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Abstract. The local broadcast problem assumes that processes in a wireless net-
work are provided messages, one by one, that must be delivered to their neigh-
bors. In this paper, we prove tight bounds for this problem in two well-studied
wireless network models: the classical model, in which links are reliable and
collisions consistent, and the more recent dual graph model, which introduces
unreliable edges. Our results prove that the Decay strategy, commonly used for
local broadcast in the classical setting, is optimal. They also establish a separation
between the two models, proving that the dual graph setting is strictly harder than
the classical setting, with respect to this primitive.

1 Introduction

At the core of every wireless network algorithm is the need to manage contention on
the shared medium. In the theory community, this challenge is abstracted as the local
broadcast problem, in which processes are given messages, one by one, that must be
delivered to their neighbors.

This problem has been studied in multiple wireless network models. The most com-
mon such model is the classical model, introduced by Chlamatac and Kutten [8], in
which links are reliable and concurrent broadcasts by neighbors always generate col-
lisions. The dominant local broadcast strategy in this model is the Decay routine in-
troduced by Bar-Yehuda et al. [9]. In this strategy, nodes cycle through an exponential
distribution of broadcast probabilities with the hope that one will be appropriate for
the current level of contention (e.g., [9, 11–17, 22]). To solve local broadcast with high
probability (with respect to the network size n), the Decay strategy requiresO(∆ log n)
rounds, where ∆ is the maximum contention in the network (which is at most the max-
imum degree in the network topology). It has remained an open question whether this
bound can be improved toO(∆+polylog(n)). In this paper, we resolve this open ques-
tion by proving the Decay bound optimal (notice, throughout this paper, when we call
an upper bound “optimal” or a lower bound “matching,” we mean within poly-log log
factors). This result also proves for the first time that existing constructions of ad hoc
selective families [15, 16]—a type of combinatorial object used in wireless network
algorithms—are optimal.

We then turn our attention to the more recent dual graph wireless network model
introduced by Kuhn et al. [18,20,22,25]. This model generalizes the classical model by
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Fig. 1. A summary of our results for acknowledgment and progress for the local broadcast prob-
lem. Results that are new, or significant improvements over the previously best known result, are
marked with an “*” while a “**” marks results that where obtained from prior work via minor
tweaks.

allowing some edges in the communication graph to be unreliable. It was motivated by
the observation that real wireless networks include links of dynamic quality (see [22] for
more extensive discussion). We provide tight solutions to the local broadcast problem in
this setting, using algorithms based on the Decay strategy. Our tight bounds in the dual
graph model are larger (worse) than our tight time bounds for the classical model, for-
malizing a separation between the two settings (see Figure 1 and the discussion below
for result details). We conclude by proving another separation: in the classical model
there is no significant difference in power between centralized and distributed local
broadcast algorithms, while in the dual graph model the gap is exponential.

These separation results are important because most wireless network algorithm
analysis relies on the correctness of the underlying contention management strategy.
By proving that the dual graph model is strictly harder with respect to local broadcast,
we have established that an algorithm proved correct in the classical model will not
necessarily remain correct or might loose its efficiency in the more general (and more
realistic) dual graph model.

To summarize: This paper provides an essentially complete characterization of the
local broadcast problem in the well-studied classical and dual graph wireless network
models. In doing so, we: (1) answer the long-standing open question regarding the
optimality of Decay in the classical model; (2) provide a variant of Decay and prove it
optimal for the local broadcast problem in the dual graph model; and (3) formalize the
separation between these two models, with respect to local broadcast.

Result Details: As mentioned, the local broadcast problem assumes processes are pro-
vided messages, one by one, which should be delivered to their neighbors in the com-
munication graph. Increasingly, local broadcast solutions are being studied separately
from the higher level problems that use them, improving the composability of solutions;
e.g., [18, 21, 23, 24]. Much of the older theory work in the wireless setting, however,
mixes the local broadcast logic with the logic of the higher-level problem being solved;
e.g., [9,11–17,22]. This previous work can be seen as implicitly solving local broadcast.

The efficiency of a local broadcast algorithm is characterized by two metrics: (1) an
acknowledgment bound, which measures the time for a sender process (a process that
has a message for broadcast) to deliver its message to all of its neighbors; and (2) a
progress bound, which measures the time for a receiver process (a process that has a
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sender neighbor) to receive at least one message 1. The acknowledgment bound is ob-
viously interesting; the progress bound has also been shown to be critical for analyzing
algorithms for many problems, e.g., global broadcast [18] where the reception of any
message is normally sufficient to advance the algorithm. The progress bound was first
introduced and explicitly specified in [18,23] but it was implicitly used already in many
previous works [9,11–14,17]. Both acknowledgment and progress bounds typically de-
pend on two parameters, the maximum contention∆ and the network size n. In the dual
graph model, an additional measure of maximum contention, ∆′, is introduced to mea-
sure contention in the unreliable communication link graph, which is typically denser
than the reliable link graph. In our progress result for the dual graph model, we also
introduce k to capture the actual amount of contention relevant to a specific message.
These bounds are usually required to hold with high probability.

Our upper and lower bound results for the local broadcast problem in the classical
and dual graph models are summarized in Figure 1. Here we highlight three key points
regarding these results. First, in both models, the upper bounds are withinO(log2 log n)
of the lower bounds. Second, we show that Ω( ∆ logn

log2 logn
) rounds are necessary for ac-

knowledgment in the classical model. This answers in the negative the open question
of whether a O(∆+polylog(n)) solution is possible. Third, the separation between the
classical and dual graph models occurs with respect to the progress bound, where the
tight bound for the classical model is logarithmic with respect to contention, while in
the dual graph model it is linear—an exponential gap. Finally, in addition to the results
described in Figure 1, we also prove the following additional separation between the
two models: in the dual graph model, the gap in progress between distributed and cen-
tralized local broadcast algorithms is (at least) linear in the maximum contention ∆′,
whereas no such gap exists in the classical model.

Before starting the technical sections, we remark that due to space considerations,
the full proofs are omitted from the conference version and can be found in [27].

2 Model

To study the local broadcast problem in synchronous multi-hop radio networks, we use
two models, namely the classical radio network model (also known as the radio network
model) and the dual graph model. The former model assumes that all connections in
the network are reliable and it has been extensively studied since 1980s [8–18, 18, 23].
On the other hand, the latter model is a more general model, introduced more recently
in 2009 [18–20], which includes the possibility of unreliable edges. Since the former
model is simply a special case of the latter, we use dual graph model for explaining the
model and the problem statement. However, in places where we want to emphasize on a
result in the classical model, we focus on the classical model and explain how the result
specializes for this specific case.

In the dual graph model, radio networks have some reliable and potentially some
unreliable links. Fix some n ≥ 1. We define a network (G,G′) to consist of two undi-
rected graphs, G = (V,E) and G′ = (V,E′), where V is a set of n wireless nodes

1 Note that with respect to these definitions, a process can be both a sender and a receiver,
simultaneously.
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and E ⊆ E′, where intuitively set E is the set of reliable edges while E′ is the set of
all edges, both reliable and unreliable. In the classical radio network model, there is no
unreliable edge and thus, we simply have G = G′, i.e., E = E′.

We define an algorithm A to be a collection of n randomized processes, described
by probabilistic automata. An execution of A in network (G,G′) proceeds as follows:
first, we fix a bijection proc from V to A. This bijection assigns processes to graph
nodes. We assume this bijection is defined by an adversary and is not known to the
processes. We do not, however, assume that the definition of (G,G′) is unknown to the
processes (in many real world settings it is reasonable to assume that devices can make
some assumptions about the structure of their network). In this study, to strengthen
our results, our upper bounds make no assumptions about (G,G′) beyond bounds on
maximum contention and polynomial bounds on size of the network, while our lower
bounds allow full knowledge of the network graph.

An execution proceeds in synchronous rounds 1, 2, ..., with all processes starting
in the first round. At the beginning of each round r, every process proc(u), u ∈ V
first receives inputs (if any) from the environment. It then decides whether or not to
transmit a message and which message to send. Next, the adversary chooses a reach
set that consists of E and some subset, potentially empty, of edges in E′ − E. Note
that in the classical model, set E′ − E is empty and therefore, the reach set is already
determined. This set describes the links that will behave reliably in this round. We
assume that the adversary has full knowledge of the state of the network while choosing
this reach set. For a process v, let Bv,r be the set all graph nodes u such that, proc(u)
broadcasts in r and {u, v} is in the reach set for this round. What proc(v) receives in
this round is determined as follows. If proc(v) broadcasts in r, then it receives only
its own message. If proc(v) does not broadcast, there are two cases: (1) if |Bv,r| = 0
or |Bv,r| > 1, then proc(v) receives ⊥ (indicating silence); (2) if |Bv,r| = 1, then
proc(v) receives the message sent by proc(u), where u is the single node in Bv,r. That
is, we assume processes cannot send and receive simultaneously, and also, there is no
collision detection in this model. However, to strengthen our results, we note that our
lower bound results hold even in the model with collision detection, i.e., where process
v receives a special collision indicator message > in case |Bv,r| > 1. After processes
receive their messages, they generate outputs (if any) to pass back to the environment.

Distributed vs. Centralized Algorithms: The model defined above describes distributed
algorithms in a radio network setting. To strengthen our results, in some of our lower
bounds we consider the stronger model of centralized algorithms. We formally define
a centralized algorithm to be defined the same as the distributed algorithms above, but
with the following two modifications: (1) the processes are given proc at the beginning
of the execution; and (2) the processes can make use of the current state and inputs of
all processes in the network when making decisions about their behavior.

Notation & Assumptions: For each u ∈ V , the notations NG(u) and NG′(u) describe,
respectively, the neighbors of u in G and G′. Also, we define N+

G (u) = NG(u) ∪ {u}
andN+

G′(u) = NG′(u)∪{u}. For any algorithmA, we assume that each processA has
a unique identifier. To simplify notation, we assume the identifiers are from {1, ..., n}.
We remark that our lower bounds hold even with such strong identifiers, whereas for
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the upper bounds, we just need the identifiers of different processes to be different.
Let id(u), u ∈ V describe the id of process proc(u). For simplicity, throughout this
paper we often use the notation process u, or sometimes just u, for some u ∈ V , to
refer to proc(u) in the execution in question. Similarly, we sometimes use process i, or
sometimes just i, for some i ∈ {1, ..., n}, to refer to the process with id i. We sometimes
use the notation [i, i′], for integers i′ ≥ i, to indicate the sequence {i, ..., i′}, and the
notation [i] for integer i to indicate [1, i]. Throughout, we use the the notation w.h.p.
(with high probability) to indicate a probability at least 1 − 1

n . Also, unless specified,
all logarithms are natural log. Moreover, we ignore the integral part signs whenever
it is clear that omitting them does not effect the calculations more than a change in
constants.

3 Problem

Our first step in formalizing the local broadcast problem is to fix the input/output inter-
face between the local broadcast module (automaton) of a process and the higher layers
at that process. In this interface, there are three actions as follows: (1) bcast(m)v , an
input action that provides the local broadcast module at process v with message m that
has to be broadcast over v’s local neighborhood, (2) ack(m)v , an output action that
the local broadcast module at v performs to inform the higher layer that the message m
was delivered to all neighbors of v successfully, (3) rcv(m)u, an output action that local
broadcast module at u performs to transfer the message m, received through the radio
channel, to higher layers. To simplify definitions going forward, we assume w.l.o.g. that
every bcast(m) input in a given execution is for a uniquem. We also need to restrict the
behavior of the environment to generate bcast inputs in a well-formed manner, which
we define as strict alternation between bcast inputs and corresponding ack outputs at
each process. In more detail, for every execution and every process u, the environment
generates a bcast(m)u input only under two conditions: (1) it is the first input to u in
the execution; or (2) the last input or non-rcv output action at u was an ack.

We say an algorithm solves the local broadcast problem if and only if in every
execution, we have the following three properties: (1) for every process u, for each
bcast(m)u input, u eventually responds with a single ack(m)u output, and these are the
only ack outputs generated by u; (2) for each process v, for each message m, v outputs
rcv(m)v at most once and if v generates a rcv(m)v output in round r, then there is
a neighbor u ∈ NG′(v) such that following conditions hold: u received a bcast(m)u
input before round r and has not output ack(m)u before round r (3) for each process
u, if u receives bcast(m)u in round r and respond with ack(m)u in round r′ ≥ r, then
w.h.p.: ∀v ∈ NG(u), v generates output rcv(m)v within the round interval [r, r′]. We
call an algorithm that solves the local broadcast problem a local broadcast algorithm.

Time Bounds: We measure the performance of a local broadcast algorithm with respect
to the two bounds first formalized in [18]: acknowledgment (the worst case bound on
the time between a bcast(m)u and the corresponding ack(m)u), and progress (infor-
mally speaking the worst case bound on the time for a process to receive at least one
message when it has one or more G neighbors with messages to send). The first bound
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represents standard ways of measuring the performance of local communication. The
progress bound is crucial for obtaining tight performance bounds in certain classes of
applications. See [18, 23] for examples of places where progress bound proves crucial
explicitly. Also, [9, 11–14, 17] use the progress bound implicitly throughout their anal-
ysis.

In more detail, a local broadcast algorithm has two delay functions which describe
these delay bounds as a function of the relevant contention: fack, and fprog, respec-
tively. In other words, every local broadcast algorithm can be characterized by these
two functions which must satisfy properties we define below. Before getting to these
properties, however, we first present a few helper definitions that we use to describe
local contention during a given round interval. The following are defined with respect
to a fixed execution. (1) We say a process u is active in round r, or, alternatively, active
with m, iff it received a bcast(m)u output in a round ≤ r and it has not yet generated
an ack(m)u output in response. We furthermore call a message m active in round r if
there is a process that is active with it in round r. (2) For process u and round r, con-
tention c(u, r) equals the number of active G′ neighbors of u in r. Similarly, for every
r′ ≥ r, c(u, r, r′) = maxr′′∈[r,r′]{c(u, r′′)}. (3) For process v and rounds r′ ≥ r,
c′(v, r, r′) = maxu∈NG(v){c(u, r, r′)}. We can now formalize the properties our delay
functions, specified for a local broadcast algorithm, must satisfy for any execution:

1. Acknowledgment bound: Suppose process v receives a bcast(m)v input in round
r. Then, if r′ ≥ r is the round in which process v generates corresponding output
ack(m)v , then with high probability we have r′ − r ≤ fack(c′(v, r, r′)).

2. Progress bound: For any pair of rounds r and r′ ≥ r, and process u, if r′ − r >
fprog(c(u, r, r

′)) and there exists a neighbor v ∈ NG(u) that is active throughout
the entire interval [r, r′], then with high probability, u generates a rcv(m)u output
in a round r′′ ≤ r′ for a message m that was active at some round within [r, r′].

We use notation ∆′ (or ∆ for the classical model) to denote the maximum con-
tention over all processes.2 In our upper bound results, we assume that processes are
provided with upper bounds on contention that are within a constant factor of ∆′ (or
∆ for the classical model). Also, for the sake of concision, in the results that follow,
we sometimes use the terminology “has an acknowledgment bound of” (resp. progress
bound) to indicate “specifies the delay function fack” (resp. fprog). For example, instead
of saying “the algorithm specifies delay function fack(k) = O(k),” we might instead
say “the algorithm has an acknowledgment bound of O(k).”

Simplified One-Shot Setting for Lower Bounds: The local broadcast problem as just
described assumes that processes can keep receiving messages as input forever and in
an arbitrary asynchronous way. This describes the practical reality of contention man-
agement, which is an on going process. All our algorithms work in this general setting.
For our lower bounds, we use a setting in which we restrict the environment to only
issue broadcast requests at the beginning of round one. We call this the one-shot set-
ting. Also, in most of our lower bounds, we consider, G and G′ to be bipartite graphs,

2 Note that since the maximum degree in the graph is an upper bound on the maximum con-
tention, this notation is consistent with prior work, see e.g. [18, 23, 24].
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where nodes of one part are called senders and they receive broadcast inputs, and nodes
of the other part are called receivers, and each have a sender neighbor. In this setting,
when referring to contention c(u), we furthermore mean c(u, 1). Note that in this set-
ting, for any r, r′, c(u, [r, r′]) is less than or equal to c(u, 1). The same holds for c′(u).
Also, in these bipartite networks, the maximum G′-degree (or G-degree in the classical
model) of the receiver nodes provides an upper bound on the maximum contention ∆′

(or ∆ in the classical model). When talking about these networks, and when it is clear
from the context, we sometimes use the phrase maximum receiver degree instead of the
maximum contention.

4 Related Work

Chlamatac and Kutten [8] were the first to introduce the classical radio network model.
Bar-Yehuda et al. [9] studied the theoretical problem of local broadcast in synchronized
multi-hop radio networks as a submodule for the broader goal of global broadcast. For
this, they introduced Decay procedure, a randomized distributed procedure that solves
the local broadcast problem. Since then, this procedure has been the standard method
for resolving contention in wireless networks (see e.g. [17,18,23,24]). In this paper, we
prove that a slightly modified version of Decay protocol achieves optimal progress and
acknowledgment bounds in both the classical radio network model and the dual graph
model. A summary of these time bounds is presented in Figure 1.

Deterministic solutions to the local broadcast problem are typically based on com-
binatorial objects called Selective Families, see e.g. [12]- [16]. Clementi et al. [14]
construct (n, k)-selective families of size O(k log n) ( [14, Theorem 1.3]) and show
that this bound is tight for these selective families ( [14, Theorem 1.4]). Using these
selective families, one can get local broadcast algorithms that have progress bound of
O(∆ log n), in the classical model. These families do not provide any local broad-
cast algorithm in the dual graph model. Also, in the same paper, the authors construct
(n, k)-strongly-selective families of size O(k2 log n) ( [14, Theorem 1.5]). They also
show (in [14, Theorem 1.6]) that this bound is also, in principle, tight for selective
families when k ≤

√
2n − 1. Using these strongly selective families, one can get lo-

cal broadcast algorithms with acknowledgment bound of O(∆2 log n) in the classical
model and also, with acknowledgment bound of fack(k) = O((∆′)2 log n) in the dual
graph model. As can be seen from our results (summarized in Figure 1), all three of the
above time bounds are far from the optimal bounds of the local broadcast problem. This
shows that when randomized solutions are admissible, solutions based on these notions
of selective families are not optimal.

In [15], Clementi et al. introduce a new type of selective families called Ad-Hoc
Selective Families which provide new solutions for the local broadcast problem, if we
assume that processes know the network. Clementi et al. show in [15, Theorem 1] that
for any given collection F of subsets of set [n], each with size in range [∆min, ∆max],
there exists an ad-hoc selective family of size O((1 + log(∆max/∆min)) · log |F |).
This, under the assumption of processes knowing the network, translates to a determin-
istic local broadcast algorithm with progress bound of O(log∆ log n), in the classical
model. This family do not yield any broadcast algorithms for the dual graph model.
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Also, in [16], Clementi et al. show that for any given collection F of subsets of set
[n], each of size at most ∆, there exists a Strongly-Selective version of Ad-Hoc Selec-
tive Families that has size O(∆ log |F |) (without using the name ad hoc). This result
shows that, again under the assumption of knowledge of the network, there exists a
deterministic local broadcast algorithms with acknowledgment bounds of O(∆ log n)
andO(∆′ log n), respectively in the classical and dual graph models. Our lower bounds
for the classical model show that both of the above upper bounds on the size of these
objects are tight.

5 Upper Bounds for Both Classical and Dual Graph Models

In this section, we show that by slight modifications to Decay protocol, we can achieve
upper bounds that match the lower bounds that we present in the next sections. Due to
space considerations, the details of the related algorithms are omitted from the confer-
ence version and can be found in [27].

Theorem 5.1. In the classical model, there exists a distributed local broadcast algo-
rithm that gives acknowledgment bound of fack(k) = O(∆ log n) and progress bound
of fprog(k) = O(log∆ log n).

Theorem 5.2. There exists a distributed local broadcast algorithm that, in the classical
model, gives bounds of fack(k) = O(∆ log n) and fprog(k) = O(log∆ log n), and
in the dual graph model, gives bounds of fack(k) = O(∆′ log n) and fprog(k) =
O(min{k log∆′ log n,∆′ log n}).

Theorem 5.3. In the dual graph model, there exists a distributed local broadcast algo-
rithm that gives acknowledgment bound of fack(k) = O(∆′ log n) and progress bound
of fprog(k) = O(min{k log k log n,∆′ log n}).

6 Lower Bounds in the Classical Radio Broadcast Model

In this section, we focus on the problem of local broadcast in the classical model and
present lower bounds for both progress and acknowledgment times. We emphasize that
all these lower bounds are presented for centralized algorithms and also, in the model
where processes are provided with a collision detection mechanism. Note that these
points only strengthen these results. These lower bounds prove, for the first time, that
the optimized decay protocol, as presented in the previous section, is optimal with re-
spect to progress and acknowledgment times in the classical model. These lower bounds
also show that the existing constructions of Ad Hoc Selective Families are optimal.
Moreover, in future sections, we use the lower bound on the acknowledgment time in
the classical model that we present here as a basis to derive lower bounds for progress
and acknowledgment times in the dual graph model.
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6.1 Progress Time Lower Bound

In this section, we remark that following the proof of the lower bound of Alon et al. [10]
on the time needed for global broadcast of one message in radio networks, and with
slight modifications, one can get a lower bound ofΩ(log∆ log n) on the progress bound
in the classical model.

Lemma 6.1. For any n and any ∆ ≤ n, there exists a one-shot setting with a bipartite
network of size n and maximum contention of at most ∆ such that for any transmission
schedule, it takes at least Ω(log∆ log n) rounds till each receiver receives at least one
message.

6.2 Acknowledgment Time Lower Bound

In this section, we present the main technical result of the paper which is a lower bound
of Ω( ∆ logn

log2 logn
) on the acknowledgment time in the classical radio broadcast model.

Theorem 6.2. In the classical radio broadcast model, for any large enough n and any
∆ ∈ [20 log n, n0.1], there exists a one-shot setting with a bipartite network of size n
and maximum receiver degree at most ∆ such that it takes at least Ω( ∆ logn

log2 logn
) rounds

until all receivers have received all messages of their sender neighbors.

In other words, in this one-shot setting, any algorithm that solves the local broadcast
problem has a acknowledgment bound of Ω( ∆ logn

log2 logn
). To prove this theorem, in-

stead of showing that randomized algorithms have low success probability, we show
a stronger variant by proving an impossibility result: we prove that there exists a one-
shot setting with the above properties such that, even with a centralized algorithm, it is
not possible to schedule transmissions of nodes in o( ∆ logn

log2 logn
) rounds such that each

receiver receives the message of each of its neighboring senders successfully. In partic-
ular, this result shows that in this one-shot setting, for any randomized local broadcast
algorithm, the probability that an execution shorter than o( ∆ logn

log2 logn
) rounds success-

fully delivers message of each sender to all of its receiver neighbors is zero.
In order to make this formal, let us define a transmission schedule σ of length L(σ)

for a bipartite network to be a sequence σ1, . . . , σL(σ) ⊆ S of senders. Having a sender
u ∈ σr indicates that at round r the sender u is transmitting its message. For a network
G, we say that transmission schedule σ covers G if for every v ∈ S and u ∈ NG(v),
there exists a round r such that σr ∩NG(v) = {u}, that is using transmission schedule
σ, every receiver node receives all the messages of all of its sender neighbors. Also, we
say that a transmission schedule σ is short if L(σ) = o( ∆ logn

log2 logn
). With these notations,

we are ready to state the main result of this section.

Lemma 6.3. For any large enough n and ∆ ∈ [20 log n, n0.1], there exists a bipartite
network G with size n and maximum receiver degree at most ∆ such that no short
transmission schedule covers G.

Proof (Proof Sketch for Lemma 6.3). Fix an arbitrary n and a∆ ∈ [20 log n, n0.1]. Also
let η = n0.1, m = η9. We use the probabilistic method [7] to show the existence of the
network G with the aforementioned properties.
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First, we present a probability distribution over a particular family of bipartite net-
works with maximum receiver degree ∆. To present this probability distribution, we
show how to draw a random sample from it. Before getting to the details of this sam-
pling, let us present the structure of this family. All networks of this family have a fixed
set of nodes V . Moreover, V is partitioned into two nonempty disjoint sets S and R,
which are respectively the set of senders and the set of receivers. We have |S| = η
and |R| = m. The total number of nodes in these two sets is η + m = n0.1 + n0.9.
We adjust the number of nodes to exactly n by adding enough isolated senders to the
graph. To draw a random sample from this family, each receiver node u ∈ R chooses
∆ random senders from S uniformly (with replacement) as its neighbors. Also, choices
of different receivers are independent of each other.

Having this probability distribution, we study the behavior of short transmission
schedules over random graphs drawn from this distribution. For each fixed transmis-
sion schedule σ, let P (σ) be the probability that σ covers a random graph G. Using a
union bound, we can infer that for a random graph G, the probability that there exists a
short transmission schedule that covers G is at most sum of the P (σ)-s, when σ ranges
over all the short transmission schedules. Let us call this probability the total coverage
probability. In order to prove the lower bound, we show that “the total coverage proba-
bility is in e−Ω(η)” and therefore, less than 1. Proving this claim completes the proof as
with this claim, using the probabilistic method [7], we can conclude that there exists a
bipartite network with maximum receiver degree of at most ∆ such that no short trans-
mission schedule covers it. To prove that the total coverage probability is e−Ω(η), since
the total number of short transmission schedules is less than 2η

3

, it is enough to show
that for each short transmission schedule σ, P (σ) = e−Ω(η5).

Proving that for any fixed short schedule σ, P (σ) = e−Ω(η5) is the core part of the
proof and also the hardest one. For this part, we use techniques similar to those that
we are using in [26] for getting a lower bound for multicast in known radio networks.
Let us first present some definitions. Fix a short transmission schedule σ. For each
round r of σ, we say that this round is lightweight if |σ(r)| < η

2∆ log η . Since σ is
a short transmission schedule, i.e., L(σ) < ∆ log η, the total number of senders that
transmit in at least one lightweight round of σ is less than η

2 . Therefore, there are at
least η2 senders that never transmit in lightweight rounds of σ. We call these senders the
principal senders of σ.

Throughout the rest of the proof, we focus on the principal senders of σ. For this,
we divide the short transmission schedules into two disjoint categories, adequate and
inadequate. We say that σ is an adequate transmission schedule if throughout σ, each
principal node transmits in at least log η

log log η rounds. Otherwise we say that σ is an inade-
quate transmission schedule. We study inadequate and adequate transmission schedules
in two separate lemmas (Lemmas 6.4 and 6.5), and prove that in each case P (σ) =

e−Ω(η5).

Lemma 6.4. For each inadequate short transmission schedule σ, the probability that
σ covers a random graph is e−Ω(η5), i.e., P (σ) = e−Ω(η5).

Proof (Proof Sketch). Let σ be an arbitrary inadequate short transmission schedule.
Since σ is inadequate, there exists a principal sender node v that transmits in less than
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log η
log log η rounds of σ. Also, since v is a principal sender, it does not transmit in any
lightweight round. That is, in each round that v transmits, the number of sender nodes
that transmit is at least η

2∆ log η . We show that in a random graph, v is unlikely to deliver

its message to all its neighbors, i.e., that in a random graph, with probability 1−e−Ω(η5),
there exists a receiver neighbor of v that does not receive the message of v.

A formal proof for this claim requires rather careful probability arguments but the
main intuition is as follows. In each round that v transmits, there is a high contention,
i.e., at least η

2∆ log η senders transmit. Thus, in a random graph, in most of those rounds,
neighbors of v receive collisions. On the other hand, the number of rounds that v trans-
mits in them is at most log η

log log η . These two observations suggest that it is unlikely for
all neighbors of v to receive its message.

Lemma 6.5. For each adequate short transmission schedule σ, the probability that σ
covers a random graph is e−Ω(η5), i.e., P (σ) = e−Ω(η5).

Proof (Proof Sketch). Let σ be an arbitrary adequate short transmission schedule. Re-
call that principal senders of σ are defined as senders that do not transmit in lightweight
rounds of σ. Let us say that a message is a principal message if its sender is a principal
sender. Note that in a random graph, in expectation, each receiver is adjacent to at least
∆
2 principal senders. Therefore, if σ covers a random graph, each receiver should re-

ceive, in expectation, at least ∆2 principal messages. Hence, since there are m different
receivers, if σ covers a random graph, there are, in expectation, at least m∆2 successful
deliveries. Then, using a Chernoff bound, we can infer that if σ covers a random graph,
with probability 1 − e−Ω(η9), there are at least m∆4 successful deliveries. To prove the
lemma, we show that the probability that for a random graph, σ has m∆

4 successful
deliveries is e−Ω(η5). Then, a union bound completes the proof of lemma.

Hence, the remaining part of the proof is to show that on a random graph, with prob-
ability e−Ω(η5), σ has less than m∆

4 successful deliveries. This part is the core part of
the proof of this lemma. The formal reasoning for this part requires a careful potential
argument but the intuition is based on the following simple observations. Suppose that σ
has at least m∆4 successful deliveries with probability e−Ω(η5). Since σ is an adequate
transmission schedule, each principal sender transmits in at least log η

log log η rounds and

because there are at least η2 principal senders, there has to be at least η log η
2 log log η transmis-

sions by principal senders. Now in each round σ, the number of transmitting senders
should be at most Θ( η∆ ), or otherwise, the number of successful deliveries drops down
exponentially as a function of the multiplicative distance from η

∆ , and hence the total
sum of them over all the rounds would not accumulate to m∆

4 . If we assume that in
each round roughly at most Θ( η∆ ) senders transmit, we directly get a lower bound of
η log η

2 log log η
η
∆

= Θ( ∆ log η
log log η ) on the number of rounds of σ which is in contradiction with

the fact that σ is short. The formal proof of this part replaces this simplistic assumption
by a more careful argument that, essentially, takes all the possibilities of the number of
transmitters in each of the rounds into consideration, using a potential argument. This
formal argument is omitted due to the space considerations.
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7 Lower Bounds in the Dual Graph Model

In this section, we show a lower bound of Ω( ∆
′ logn

log2 logn
) on the progress time of cen-

tralized algorithms in the dual graph model with collision detection. This lower bound
directly yields a lower bound with the same value on the acknowledgment time in the
same model. Together, these two bounds show that the optimized decay protocol pre-
sented in section 5 achieves almost optimal acknowledgment and progress bounds in
the dual graph model. On the other hand, this result demonstrates a big gap between the
progress bound in the two models, proving that progress is unavoidably harder (slower)
in the dual graph model.

Theorem 7.1. In the dual graph model, for each n and each∆′ ∈ [20 log n, n
1
11 ], there

exists a bipartite network H∗(n,∆′) with n nodes and maximum receiver G′-degree at
most ∆′ such that no algorithm can have progress bound of o( ∆

′ logn
log2 logn

) rounds. In the

same network, no algorithm can have acknowledgment bound of o( ∆
′ logn

log2 logn
) rounds.

Proof (Proof Outline). In order to prove this lower bound, in Lemma 7.2, we show a
reduction from acknowledgment in the bipartite networks of the classical model to the
progress in the bipartite networks of the dual graph model. In particular, this means
that if there exists an algorithm with progress bound of o( ∆

′ logn
log2 logn

) in the dual graph
model, then for any bipartite network H in the classical broadcast model, we have
a transmission schedule σ(H) with length o( ∆ logn

log2 logn
) that covers H . Then, we use

Theorem 6.2 to complete the lower bound.

Lemma 7.2. Consider arbitrary n2 and ∆2 and let n1 = n2∆2 and ∆′1 = ∆2. Sup-
pose that in the dual graph model, for each bipartite network with n1 nodes and max-
imum receiver G′-degree ∆′1, there exists a local broadcast algorithm A with progress
bound of at most f(n1, ∆′1). Then, for each bipartite network H with n2 nodes and
maximum receiver degree ∆2 in the classical radio broadcast model, there exists a
transmission schedule σ(H) with length at most f(n2∆2, ∆2) that covers H .

Proof (Proof Sketch). Let H be a network in the classical radio broadcast model with
n2 nodes and maximum receiver degree at most ∆2. We use algorithm A to construct
a transmission schedule σH of length at most f(n2∆2, ∆2) that covers H . We first
construct a new bipartite network, Dual(H) = (G,G′), in the dual graph model with at
most n1 nodes and maximum receiver G′-degree ∆′1. The set of sender nodes in the
Dual(H) is equal to that in H . For each receiver u of H , let dH(u) be the degree of
node u in graph H . Let us call the senders that are adjacent to u ‘the associates of u’.
In the network Dual(H), we replace receiver u with dH(u) receivers and we call these
new receivers ‘the proxies of u’. In graph G of Dual(H), we match proxies of u with
associates of u, i.e., we connect each proxy to exactly one associate and vice versa. In
graph G′ of Dual(H), we connect all proxies of u to all associates of u. It is easy to
check that Dual(H) has the desired size and maximum receiver degree.

Now we present a special adversary for the dual graph model. Later we construct
transmission schedule σH based on the behavior of algorithm A in network Dual(H)
against this adversary. This special adversary activates the unreliable links using the
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following procedure. Consider round r and receiver node w. (1) If exactly one G′-
neighbor of w is transmitting, then the adversary activates only the links from w to its
G-neighbors, (2) otherwise, adversary activates all the links from w to itsG′-neighbors.

We focus on the executions of algorithm A on the network Dual(H) against the
above adversary. By assumption, there exists an execution α of A with length at most
f(n2∆2, ∆2) rounds such that in α, every receiver receives at least one message. Let
transmission schedule σH be the transmission schedule of execution α. Note that be-
cause of the above choice of adversary, in the execution α, each receiver can receive
messages only from itsG-neighbors. Suppose thatw is a proxy of receiver u ofH . Then
because of the construction of Dual(H), each receiver node has exactly oneG-neighbor
and that neighbor is one of associates of u (the one that is matched to w). Therefore, in
execution α, for each receiver u of H , in union, the proxies of u receive all the mes-
sages of associates of u. On the other hand, because of the choice of adversary, if in
round r of σ a receiver w receives a message, then using transmission schedule σH in
the classical radio broadcast model, u receives the message of the same sender in round
r of σH . Therefore, using transmission schedule σH in the classical broadcast model
and in network H , every receiver receives messages of all of its associates. Hence, σH
covers H and we are done with the proof of lemma.

8 Centralized vs. Distributed Algorithms in the Dual Graph Model

In this section, we show that there is a gap in power between distributed and centralized
algorithms in the dual graph model, but not in the classical model—therefore highlight-
ing another difference between these two settings. Specifically, we produce dual graph
network graphs where centralized algorithms achieve O(1) progress while distributed
algorithms have unavoidable slow progress. In more detail, our first result shows that
distributed algorithms will have at least one process experience Ω( ∆

′ logn
log2 logn

) progress,
while the second result shows the average progress is Ω(∆′). Notice, such gaps do
not exist in the classical model, where our distributed algorithms from Section 5 can
guarantee fast progress in all networks.

Theorem 8.1. For any k and ∆′ ∈ [20 log k, k1/10], there exists a dual graph network
of size n, k < n ≤ k4, with maximum receiver degree∆′, such that the optimal central-
ized local broadcast algorithm achieves a progress bound ofO(1) in this network while
every distributed local broadcast algorithm has a progress bound of Ω( ∆

′ logn
log2 logn

).

Our proof argument leverages the bipartite network proven to exist in Lemma 7.2 to
show that all algorithms have slow progress in the dual graph model. Here, we construct
a network consisting of many copies of this counter-example graph. In each copy, we
leave one of the reliable edges as reliable, but downgrade the others to unreliable edges
that act reliable. A centralized algorithm can achieve fast progress in each of these
copies as it only needs the processes connected to the single reliable edge to broadcast.
A distributed algorithm, however, does not know which edge is actually reliable, so it
still has slow progress. We prove that in one of these copies, the last message to be
delivered comes across the only reliable edge, w.h.p. This is the copy that provides the
slow progress needed by the theorem.
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Notice, in some settings, practioners might tolerate a slow worst-case progress (e.g.,
as established in Theorem 8.1), so long as most processes have fast progress. In our
next theorem, we show that this ambition is also impossible to achieve. To do so, we
first need a definition that captures the intuitive notion of many processes having slow
progress. In more detail, given an execution of the one-shot local broadcast problem (see
Section 2), with processes in sender set S being passed messages, label each receiver
that neighbors S in G with the round when it first received a message. The average
progress of this execution is the average of these values. We say an algorithm has an
average progress of f(n), with respect to a network of size n and sender set S, if exe-
cuting that algorithm in that network with those senders generates an average progress
value of no more than f(n), w.h.p. We now bound this metric in the same style as above

Theorem 8.2. For any n, there exists a dual graph network of size n and a sender set,
such that the optimal centralized local broadcast algorithm has an average progress
of O(1) while every distributed local broadcast algorithm has an average progress of
Ω(∆′).

Our proof uses a reduction argument. We show how a distributed algorithm that achieves
fast average progress in a specific type of dual graph network can be transformed to a
distributed algorithm that solves global broadcast fast in a different type of dual graph
network. We then apply a lower bound from [20] that proves no fast solution exists for
the latter—providing our needed bound on progress.
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