementation is Haskell:

3.2 Haskell (abstract λJ program syntax). A program is implemented in terms of a combinator
Bindings, and Statements data type. The letrec-defined environment is specifically implemented by
the Binding list data type.

19data Program = P_LETREC Bindings Statements deriving (Ord,Eq)
20

21type Bindings = [Binding]
22data Binding = BIND Var Exp deriving (Ord,Eq)

The Statement sort is defined as specified in the original paper [23, Figure 2], followed by is
straight forward implementation:

3.3 Definition (abstract λJ statement syntax).

s ∈ Statement ::= output (concretize ewith e)

where e ∈ Exp, output ∈ Outputkind

3.4 Haskell (abstract λJ statement syntax). The list of statements is straight forwardly imple-
mented by the Statements list data type.

23type Statements = [Statement]
24data Statement = CONCRETIZE_WITH Outputkind Exp Exp deriving (Ord,Eq)

We wish to address the issue of our introduction of thunks, and thereby our need for introducing
the sub-sort V alExp ofExp in Definition 3.11. Let us for a moment side-step the fact that the letrec-
bindings in Definition 3.1 only are allowed to happen to value expressions (‘x = ve’) when the static
binding environment is established, and instead assume that bindings are allowed to happen over
all expressions (‘x = e’) as defined in Definiton 3.5. Because Jeeves, and whence λJ, is defined
to be an eager language, parsing of an expression ‘e’, however, may cause significant, unintended
behaviour at binding time, as illustrated by the following λJ program:

letrec x = (ack 100) 100
in print (concretize 5with 5)

This program binds ‘x’ to an instance of the Ackermann function, even though it clearly outputs
the number 5, regardless of the value of (ack 100) 100! The problem is that Ackermann with those
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arguments is a number of magnitude 1020000 digits!3 An eager language will cause this enormous
number to be calculated at binding time, leading to a halt before any print statement has been
evaluated.

The established manner to handle scope is to introduce ‘thunks’ as a way of "wrapping up" unde-
sired expressions with a syntactic containment annotation. Thereby allowing binding resolution to
be delayed until the correct scope is established. Precisely as prohibiting "evaluation under lamba"
is a common way of "wrapping up" function evaluation. Technically, to put it on weak head normal
form.

Because the original λJ syntax does not allow this, we have extended the expression sort with
‘thunk e’, and created a special subsort V alExp which contains expressions on weak head normal
form. These features will in particular show up as useful features when specifying and implement-
ing the λJ translation. A correct version of the above program hereafter is:

letrec x = thunk ((ack 100) 100)
in print (concretize 5with 5)

We proceed by restating the abstract syntax according to the discussed considerations.

3.5 Definition (abstract λJ expression syntax).

e ∈ Exp :: = b | n | s | c | x | lx | context
| λx.e | thunk e
| e op e | uop e
| if e then e else e
| e e
| defer lx in e
| assert e in e
| let x = e in e
| record fi:e · · · fi:e
| e.fi

where b ∈ Boolean, n ∈ Natural, s ∈ String, c ∈ Constant,
and op ∈ Op, up ∈ UOp, lx, x ∈ V ar, fi ∈ FieldName

Here, we have tacitly assume that the Identifier sort has been partitioned into two separate names-
paces: lx, x ∈ V ar, and fi ∈ FieldName, with the obvious meaning.

3.6 Remark (empty expression). The empty record is represented by the keyword record.

3.7 Remark (defer expression). The original defer expression syntax come in two forms (with types
omitted): ‘defer lx {e} default υ’ and ‘let l = defer lx default true υ in e’ in Yang et al [23, Figure 2,E-
DEFER] and [23, Figure 6,(TR-LEVEL)] respectively. The version we have chosen to formalize, is
a modification in a couple of ways yet preserving the intended translation semantics. First, the
‘default true’ part is omitted from the syntax, because this contribution from the Jeeves translation
is so trivial that it can be dealt with by the evaluation semantics instead c.f. Definition 7.36. Second,
the contribution from ‘{e}’ is none according to Yang et al [23, Figure 6,(TR-LEVEL)]. Thus, we have
allowed a modified version ’defer lx in e’ as an expression and ajusted the semantics accordingly to
still be in line with the intent of Yang et al [23].

3In comparison, the estimated age of the earth is approximately 1017 seconds.
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3.8 Remark (assert expression). The original syntax, ‘assert e’, has been modified in accordance
with the original translation scheme in Yang et al [23, Figure 6] to include an ‘in e’ part. (A fact
that equally eliminates the need for the unit primitive () as originally stated in Yang et al [23,
Figure 3].) These decisions render an assert expression on the form: ‘assert (e ⇒ (lx = b)) in e’.

3.9 Definition (λJ lexical tokens). Lexical tokens are the same as for Jeeves c.f. Definition 2.5.
Level (‘lx’) tokens are by default logical variables at the λJ level.

3.10 Haskell (abstract λJ expression syntax). The algebraic constructors for the Exp sort are
implemented as a one-to-one map to Haskell constructors for the Exp datatype. The Op sort is
implemented by the datatype Op, and UOp is implemented by UOp. The individual operations are
implemented with (self-explanatory) Haskell constructors.

25data Exp = E_BOOL Bool | E_NAT Int | E_STR String | E_CONST String
26| E_VAR Var | E_CONTEXT
27| E_LAMBDA Var Exp | E_THUNK Exp
28| E_OP Op Exp Exp | E_UOP UOp Exp
29| E_IF Exp Exp Exp | E_APP Exp Exp
30| E_DEFER Var Exp | E_ASSERT Exp Exp
31| E_LET Var Exp Exp
32| E_RECORD [(FieldName,Exp)]
33| E_FIELD Exp FieldName
34deriving (Ord,Eq)
35

36data Op = OP_PLUS | OP_MINUS | OP_LESS | OP_GREATER
37| OP_EQ | OP_AND | OP_OR | OP_IMPLY
38deriving (Ord,Eq)
39

40data UOp = OP_NOT deriving (Ord,Eq)
41

42data FieldName = FIELD_NAME String deriving(Ord,Eq)
43data Var = VAR String deriving (Ord,Eq)

Finally, we need to characterize the notion of a value expression, among which is the notion
of a thunk-expression as discussed above. As illustrated by the Ackermann program example,
the problem is that "problematic" expressions might get unintentionally evaluated at compile-time
instead of in a run-time scope, because the language is eager. To make sure that only expressions
that are "safe" to bind in Definition 3.1 are in fact those allowed in the static binding environment,
we introduce the notion of a value expression (‘ve’) as an expression on weak head normal form.
To summarize, such expressions in λJ may, as expected, take one of three forms:

• constant expressions (literals or records of values),

• non-constant functions (‘λx.e’), or

• constant functions (‘thunk e’).

To be precise, we specify an auxiliary value sort V alExp ⊆ Exp with the purpose of syntactically
capturing those sets of expressions, followed by its Haskell implementation:
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3.11 Definition (value expressions).

ve ∈ V alExp ::= b | n | s | c | λx.e | thunk e | record fi1 : ve1 . . . fim : vem
where m ≥ 1

3.12 Haskell (value expressions). The λJ value property is straight forwardly implemented as a
Haskell predicate isValue over the Exp datatype.

44isValue (E_BOOL _) = True
45isValue (E_NAT _) = True
46isValue (E_STR _) = True
47isValue (E_CONST _) = True
48isValue (E_LAMBDA __) = True
49isValue (E_THUNK _) = True
50isValue (E_RECORD xes) = and [isValue e | (_,e)←xes]
51isValue _ = False

4 The λJ translation

In this section, we formally present a syntax directed translation of the concrete Jeeves syntax to λJ ,
alongside its Haskell implementation. The translation follows the original outline in Yang et al [23,
Fig. 6] on critical syntax parts, but has been extended to accomodate modifications as accounted
for in Section A, 2, and 3. Specifically, we have added a translation from a Jeeves program to our
notion of a λJ program.

The translation is formalized as a derivation, marked by J _ K, over the program, expression,
and token sorts. A derivation is a particular simple form of compositional translations that is
characterized by the fact that syntax cannot be re-used, and side-conditions cannot be stated, which
makes them particularly easy to reason about termination, and straightforward to implement.

The Haskell implementation is given as a set of Jeeves parsers, which builds abstract λJ syntax
trees in accordance with the abstract syntax outlined in Section 3. The parsers are implemented
using the Haskell monadic parser combinator library [10], which is also included in Appendix B.2.

4.1 Definition (translation of Jeeves program).uwwwwwwwwv

let f1 x11 . . . x1n1 = e1...
let fm xm1 . . . xmnm = em
output1 {e′1} e′′1...
outputk {e′k} e′′k

}��������~
=

letrec f1 = e′′′1
. . .
fm = e′′′m

in output1 (concretize Je′′1Kwith Je′1K)
. . .
outputk (concretize Je′′kKwith Je′kK)

where

e′′′i =

{
thunk JeiK if ni = 0 ∧ J ei K /∈ V alExp
λxi1. . . . λxini .JeiK otherwise

1 ≤ i ≤ m, m ∈ N, ni ∈ N0

and

k,m ∈ N, f, x ∈ V ar, e, e′, e′′, e′′′ ∈ Exp, output ∈ Outputkind
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Using the introduced notation, we begin by explaining the specifics of a constant function (that
is a function with no function arguments):

4.2 Remark (constant function). We tacitly assume that given m ∈ N functions, originally defined
by m let-statements, and given some function ‘fi, 1 ≤ i ≤ m’, we have that ‘ni = 0’, which
corresponds to ‘fi’ being a constant function. In particular it entails that ‘e′′′i = JeiK’, where the
expression-translation ‘JeiK’ is assumed to be some λJ expression.

The where-clause specifies the shape of the translated expressions, symbolized by ‘e′′′i ’, as it is
statically bound in the recursive (function) binding environment by the equation ‘fi = e′′′i ’ (for
some i where m ∈ N, 1 ≤ i ≤ m). A problematic scoping situation might occur during translation,
when ‘fi’ defines a constant function as discussed in detail in Section 3. Because ‘e′′′i ’ may equal any
expression form, we have to confine any impending static evaluation by wrapping all non-value
expressions with a ’thunk’. It means vice versa, that constant functions which are in fact value
expressions can be safely bound:

4.3 Remark (constant function translation). If for some m ∈ N, 1 ≤ i ≤ m we have ni = 0 (no func-
tion arguments), and JeiK ∈ V alExp (value expression), then the where-clause of the translation
rule entails e′′′i = JeiK (function is a constant value expression).

From Definition 3.11 follows immediately the following invariant:

4.4 Lemma (binding environment invariant). The right hand side of the letrec-function-bindings
are all value expressions, i.e., for some m ∈ N we have

∀i ∈ N, 1 ≤ i ≤ m, ni ∈ N0 : e′′′i ∈ V alExp

.

4.5 Haskell (translation of Jeeves program).

52programParser :: FreshVars → Parser Program
53programParser xs = do recb ← manyParser recbindParser xs1 success
54psts ← manyParser outputstatParser xs2 success
55return (P_LETREC recb psts)
56where ~(xs1,xs2) = splitVars xs
57

58recbindParser :: FreshVars → Parser Binding
59recbindParser xs = do token (word "let")
60f ← token ident
61e ← argumentAndExpThunkParser xs
62optional (token (word ";"))
63return (BIND (VAR f) e)
64

65argumentAndExpThunkParser :: FreshVars → Parser Exp
66argumentAndExpThunkParser xs = do vs ←many (token ident) −− accumulates function

parameters
67token (word "=")
68e ← expParser xs
69if (( null vs) && not ( isValue e))
70then return (E_THUNK e) −− constant, non−value

expression
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71else return ( foldr f e vs) −− guaranteed to be a value by
the guard

72where
73f v1 e1 = E_LAMBDA (VAR v1) e1
74

75outputstatParser :: FreshVars → Parser Statement
76outputstatParser xs = do output ← outputToken
77token (word "{")
78e1 ← expParser xs1 −− should evaluate to concrete value
79token (word "}")
80e2 ← expParser xs2
81optional (token (word ";"))
82return (CONCRETIZE_WITH output e2 e1)
83where ~(xs1,xs2) = splitVars xs

The expression translation follows the concrete expression syntax structure in Definition 2.4,
from which we have tacitly adopted all algebraic specifications.

4.6 Definition (translation of Jeeves expressions).

J e1; . . . en; e K = let x1 = Je1K in . . . let xn = JenK in JeK
where x1 . . . xn fresh, 0 ≤ nJ if e1 then e2 else e3 K = if Je1K then Je2K else Je3KJ let x x1 . . . xn = e1 in e2 K = let x = λx1 . . . λ xn . Je1K in Je2K
where 0 ≤ nJ level lx1 , . . . , lxn in e K = defer lx1 in . . . in defer lxn in JeK
where 1 ≤ nJ policy lx : e1 then lv in e2 K = assert (Je1K⇒ (lx = JlvK)) in Je2KJ e op e K = JeK op JeKJ fe pe K = JfeK JpeKJ context K = contextJ <ae1|ae2> (lx) K = if lx then Jae2K else Jae1KJ {x1=e1; . . . ;xn=en } K = record x1=Je1K . . . xn=JenK
where 0 ≤ nJ pe .x K = J peK .xJ ! pe K = ! J peKJ (e) K = JeKJ lit K = lit

4.7 Remark (simple expression sequence translation). An expression sequence ‘e’ with only one ex-
pression is described by index ‘n = 0.

4.8 Remark (simple let expression translation). A let expession ‘let x = e1 in e2’ with only one vari-
able binding is described by index ‘n = 0’.

4.9 Remark (empty record translation). We represent an empty record by the index ‘n = 0’, and its
translation by the keyword record.
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The expression translation is implemented as a Jeeves expression parser that builds abstract
λJ expression syntax trees, c.f., Definition 3.5. Recall that all parsers are implemented using the
Haskell monadic parser combinator library [10], which is explicitly included in Appendix B.2.

4.10 Haskell (translation of Jeeves expressions).

84expParser :: FreshVars → Parser Exp
85expParser xs = do es ← manyParser1 semiUnitParser xs1 (token (word ";"))
86return (snd ( foldr1 f (zip xs2 es)))
87where
88f (x1,e1) (x2,e2) = (x1, E_LET x1 e1 e2)
89(xs1,xs2) = splitVars xs
90semiUnitParser xs = ifParser xs +++ letParser xs +++ levelParser xs +++ policyParser xs

+++ logicalImplyParser xs
91

92ifParser xs = do token (word "if")
93e1 ← expParser xs1
94token (word "then")
95e2 ← expParser xs2
96token (word "else")
97e3 ← expParser xs3
98return (E_IF e1 e2 e3)
99where ~(xs1,xs2,xs3) = splitVars3 xs
100

101letParser xs = do token (word "let")
102x ← token ident
103xse1 ← argumentAndExpParser xs1
104token (word "in")
105e2 ← expParser xs2
106return (E_LET (VAR x) xse1 e2)
107where ~(xs1,xs2) = splitVars xs
108

109argumentAndExpParser xs = do vs ←many (token ident)
110token (word "=")
111e ← expParser xs
112return ( foldr f e vs)
113where
114f v1 e1 = E_LAMBDA (VAR v1) e1
115

116levelParser xs = do token (word "level")
117lx ← levelIdent
118lxs ← many commaTokenLevelIdent
119token (word "in")
120e ← expParser xs1
121return ( foldr f e ( lx : lxs ))
122where
123commaTokenLevelIdent = do token (word ",")
124lx ← levelIdent
125return lx
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126f lx e = E_DEFER lx e
127~(xs1, lys ) = splitVars xs
128

129policyParser xs = do token (word "policy")
130lx ← levelIdent
131token (word ":")
132e1 ← expParser xs1
133token (word "then")
134lv ← levelToken
135token (word "in")
136e2 ← expParser xs2
137return (E_ASSERT (E_OP OP_IMPLY e1 (E_OP OP_EQ (E_VAR lx) lv))

e2)
138where
139~(xs1,xs2) = splitVars xs
140

141logicalImplyParser xs = do loe ← logicalOrParser xs1
142loes ← optional ( logicalImplyTailParser xs2)
143return ( foldl f loe loes )
144where
145f loe1 loe2 = E_OP OP_IMPLY loe1 loe2
146~(xs1,xs2) = splitVars xs
147

148logicalImplyTailParser xs = do token (word "⇒")
149loe ← logicalOrParser xs
150return loe
151

152logicalOrParser xs = do lae ← logicalAndParser xs1
153laes ← many ( logicalOrTailParser xs2)
154return ( foldl f lae laes )
155where
156f lae1 lae2 = E_OP OP_OR lae1 lae2
157~(xs1,xs2) = splitVars xs
158

159logicalOrTailParser xs = do token (word "‖")
160lae ← logicalAndParser xs
161return lae
162

163logicalAndParser xs = do ce ← compareParser xs1
164ces ← many ( logicalAndTailParser xs2)
165return ( foldl f ce ces)
166where
167f ce1 ce2 = E_OP OP_AND ce1 ce2
168~(xs1,xs2) = splitVars xs
169

170logicalAndTailParser xs = do token (word "&&")
171ce ← compareParser xs
172return ce
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173

174compareParser xs = do ae ← additiveParser xs1
175copae ← optional (compareTailParser xs2)
176if ( null copae) then return ae
177else return (E_OP (fst (head copae)) ae (snd (head copae)))
178where ~(xs1,xs2) = splitVars xs
179

180compareTailParser :: FreshVars → Parser (Op,Exp)
181compareTailParser xs = do cop ← compareOperator
182ae ← additiveParser xs
183return (cop,ae)
184

185compareOperator = wordToken "=" OP_EQ +++ wordToken "<" OP_LESS +++ wordToken ">"
OP_GREATER

186

187additiveParser xs = (do fe ← functionParser xs1
188aopae ← optional ( additiveTailParser xs2)
189if ( null aopae) then return fe else return ((head aopae) fe))
190+++
191(do aopae ← additiveTailParser xs
192return (aopae (E_NAT 0)))
193where ~(xs1,xs2) = splitVars xs
194

195additiveTailParser :: FreshVars → Parser (Exp → Exp)
196additiveTailParser xs = do aop ← additiveOperator
197fe ← functionParser xs1
198aopae ← optional ( additiveTailParser xs2)
199if ( null aopae) then return (λx → E_OP aop x fe)
200else return (λx → (head aopae) (E_OP aop x fe))
201where ~(xs1,xs2) = splitVars xs
202

203additiveOperator = wordToken "+" OP_PLUS +++ wordToken "-" OP_MINUS
204

205functionParser xs = do pe ← primaryParser xs1
206pes ← many (primaryParser xs2)
207return ( foldl E_APP pe pes)
208where ~(xs1,xs2) = splitVars xs
209

210

211primaryParser xs = do pe ← primaryTailParser xs
212fis ← fLookup
213return ( foldl E_FIELD pe fis)
214

215fLookup :: Parser [FieldName]
216fLookup = many (do word "."
217fi ← ident
218return (FIELD_NAME fi))
219
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220primaryTailParser xs = literalParser xs +++ regularIdent +++
221wordToken "context" E_CONTEXT +++
222sensiValParser xs +++ recordParser xs +++
223unaryParser xs +++ groupingParser xs
224

225sensiValParser xs = do token (word "<")
226e1 ← additiveParser xs1
227token (word "|")
228e2 ← additiveParser xs2
229token (word ">")
230token (word "(")
231lx ← levelIdent
232token (word ")")
233return (E_IF (E_VAR lx) e2 e1)
234where ~(xs1,xs2) = splitVars xs
235

236recordParser xs = do token (word "{" )
237fies ← manyParser fieldParser xs (token (word ";"))
238token (word "}" )
239return (E_RECORD fies)
240

241fieldParser :: FreshVars → Parser (FieldName,Exp)
242fieldParser xs = do fi ← token ident
243token (word "=")
244pe ← primaryParser xs
245return (FIELD_NAME fi,pe)
246

247unaryParser xs = do token (word "!")
248pe ← primaryParser xs
249return (E_UOP OP_NOT pe)
250

251groupingParser xs = do token (word "(")
252e ← expParser xs
253token (word ")")
254return e

4.11 Definition (translation of Jeeves lexical tokens). The Jeeves lexical tokens, specified in
Definition 2.5, formally carries over to λJ as the identical token sets, except for Level tokens, which
maps to Boolean in the following way:

JtopK = true JbottomK = false

4.12 Haskell (translation of Jeeves lexical tokens).
The identity mapping of the Jeeves token set (except for level-tokens) to λJ token set, is imple-

mented by letting the parser "build" the equivalent implementation of those tokens (Haskell 2.6)
directly as represented in λJ (Haskell 3.10). Level tokens, however, are represented as boolean
expressions c.f. Definition 4.11.

For reasons of efficiency, we do distinguish between the representation of "regular" variables
(‘x’) and "level" variables (‘lx’) in our implementation, except when translating sensitive values.
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Notice the definition of a "helper", the literalParser, which parses Jeeves literals directly.

255literalParser xs = booleanToken +++ naturalToken +++ stringToken +++ constantToken
256

257booleanToken = wordToken "true" (E_BOOL True)
258+++ wordToken "false" (E_BOOL False)
259

260naturalToken = do n ← token nat
261return (E_NAT n)
262

263stringToken = do cs ← token string
264return (E_STR cs)
265

266constantToken = do cs ← token constant
267return (E_CONST cs)
268

269regularIdent :: Parser Exp
270regularIdent = do x ← token ident
271return (E_VAR (VAR x))
272

273levelIdent :: Parser Var
274levelIdent = do lx ← token ident
275return (VAR lx)
276

277levelToken :: Parser Exp
278levelToken = wordToken "top" (E_BOOL True) +++ wordToken "bottom" (E_BOOL False)
279

280outputToken = token (word "print") +++ token (word "sendmail")

We exploit that Haskell is a lazy language that permits cyclic data definitions to maintain an
infinite supply of fresh variable names (a need reflected by Definition 4.6 and Definition 7.36).

4.13 Haskell (fresh variables). We implement an infinite supply of distinct variables (and infinite,
disjoined, derived sublists) by the variable generator iterate. (The definition of iterate is in fact
cyclic/infinite in its definition.)

281type FreshVars = [Var]
282

283vars :: FreshVars
284vars = map (\n→VAR ("x"++show n)) (iterate (\n→n+1) 1)
285

286splitVars :: FreshVars → (FreshVars,FreshVars)
287splitVars xs = (odds xs, evens xs) where
288odds ~(x:xs) = x : evens xs
289evens ~(x:xs) = odds xs
290

291splitVars3 :: FreshVars → (FreshVars,FreshVars,FreshVars)
292splitVars3 vs = (xs, ys , zs) where
293(xs , yzs) = splitVars vs
294(ys , zs) = splitVars yzs
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Finally, we present a formal translation of the first of our canonical examples: the Jeeves naming
policy program from Example 1.4 and 2.8.

4.14 Example (Name policy program translation).uwwwv
let name = level a in policy a : !(context = alice) then bottom in <”Anonymous”|”Alice”>(a) K
let msg = ”Author is ” + name

print alice msg

print bob msg

}���~ =

letrec name=thunk(defer a in (assert (!(context = alice) => (a = false)) in J<”Anonymous”|”Alice”>(a)K))
msg=thunk (”Author is ” + name)

in print (concretizemsgwith alice)
print (concretizemsgwith bob)

where

J<”Anonymous”|”Alice”>(a)K = if a then ”Alice” else ”Anonymous”

5 Scoping and symbolic normal forms

In this section we specify the notions of scope and symbolic normal forms of λJ for use in later
sections. According to Yang et al [23, Figure 3], dynamic expression evaluation generally speaking
happens in 3 consecutive steps:

1. reduction all the way to temporary normal form that may still contain dynamic, unresolved
symbolic sub-expressions and constraints, followed by

2. constraint resolution, which resolves the consequences of knowing the value of the input
variable "context", to find a solution to the program constraint set, and finally,

3. completing the reduction of the temporary normal forms, instantiated with the constraint
solution.

The semantic set of temporary normal forms, which are denoted symbolic normal forms in ac-
cordance with Yang et al [23, Figure 2], is specified by the algebraic V alue sort in Definition 5.1.
Depending on whether they contain unresolved residues, they are either categorized as symbolic
values or concrete values. In order to semantically reflect lexical scoping during expression reduc-
tion, we have added the notion of a closure compared to [23, Fig. 2]). Generally speaking, a closure
consists of a function expression, constant or non-constant, together with an environment compo-
nent ρ, which holds the set of (static) variable bindings of that expression. In λJ, such closures take
the form: (thunk e, ρ), (λx.e, ρ). We define closures as concrete (symbolic) normal forms, i.e., as
concrete values of the V alue sort.

In the remainer of this section we formally present the symbolic normal forms followed by a
specification of the static λJ binding environment, all in tandem with their Haskell implementations.
The former specification is presented as an algebraic specification in Definition 5.1, the latter as as
a partial domain function in Definition 5.5.
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5.1 Definition (symbolic normal forms).

υ ∈ V alue :: = κ | σ
κ ∈ ConcreteV alue :: = b | n | s | c | error

| (λx.e, ρ) | (thunk e, ρ)
| record x:κ · · · x:κ

σ ∈ SymbolicV alue :: = x | lx | context | σ .x
| σ op υ | υ op σ | uop σ
| if σ then υ else υ
| record x:σ x:υ · · · x:υ
| record x:υ x:σ · · · x:υ
...

| record x:υ x:υ · · · x:σ

where b ∈ Boolean, n ∈ Natural, s ∈ String, c ∈ Constant,
and x ∈ Identifier, ρ ∈ Environment.

5.2 Remark (error normal form). Following Yang et al [23, Fig. 2], we have added error as a concrete
normal form to reflect a semantically erroneous evaluation state.

5.3 Remark (record normal forms). We have added two distinct normal forms of the record data
structures. A record where all fields are on concrete normal form (κ) is itself on concrete normal
form (κ). A record where "at least" one field is on symbolic normal form (σ) is on symbolic normal
form (σ).

5.4 Haskell (symbolic normal forms). The algebraic V alue constructors for the V alue sort are
implemented as Haskell constructors for the Value datatype. The distinction between concrete and
symbolic is implemented by the predicates isConcrete and isSymbolic over V alue.

295data Value = −− Concrete values
296V_BOOL Bool | V_NAT Int | V_STR String | V_CONST String | V_ERROR
297| V_LAMBDA Var Exp Environment | V_THUNK Exp Environment
298| V_RECORD [(FieldName,Value)]
299−− Symbolic values
300| V_VAR Var | V_CONTEXT
301| V_OP Op Value Value | V_UOP UOp Value
302| V_IF Value Value Value | V_FIELD Value FieldName
303deriving (Ord,Eq)
304

305isConcrete (V_BOOL _) = True
306isConcrete (V_NAT _) = True
307isConcrete (V_STR _) = True
308isConcrete (V_CONST _) = True
309isConcrete (V_ERROR) = True
310isConcrete (V_LAMBDA ___) = True
311isConcrete (V_THUNK __) = True
312isConcrete (V_RECORD xvs) = all (λb→b) [isConcrete v | (_,v) ← xvs]
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313isConcrete _ = False
314

315isSymbolic v = not (isConcrete v)

5.5 Definition (static binding environment). The concept of a static binding environment ρ is
formalized in terms of new semantic meta-notation on λJ variables and values:

• ρ denotes an environment that maps variables to (constant or symbolic) values,

• ρ[x 7→ υ] denotes an environment obtained by extending the environment ρ with the map x
to υ, and

• ρ(x) denotes the value obtained by looking up x in the environment.

Environment ρ is recursively defined as a partial domain function c.f. Schmidt [20]:

ρ : variables→ V alue⊥

For all y ∈ DOM(ρ[x 7→ υ]) :

ρ[x 7→ υ](y) =def

{
υ if y = x

ρ(y) if y 6= x

ε(y) =def λy.⊥

where ε denotes the empty environment, and the co-domain V alue⊥ is the (lifted) domain of
semantic values.

5.6 Haskell (static binding environment). We use standard Haskell maps to implement the static
binding environment in a straight forward manner.

316type Environment = Map Var Value

• ρ(x) is implemented by rho!x

• ρ[x 7→ v] is implemented by insert x v rho

• ε, aka λy.⊥, is implemented by empty

6 The constraint environment

In this section, we describe the constraint environment which is created at the λJ-level during
program execution, in accordance with Yang et al [23, Fig. 3]. The ensemble of constraints has
been defined as an additional component to the (static) binding environment of the dynamic λJ
semantics. As mentioned in the three step description of Section 5, the first part of a λJ-evaluation
causes constraints to be accumulated as the privacy enforcing expressions get evaluated, followed
by a constraint resolution step, conditioned by the known value of the input. The actual constraint
resolution is side stepped in the original semantics by Yang et al [23, Fig. 3], and simply reduced
to the question of whether there exists a solution which solves the constraint set or not. Constraint
programming systems in fact combines a constraint solver and a search engine in a very (monadic)
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flexible way as described by others [21]. In this report, however, we simply analyse the monadic
structure of the constraint set semantics.

A constraint environment is divided into two base sets of constraints: the current set of con-
straints denoted by the algebraic Σ sort (hard constraints), and the constraints on default values for
logical variables, denoted by the algebraic ∆ sort (soft constraints), following standard constraint
programming conventions [14, 18].

The specification of the hard constraints, Σ, is a result of constraints build up in connection
with a defer and assert expression evaluation, c.f. Yang et al [23, Fig. 3,(E-DEFER),(E-ASSERT)]
as "the set of constraints that must hold for all derived outputs". An assert expression is specified
by ‘assert e1 in e2’, where ‘e1’ is a logical expression by which privacy policies get introduced c.f.
Yang et al [23, Fig. 6,(T-POLICY)] as hard constraints. The extension of Σ with privacy policies
‘e1’ is reflected by the (E-ASSETCONSTRAINT) and (E-ASSERT) rule. The extensions have the form
‘G ⇒ υe1 ’, where ‘υe1 ’ is the result value from evaluating ‘e1’, and ‘G’ called the path condition
is explained below. With the modifications and assumptions in Remark 3.7, a defer expression is
specified by ‘defer lx in e’, where ‘{υ}’ in the original syntax is left unspecified by the translation
[23, Fig. 6,(TR-LEVEL),Fig. 3,(E-DEFER)]. In this syntax form, a defer expression merely has become
a reflection of the introduction of level variables c.f. [23, Fig. 3,(E-DEFER)]. The extension of Σ thus
becomes reflected by the logic expression ‘G ⇒ [x 7→ x′]’. The (α) renaming ‘[x 7→ x′]’ of ‘x’ with
a fresh (logical) variable ‘x′’, follows from the fact that the constraint sets have no notion of scope.
Thus, all logical variable names must be declared as globally unique.

The specifications of the soft constraints, ∆, is another result of constraint build up in connec-
tion with a defer expression evaluation, as described by Yang et al [23, Fig. 3,(E–DEFER)] as "the
constraints only used if consistent with the resulting logical environment". This build up, however, is
concerned with any logical constraints imposed directly on the variables in terms of default values,
etc. As explained in Remark 3.7, we tacitly assume the logical ‘x′’ variable to take the default value
‘true’ during translation according to Yang et al [23, Fig. 6], something which is directly reflected in
Definition 7.36, as well as in the ∆ specification in Definition 6.1. Since hard and soft constraints
are extended in tandem c.f. Yang et al [23, Fig. 3,(E-DEFER)], we tacitly assume the default con-
straint is only imposed on a globally unique (fresh) variable name which we denote ‘x′’. Because
we have introduced an additional lexical scoping mechanism (‘ρ’) in our formalizations, we will
handle renaming directly at the scoping level c.f. Definition 7.36, i.e., with ‘ρ[x 7→ x′]’ alone. This
simplifies the specification of hard constraints and soft constraints as described by Definition 6.1.

A path condition consists of a conjunction of symbolic values and negated symbolic values,
which is used to describe the trail (or path) of symbolic (unresolved) assumptions conditioning
some expression evaluation. The only place during expression evaluation where the path condition
is extended, c.f. Definition 7.32, is when a conditional expression in the style

‘if σ1 then e2 else (if σ′1 then e′2 else e′3)’

is evaluated. In this case, the conditions are symbolic values, which will depend on the constraint
resolution later to be resolved. There are thus two possible ways a symbolic evaluation of this
if-expression can take place. If ‘σ1’ is assumed to become true (the ‘e2’ is evaluated), or if ‘¬σ1’
is assumed to become true (the ‘if σ′1 then e′2 else e′3’ is evaluated). The path condition simply
keeps track of which assumptions have been made by making a conjunction of all such presumed
conditions prior to an evaluation. In our example, we thus have that the path condition ‘¬σ1 ∧ σ′1’
holds prior to ‘e′2’ evaluation. In Definition 6.1, we specify a path condition this way and denote
it G. It is defined as an element of the algebraic PathCondition sort, together with the algebraic
notation for the constraint environment, Σ (hard constraints), and ∆ (soft constraints).
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6.1 Definition (hard constraints, soft constraints, and path condition).

Σ = P(G ⇒ υ)
∆ = P(G ⇒ x = υ)

G ∈ PathCondition :: = σ | ¬σ | G ∧ G

where x ∈ Identifier, υ ∈ V alue, σ ∈ SymbolicV alue.

P denotes the powerset in accordance with usual mathematical convention.

6.2 Remark (default theory property). The pair (∆,Σ) logically defines a (super-normal) default
theory, where ∆ is a set of default rules (soft constraints), and Σ is a set of first-order formulas
(hard constraints) [1], [19].

The Haskell implementation of Σ and ∆ are given straightforwardly as relational lists. The
relations are established as lists of pairs and lists of triplets, respectively. A relation ‘G ⇒ υ’ is thus
implemented by the data type (PathCondition,Value), and ‘G ⇒ x = υ’ is implemented by the data
type (PathCondition,Var,Value). The Haskell implementation of a path condition is also given as a
list. This is a list of Haskell representations of formulas or negated formulas which are presumed
to hold during some specific expression evaluation.

6.3 Haskell (hard constraints, soft constraints, and path condition).

317

318data Sigma = SIGMA [(PathCondition,Value)]
319emptySigma = SIGMA []
320unitSigma g v = SIGMA [(g,v)]
321unionSigma (SIGMA map1) (SIGMA map2) = SIGMA (map1++map2)
322

323data Delta = DELTA [(PathCondition,Var,Value)]
324emptyDelta = DELTA []
325unitDelta g (x,v) = DELTA [(g,x,v)]
326unionDelta (DELTA map1) (DELTA map2) = DELTA (map1++map2)
327

328data PathCondition = P_COND [Formula] deriving (Ord,Eq)
329emptyPath = P_COND []
330

331data Formula = F_IS Value
332| F_NOT Value
333deriving (Ord,Eq)
334

335formulaConjunction f (P_COND fs) = P_COND (f:fs)

We design the Haskell implementation of the constraint sets to explicitly restrict modifications to
extensions with new constraints, because the evaluation rules (in the following section) only extend.
To this end, we implement the constraint environment in Haskell by Constraints a, a monad over
Sigma and Delta. We recall that a monad in Haskell is represented by a type class with two opera-
tors, return and bind (�= ) [22]. We implement two instances on the monad, unitSigmaConstraints
and unitDeltaConstraints. The goal of these instances is to update /reset Sigma and Delta respec-
tively.
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6.4 Haskell (constraint environment).

336−− Monadic notation...
337data Constraints a = CONSTRAINTS Sigma Delta a
338instance Monad Constraints where
339return v = CONSTRAINTS emptySigma emptyDelta v −− the trivial monad, returning value v
340(CONSTRAINTS sigma1 delta1 v1) �= f = −− the sequencing of two instances
341CONSTRAINTS (unionSigma sigma1 sigma2) (unionDelta delta1 delta2) v2
342where (CONSTRAINTS sigma2 delta2 v2) = f v1
343

344unitSigmaConstraints :: PathCondition → Value → Constraints Value
345unitSigmaConstraints g v = CONSTRAINTS (unitSigma g v) emptyDelta V_ERROR
346

347unitDeltaConstraints :: PathCondition → Var → Value → Constraints Value
348unitDeltaConstraints g x v = CONSTRAINTS emptySigma (unitDelta g (x,v)) V_ERROR

6.5 Remark (constraint environment updates). From the evaluation semantics in Yang et al [23,
Fig. 3,(E-DEFER),(E-ASSERT)] we observe that the only semantic (expression) rules that potentially
will affect the constraint monad directly are those concerning the privacy policy rules, i.e., assert
(when policy constraints are being semantically enforced), and defer (when confidentiality levels
are being semantically differentiated/deferred) at the λJ-level.

7 The λJ evaluation semantics

In this section we specify the dynamic λJ semantics, which implements Jeeves as an eager constraint
functional language. The specification of the evaluation engine follows the original idea by Yang
et al [23, Fig. 3], but differs on a number of issues. Most significantly, we have reformulated the
semantics as a compositional, environment-based, big step semantics, as opposed to the original non-
compositional, substitution-based, small-step semantic formulation [23, Fig. 3]. Primarily, in order to
enhance the ability to proof semantical statements, because proofs then can be carried inductively
over the height of the proof trees (something which breaks down in general when substitution
into subterms is allowed like in the original λJ semantics). As something new, we have added a
formal notion of a Jeeves, aka a λJ program evaluation. Finally, we have added the notion of lexical
variable scoping to manage static bindings.4 This has been done by enhancing the semantics with
a (new) binding environment feature (ρ and closures) as discussed in Section 5. The Haskell
implementation is presented alongside each individual evaluation rule.

We begin by formalizing three peripheral semantic λJ concepts needed to proceed with the ac-
tual evaluation semantics presentation. The input-output domain, the final set of solution constrains
to be resolved, and the runtime (side) effects from running a λJ program. We then proceed by a re-
formalization of the dynamic semantics as a big step, compositional, non-substitutional semantics
as discussed above, alongside the associated Haskell implementation.

The first thing to formally consider is the input-output functionality of Jeeves. According to
Yang et al [23, Fig. 3] the input and output at the Jeeves source level is specified by

print { some-input } some-output

statements, where the input is specified between the syntactical braces ({}), and the output is spec-
ified right after the braces. Thus, no input enters a Jeeves aka λJ program at runtime but is given a

4Lexical or static scoping means that declared variables only occur within the text of the declared program structure.
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priori, as a static part of the program structure. A program outcome amounts semantically to "the
effect" of running a set of Jeeves print statements. (In our setting, ‘print’ is in fact generalized to
‘outputkind’, thus accounts for several different channels like ‘print’, ‘sendmail’, etc.) According
to Yang et al [23, Fig. 3, Fig. 6], the print statement translates to

print ( concretize ev with υc )

where ‘υc’ is the translation of the some-input value, and ‘ev ’ is the translation of the some-output
expression. Input values are semantically concrete values ‘υc’ (as hinted by the subscript ‘c’), that
is either a literal or a record. Output values are semantically defined by the outcome of the ‘ev ’
evaluation, which we here assume results in either a literal, a record, or error (all concrete, printable
values) being channeled out. The input and output value domains are recursively defined by the
algebras InputV alue and OutputV alue.

7.1 Definition (semantic input-output values).

iv ∈ InputV alue ::= lit | record fi1 : iv1 . . . fim : ivm

ov ∈ OutputV alue ::= lit | record fi1 : ov1 . . . fim : ovm | error
where lit ∈Literal, error ∈ ConcreteV alue

Error is the algebraic specification for erroneous program states.

7.2 Remark (related value domain). Formally we have that InputV alue,OutputV alue ⊂ ConcreteV alue.
Notice, however, that the latter inclusion breaks slighly down as we extend the OutputV alue do-
main in Definition 7.9.

7.3 Remark (output outcome). Though not explicitly stated by Yang et al, we have decided only to
consider data structures as part of our semantic output value domain and omit (function) closures,
despite ‘λx.e’ expressions technically are "first class citizens" in Jeeves. Whence only including
values which are printable.

7.4 Remark (implementation). We do not include an explicit Haskell implementation of the input-
output domains. The specification merely serves as an overview of this functionality.

The second thing to formally consider is the final set of solution constraints to be resolved upon
completion of the evaluation of a print statement. According to Yang et al [23, Fig. 3], the dy-
namic evaluation of a print statement terminates with the application of either of two rules, the
(E-CONCRETIZESAT) or the (E-CONCRETIZEUNSAT). The decision upon which of the rules apply, de-
pends on whether there exists a unique solution ‘M’ (for model) which solves the constrainst set, as
expressed by the premise ‘MODEL(∆,Σ∪ {G ∧ context=υc}) =M’ such that the constraint solution
run on the (possibly symbolic) output expression ‘υv ’, instantiates to a (concrete) output value, as
the premise ‘c = MJυvK’ suggests.5 We formalize the structure ‘MODEL(∆,Σ ∪ {G ∧ context=υc})’
over the elements Σ (hard constraints), ∆ (soft constraints), ‘G’ (path condition) and ‘υc’ (concrete
input value, here renamed ‘κ’).

7.5 Definition (solution model).

sol ∈ Solution ::=MODEL (∆,Σ ∪ {G ∧ context=κ})

where G ∈ PathCondition, κ ∈ ConcreteV alue.
5A correct premise would have been ‘true ` 〈∅, ∅,MJυvK〉 → 〈∅, ∅, c〉’ in Yang et al [23, Fig. 3,(E-CONCRETIZESAT)].
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7.6 Remark (MODEL tag). Because we do not specify a constraint solver in this formalization, we
apply the tag MODEL as a syntactic constructor with no semantic meaning associated.

7.7 Remark (default theory property). We notice that the constraint set defined by ‘(∆,Σ ∪ {G ∧
context = υc})’ equally forms a (super-normal) default theory.

7.8 Haskell (solution model). The MODEL construction is implemented as the special data type
Solution, which is equivalent to the MODEL container, and a one-to-one implementation of the
‘sol’ (concretized constraint set) quadruple. We notice, that the implementation doesn’t validate
whether Value is concrete or not at this point (but the later evaluation rule does).

349data Solution = MODEL Delta Sigma PathCondition Value
350type Solutions = [Solution ]
351

352noSolutions :: Solutions
353noSolutions = []

In accordance with Yang et al, we do not specify constraint resolution explicitly in our formal-
izations, but tacitly asume that the passage is deferred to later by delegating to an external, off-
the-shelf SMT solver [3]. Thus, we have deliberately omitted the specification of the ‘c =MJυvK’
clause in our specifications. The ensemble, however, that is fed to the constraint solver, will take

the form of a new concrete value, which consists of two components, the final accumulated con-
straint set formalized by Solution together with the ‘υv ’ (the evaluated output expression feeding
into ‘MJυvK’ upon constraint resolution).

7.9 Definition (instantiation). Extend the output value algebra of Definition 7.1 with an addi-
tional form:

ins ∈ OutputV alue ::= . . . | INSTANTIATE (sol, υ)

where sol ∈ Solution, υ ∈ V alue
7.10 Remark (the INSTANTIATE tag). To increase readability, we apply the tag INSTANTIATE as a
syntactic constructor with no semantic meaning associated.

7.11 Haskell (instantiation). We implement the instantiation concrete value with the special data
type Instantiate because it is only used at the outermost level of the evaluation.

354data Instantiate = INSTANTIATE Solution Value

The third thing to formally consider is the runtime (side) effects from running a λJ program.
The original semantics does not include an explicit evaluation rule for a complete λJ program
evaluation, but specify the evaluation of each individual print statement, hinting that constraint
solving happens per individual output statement [23, Fig. 3]. In other words, λJ only supports
constraint propagation per output posting.6 No constraints gets "carried over" from the runtime
evaluation of one output statement to the other. Consequently, we formalize the effect of running
a Jeeves aka λJ program to be a list of independent writings to individual output channels. All
formalized by the (program) Effect algebra.

6Constraint propagation means that constraints are accumulated during the course of evaluation.
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7.12 Definition (program effect).

E ∈ Effect ::= (output, ins)

where output ∈ OutputKind, ins ∈ OutputV alue
7.13 Haskell (Effects). The Effect algebra is implemented as the special data type Effect, which is
equivalent to the EFFECT container, and a one-to-one implementation of ‘output’ and the instanti-
ate output value ‘ins’.

355data Effect = EFFECT Outputkind Instantiate
356type Effects = [Effect ]
357

358noEffects :: Effects
359noEffects = []

Notice that the concrete value returned uses the dedicated Instantiate type.

With all preliminary concepts formalized and implemented, we can then proceed by formaliz-
ing the actual program runtime semantics. In this work, we formulate the λJ evaluation semantic
as a fixpoint semantics in the environment ‘ρ’. Because we have build the semantics with trivial
constructs, we know the existence of a least fixpoint, which how we are formulating our seman-
tics [20].

In Section 3, we introduced the notion of a λJ program, to specifically include an explicit
(‘letrec’) recursion construct at the λJ level, with the intent of building a recursive function en-
vironment in the top-scope, at runtime. The dynamic semantics of the letrec expression is aimed at
being defined as the so-called ML letrec with the difference from ML that in λJ, the letrec is defined
only to appear at the top level of a program [15]. 7

We are furthermore assuming that all output statements are evaluated after the program’s recur-
sive binding environment has been set up (something which is unclear in the original formalization,
where let statements and print statements are presented in any mixed combination in the given ex-
amples.) For a more detailed treatment on the recursive binding feature, we refer to Section 5.

7.14 Definition (program evaluation rule).

ρ0, G0 ` 〈{}, {}, s0〉 ⇒ E1
. . .

ρ0, G0 ` 〈{}, {}, sm−1〉 ⇒ Em
` letrec f1 = ve1 · · · fn = ven in s0 . . . sm−1 ⇒ (E1, . . . , Em)

(p-letrec)

where

ρ0 = [f1 7→ υ1, . . . , fn 7→ υn] (1)

For all 0 ≤ i ≤ n : υi =

{
(vei, ρ0) if vei = λx.e ∨ vei = thunk e ∨ vei = x

vei otherwise
(2)

G0 = {} (3)

and f, v, x ∈ V ar, ve ∈ V alExp, e ∈ Exp, s ∈ Statement, E ∈ Effect

7ML’s letrec combinator defines names by recursive functional equations.
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7.15 Remark (notation). To ease readability, we simply state ‘[f1 7→ υ1, . . . , fn 7→ υn]’ for the equiv-
alent ‘ε[f1 7→ υ1, . . . , fn 7→ υn]’ notation as expected according to Definition 5.5.

The program evaluation rule is composed as follows. The static, recursive binding environment
‘ρ0’, specifies the initial top-level scope of a λJ program. The path condition ‘G0’, specifies the initial
path constraints before execution of an output statement. In accordance with our early discussion,
the execution environment, ‘ρ0, G0’, is the same before the execution of any output statement,
regardless of the sequence in which they appear as 1) the recursive environment is assumed to
be build up prior to any output statement execution, 2) constraints are not propagated from one
output execution to the next.

According to Lemma 4.4, all function bindings, after translation of a Jeeves program to λJ,
is ensured to be on the (weak head normal) form ‘f = ve’, where ‘ve’ is a value expression.The
"where" clause of the program rule describes when closures, formalized by ‘(ve, ρ)’, are initially
build during program evaluation, and when not. As expected, this happens when the binding is
dispatched to either a λ-closure, a thunk-closure, or a free variable closure. Otherwise, the binding
is to either a literal, context, or error.

7.16 Haskell (program evaluation rule).

360evalProgram :: FreshVars → Program → Effects
361

362evalProgram xs (P_LETREC recbindings outputstms) = effects
363where
364(CONSTRAINTS sigma delta effects) = evalStms xs rho0 emptyPath outputstms noEffects
365rho0 = foldr g empty recbindings
366g (BIND fi (E_BOOL b)) rho = insert fi (V_BOOL b) rho
367g (BIND fi (E_NAT n)) rho = insert fi (V_NAT n) rho
368g (BIND fi (E_STR s)) rho = insert fi (V_STR s) rho
369g (BIND fi (E_CONST c)) rho = insert fi (V_CONST c) rho
370g (BIND fi (E_VAR x)) rho = insert fi (V_THUNK (E_VAR x) rho0) rho −− closure
371g (BIND fi (E_LAMBDA x e)) rho = insert fi (V_LAMBDA x e rho0) rho −− closure
372g (BIND fi (E_THUNK e)) rho = insert fi (V_THUNK e rho0) rho −− closure
373g (BIND fi (E_RECORD fes)) rho = insert fi (V_THUNK (E_RECORD fes) rho0) rho −−

closure
374

375

376evalStms :: FreshVars → Environment → PathCondition → Statements → Effects → Constraints
Effects

377

378evalStms xs rho g [] effects = return effects
379

380evalStms xs rho g (stm:stms) effects = do
381effect ← evalStm xs1 rho g stm
382effects2 ← evalStms xs2 rho g stms effects
383return ( effect : effects2 )
384where
385~(xs1,xs2) = splitVars xs

7.17 Definition (evaluation of a statement). The big step rule for evaluation of an (output) state-
ment corresponds to the evaluations by the small step rules E-CONCRETIZEEXP, E-CONCRETIZESAT,
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E-CONCRETIZEUNSAT in Yang etal. [23, Fig. 3], except for the fact that we do not seek to solve the
constraint set to generate a solution ‘M’, but only seek to generate the set of constraints: MODEL

is here merely a syntactic constructor and has no semantic significance unlike in Yang etal. [23,
Fig. 3].

ρ,G ` 〈Σ,∆, e1〉 ⇒ 〈Σ1,∆1, υ1〉
ρ,G ` 〈Σ1,∆1, e2〉 ⇒ 〈Σ2,∆2, κ2〉

ρ,G ` 〈Σ,∆, output (concretize e1 with e2)〉
⇒ (output, INSTANTIATE(MODEL(∆2,Σ2 ∪ {G ∧ context=κ2}), υ1))

(e-concretize)

7.18 Remark (extended concretize syntax). Because ‘print’ at the Jeeves source-level has been gen-
eralized to ‘output’ in our formalization (with the tacit assumption that OutputKind carries over
to λJ), we have added ‘output’ as an explicit tag in our semantics compared to Yang et al [23, Fig. 3]
to keep track of the writes to the various kinds of output channels.

7.19 Haskell (evaluation of a statement).

386evalStm :: FreshVars → Environment → PathCondition → Statement → Constraints Effect
387

388evalStm xs rho g (CONCRETIZE_WITH output e1 e2) =
389(CONSTRAINTS sigma delta effect)
390where
391(CONSTRAINTS sigma delta (c,v)) = do v1 ←evalExp xs1 rho g e1
392c2 ← evalExp xs2 rho g e2
393return (c2,v1) −− = (c,v) by pattern matching
394effect | isConcrete c = EFFECT output (INSTANTIATE (MODEL delta sigma g c) v)
395| otherwise = error ("Attempt␣to␣create␣MODEL␣with␣non-concrete␣final␣

value"++show c)
396~(xs1,xs2) = splitVars xs

7.20 Definition (evaluation of expressions). The judgement

ρ,G ` 〈Σ,∆, e〉 ⇒ 〈
Σ′,∆′, υ

〉
describes the evaluation of a λJ expression ‘e’ to a value ‘υ’ in the static environment ‘ρ’, under
pathcondition ‘G’, where Σ′ and ∆′ capture the privacy effects of the evaluation on the constraint
sets Σ and ∆.

7.21 Haskell (evaluation of expressions).

397evalExp :: FreshVars → Environment →PathCondition → Exp → Constraints Value

We proceed by presenting an environment-based, big step formulation and implementation of
the dynamic expression semantics of λJ. The semantics follows the syntax presented in Defini-
tion 2.1, and modifies and clarifies the original semantics [23, Figure 3].

7.22 Definition (evaluation of literals and context). There are no explicit rules for handling
literals and context in [23, Figure 3]. We do, however, tacitly assume it to be the "identity mapping".
The present rule evaluates a subset of simple normal form (expressions): ‘b’, ‘n’, ‘s’, ‘c’, ‘context’ to
the eqivalent normal form (values).

ρ,G ` 〈Σ,∆, ve〉 ⇒ 〈Σ,∆, ve〉 where ve ∈ {b, n, s, c, context} (e-simple)
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7.23 Haskell (evaluation of literals and simple expressions). The distinction between (nor-
mal form) expressions and values in Definition 7.22 becomes apparent when E_ constructors are
translated into V_ constructors.

398evalExp xs rho g (E_BOOL b) = return (V_BOOL b)
399evalExp xs rho g (E_NAT n) = return (V_NAT n)
400evalExp xs rho g (E_STR s) = return (V_STR s)
401evalExp xs rho g (E_CONST c) = return (V_CONST c)
402evalExp xs rho g (E_CONTEXT) = return (V_CONTEXT)

7.24 Definition (evaluation of variable expressions). There are no explicit rules for handling
variables in [23, Figure 3]. The present rule shows how regular variables, but also level variables
are handled in an environment-based semantics. For further specifics on the role of level variables
in the environment, we refer to Definition 7.36.

ρ,G ` 〈Σ,∆, x〉 ⇒ 〈Σ,∆, ρ(x)〉 where ρ(x) 6= (thunk e′, ρ′) (e-var1)

ρ′,G ` 〈Σ,∆, e′〉 ⇒ 〈Σ′,∆′, υ′〉
ρ,G ` 〈Σ,∆, x〉 ⇒ 〈Σ′,∆′, υ′〉 where ρ(x) = (thunk e′, ρ′) (e-var2)

7.25 Haskell (evaluation of variable expressions).

403evalExp xs rho g (E_VAR x) = evalExp_VAR (if x ‘member‘ rho then rho!x else error ("Undefined
!"++show x))

404where
405evalExp_VAR (V_THUNK e’ rho’) = evalExp xs rho’ g e’
406evalExp_VAR v = return v

7.26 Definition (evaluation of lambda expressions). There is no specific rule for lambda expres-
sions alone in Yang etal. [23, Fig. 3]. The present big step rule, however, partially correspond to
the binding-part of E-APPLAMBDA. In the current semantics, lambda expression evaluation builds
a (concrete) closure normal form with the current environment and returns it as semantic value
c.f. Definition 5.1.

ρ,G ` 〈Σ,∆, λx.e〉 ⇒ 〈Σ,∆, (λx.e, ρ)〉 (e-lambda)

7.27 Haskell (evaluation of lambda expressions).

407evalExp xs rho g (E_LAMBDA x e) = return (V_LAMBDA x e rho)

7.28 Definition (evaluation of binary operator expressions). The big step rule for evaluation of
a binary operator expression corresponds to the evaluations by the small step rules E-OP, E-OP1,
and E-OP2 in Yang etal. [23, Fig. 3]. Definition 2.5 specifies the token set of the operator sort that
we have included in this formalization.

ρ,G ` 〈Σ,∆, e1〉 ⇒
〈
Σ′,∆′, κ1

〉
ρ,G ` 〈Σ′,∆′, et〉⇒ 〈

Σ′′,∆′′, κ2

〉
ρ,G ` 〈Σ,∆, e1 op e2〉 ⇒ 〈Σ′′,∆′′, κ〉 κ ≡ κ1 op κ2 (e-op1)
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ρ,G ` 〈Σ,∆, e1〉 ⇒
〈
Σ′,∆′, υ1

〉
ρ,G ` 〈Σ′,∆′, et〉⇒ 〈

Σ′′,∆′′, υ2

〉
ρ,G ` 〈Σ,∆, e1 op e2〉 ⇒ 〈Σ′′,∆′′, υ1 op υ2〉 υ1 ≡ σ1 ∨ υ2 ≡ σ2 (e-op2)

7.29 Haskell (evaluation of binary operator expressions). Haskell 3.10 shows the implementa-
tion of the Op binary operator data type. Notice how we have implemented list concatenation by
overloading the definition of OP_PLUS.

408evalExp xs rho g (E_OP op e1 e2) = do
409v1 ← evalExp xs1 rho g e1
410v2 ← evalExp xs2 rho g e2
411return (evalExp_OP rho g op v1 v2)
412where
413~(xs1,xs2) = splitVars xs
414

415evalExp_OP rho g op v1 v2 | isConcrete v1 && isConcrete v2 = (evalOpCC op v1 v2)
416| isSymbolic v1 ‖ isSymbolic v2 = (V_OP op v1 v2)
417

418evalOpCC :: Op →Value → Value → Value
419

420evalOpCC OP_PLUS (V_NAT n1) (V_NAT n2) = V_NAT (n1+n2)
421evalOpCC OP_PLUS (V_STR s1) (V_STR s2) = V_STR (s1++s2)
422

423evalOpCC OP_MINUS (V_NAT n1) (V_NAT n2) = V_NAT (n1−n2)
424

425evalOpCC OP_AND (V_BOOL b1) (V_BOOL b2) = V_BOOL (b1&&b2)
426evalOpCC OP_OR (V_BOOL b1) (V_BOOL b2) = V_BOOL (b1‖b2)
427evalOpCC OP_IMPLY (V_BOOL b1) (V_BOOL b2) = V_BOOL ((not b1)‖b2)
428

429evalOpCC OP_EQ v1 v2 = V_BOOL (v1≡v2)
430evalOpCC OP_LESS v1 v2 = V_BOOL (v1<v2)
431evalOpCC OP_GREATER v1 v2 = V_BOOL (v1>v2)

7.30 Definition (evaluation of unary operator expressions). There are no specific rules con-
cerning unary operator expressions in Yang etal. [23, Fig. 3]. The big step rules, however, are
simpel to construct and require no further commenting. Definition 2.5 specifies the token set of the
operator sort, which currently is the singleton set {!} (negation).

ρ,G ` 〈Σ,∆, e〉 ⇒ 〈Σ′,∆′, κ〉
ρ,G ` 〈Σ,∆, uop e〉 ⇒ 〈Σ′′,∆′′, κ′〉 κ′ ≡ uop κ (e-uop1)

ρ,G ` 〈Σ,∆, e〉 ⇒ 〈Σ′,∆′, σ〉
ρ,G ` 〈Σ,∆, uop e〉 ⇒ 〈Σ′′,∆′′, uop σ〉 (e-uop2)

7.31 Haskell (evaluation of unary operator expressions). Definition 3.10 shows the implemen-
tation of the UOp unary operator data type. (Currently a singleton with the OP_NOT constructor).

432evalExp xs rho g (E_UOP uop e) = do
433v ← evalExp xs rho g e
434return (evalExp_UOP rho g uop v)
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435where
436evalExp_UOP rho g uop v | isConcrete v = evalUOpC uop v
437| isSymbolic v = V_UOP uop v
438

439evalUOpC :: UOp →Value → Value
440evalUOpC OP_NOT (V_BOOL b) = V_BOOL (not b)

7.32 Definition (evaluation of conditional expressions). The big step rules for evaluation
of a conditional expression corresponds to the evaluations by the small step rules E-COND, E-
CONDTRUE, E-CONDFALSE, E-CONDSYMT, and E-CONDSYMF. Depending on the conditional, the
semantics is implemented in two way: provided it evaluates to a boolean value, then the if-
expression behaves in a non-strict fashion. Provided the conditional evaluates to a symbolic normal
form , however, then the if-expression behaves in a strict fashion as both branches are evaluated to
normal forms. The latter underpins the primary reason for symbolic if-evaluation: to implement the
semantics of sensitive values. The evaluation of each branch is in fact performed as separate evalu-
ation steps under (opposing) symbolic/ logical conditions: ‘σ ∧ G’, and ‘¬σ ∧ G’, and the generated
constraint sets are successively being assembled into Σ′′′ and ∆′′′.8.

ρ,G ` 〈Σ,∆, e1〉 ⇒
〈
Σ′,∆′, true

〉
ρ,G ` 〈Σ,∆, e2〉 ⇒

〈
Σ′′,∆′′, υ2

〉
ρ,G ` 〈Σ,∆, if e1 then e2 else e3〉 ⇒ 〈Σ′′,∆′′, υ2〉 (e-cond1)

ρ,G ` 〈Σ,∆, e1〉 ⇒
〈
Σ′,∆′, false

〉
ρ,G ` 〈Σ′,∆′, e3〉⇒ 〈

Σ′′,∆′′, υ3

〉
ρ,G ` 〈Σ,∆, if e1 then e2 else e3〉 ⇒ 〈Σ′′,∆′′, υ3〉 (e-cond2)

ρ,G ` 〈Σ,∆, e1〉 ⇒
〈
Σ′,∆′, σ

〉
ρ, σ ∧ G ` 〈Σ′,∆′, e2〉⇒ 〈

Σ′′,∆′′, υ2

〉
ρ,¬σ ∧ G ` 〈Σ′′,∆′′, e3〉⇒ 〈

Σ′′′,∆′′′, υ3

〉
ρ,G ` 〈Σ,∆, if e1 then e2 else e3〉 ⇒ 〈Σ′′′,∆′′′, if σ then υ2 else υ3〉 (e-cond3)

The if expession evaluation rule is implemented as follows.

7.33 Haskell (evaluation of conditional expressions).

441evalExp xs rho g (E_IF e1 e2 e3) = do
442v1 ← evalExp xs1 rho g e1
443evalExp_IF v1
444where
445

446−− (e−cond1)
447evalExp_IF (V_BOOL True) = evalExp xs2 rho g e2
448

449−− (e−cond2)
450evalExp_IF (V_BOOL False) = evalExp xs2 rho g e3
451

8Because constraints are assembled through set union, the order by which the branches are evaluated is insignificant.
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452−− (e−cond3)
453evalExp_IF s1 | isSymbolic s1 = do
454v2 ← evalExp xs21 rho (formulaConjunction (F_IS s1) g) e2
455v3 ← evalExp xs22 rho (formulaConjunction (F_NOT s1) g) e3
456return (V_IF s1 v2 v3)
457

458~(xs1,xs2) = splitVars xs
459~(xs21,xs22) = splitVars xs2

7.34 Definition (evaluation of application expressions). The big step rule for evaluation of an
application expression corresponds to the evaluations described by the small step rules E-APP1,
E-APP2, and E-APPLAMBDA in Yang etal. [23, Fig. 3]. It specifies how function application is
carried out through call-by-value evaluation, but with the important difference that variable binding
during β-reduction is handled on an environment basis (ρ′[x 7→ υ2]) instead of a substitution basis
(e[x 7→ υ]), c.f. Henderson [9].9 The present application rule reformulation is a direct consequence
of letting lexical scoping be handled with closures as described in Section 5. Finally, we allow
the capturing of an erroneous λJ application upon which the error normal form is returned as a
semantic result.

ρ,G ` 〈Σ,∆, e1〉 ⇒
〈
Σ′,∆′, υ1

〉
ρ,G ` 〈Σ′,∆′, e2〉⇒ 〈

Σ′′,∆′′, υ2

〉
ρ′[x 7→ υ2],G ` 〈Σ′′,∆′′, e′〉⇒ 〈

Σ′′′,∆′′′, υ3

〉
ρ,G ` 〈Σ,∆, e1 e2〉 ⇒ 〈Σ′′′,∆′′′, υ3〉 υ1 ≡ (λx.e′, ρ′) (e-app1)

ρ,G ` 〈Σ,∆, e1〉 ⇒ 〈Σ′,∆′, σ1〉
ρ,G ` 〈Σ′,∆′, e2〉 ⇒ 〈Σ′′,∆′′, υ2〉

ρ,G ` 〈Σ,∆, e1 e2〉 ⇒ 〈Σ′′,∆′′, error〉 (e-app2)

7.35 Haskell (evaluation of application expressions).

460evalExp xs rho g (E_APP e1 e2) = do
461v1 ← evalExp xs1 rho g e1
462v2 ← evalExp xs2 rho g e2
463v3 ← evalExp_APP v1 v2
464return v3
465where
466~(xs1,xs2,xs3) = splitVars3 xs
467

468evalExp_APP (V_LAMBDA x e’ rho’) v2 = do
469v ← evalExp xs3 ( insert x v2 rho ’) g e’
470return v
471

472evalExp_APP __= return (V_ERROR)

9"Environment based" instead of "substitution based" semantics prevents unforseable expression expansion, when
code is substituted into terms at runtime, thus ensures that inductive argumentation can be applied to prove properties
of the semantics.
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7.36 Definition (evaluation of defer expressions). The big step rule for evaluation of a defer
expression basically corresponds to the evaluations by the small step rules E-DEFEERCONSTRAINT,
and E-DEFER in Yang etal. [23, Fig. 3]. The current defer syntax, i.e. ‘defer lx in e’, presents three
major differences from the original syntax, as described in Remark 3.7. We have modified the defer
semantics accordingly, by making the evaluation step about "the body" e, whilst removing now
void evaluation steps for syntax which is no longer present, notably ‘{e}’, ‘{υc}’ and ‘default υd’.
The overall aim of the defer rule is to introduce (level) variables, say ‘lx’, and their default values
‘true’ into the semantics, in a way that prevents name clashing in the constraint scopes. In this
setting, we manage (level) variable names ‘lx’ on the environment stack, by performing an α-
renaming with "fresh" variables ‘lx′’. Default values ‘true’ for variables ‘lx′’ are weighing in on any
associated (policy) hard constraints by registering as soft contraints in the collected constraint set
‘∆ ∪ {G ⇒ (lx′=true)}’.

ρ[lx 7→ lx′],G ` 〈Σ,∆ ∪ {G ⇒ (lx′=true)}, e〉 ⇒ 〈Σ′,∆′, υ〉
ρ,G ` 〈Σ,∆, defer lx in e〉 ⇒ 〈Σ′,∆′, υ〉 fresh lx′ (e-defer)

To ensure that no bound variables escape into the contraint set we observe the following.

7.37 Lemma (environment scope invariant). For every instance of the judgement ‘ρ,G ` 〈Σ,∆, e〉 ⇒
〈Σ′,∆′, υ〉’ we have that the domain of ‘ρ’ contains all free variables in ‘e’, and no free variables from ‘υ’.

Proof. Proven by induction over proofs, where the base cases are the premises of Definition 7.14
and the step is shown for every inference rule.

The defer expression evaluation rule is implemented as follows.

7.38 Haskell (evaluation of defer expressions).

473evalExp ~(x:xs) rho g (E_DEFER lx e) = do
474unitDeltaConstraints g x (V_BOOL True)
475v ← evalExp xs ( insert lx lx ’ rho) g e
476return v
477where lx ’ = V_VAR x

7.39 Definition (evaluation of assert expressions). The big step rule for evaluation of an assert
expression corresponds to the evaluations by the small step rules E-ASSERTCONSTRAINT, and E-
ASSERT in Yang etal. [23, Fig. 3]. The current assert syntax, however, has extended the syntax with
an ‘in e2’ part, as described in Remark 3.8. We have extended the semantics accordingly, by adding
a separate evaluation step for ‘e2’. The overall aim of assert is to introduce policy constraints, given
by the (constraint) expression ‘e1’, into the semantics. This is effectuated through evaluation of ‘e1’
to a symbolic normal form ‘υ1’, followed by the introduction of those as hard constraints into the
constraint environment as ‘Σ′ ∪ {G ⇒ υ1}’.

ρ,G ` 〈Σ,∆, e1〉 ⇒
〈
Σ′,∆′, υ1

〉
ρ,G ` 〈Σ′ ∪ {G ⇒ υ1},∆′, e2

〉⇒ 〈
Σ′′,∆′′, υ2

〉
ρ,G ` 〈Σ,∆, assert e1 in e2〉 ⇒ 〈Σ′′,∆′′, υ2〉 (e-assert)

The assert expression evaluation rule is implemented as follows.

7.40 Haskell (evaluation of assert expressions).
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478evalExp xs rho g (E_ASSERT e1 e2) = do
479v1 ← evalExp xs1 rho g e1
480unitSigmaConstraints g v1
481v2 ← evalExp xs2 rho g e2
482return v2
483where
484~(xs1,xs2) = splitVars xs

7.41 Definition (evaluation of let expressions). There are no specific rules for λJ let expressions
in Yang etal. [23, Fig. 3]. In the current semantics, we implement dynamic let evaluation by eager
evaluation, in that the binding argument ‘e1’, always is evaluated to a normal form ‘υ1’ first, then
stacked in the binding environment ‘ρ[x1 7→ υ1]’ as the context in which "the body" ‘e2’ is evaluated.
This is reflected by the order of the two separate evaluation steps in the following rule.

ρ,G ` 〈Σ,∆, e1〉 ⇒
〈
Σ′,∆′, υ1

〉
ρ[x1 7→ υ1],G ` 〈Σ′,∆′, e2〉⇒ 〈

Σ′′,∆′′, υ2

〉
ρ,G ` 〈Σ,∆, let x1 = e1 in e2〉 ⇒ 〈Σ′′,∆′′, υ2〉 (e-let)

7.42 Haskell (evaluation of let expressions).

485evalExp xs rho g (E_LET x1 e1 e2) = do
486v1 ← evalExp xs1 rho g e1
487evalExp xs2 ( insert x1 v1 rho) g e2
488where
489~(xs1,xs2) = splitVars xs

7.43 Definition (evaluation of record expressions). There are no specific rules for record ex-
pressions in Yang etal. [23, Fig. 3]. In the current eager semantics, however, we implement record
evaluation strictly in the field arguments, as a left-to-right evaluation of the field bodies e0 . . . en to
symbolic normal forms υ0 . . . υn.

ρ,G ` 〈Σ0,∆0, e1〉 ⇒ 〈Σ1,∆1, υ1〉 · · · ρ,G ` 〈Σn−1,∆n−1, en〉 ⇒ 〈Σn,∆n, υn〉
ρ,G ` 〈Σ0,∆0, record x1 = e1 . . . xn = en〉 ⇒ 〈Σn,∆n, record x1 = v1 . . . xn = vn〉 n ≥ 0 (e-rec)

7.44 Remark (empty record). We have deliberately allowed n = 0, as a way to signify the empty
record.

7.45 Haskell (evaluation of record expressions).

490evalExp xs rho g (E_RECORD fies) = do
491fivs ← mapM eval1 (insertXss xs fies )
492return (V_RECORD fivs)
493where
494insertXss xs [] = []
495insertXss xs ((x,e) :xes) = (x,e,xs1) : insertXss xs2 xes where ~(xs1,xs2) = splitVars xs
496

497eval1 (x,e,xs) = do v ← evalExp xs rho g e
498return (x,v)
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7.46 Definition (evaluation of field expressions). There are no specific rules for field look up
expressions in Yang etal. [23, Fig. 3]. In the current semantics, we implement field lookup strictly,
in that the record expression part ‘e’ of ‘e.fi’ is evaluated completely to symbolic normal form. If the
evaluation renders a ‘record’ with all fields on normal form, the indicated field content is returned
as semantic value. Otherwise, we return the normalized field lookup entity ‘σ.fi’ as semantic value.

ρ,G ` 〈Σ,∆, e〉 ⇒ 〈Σ1,∆1, record fi1 = v1 . . . fin = vn〉
ρ,G ` 〈Σ,∆, e.fii〉 ⇒ 〈Σ1,∆1, vi〉 (e-field1)

ρ,G ` 〈Σ,∆, e〉 ⇒ 〈Σ1,∆1, σ〉
ρ,G ` 〈Σ,∆, e.fi〉 ⇒ 〈Σ1,∆1, σ.fi〉 σ 6= record fi1 = v1 . . . fin = vn (e-field2)

7.47 Haskell (evaluation of field expressions).

499evalExp xs rho g (E_FIELD e fi) = do
500v1 ← evalExp xs rho g e
501return (evalVar_FIELD v1)
502where
503evalVar_FIELD (V_RECORD fivs) = head [v’ | (fi’,v ’) ← fivs , fi ’≡ fi ]
504evalVar_FIELD v = (V_FIELD v fi)

Like the semantics by Yang et al [23], we observe that the evaluation semantics constitutes a
deterministic proof system.

Finally, we illustrate the program evaluation rule with the first of our canonical examples from
Example 1.4, based on the translation to λJ in Example 4.14. Because of the shere size, however,
we only show selected parts of the proof tree.

7.48 Example (Name policy program evaluation).
The main judgement has the following form:

ρ0, G0 ` 〈{}, {}, print(concretizemsgwith alice)〉 ⇒ E1
ρ0, G0 ` 〈{}, {}, print(concretizemsgwith bob)〉 ⇒ E2

` letrec name=ve1,msg=ve2 in print(concretizemsgwith alice)
print(concretizemsgwith bob)⇒ E1, E2

(p-letrec)

where

ρ0 = [name 7→ (ve1, ρ0), msg 7→ (ve2, ρ0)]
G0 = {}

and

ve1 = thunk(defer a in (assert (!(context = alice) => (a = false)) in J<”Anonymous”|”Alice”>(a)K))
ve2 = thunk (”Author is ” + name)

and

J<”Anonymous”|”Alice”>(a)K = if a then ”Alice” else ”Anonymous”
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8 Running a Jeeves program

In this section, we show how to run a Jeeves program as it pertains to this document as a literate
Haskell implementation of a Jeeves compiler and a λJ evaluation engine. The main program is
the Jeeves program evaluator. It consists of a parsing step, which converts from the Jeeves source
language to λJ abstract syntax, followed by an evaluation phase of the generated λJ terms c.f.
Figure 1. We also provide a way to run just the compile step to λJ terms (i.e., without the output
part in Figure 1 as the input part is a build-in feauture of Jeeves). We are dedicating the remainder
of the section to show how to run the canonical “Naming Policy” program from Figure 2, and
“Conference Management System” program from Figure 3, and how to interpret the results.

At first, we illustate the beginning of a session with the Hugs Haskell system [11], where this
literate program [17] is loaded with the command :load "jeeves-constraints.lhs". (The pro-
gram also runs with Glasgow Haskell.) In the remainder of this section, we will tacitly assume that
loading has been successfully completed.

__ __ __ __ ____ ___ _________________________________________
|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard
||___|| ||__|| ||__|| __|| Copyright (c) 1994-2005
||---|| ___|| World Wide Web: http://haskell.org/hugs
|| || Bugs: http://hackage.haskell.org/trac/hugs
|| || Version: September 2006 _________________________________________

Haskell 98 mode: Restart with command line option -98 to enable extensions

Type :? for help
Hugs> :load "jeeves-constraints.lhs"
Main>

A Jeeves program (and input) is evaluated with the invocation of the Jeeves evaluator by giving
the command:

evaluateFile <filename>

which results in a sequence of (non-interfeering) ‘Effects’ in accordance with Definition 7.14 and
Haskell 7.16. In appendix B.3 it is outlined how the effect output is formatted. The implementation
of evaluateFile is reflected in the following code snippet.

8.1 Haskell (Jeeves evaluator).

505−− −−−−−−−−−−−−−−−−−−
506−− TOP EVALUATOR
507

508evaluate :: String → Effects
509

510evaluate jeeves = effects
511where
512programParse = parse (programParser xs1) jeeves
513effects = if null programParse then noEffects else evalProgram xs2 ( fst (head programParse)

)
514(xs1,xs2) = splitVars vars
515
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516evaluateFile filename = do jeeves ← readFile filename −− IO utility
517putStr (show (evaluate jeeves ))

A Jeeves program (with input) is parsed/translated with the invocation of the Jeeves parser by
giving the command:

parseFile <filename>

The parser output is a λJ program that follows the specification in Definition 4.1 and Haskell 4.5.
In appendix B.3 it is outlined how the λJ output is formatted in Haskell. The code for parseFile is
listed in the Haskell B.2 framework.

The program (with input) format has to adhere to the syntax specified in Definition 2.4, as
illustrated by the Jeeves program examples in Figure 2 and Figure 3. In the following, we tacitly
assume that two files have been created, testp1.jeeves and testp2.jeeves, which respectively
contain those programs.

The (formatted) program output from running the program is a list of effects where each effect,
according to Definition 7.17, is formally described by (output, INSTANTIATE(MODEL(∆,Σ ∪ {G ∧
context=κ}), υ)). This output is formatted as follows by our implementation:

Effect "output"
SOFT CONSTR = ...
HARD CONSTR MODEL = ...
SYMBOLIC VALUE = ...

where ‘Effect’ is a keyword, ‘output’ prints the value of output, ‘SOFT CONSTR = ...’ prints the
soft constraint set ∆, ‘HARD CONSTR MODEL = ...’ prints the instantiated hard constraint set
‘Σ∪{G∧context=κ}’, and ‘SYMBOLIC VALUE = ...’ prints the symbolic value υ. The order in which
the (non-interferring) effects appear, reflects directly the order in which the print statements appear
in the Jeeves program. We obviously has chosen to keep that ordering in the formatted program
output, which is printed as a vertical list of the form ‘[ <effect>, . . . , <effect> ]’ where ‘<effect>’ is
formatted as described above. We depict how to run and what the formatted program output looks
like for the Naming Policy Program from Figure 2. According to the theoretical program evaluation
in Example 7.48, the program exactly evaluates to the expected constraint sets and values!

Main> evaluateFile "Tests/testp1.jeeves"
[

EFFECT "print"
SOFT CONSTR= {} ∪ {True ⇒ x10=true},
HARD CONSTR MODEL = {} ∪ {True ⇒ (¬(context=’alice’) ⇒ (x10=false))}

∪ {True ∧ context=’alice’}
SYMBOLIC VALUE = (’Author is ’ + (if x10 then ’Alice’ else ’Anonymous’))

,
EFFECT "print"

SOFT CONSTR = {} ∪ {True ⇒ x20=true},
HARD CONSTR MODEL = {} ∪ {True ⇒ (¬(context=’alice’) ⇒ (x20=false))}

∪ {True ∧ context=’bob’}
SYMBOLIC VALUE = (’Author is ’ + (if x20 then ’Alice’ else ’Anonymous’))

]

We also depict how to run and what the formatted program output looks like for the Conference
Management Policy program from Figure 3. Eventhough we have not made a formal proof of the
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expected constraint sets and values, the result of the run at this point is relatively convincing
according to common sense.

Main> evaluateFile "Tests/testp2.jeeves"
[

EFFECT "print"
SOFT CONSTR = {} ∪ {True ⇒ x90=true} ∪ {True ⇒ x58=true} ∪ {True ⇒ x26=true},
HARD CONSTR MODEL = {}

∪ {True ⇒ (¬(((context.viewer.role=Reviewer)
∨ (context.viewer.role=PC)) ∨ (context.stage=Public))

⇒ (x90=false))}
∪ {True ⇒ (¬(((if x58 then ’Alice’ else ’Anonymized’)=context.viewer.name)

∨ ((context.stage=Public) ∧ ¬((if x90 then Accepted else ’none’)=’none’)))
⇒ (x58=false))}

∪ {True ⇒ (¬(((context.viewer.name =(if x58 then ’Alice’ else ’Anonymized’))
∨ (context.viewer.role=Reviewer))
∨ (context.viewer.role=PC))
∨ ((context.stage=Public) ∧ ¬((if x90 then Accepted else ’none’)=’none’)))

⇒ (x26=false))}
∪ {True ∧ context=(record viewer=(record name=’Alice’ role=PC) stage=Public) }

SYMBOLIC VALUE = (record title=(if x26 then ’MyPaper’ else ’’)
author=(if x58 then ’Alice’ else ’Anonymized’)
accepted=(if x90 then Accepted else ’none’)

)
,
EFFECT "print"

SOFT CONSTR = {} ∪ {True ⇒ x180=true} ∪ {True ⇒ x116=true} ∪ {True ⇒ x52=true},
HARD CONSTR MODEL = {}

∪ {True ⇒ (¬(((context.viewer.role=Reviewer)
∨ (context.viewer.role=PC)) ∨ (context.stage=Public))

⇒ (x180=false))}
∪ {True ⇒ (¬(((if x116 then ’Alice’ else ’Anonymized’)=context.viewer.name)

∨ ((context.stage=Public) ∧ ¬((if x180 then Accepted else ’none’)=’none’)))
⇒ (x116=false))}

∪ {True ⇒ (¬(((context.viewer.name=(if x116 then ’Alice’ else ’Anonymized’))
∨ (context.viewer.role=Reviewer))
∨ (context.viewer.role=PC))
∨ ((context.stage=Public)
∧ ¬((if x180 then Accepted else ’none’)=’none’)))

⇒ (x52=false))}
∪ {True ∧ context=(record viewer=(record name=’Bob’ role=Reviewer) stage=Public)}

SYMBOLIC VALUE = (record title=(if x52 then ’MyPaper’ else ’’)
author=(if x116 then ’Alice’ else ’Anonymized’)
accepted=(if x180 then Accepted else ’none’)

)
]

The formatted output from invoking the Jeeves parser is a λJ program that follows the spec-
ification in Definition 4.1 and Haskell 4.5. In appendix B.3 it is outlined how the λJ output is
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formatted. We depict how to run the Jeeves parser and what the formatted λJ program looks like
for the Naming Policy Program from Figure 2. According to the theoretical program translation in
Example 4.14, the program exactly parses to the expected λJ terms!

Main> parseFile "Tests/testp1.jeeves"
[(
letrec
name = thunk ( (defer a in (assert (¬ (context=’alice’) ⇒ (a=false)) in

(if a then ’Anonymous’ else ’Alice’))) );
msg = thunk ( (’Author is ’+name) );

in
print: concretize msg with ’alice’ ;
print: concretize msg with ’bob’ ;

,"")]

Because of the verbose nature of the parsing step, we will sidestep the equivalent outcome from
parsing the Conference Mangagement Program.

9 Conclusion

We have presented the first complete implementation of the Jeeves evaluation engine. "Complete" in
the sense that the evaluation of a program written in Jeeves syntax is in fact defined in terms of the
λJ evaluation semantics, as is directly reflected in our implementation. "Not-complete", however, in
the sense that a static (type) verification step currently has been omitted. As part of the process, we
have specifically obtained a tool that is able to generate privacy constraints for a given Jeeves program.
The actual constraint solving phase, however, has in accordance with Yang et al [23] been assumed
to happen at a later time and is thus not part of our formalization efforts directly.

The implementation consists the following Haskell components:

• abstract Haskell type definitions to define a concrete Jeeves syntax as well as the λJ syntax;

• an LL(1)-parser that builds abstract λJ syntax trees from the Jeeves source-language, thus
translating Jeeves to λJ terms;

• a λJ-interpreter, implementing the operational evaluation semantics of λJ;

• an implementation of constraint evaluation as monadic operations on a monadic constraint
environment.

With this implementation, we were able to both run and parse the canonical examples from Figure 2
and Figure 3 as they (almost) appear in the original paper by Yang et al [23] (after some syntactical
corrections and adjustments) with the expected results. All in an easy-to-use fashion as explained
in Section 8. We have achieved an elegant, yet precise program documentation by making use of
Haskells’ “literate” programming feature to incorporate the theoretical part of the report together
with the actual program, ie, the source LATEX of this report also serves as the source code of the
program, as accounted for in Notation 1.1.

We have corrected a number of inconsistencies and shortcomings in the original syntax and
semantics, together with certain limitations, in order to support an implementation, notably:

• added explicit syntax for a Jeeves and λJ program;
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• introduced explicit semantics for the letrec recursive operator in λJ

• only allowing recursive functions at the top-level of a program;

• disallowing recursively defined policies;

• introduced explicit semantics for output side-effects;

• reformulated the dynamic operational semantics of λJ to one that is entirely de-compositional
and non-substitutional for convincingly proving program and privacy properties.

• identified the constraint set handling as being monadic with policies as the only constructs
with side-effects on the constraint set (as expected).

We have published the implementation as a github project [17].

10 Future Directions

First of all, it is desirable to have the implementation "hooked up" to a constraint solver (with a
Haskell interphase).

Even though the interpreter component of the implementation has the advantage of serving as a
"proof of concept" as much as a practical, and theoretically transparent tool (the implementation of
an operational semantics is by definition an interpreter), efficiency is of inherent concern. Efficiency
can, in fact, be improved considerably by replacing the λJ interpreter with a compilation step, that
translates λJ syntax trees to some efficient target code, whilst incorporating the semantic evaluation
rules directly. Joelle Despeyreaux, for example, has outlined how to perform such a systematic
translation from mini-ML, while incorporating the languages’ operational semantics [4].

Redefining some of the Haskell parser mechanisms such as "++" is another area of optimiza-
tion gains to explore. Because many of these pre-defined parser mechanisms allow backtracking,
we have not been able to optimize our parser further, other than ensuring that the grammar pro-
ductions that are parsed is on LL(1) form, which we found is not enough to avoid backtracking
completely.

A study of how to optimize on the generated constraints prior to any automated constraint
solving phase, could possible increase the efficiency (and correctness) of thereof.

A Discrepancies from the original formalization

In this section, we list the modifications and formalization decisions we have made compared to
Yang et al [23] in order to clarify the syntax and semantics sufficiently to support an implementa-
tion.

A.1 Discrepancy (Jeeves syntax). The original abstract syntax c.f. Yang et al [23, Fig. 1] has been
extended in several ways c.f. Definition 2.1:

• the syntax of a program has been made explicit,

• let statements are made an explit part of the program syntax,

• let statements only appear at the top-level of a program,

• a policy expression must contain an "in" part,
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• the syntax of let expressions has been made explicit,

• the syntax for expression sequences has been made explicit,

• generalized level expressions has been made explicit,

• record and field expressions have been made explicit.

As a consequence of only allowing (recursively defined) let statements at the top-level of a
Jeeves program, we obtain the following notable limitations:

• we disallow recursively defined functions in symbolic values,

• we disallow cyclic data structures.

Finally, we have added a concrete syntax for Jeeves programs in Definition 2.4.

A.2 Discrepancy (λJ syntax). The original abstract syntax c.f. Yang et al [23, Fig. 2] has been
extended in several ways c.f. Definition 3.1, Definition 3.3, Definition 3.5, as well as Definition 5.1:

• the syntax of a program has been made explicit,

• the recursive combinator ‘letrec’ has been added as a statement,

• the recursive combinator ‘letrec’ has been removed as an expression,

• output statements have been generalized,

• an explicit output tag to concretize statements has been added,

• the notion of a thunk expression has been added,

• the defer expression has been simplified (to reflect the translation),

• the assert expressions must contain an "in" part,

• the unit (‘()’) entity has been removed,

• records have been added as expressions (when their fields are expressions),

• field look-up has been added as an expression,

• concrete and symbolic values are not automatically defined as expressions.

As a consequence of only allowing letrec and output statements at the top-level of a λJ program,
we obtain the following notable limitations:

• a static, recursive scope of a program is only established at the top-level,

• a static, recursive scope of a program is established globally prior to side effect statements
(output).

As mentioned, the category of concrete and symbolic normal forms is defined separately, though
some syntactic entities appear both as an expression and as a value c.f. Definition 5.1:
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• closures have been added as concrete values,

• strings and constants have been added as concrete values,

• records over concrete fields have been added as concrete value,

• records over symbolic fields have been added as symbolic value,

• field look-up over a symbolic record has been added as a symbolic value,

A.3 Discrepancy (λJ translation). The original translation c.f. Yang et al [23, Fig. 6] has been
extended in several ways c.f. Definition 4.1, Definition 4.6, and Definition 4.11:

• the translation of a Jeeves program has been added,

• the translation of expression sequences has been added,

• the translation of if expressions has been added,

• the translation of let expressions has been added,

• a generalization of the level expression translation has been added,

• the (trivial) "default" part has been removed,

• binary operator expression translation has been added,

• function application translation has been added,

• record translation has been added,

• field look-up translation has been added,

• translation of literals and ‘context’ has been added,

• translation of logical (unary) negation has been added,

• translation of (syntactic sugary) paranthesis has been added.

A.4 Discrepancy (evaluation semantics). The original evaluation semantics c.f. Yang et al [23,
Fig. 3] has been extended and modified in several ways c.f. Definition 7.14, Definition 7.17 , and
Definition 7.20:

• adding the notion of a binding environment (to manage evaluation scopes),

• reformulating the semantics as a least fixpoint semantics in the environment,

• formulating an evaluation semantics of a program (as a series of effects),

• reformulation from small-step to big-step semantics,

• reformulation from non-compositional to compositional semantics,

• reformulation from substitution-based to non-substitution based semantics,

• adding evaluation semantics for variable lookup,
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• adding evaluation semantics for unary operation,

• added level variable handling to happen by the binding environment,

• added evaluation semantics for let expressions,

• added evaluation semantics for record expressions,

• added evaluation semantics for field look-up expressions.

We have furthermore added formalizations for the λJ input-output domains (Definition 7.1),
and for the pre-constraint-solve output effect from running a program prior to any constraint solv-
ing (Definition 7.11).

B Additional code

In this appendix we include various fragments of code that were not deemed key to the main
presentation.

B.1 Haskell (Literal lexical token parsers).

518spaces = many myspace −− white space and Haskell style comments in Jeeves
519where
520myspace = sat isSpace
521+++
522(do word "--"
523many (sat ( 6≡ ’\n’))
524return ’␣’)
525

526ident :: Parser String −− a lower case letter followed by alphanumeric chars
527ident = do xs ← ident2
528if (isKeyword xs) then failure else return xs
529where
530ident2 = do x ← sat isLower
531xs ← many (sat isAlphaNum)
532return (x:xs)
533

534isKeyword idkey = elem idkey keywords
535keywords = ["top","bottom","if","then","else","lambda",
536"level","in","policy","error","context","let",
537"true","false","print","sendmail"]
538

539nat :: Parser Int −− a sequence of digits
540nat = do xs ← many1 (sat isDigit )
541return (read xs)
542

543string :: Parser String −− strings can be in "" or ’’.
544string = do sat (≡ ’"’)
545s ← many (sat ( 6≡ ’"’))
546sat (≡ ’"’)
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547return s
548+++
549do sat (≡ ’\’’)
550s ← many (sat ( 6≡ ’\’’))
551sat (≡ ’\’’)
552return s
553

554constant = do x ← sat isUpper
555xs ← many (sat isAlphaNum)
556return (x:xs)

B.2 Haskell (parser framework).

557data Parser a = PARSER (String →[(a, String ) ])
558

559parse :: Parser a → String → [(a, String ) ]
560parse (PARSER p) inp = p inp
561

562parseFile filename = do jeeves ← readFile filename −− IO utility
563putStr (show (parse (programParser vars) jeeves ))
564

565instance Monad Parser where
566return v = PARSER (λinp →[(v,inp)])
567p �= f = PARSER (λinp →case parse p inp of
568[] → []
569[(v,out)] → parse (f v) out)
570

571failure :: Parser a
572failure = PARSER (λinp →[])
573

574success :: Parser ()
575success = PARSER (λinp →[((),inp) ])
576

577item :: Parser Char
578item = PARSER (λinp →case inp of
579"" → []
580(x:xs) → [(x,xs) ] )
581

582−− choice operator
583(+++) :: Parser a → Parser a → Parser a
584p +++ q = PARSER (λinp →case parse p inp of
585[] → parse q inp
586[(v,out)] → [(v,out) ])
587

588−− token parser builder
589wordToken :: String → a → Parser a −− builds a token parser for a word tok to return r on

success
590wordToken tok r = do token (word tok)
591return r
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592

593−− derived primitives
594sat :: (Char → Bool) → Parser Char
595sat p = do x ← item
596if p x then return x else failure
597

598−− basic token definitions
599token :: Parser a → Parser a
600token p = do spaces
601v ← p
602spaces
603return v
604

605word :: String → Parser String −− parses just the argument characters, incl . white spaces
606word [] = return []
607word (c: cs) = do sat (≡ c)
608word cs
609return (c: cs)
610

611−− generic combinators
612many :: Parser a → Parser [a]
613many p = many1 p +++ return []
614

615many1 :: Parser a → Parser [a]
616many1 p = do v ←p
617vs ← many p
618return (v:vs)
619

620optional :: Parser a → Parser [a]
621optional p = optional1 p +++ return []
622

623optional1 p = do v ← p
624return [v]
625

626manyParser :: (FreshVars → Parser a) → FreshVars → Parser b → Parser [a]
627manyParser p xs sp = manyParser1 p xs sp +++ return []
628

629manyParser1 p xs sp = (do v ← p xs1
630vs ← manyParserTail p xs2 sp
631return (v:vs))
632where (xs1,xs2) = splitVars xs
633

634manyParserTail p xs sp = (do sp −− parses separation tokens like ; , ◦ etc
635v ← p xs1
636vs ← manyParserTail p xs2 sp
637return (v:vs))
638+++
639return []
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640where (xs1,xs2) = splitVars xs

B.3 Haskell (pretty-printing λJ syntax).

641instance Show Effect where
642show (EFFECT output (INSTANTIATE (MODEL delta sigma g c) v)) =
643"\n␣␣EFFECT␣" ++show output ++
644"\n␣␣␣␣SOFT␣CONSTR␣=␣" ++show delta ++"," ++
645"\n␣␣␣␣HARD␣CONSTR␣INST␣=␣" ++show sigma ++"␣∪␣{" ++show g ++"␣∧␣context=" ++

show c ++"␣}" ++
646"\n␣␣␣␣SYMBOLIC␣VALUE␣=␣" ++show v ++"\n␣␣"
647

648instance (Show a)⇒Show (Constraints a) where
649show (CONSTRAINTS sigma delta e) =
650"CONSTRAINTS" ++
651"\n␣␣SIGMA␣=␣" ++show sigma ++
652"\n␣␣DELTA␣=␣" ++show delta ++
653"\n␣␣" ++show e
654

655instance Show Value where −− pretty printing lambda J values
656show (V_BOOL b) = if b then "true" else "false"
657show (V_NAT i) = show i
658show (V_STR s) = "’" ++s ++"’"
659show (V_CONST s) = s
660show (V_ERROR) = "error"
661show (V_LAMBDA x e rho) = "(\\"++show x++"."++show e++",RHO)"
662show (V_THUNK e rho) = "(thunk␣RHO)"
663show (V_RECORD fivs) = "(record" ++(if null fivs then "" else foldr1 (++) (map (λ(fi,e)

→ ("␣"++show fi++"="++show e)) fivs)) ++")"
664show (V_VAR x) = show x
665show (V_CONTEXT) = "context"
666show (V_OP op v1 v2) = "("++show v1++show op++show v2++")"
667show (V_UOP uop v) = show uop++show v
668show (V_IF v1 v2 v3) = "(if␣" ++show v1 ++"␣then␣" ++show v2 ++"␣else␣" ++show

v3 ++")"
669show (V_FIELD v fi) = show v++"."++show fi
670

671instance Show Exp where −− pretty printing lambda J expressions
672show (E_BOOL True) = "true"
673show (E_BOOL False) = "false"
674show (E_NAT n ) = show n
675show (E_STR s ) = "’" ++s ++"’" −− todo: remove escape quotes
676show (E_CONST s) = s −− no quotes in a constant by definition
677show (E_VAR v ) = show v
678show (E_CONTEXT) = "context"
679show (E_LAMBDA v e) = "lambda␣" ++(show v) ++"." ++(show e)
680show (E_THUNK e) = "thunk␣" ++"(␣" ++(show e) ++"␣)"
681show (E_OP op e1 e2) = "(" ++show e1 ++show op ++show e2 ++")"
682show (E_UOP uop e) = show uop ++"␣" ++show e
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683show (E_IF e1 e2 e3) = "(if␣" ++show e1 ++"␣then␣" ++show e2 ++"␣else␣" ++show e3
++")"

684show (E_APP e1 e2) = "(" ++show_APP e1 ++"␣" ++show e2 ++")"
685where
686show_APP (E_APP e1 e2) = "("++ show_APP e1 ++"␣" ++show e2 ++")"
687show_APP e = show e
688show (E_DEFER v e) = "(defer␣" ++show v ++"␣in␣" ++show e ++")"
689show (E_ASSERT e1 e2) = "(assert␣" ++show e1 ++"␣in␣" ++show e2 ++")"
690show (E_LET x e1 e2) = "(let␣" ++show x ++"␣=␣" ++show e1 ++"␣in␣" ++show e2 ++")

"
691show (E_RECORD fies) = "(record" ++(if null fies then "" else foldr1 (++) (map (λ(fi,e)→

("␣"++show fi++"="++show e)) fies)) ++")"
692show (E_FIELD e fi) = show e ++"." ++show fi
693

694instance Show Binding where
695show (BIND x e) = "␣" ++show x ++"␣=␣" ++show e ++";\n"
696

697instance Show Statement where
698show (CONCRETIZE_WITH output e1 e2) = "␣" ++output ++"␣(concretize␣" ++show e1 ++

"␣with␣" ++show e2 ++")␣;\n"
699

700instance Show Program where
701show (P_LETREC ls ps) = "\nletrec\n" ++concat (map show ls) ++"in\n" ++concat (map

show ps)
702

703instance Show Op where
704show OP_PLUS = "+"
705show OP_MINUS = "-"
706show OP_AND = "␣∧␣"
707show OP_OR = "␣∨␣"
708show OP_IMPLY = "␣⇒␣"
709show OP_EQ = "="
710show OP_LESS = "<"
711show OP_GREATER = ">"
712

713instance Show UOp where
714show OP_NOT = "¬"
715

716instance Show Var where
717show (VAR s) = s
718

719instance Show FieldName where
720show (FIELD_NAME s) = s
721

722instance Show PathCondition where
723show (P_COND []) = "True"
724show (P_COND ps) = "∧"++ show ps
725
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726instance Show Sigma where
727show (SIGMA list) = foldr f "{}" list
728where
729f (g,v) s = s ++"␣∪␣{" ++show g++"␣⇒␣"++show v ++"}"
730

731instance Show Delta where
732show (DELTA list) = foldr f "{}" list
733where
734f (g,x,v) s = s ++"␣∪␣{" ++show g ++"␣⇒␣"++ show x ++"="++show v++"}"
735

736instance Show Formula where
737show (F_IS v) = show v
738show (F_NOT v) = "¬" ++show v
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