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Abstract

The first chapter studies how incentives drive adoption by looking at a technology that generates revenue for
hospitals: the practice of submitting detailed documentation about patients. After a 2008 reform, hospitals
were able to raise their total Medicare revenue over 2% by always specifying a patient's type of heart failure.
I find that hospitals only captured around half of this revenue. The key barrier to takeup is a principal-
agent problem, since doctors supply the valuable information but are not paid for it. Exploiting the fact
that many doctors practice at multiple hospitals, I find that four-fifths of the dispersion in adoption reflects
differences in the ability of hospitals to extract documentation from physicians. Hospital adoption is also
robustly correlated with the ability to generate survival for heart attack patients and the use of inexpensive
survival-raising standards of care. My results suggest that agency conflicts may drive disparities in health
care performance more generally.

The second chapter (co-authored with Amitabh Chandra, Amy Finkelstein, and Chad Syverson) challenges
the conventional wisdom in health economics that large differences in average productivity across hospitals
are the result of idiosyncratic, institutional features of the healthcare sector which dull the role of market
forces. Strikingly, we find that productivity dispersion in heart attack treatment across hospitals is, if
anything, smaller than in narrowly defined manufacturing industries such as ready-mixed concrete. We also
find evidence against the conventional wisdom that the healthcare sector does not operate like an industry
subject to standard market forces. In particular, we find that hospitals that are more productive at treating
heart attacks have higher market shares at a point in time and are more likely to expand over time. These
facts suggest that the healthcare sector may have more in common with "traditional" sectors than is often
assumed.

The third chapter explores whether hospitals change their treatment decisions when they are are paid more
for certain treatment approaches. I exploit a Medicare reform that altered payment rates depending on
whether patients were relatively healthy or sick. Looking at three treatment approaches for lung cancer
patients, I demonstrate economically significant own-price elasticities and right-signed cross-price elasticities
- though these estimates sometimes lack statistical power and should be interpreted with caution due to
concerns about endogeneity. These findings indicate that payment reforms, including movements toward
capitation and away from fee-for-service, may have large effects on the intensity of care that patients receive
in the hospital.

Thesis Supervisor: Amy Finkelstein
Title: Ford Professor of Economics

Thesis Supervisor: Michael Greenstone
Title: 3M Professor of Economics
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Chapter 1

Technological Diffusion Across Hospitals:

The Case of a Revenue-Generating

Practice*

1.1 Introduction

Technology is usually believed to be a key driver of cross-country income disparities and economic growth.

A classic finding of studies of technology is that new forms of production diffuse slowly and incompletely.

For example, Griliches (1957) observed this pattern in the takeup of hybrid corn across states; more recent

research has studied adoption patterns in agriculture in the developing world, manufacturing in advanced

economies, management practices internationally, and a host of other examples (Conley and Udry, 2010;

Foster and Rosenzweig, 1995; Collard-Wexler and Loecker, 2013b; Bloom et al., 2012b). Given the enormous

productivity gains that result from many of these technologies, the nearly ubiquitous finding of delayed

takeup is particularly vexing.

In this paper, I study a health care technology that raises revenue for the hospital: the detailed reporting of

heart failure patients. A 2008 Medicare policy change created a financial incentive for hospitals to provide

more detail about their patients in insurance reimbursement claims. Yet hospitals could only provide these

details if they were documented by physicians. By tracking the diffusion of the reporting practice across

*1 am grateful to Amy Finkelstein, Michael Greenstone, Jon Gruber, and Paulo Somaini for their advice and guidance on
this project. I thank Isaiah Andrews, Emily Baneman, David Chan, Manasi Deshpande, Amos Dodi, Kate Easterbrook, Ben
Feigenberg, Eliza Forsythe, Paul Goldsmith-Pinkham, Sally Hudson, Greg Leiserson, Conrad Miller, David Molitor, Dianna
Ng, Iuliana Pascu, Maxim Pinkovskiy, Maria Polyakova, Miikka Rokkanen, Annalisa Scognamiglio, Brad Shapiro, Henry Swift,
Melanie Wasserman, Nils Wernerfelt, and participants in the MIT Public Finance lunch for their comments and suggestions. I
would also like to thank Jean Roth for her assistance with all aspects of the Medicare data. I gratefully acknowledge funding
from the National Institute on Aging grant T32-AG000186.
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hospitals, this study examines the role of financial incentives and agency conflicts in the adoption of new

technologies.

These incentives are particularly important in the wake of the Affordable Care Act, which mandates that

public insurers use their purchasing power to raise the productivity of health care providers.1 In designing

new payment schemes, policymakers have focused on differences in the utilization of survival-raising processes

of care, including checklists, hand-washing, and drugs like -blockers. Disparities in the use of these practices

are a leading explanation for health care productivity variations across providers and regions (Skinner and

Staiger, 2009a; Baicker and Chandra, 2004b; Chandra et al., 2013). These processes of care require the

coordination of hospitals and physicians, creating agency conflicts like those in the reporting of heart failure.

While improved heart failure billing is a revenue-raising but not survival-raising technology, it is a clear test

case of how financial incentives drive diffusion in the presence of agency frictions.

Hospitals have the option of listing heart failure on a reimbursement claim with detailed codes that describe

the type of heart failure, or they may submit a vague code that provides little additional information about

the condition. A 2008 reform 2 changed the pricing function of Medicare to begin providing additional

payments for the detailed codes. To capture this reward, hospitals needed to change how they reported

their patients to Medicare. However, they could only make this change if doctors provided them with extra

documentation about the heart failure to support it. The incentive for hospitals to report the information

was large: this policy put over 2% of hospital Medicare incomes on the line in 2009 - about $2 billion -

though it did not affect the pay of physicians.

Figure 1-1 shows that the change in incentives triggered a rapid but incomplete response by hospitals: in

just the weeks following the reform, hospitals started capturing 30% of the revenue made available; by the

end of 2011 they were capturing about 55%. Presented inversely, in spite of the reform being announced

earlier that year, 70% of the extra heart failure revenue was not captured shortly after implementation and

nearly half was still not being realized after several years.

I show that substantial hospital-level heterogeneity underlies the national takeup of detailed heart failure

codes. Mirroring recent work that has demonstrated large differences in productivity across seemingly similar

firms (Fox and Smeets, 2011a; Doms and Bartelsman, 2000; Syverson, 2011b), I find dispersion in the takeup

of detailed billing codes across hospitals. This dispersion exists even after accounting for disparities in the

types of patients that different hospitals treat. For example, 54% of heart failure patients received a detailed

code at the average hospital in 2010, and with the full set of patient controls the standard deviation of that

share was 15 percentage points. A hospital two standard deviations below the mean provided detailed heart

failure codes for 24% of its heart failure patients, while a hospital two standard deviations above the mean

did so for 84% of its patients.
1
The most prominent example of a policy resulting from that provision of the act is Medicare's Value-Based Purchasing

Program, which rewards hospitals that adopt evidence-based standards of care and perform well in surveys of patient satisfaction.
2 All years are federal fiscal years unless otherwise noted. A federal fiscal year begins on October 1 of the previous calendar

year, i.e. three months prior to the calendar year.
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These findings suggest that hospitals were aware of the financial incentive to use the detailed codes, but that

this awareness was tempered by significant frictions. I focus on frictions due to agency problems between a

hospital and its doctors. Physicians are responsible for writing down the extra information about the heart

failure, but Medicare does not pay physicians for the detailed codes or anything else that might be produced

from the information.

The principal-agent problem that this reform invokes is a classic one in economics - in other settings, it has

been suggested as a driver, for example, of the failure of high quality management practices to diffuse across

firms (Gibbons and Henderson, 2012). It plays a particular role in the American health care system because

hospitals and physicians are frequently paid on independent bases. Moreover, with few exceptions, hospitals

are not allowed to give a share of their Medicare payments to physicians as incentive pay. In spite of these

restrictions, new policies to improve the quality of care have focused on the hospital's payment alone.

The agency issues created by this reform arose from the bifurcated payment system. Hospitals - the principals

- had large incentives to submit detailed codes about their patients, while physicians - the agents - had no

direct incentive to provide the information. To resolve the principal-agent problem, hospitals would need

to work with their doctors to better document their patients' conditions, then translate this documentation

into the newly valuable specific codes.

To study the role of these agency problems, I consider adoption rates that control for physician effects.

Because doctors practice at multiple hospitals, it is possible to decompose the practice of detailed documen-

tation into hospital- and physician-specific components. This decomposition is a novel application of a labor

economics technique that has been frequently used in the context of workers and firms (see e.g. Abowd et al.,

1999; Card et al., 2013) but has rarely been applied in studies of health.

Sweeping out the physician contribution removes dispersion in adoption due to hospitals having different

kinds of doctors. This procedure addresses the concern that doctors who work at some hospitals may be

more willing to provide the details than doctors who work at other hospitals. I show that dispersion is, if

anything, slightly increased when the hospital component is isolated: the standard deviation of the share of

patients who received detailed documentation across all hospitals rises from 0.15 percentage points with rich

patient controls to 0.16 percentage points with patient and physician controls.3 The presence of residual

variation means that even if facilities had the same doctors, some would be more capable of extracting

specific documentation from their physicians than others. This result raises the possibility that institution-

level principal-agent problems underlie some of the productivity differences that have been found among

seemingly similar enterprises.

I also consider the correlation between hospital adoption - with physician effects removed - and hospital

characteristics like size, ownership, location, and productivity. The signs of these relationships are not ex
3 When there is negative assortative matching between hospitals and physicians, dispersion in adoption can rise when the

physician component is removed.
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ante obvious, and they indicate which types of hospitals were most able to extract the codes from their doc-

tors. The most robust finding of this analysis is that adoption was greater among hospitals that were higher

quality by two measures: heart attack treatment productivity (the survival rate of heart attack patients

after adjusting for spending on medical inputs and patient characteristics) and utilization of inexpensive,

survival-raising processes of care (which includes administering aspirin after heart attacks and providing

antibiotics before high-risk surgeries, among other evidence-based interventions). Under the view that ex-

tracting the revenue-generating codes from physicians makes a hospital revenue-productive, these results

show that treatment and revenue productivity are positively correlated.

In an additional exercise, I look at correlates of hospital-level adoption but do not remove the component

of takeup that is due to the hospital's physicians. These results indicate which types of hospitals are the

most "policy-elastic" with respect to financial incentives. Adoption is strongly correlated with hospital size,

ownership, and productivity. Large and non-profit facilities were more likely to adopt, as were facilities that

complied with consensus survival-raising standards of care. Hospital responses were also positively correlated

with heart attack treatment productivity. This result touches on a key policy implication of this study, that

financial incentives that push providers to raise treatment quality may be relatively ineffective on the low

quality facilities most in need of improvement.

I contribute to the growing literature on productivity disparities and technological diffusion in three novel

ways. First, by focusing on whether hospitals are able to modify their billing techniques to extract revenue,

I isolate disparities in a context where it is uniquely plausible that none might exist. These disparities reflect

differences in hospitals' basic ability to respond to incentives. Second, using decomposition techniques that

are normally associated with labor economics, I show that variations in adoption are largely driven by the

ability of some hospitals to extract more high-revenue codes from their doctors than others - disparities

persist when the physician component of adoption is removed. Lastly, I correlate the adoption of revenue-

generating codes with the use of high quality standards of care in treatment to find that a common factor

may drive both outcomes. Taken together, these findings hint that principal-agent problems may play a role

in productivity dispersion more generally - inside and outside the health care sector.

The paper proceeds as follows. Section 1.2 discusses the heart failure billing reform, the data I use to study

it, and provides a simple analytical framework. Section 1.3 presents results on dispersion in hospital takeup,

then shows how takeup relates to hospital characteristics and measures of treatment productivity. Section

1.4 provides a discussion of the results. Section 1.5 concludes.

1.2 Setting and Data

Heart failure (HF) is a syndrome defined as the inability of the heart's pumping action to meet the body's

metabolic needs. It is uniquely prevalent and expensive among medical conditions. There are about 5
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million active cases in the United States; about 500,000 cases are newly diagnosed each year. Medicare, the

health insurance program that covers nearly all Americans age 65 and over, spends approximately 43% of

its hospital and supplementary insurance dollars treating patients who suffer from HF (Linden and Adler-

Milstein, 2008). Limiting to hospital expenditures, the program spends more on diagnosing and treating

patients with HF than on patients with heart attacks. HF spending also outstrips spending on patients with

all forms of cancer combined (Massie and Shah, 1997).

Medicare's payment for heart failure is especially consequential for health expenditures and salient to hospital

administrators, yet most economic literature on health care eschews studying HF in favor of less common

conditions like heart attacks. The literature has focused on these conditions because they are thought

to be sensitive to treatment quality and are well observed in most administrative data. Since this paper

concerns how hospitals learn to improve their billing practices, not the effect of treatment on health, issues

like endogenous selection of patients on unobserved determinants of survival are not the principal potential

confounders. Rather, the great deal of revenue at stake for heart failure reimbursement makes it a condition

that is well suited for this study's aim of understanding how hospitals respond to coding incentives.

My analyses focus on the revenue generating practice of better documenting HF on hospital inpatient reim-

bursement claims to Medicare. The hospitals I study are paid through Medicare's Acute Inpatient Prospective

Payment System (IPPS), a $111 billion program that pays for most Medicare beneficiaries who are admitted

as inpatients to most hospitals in the United States (MEDPAC, 2012a). As part of a 2008 overhaul of the

IPPS - the most significant change to the program since its inception - the relative payment for vaguely doc-

umented and specifically documented HF was changed. This element of the reform made the documentation

valuable and provided the financial incentive for the spread of the technology.

1.2.1 Payment Reform for Patient Documentation

The 2008 overhaul was a redesign of the IPPS risk-adjustment system, the process that adjusts payments to

hospitals depending on the severity, or level of illness, of a patient. Medicare assigns a severity level to every

potential condition a patient might have. A patient's severity is the highest-severity condition listed on his

hospital's reimbursement claim. The reform created 3 levels of severity (low, medium, or high) where there

had been 2 (low or high), shuffling the severity level of the many heart failure codes in the process.

By the eve of the reform, Medicare policymakers had come to believe that the risk-adjustment system had

broken down, with nearly 80% of inpatients crowded into the high-severity category (GPO, 2007; Dafny,

2005a studies how hospitals exaggerate their reporting of patient severity due to incentives; Song et al.,

2010 studies how reporting varies across regions). The reporting of HF had been a primary cause of the

breakdown: there were many codes describing different types of HF, and all of them had been considered

high-severity. Patients with HF accounted for about 25% of high-severity patients (or 20% of patients overall)

in 2007.
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Risk adjustment relies on detailed reporting of patients by providers, but according to the Centers for

Medicare & Medicaid Services (CMS), the agency that administers Medicare, the overwhelmingly most

common of the HF codes - 428.0, "congestive heart failure, unspecified" - was vague. Moreover, patients

with this code did not have greater treatment costs than average (GPO, 2007). A set of heart failure codes

that gave more information about the nature of the condition were found to predict treatment cost and,

being specifically identified illnesses, were medically consistent with the agency's definitions of medium and

high severity. The vague code was moved to the low-severity list, but each of the detailed codes was put on

either the medium- or the high-severity list. These codes and their severity classifications are listed in Table

1.1.

The detailed codes were exhaustive over the types of heart failure, so with the right documentation, a hospital

could continue to raise nearly any HF patient to at least a medium level of severity following the reform. The

specific HF codes indicate whether the systolic or diastolic part of the cardiac cycle is affected and, optionally,

whether the condition is acute or chronic. Submitting them is a process that requires coordination between

physicians and hospital staff. In this way it is similar to other technologies that have come into the focus

of researchers and policymakers recently, including the use of /-blockers (an inexpensive class of drugs that

have been shown to raise survival following a heart attack) in health care and the implementation of best

managerial practices in firms.

For a hospital to legally submit a detailed code, a doctor must state the details about the HF in the patient's

medical chart. 4 Figure 1-2 presents a flowchart of the organizational processes involved in the coding of

patients. As the physician treats a patient, she writes information about diagnoses, tests, and treatments

in the patient's medical chart. When the patient is discharged, the physician summarizes the patient's

encounter, including the key medical diagnoses that were confirmed or ruled out during the stay. This

discharge summary provides the primary evidence that the hospital's health information staff (often called

coders) use when processing the chart (Youngstrom, 2013). The staff can review the chart and send it back

to the doctor with a request for more information - this process is called querying. Then, the staff must

convert the descriptions of diagnoses into the proper numeric diagnosis codes, which becomes a part of the

inpatient reimbursement claim (a concise description of the coding process can be found in O'Malley et al.,

2005).

Both physicians and staff needed to revise old habits and learn new definitions; they also needed to work

together to clarify ambiguous documentation. Coding staff might query a physician to specify which part of

the cardiac cycle was affected by the HF, and other staff might review patient charts and instruct physicians

on how to provide more detailed descriptions.

4
The chart is a file, physical or electronic, containing the patient's test results, comments by providers of treatment, and

ultimately a set of primary and secondary diagnoses. Its role is to provide a record of the patient's stay for the purposes of

treatment continuity and coordination, but the chart also serves as documentation supporting the hospital's claims on payers

like Medicare. CMS and its contractors frequently review charts to ensure that providers are not "upcoding", or submitting

high-paying codes that are not indicated by the documentation.
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1.2.2 Revenue at Stake from Reform

Since HF was so common and the payment for having a medium- or high-severity patient was so much

higher than the low-severity payment, hospitals had a clear incentive to use detailed codes whenever possible.

Before the reform, the gain from these detailed codes relative to the vague code was zero because they were

effectively identical in the Medicare payment calculation. Consistent with these incentives, fewer than 15%

of HF patients received a specific code in the year before the reform.

Following the reform, the gain was always weakly positive and could be as high as tens of thousands of

dollars; the exact amount depended on the patient's main diagnosis and whether the patient had other

medium- or high-severity conditions. For patients with other medium-severity conditions, hospitals could

gain revenue if they could find documentation of a high-severity form of HF. For patients with other high-

severity conditions, finding evidence of high-severity HF would not change Medicare payments. However,

using the detailed codes was still beneficial to the hospital because it would help to keep payments from being

reduced if the claim were audited and the other high-severity conditions were found to be poorly supported.

In 2009, the average gain per HF patient from using a detailed HF code instead of a vague one was $227 if the

code indicated chronic HF (a medium-severity condition) and $2,143 if it indicated acute HF (a high-severity

condition). 5 As a point of comparison, Medicare paid hospitals about $9,700 for the average patient and

$10,400 for the average HF patient in 2009. The evolution of the gain to specific coding is shown in Figure

1-3 and the corresponding takeup in the use of these codes is shown in Figure 1-4.

For each hospital, the gain to taking up the revenue-raising technology - the money put on the table by the

reform - depended on its patient mix. Hospitals with more HF patients, and more acute (high-severity) HF

patients, had more to gain from adopting specific HF coding. To get a sense of how this gain varied across

hospitals, I predict each hospital's ex ante revenue put at stake by the reform. This prediction takes the

hospital's 2007 HF patients, probabilistically fills in the detailed HF codes the patients would have received

under full adoption of the coding technology, and determines the ensuing gain in payment from these codes by

processing the patient under the new payment rules. Heart failure codes are predicted using the relationship

between coding and patient characteristics in hospitals that were relatively specific coders in 2010.6

Figures 1-5 and 1-6 show the high level of and variation in ex ante revenue put at stake by the reform across

hospitals; the average hospital would have expected to gain $1,007 per HF patient (or, spreading this gain
5
These averages include the patients for whom the detailed codes do not raise payments because, for example, they already

had another medium- or high-severity condition. To determine how a hospital would have been paid had it coded HF differently,
I use a computer program called a grouper that translates an inpatient claim into its Medicare payment diagnosis-related group
(DRG). The gains to specific HF codes were calculating by reprocessing all HF patients, replacing the observed HF codes with
only vague, only chronic, and only acute HF codes.

6
This predictor uses HF patients at hospitals that were relatively detailed coders in 2010 - hospitals that gave at least 85%

of their HF patients a detailed code. The sample includes 90,653 patients and 171 hospitals. I regress whether the patient
was coded as having high-severity HF on well-measured patient attributes (indicators for: age, race, sex, month of admission,
whether admitted through the emergency department, 19 chronic conditions, and 25 major diagnostic categories classifying the
underlying cause of admission). I use this regression to fit the probability that patients in 2007 would have received a medium-
or high-severity HF code, then re-price these patients under the 2009 post-reform pricing rules. The result of this procedure is
an ex ante expected gain to using the detailed codes, which I aggregate to the hospital level.
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across all admissions, $268 per patient) in 2009 by giving all of its HF patients specific HF codes rather

than vague ones. The standard deviation of the revenue at stake per HF patient was $230 (the standard

deviation of the gain spread over all patients was $76). To provide a sense of scale, one can consider these

amounts relative to hospital operating margins. The 2010 Medicare inpatient margin, which equals hospitals'

aggregate inpatient Medicare revenues less costs, divided by revenues, was -1.7% (MEDPAC, 2012a). This

negative operating margin has been cited by the American Hospital Association as evidence that Medicare

does not pay hospitals adequately (American Hospital Association, 2005). The gains from detailed coding

for HF were even larger than this margin: pricing the pre-reform patients under the 2009 rules shows that

hospitals could have expected to raise their Medicare revenues by 2.9% by giving all of their HF patients

specific HF codes.

1.2.3 Analytical Approach

The basic framework for analyzing takeup of the technology views the decision to use a specific HF code

code E {0, 1} as a function of the propensity of the hospital and the doctor to favor putting down the

code or documentation thereof. I let hospitals be indexed by h, doctors by d, and patients by p. Under

the assumption of additive separability of the hospital and the doctor's effects on the coding probability,

hospitals can be represented by a hospital type ah and doctors by a doctor type ad. Patient observables are

XP and the remaining heterogeneity, which accounts for unobserved determinants of coding behavior, is Eph:

codeh -- ah -- ad -- Xp/ - Eph (1.1)

The hospital's type can be thought of as its underlying propensity to extract specific HF codes independently

of the types of physicians who practice at the hospital. The doctor type reflects that some physicians are

more or less prone to document the kind of HF that their patients have due to their own practice styles

and the incentives of the physician payment system. In this framework, doctors carry their types across

hospitals. Finally, the patient component accounts for observed differences that, in a way that is common

across facilities, affect the cost of providing a specific code.

The dispersion of the hospital types is of direct interest, and is the first focus of the empirical analysis.

A wide literature has documented persistent productivity differentials in the manufacturing sector (see

Syverson, 2011b for a review), and work is ongoing to develop documentation of similar facts in the service

and health care sectors (Fox and Smeets, 2011a; Chandra et al., 2013). In this framework, a hospital's

type can be thought of as its revenue productivity - its residual ability to extract revenue from Medicare

after accounting for the observable inputs to the coding production process, like patient and doctor types.

Dispersion in hospital types is therefore a form of productivity dispersion.

What might drive this dispersion? Recall that hospitals were constrained from directly incentivizing their
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doctors to provide the additional documentation needed to submit a specific HF code. When a doctor moves

from a low-type hospital to a high-type hospital, her HF patients become more likely to have a detailed

code, regardless of the doctor's type. One perspective is that this difference is due to the high-type hospital

better solving the principal-agent problem. The variation in hospital types can reflect variation in whether

hospitals can bring their doctors' behaviors in line with the hospital's incentives.

The second element of the empirical analysis focuses on describing the kinds of hospitals that are most

effective at responding to the incentives for detailed coding. These analyses look at the relationships between

hospital types and characteristics of the hospital. The first set of characteristics, called Ch, comprises the

hospital's size (defined as the number of beds in the facility), ownership (non-profit, for-profit, or government-

run), location (whether the hospital is in a large urban area, other urban area, or rural area), teaching status

(whether it has residents), and ex-ante per-patient revenue put at stake by the reform. The second set, called

Zh, includes measures of the hospital's productivity - the amount of survival the hospital can generate for

a fixed amount of inputs.

In the key hospital-level analysis, I regress the hospital type on these two sets of characteristics:

ah = Y +ChP + ZhO rqh (1.2)

The signs of the elements of p and 0 are not obvious, both because the causal relationships between hospital

characteristics and the takeup of revenue-generating technology are not well known and because other,

unobserved factors may be correlated with Ch and Zh and drive takeup. I discuss these potential relationships

and estimate this equation in Section 1.3.

1.2.4 Data

I study the impact of the IPPS reform on the diffusion of the revenue generating practice using a dataset

of all inpatient hospitalizations for Medicare beneficiaries. My data is primarily drawn from the MEDPAR

Research Information File (RIF), a 100% sample of all inpatient stays by Medicare beneficiaries with hospital

care coverage through the government-run fee-for-service system. This file is essentially a copy of all the

reimbursement claims that hospitals sent Medicare. For 92% of these stays, I can identify the physician

who was primarily in charge of taking care of the patient in the hospital and thus most responsible for the

final diagnoses that were coded and submitted on the hospital's claim. 7 Since physicians are paid for each

procedure they perform, for these stays I can also identify echocardiograms and other heart tests.

7I use the attending physician identifier from the Medicare Inpatient RIF. To ensure that only valid individual physicians are
included, I drop physician identifiers that could not be found in the AMA Masterfile, a census of all physicians, which accounts
for most of the stays for which the physician was not observed.

The small literature on identifying the attending physician in Medicare claims has suggested looking at physician claims
(found in the Medicare Carrier RIF) and choosing the physician who bills Medicare for the most evaluation and management
services, rather than the physician indicated by the hospital on its inpatient claim (Trude, 1992; Trude et al., 1993; Virnig,
2012). There are two advantages to using the hospital's report, however. First, the hospital's report of the attending physician
may more accurately reflect the physician with whom the facility was communicating to determine the patient's diagnosis codes.

22



I use these data to construct an analysis sample of hospitals' claims to Medicare for their HF patients.

Starting with all patients in 2010, I eliminate those who lacked full Medicare coverage at any point during

their hospital stay, were covered by a private plan, or were under age 65. To focus on hospitals that were

subject to the reform, I include only inpatient acute care facilities that are paid according to the IPPS. As a

result, I drop the approximately 3% of stays that occur at Critical Access Hospitals (these hospitals number

about 1,300 but are very small and have opted to be paid on a different basis) and 2% of stays at Maryland

hospitals (which are exempt from the IPPS). I then limit the sample to heart failure patients, which are

identified as those with a principal or secondary diagnosis ICD-9 code of 428.x, 398.91, 402.xl, 404.xl, or

404.x3.

This analysis sample is described in Table 1.2 and includes 1.9 million HF patients. There are about 3,400

distinct hospitals in the full analysis sample, which is the set of claims that is used to estimate hospital types

when physician effects are not being swept out. Most hospitals see a large number of HF patients in a given

year: the average treats 553 of them, and even the 10th percentile includes 52 of them.

By using the 92% of patients for whom I observe the physician, I am able to identify hospital effects after

controlling for the doctor. Hospital and physician types are only separately identified within a "mobility

group" - the set of hospitals and physicians that can be connected, in graph theory terms, by physicians who

work at multiple facilities (this concept is explained in greater detail in Section 1.3.2). I call the mobility

sample the set of patient claims that occur within the largest mobility group of hospitals and physicians.

There are about 2,900 hospitals and 135,000 doctors in the sample. The average mobility sample hospital

sees 582 HF patients in 2010 and its HF patients are treated by 58 distinct doctors. At the average hospital,

20 of these doctors are mobile, which means that they are observed treating at least one HF patient at

another hospital. Mobile doctors are crucial for my analyses because their behavior separately identifies the

hospital and doctor types.

In this sample, the average doctor sees 12 HF patients in a given year and works at 1.23 distinct hospitals.

About 19% of doctors are mobile. Table 1.3 provides additional information about the doctors by mobility

status. The average mobile physician treats about twice as many patients as a non-mobile physician. In-

formation on physician specialty, demographics, training, and experience comes from the AMA Masterfile;

specialties are grouped according to the Dartmouth Atlas definitions. 8 Mobile physicians are 11pp less likely

to be surgeons and are correspondingly more likely to be primary physicians like internists or medical spe-

cialists like cardiologists. Mobile physicians also have about 8 months more training - but about 8 months

less experience practicing since completing training - than their non-mobile counterparts.

The literature on identifying the physician is more concerned with the most medically responsible physician, not the one most

responsible for billing and coding. Second, I only observe physician claims for a 20% random sample of patients, dramatically
restricting the set of patients for whom I observe the physician when using the physician claim method.

8See Table 2 of the document found at http://www.dartmouthatlas.org/downloads/methods/research-methods.pdf
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1.2.5 Costs of Takeup

Figure 1-1 shows that the large amount of revenue at stake for specific coding induced an almost instantaneous

partial takeup of the coding. Over the following years the takeup continued, though it remained far from

100% even by the end of 2011. The finding of incomplete takeup raises the question of what costs must be

incurred by the hospital to adopt the technology.

One possibility is that taking up the reform requires medical testing of HF patients to confirm the details

of their conditions. For example, the gold standard for confirming whether there is systolic or diastolic

dysfunction - the minimum amount of information needed to use a specific code - is an echocardiogram, a

non-invasive diagnostic test. Some observers proposed that the reform put pressure on physicians to perform

echocardiograms that they had not considered medically necessary (Leppert, 2012). If these concerns were

true, one could interpret the reform as encouraging higher intensity medicine - and the costs and principal-

agent frictions as the refusal of doctors and hospital staff to order tests that they had not already thought

necessary.

Contrary to this story, both the time series evidence and the official coding guidelines show that whatever

were the costs of more detailed HF coding, they were not realized through changes in real medical treatment.

Figure 1-7 shows that the enormous increase in the capture of HF coding revenue was not matched by any

perceptible change in heart testing as measured by the share of all patients receiving an echocardiogram.

This finding is sensible considering that with enough information to diagnose and submit a vague HF code,

it is almost always possible to provide enough additional documentation to legally submit a specific HF code:

a patient's medical history and symptoms are predictive of the type of HF, and the official coding guidelines

state that "if a diagnosis documented at the time of discharge is qualified as 'probable,' 'suspected,' 'likely,'

'questionable,' 'possible,' or 'rule out,' the condition should be coded as if it existed or was established"

(Prophet, 2000). Thus these codes require only suggestive evidence, not the certainty of an echocardiogram.

A key source of takeup frictions comes from a principal-agent problem that pitted a hospital interest in

detailed documentation against physicians who had little to gain financially from providing the information.

Although this documentation may seem nearly costless to produce, physicians face many competing demands

on their time when they edit medical charts. HF is often just one condition among many that are relevant

to the patient's treatment. For example, a doctor's first-order concern may be documenting aspects of

the patient that are crucial for proper post-acute care, making documentation that matters solely for the

hospital's billing a secondary issue.

Taking up the revenue-generating technology required hospitals to pay a variety of fixed and variable costs

that were unrelated to patient treatment but could influence physicians' documentation styles. Examples of

these costs include training hospital staff to prompt doctors for more information when a patient's chart lacks

details and purchasing health information technology that prompts staff to look for and query doctors about

high-value codes. Hospitals also could expend resources creating ordeals for physicians who fail to provide
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detailed documentation. The view that physician habits are expensive for the hospital to change matches

accounts of quality improvement efforts that sought to make reluctant physicians prescribe evidence-based

medicines, wash their hands, and perform other tasks to improve mortality and morbidity (Voss and Widmer,

1997; Stafford and Radley, 2003; Pittet et al., 1999).

1.3 Hospital Adoption

Incentive misalignments owing to principal-agent problems have been proposed as impediments to the adop-

tion of new technology and to making organizational change more generally. One notable example of this

view is found in Gibbons and Henderson (2012), who adapt a typology of managerial pathologies, focusing in

particular on the many failures of organizations to take up practices that were widely known to be beneficial.

These failures, they argue, are consistent with poor implementation: managers "know they're behind, they

know what to do, and they're trying hard to do it, but they nonetheless cannot get the organization to get

it done."

Implementation difficulties are particularly acute in the health care setting because facilities (in this context,

the principals) and physicians (the agents) tend to be paid separately and on different bases. In the case

of heart failure, physician payments from Medicare do not depend on whether a reimbursement claim uses

vague or detailed diagnosis codes because physicians are paid for each procedure they perform. Though

hospitals might want to encourage detailed coding by paying doctors for it, doing so would likely run afoul

of federal laws that prohibit directly incentivizing physicians by basing their payments on the hospital's

payment (see HHS, 1999; this practice is commonly known as gainsharing). In a sense, the principal-agent

problem in patient documentation is literally written into the law.

The adoption of the coding technology was incomplete at the national level, but the national time series

masks enormous heterogeneity at the level of the hospital. In this section, I construct and present measures

of adoption of detailed coding across hospitals. These measures have wide dispersion, with some hospitals

almost never using specific codes and other hospitals almost always using them. A perhaps natural view is

that some health care providers are uniquely unable or unwilling to respond to incentives. Yet dispersion

alone is not enough to make health care exceptional on the dimension of technology adoption - this finding

is nearly universal in cases of new technology, and persistent differences in productivity have been found in

nearly every sector in which they have been studied.

I present a novel analysis of the role that physicians played in the adoption of the revenue generating

practice. I decompose the hospital's average coding into the component that is due to the facility and the

component that is due to its doctors. The notion of outcomes being due to a hospital and doctor component

follows a commonly used econometric model of wages that decomposes them into firm and worker effects

(see e.g. Abowd et al., 1999 and more recently Card et al., 2013, which study wages in France and Germany,
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respectively).

This section undertakes two key analyses. First, it shows that dispersion in the adoption of detailed HF

coding persists even among observably similar hospitals. The dispersion result is robust to sweeping out

the physician component of coding - even if hospitals had the same doctors, there would still be coding

disparities. Equivalently, the probability a HF patient treated by a particular doctor gets a specific code is

significantly greater at some hospitals relative to others.

Second, it explores the relationship between adoption and hospital characteristics like size, ownership, and

quality. The signs of these relationships are not ex ante obvious, but they speak to several important and

open questions in health economics. Though these results are descriptive, not causal, they are useful policy

inputs: they can be interpreted as indications of which providers are most elastic to incentives for revenue

generating technologies.

1.3.1 Econometric Specification

The key analyses of this section describe the distribution of the adoption of the coding technology with

two-step methods. The first step extracts a measure of adoption at the hospital level, which is the hospital

effect given in equation 1.1. This fixed effect is the probability that a HF patient in the hospital receives a

detailed HF code, after adjusting for patient observables and doctor effects. In the second step, I analyze the

distribution of the fixed effects by calculating their variance (to look for variations among seemingly similar

enterprises) and by regressing them on hospital characteristics and productivity (to see which facilities are

most likely to adopt).

1.3.1.1 First Step: Estimating Hospital Fixed Effects

In the first step, I run the regression given in equation 1.1. I consider versions of this regression with patient

controls of varying degrees of richness, and run these regressions both with and without physician fixed

effects. I then extract estimates of the hospital fixed effects 6h. These estimates equal the share of HF

patients at the hospital who received a specific code (codeh) less the contribution of the hospital's average

patient (Xh!) and the patient-weighted average physician effect ( EpEPCh ad(p), where Nh is the number of

HF patients at the hospital, Ph indexes the patients, and d (p) indicates the doctor that attended to patient

P):

6h = codeh - Xh03 - Nh S ad(p)

In the simplest specification, which includes no patient controls nor physician fixed effects, the estimates of
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the hospital fixed effects &d, become the shares of HF patients in hospital h who receive a specific HF code:

aimple = codeh (1.3)

There are two caveats to using this measure, both of which can be seen by taking the difference between

isimple and ah:

&~simple -dh = YJ - dd(p)

One is that heterogeneity in dhimple may be due to patient-level factors XhB that have been shifted to the

error term of the simple measure. For example, dispersion in coding could reflect that some hospitals have

patients who are difficult to code. The specifications with rich sets of patient observables account for this

concern. When patient-level factors are included, the use of hospital (and potentially physician) fixed effects

means that the coefficients on patient characteristics are estimated from the within-hospital (and potentially

within-physician) relationships between these characteristics and coding.

The second caveat is that dispersion could also reflect the role of physicians in coding, I EpGp ad(p) -

some hospitals may have doctors who are particularly willing or unwilling to provide detailed documentation

of their patients. Whether the physician component should be removed depends on the analysis, since the

physician's actions inside the hospital are an endogenous component of the hospital's response to the reform.

For example, hospitals with much to gain from the reform may be more likely to teach their physicians how

to recognize the signs and symptoms of HF. These physicians would then be more likely to document specific

HF in any hospital. Controlling for the physician effects would sweep out this improvement. Still, the extent

to which the response to the reform is driven by changes in hospital behavior above and beyond the actions

of its physicians is of interest in identifying principal-agent problems.

1.3.1.2 Second Step: Describing the Distribution of the Hospital Fixed Effects

This section explains the analyses of the dh and how they account for estimation error due to sampling

variance.

Dispersion among Similar Hospitals The first key analysis of this paper studies the dispersion of the

hospital fixed effects. However, the objects dh are noisy - though unbiased - estimates of ah, meaning that

their dispersion will be greater than the true dispersion of ah. This noise comes from small samples at the

hospital level (some hospitals treat few HF patients) and imprecision in the estimates of the other coefficients

in the model. When the specification lacks physician fixed effects, the other coefficients in the model are
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at the patient level, and are estimated from millions of observations. These coefficients are estimated quite

precisely, reducing the role for this noise.

When the specification includes physician fixed effects, the imprecision of the hospital effect reflects impre-

cision in the estimates of the physician effects. In a simple specification with no patient-level characteristics,

the hospital effects are identified only by patients who were treated by mobile doctors, and one component

of the measurement error in the hospital effect is an average of the measurement error of those physicians'

effects. As these coefficients become estimated more precisely, for example as the number of patients treated

by the mobile doctors rises, the estimation error falls.

Estimates of the variance of a, must account for measurement error in order to avoid overstating dispersion.

To produce these estimates, I adopt part of the Empirical Bayes procedure described in. Appendix C of

Chandra et al. (2013). This procedure uses the diagonals of the variance-covariance matrix from the first-

step regression as estimates of the variance of the hospital fixed effect measurement error. I generate a

consistent estimate of the variance of ah by taking the variance of 6h and subtracting the average squared

standard error of the hospital fixed effects (i.e. the average value of the diagonals of the variance-covariance

matrix).

Describing the Adopters The other key analysis of this section describes the adopters by placing the

hospital fixed effect estimates on the left-hand side of regressions of the form of equation 1.2. The measure-

ment error in the &h therefore moves into the error term where its primary effect is to reduce the precision

of the estimates of the coefficients p and 0. Since the measurement error is due to sampling variance in

the first step, it is not correlated with the characteristics and productivity measures that are found on the

right-hand side of the key regressions, and it does not bias the estimates of p or 0.

1.3.2 Separate Identification of Hospital and Physician

The health care context is unique because it allows the separate identification of the contribution of the

principal and the contribution of the agent to takeup - a decomposition that cannot be performed when

agents are observed under just one principal. The key insight behind the decomposition in the heart failure

setting is that physicians are frequently observed treating patients at multiple hospitals, since doctors may

have admitting privileges at several facilities. When the same physician practices in two hospitals, her

propensity to provide detailed documentation at each facility identifies the hospital effects relative to each

other. Likewise, when two physicians practice at the same hospital, their outcomes at that hospital identify

the physician effects relative to each other.

The physician fixed effects, when they are included in the first step, sweep out the component of the hospital's

coding that is due to the behavior of its doctors. The hospital and physician effects can be separately
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identified within a mobility group - the set of doctors and hospitals that are said to be "connected" to each

other. Consider the graph of doctors and hospitals, in which each doctor and hospital is represented by

a point (called a node in graph theory). In the graph, a doctor and hospital have a line (called an edge)

drawn between their nodes if the doctor treats a patient at that hospital. Two hospitals or doctors are

connected if there exists any unbroken sequence of lines (called a path) going from one to the other in the

graph. A mobility group starts with a doctor or hospital and includes all other doctors and hospitals that

are connected to her or it. In the graph of doctors and hospitals, a mobility group is called a maximal

connected subgraph. Among the 3,414 hospitals in the analysis sample, the largest mobility group contains

2,868 hospitals.

The econometric model of the first step follows from certain identification assumptions. The key assumption

is that the probability that a patient receives a specific code must approximate a linear probability model

with additive effects from the patient, hospital, and doctor such that:

JE [codeph] = ah + ad + Xp{3

Though the idea the three levels are linear and additively separable is only an approximation, the additivity

assumption can be tested by estimating a match effects model (Card et al., 2013). This model replaces the

hospital and physician fixed effects with a set of effects at the hospital-physician level (i.e. ahd), allowing

any arbitrary relationship between hospital and physician types. The match effects model improves the

explanatory power of the model minimally, suggesting that additivity is not a restrictive assumption in this

context.9

One implication of the conditional expectation equation is that patients do not select hospitals or doctors

on the basis of unobserved costs of coding. If this were the case, for example, the fixed effect of a hospital

with unobservably more costly patients would be estimated with negative bias. I test this assumption by

including increasingly rich sets of patient characteristics as controls. The key results on the characteristics

of the adopters and the dispersion in adoption are somewhat sensitive to these controls. Specifically, the

significant coefficients in the regressions of adoption on hospital covariates tend to attenuate by at most

one-third due to the inclusion of rich patient characteristics observable in the patient's hospital billing claim,

but they are not further reduced by including controls for patient histories of chronic illnesses (the controls

are described in section 1.3.4). These coefficients remain highly significant even though they attenuate.

Likewise, the standard deviation of adoption is reduced by about one-fourth from the patient controls, and

again the reduction is entirely due to characteristics in the billing claim.

It is perhaps unsurprising that patient characteristics influence the hospital's use of the codes. The fact

9
Specifically, the adjusted R

2 
of the first-step regression with hospital fixed effects, physician fixed effects, and the full set

of patient controls is 0.369, while the adjusted R
2 

of the same regression with the two sets of fixed effects replaced by one level

of hospital-physician match effects is 0.372.
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that adding patient illness histories as an additional set of controls does not further affect dispersion in

adoption suggests that the key factors are attributes of the patient's admission. The identifying econometric

assumption is that unobserved characteristics are not playing a role in coding, and the information observable

about the admission is quite detailed in the claims data that I use. While the great majority of disparities in

adoption across hospitals cannot be attributed to anything observable about the patient, I present all results

in this study under three patient-level specifications to be clear about this potential source of endogeneity.

A related identification requirement is that the assignment of doctors to hospitals must not reflect match-

specific synergies in the coding outcome. Though there may be an unobserved component of coding that is

due to the quality of the match, the matching of doctors and hospitals must not systematically depend on

this component. For example, a hospital might demand less specificity in HF coding from physicians who

were friendly with its owners. These physicians would have negative match effects with that hospital. If they

tended to practice at the hospital, the negative match effects would load onto the hospital effect, biasing

it downward. The role of match-specific synergies is also bounded by the match effects model described in

footnote 9 - the low explanatory improvement of that model indicates that the size of these synergies must

be small, limiting the scope for endogeneity from this source.

1.3.3 Hospital Characteristics

Table 1.4 shows summary statistics for the cross section of hospitals that I include in the dispersion and

characteristics of adopters analyses. This cross section consists of 2,411 hospitals, and includes any facility

with a heart failure coding score and which had complete information on all baseline characteristics, standards

of care, and productivity.

The rows of the table comprise the key hospital characteristics and productivity measures that are used

in the analyses. Hospital size (beds) and ownership are taken from the Medicare Provider of Services file.

Ownership may be non-profit (about two-thirds of hospitals), for-profit (one-sixth), and government-run

(one-sixth). Hospital location and teaching status are taken from the 2010 Medicare IPPS Impact file. The

location definition is the one used by Medicare: a large urban area is any Metropolitan Statistical Area

(MSA) with a population of at least 1 million, an other urban area is any other MSA, and the rest of the

country is considered rural. The hospitals in this sample are found in all three areas, though the number of

rural hospitals is reduced because many were classified as critical-access facilities, which were exempt from

this reform. Teaching hospitals, which comprise just over one-third of facilities, are defined as those with a

resident-to-bed ratio greater than zero.

I define the ex ante revenue at stake as the expected value of giving all of the hospital's pre-reform (2007) HF

patients a specific code according to post-reform (2009) reimbursement rules. The revenue at stake is scaled

by the total number of patients at the hospital, making it the per-patient expected gain from fully taking

up the reform. Since most patients were coded vaguely in 2007, this variable is constructed by filling in
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each 2007 patient's specific HF code using the relationship between well-observed patient characteristics and

specific HF codes at hospitals that were excellent at coding in 2010 (see footnote 6 for more information).

To improve precision and reduce the leverage of outliers, hospitals with fewer than 50 HF patients in 2007

as well as those with an outlying top or bottom 1% of revenue on the table per patient were culled from this

measure.

Heart attack treatment productivity is constructed using the sample and methods of Chandra et al. (2013).

A hospital's treatment productivity is the average log-survival of heart attack patients treated at the hospital

in 2000-2006, after controlling for the inputs used to treat the patient and a rich set of patient observables.

Raising hospital productivity by 10% means that, at the same level of inputs, the hospital is able to produce

10% more survival-days for its patients. Productivity is adjusted to account for measurement error using an

Empirical Bayes shrinkage procedure described in more detail in Appendix C of Chandra et al., 2013.

The standards of care measures were collected by CMS under its Hospital Compare program. They indicate

the shares of times that standards of care were followed for heart attack, heart failure, pneumonia, and high-

risk surgery patients in 2006.10 These standards of care are inexpensive, evidence-based treatments that have

been shown to improve patient outcomes. When productivity is defined as the amount of survival a hospital

can generate for a fixed set of inputs, these scores measure the takeup of productivity-raising technologies.

They notably include /3-blockers, a class of inexpensive drugs that dramatically improve survival following

heart attacks and that has been the subject of several economic studies (see e.g. Skinner and Staiger, 2009a,

2007b).

1.3.4 Dispersion

I find dispersion in adoption with and without rich patient and physician controls. To provide a sense of

the time series of adoption, Figure 1-8 shows the distribution of raw 6' imple the share of HF patients at

hospital h who received a detailed HF code, in each year from 2003 to 2010. Takeup across hospitals moved

rapidly after the reform. By 2010, the median hospital used specific codes 55% of the time. Figure 1-9 shows

the full distribution of 6'rPle in 2010, the analysis sample year. There was great variation in takeup across

hospitals even in the third year following the reform. In particular, there was a substantial mass of hospitals

using detailed codes less than 20% of the time, and a nontrivial number of hospitals that almost never used

them. These figures plot the 6' imple with no adjustment for measurement error, but they exclude hospitalsch

with fewer than 50 HF patients to limit the scope for measurement error to drive dispersion. All results

shown in tables make adjustments for excess dispersion due to sampling variance, however.

10
The processes of care included in the measures were chosen by CMS based on medical evidence. The heart attack measure

includes prescription rates of /3-blockers and aspirin for appropriate patients as well as 5 other processes of care. The heart
failure measure includes an evaluation of left ventricular systolic function (a key input to determining the part of the cardiac
cycle that is weakened) and 3 other processes of care. The pneumonia measure includes prompt prescription of antibiotics and
6 other processes of care, and the surgery measure includes antibiotics and 2 other processes of care.
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Table 1.5 shows the standard deviation of adoption among observably similar hospitals. I divide the space

of hospitals into 7 mutually exclusive and exhaustive groups on the basis of characteristics that have been

the focus of literature on hospital quality. The table includes three sets of patient controls in the first step,

which is where the hospital effects are extracted. In the left three columns, each patient control specification

is presented without first-step physician effects; in these results, the hospital effects include the component of

coding that is due to the physicians. The right three columns add first-step physician effects, which sweeps

out the physician component.

The first patient control specification, presented in columns (1) and (4), includes no patient-level controls

at all. The second, presented in columns (2) and (5), includes observables about the patient's hospital

admission found in the hospital's billing claim: age, race, and sex interactions; whether the patient was

admitted through the emergency department; and 179 categories for the patient's primary diagnosis. The

third set of patient controls, shown in columns (3) and (6), augments the second set to also include indicators

for whether the patient had any of 19 chronic conditions.

The result of Table 1.5 is that dispersion shrinks somewhat as rich controls about the patient's hospital

admission are added in the first step, though controlling for patient illness histories has little effect. Moreover,

the addition of physician effects does not systematically reduce these variations, and it even raises dispersion

slightly in the full cross-section of hospitals.

Among all hospitals, the standard deviation of the coding scores with no controls is 0.20, meaning that a

hospital with one standard deviation greater adoption gives 20pp more of its HF patients a specific HF code.

This measure does not account for differences in patient or doctor mix across hospitals. With all patient

controls included, the standard deviation falls to 0.15. This dispersion is the standard deviation across

hospitals of the probability a HF patient gets a specific code, holding fixed the patient's characteristics. It

calculates adoption across hospitals after removing the component that can be explained by within-hospital

relationships between patient observables and coding. Further adding physician fixed effects raises the

standard deviation slightly to 0.16. This result is the dispersion across hospitals in the probability a specific

code is used, given a HF patient with a fixed set of characteristics and a fixed physician. With these controls,

a hospital with one standard deviation greater adoption is 16pp more likely to give a patient a specific code.

Within key groups of hospitals, dispersion tends to decline with the inclusion of patient characteristics in

the first step; the additional inclusion of physician fixed effects may raise or reduce dispersion within these

groups. Large, urban, non-profit teaching hospitals, for example, have a standard deviation in coding rates of

0.17 without any first-step controls, 0.13 with patient controls, and 0.12 with patient and physician controls.

Likewise, the standard deviation of coding rates among non-urban non-profit teaching hospitals falls from

0.17 with no controls to 0.13 with patient controls, but rises to 0.19 when physician controls are further

added. These patterns are replicated in the other groups of hospitals: dispersion declines by 5-6pp with

the inclusion of patient characteristics, but may decline (up to lpp) or rise (up to 3pp) with the additional
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inclusion of physician effects.

While it may seem counterintuitive that disparities in adoption sometimes increase with the addition of

physician controls, this finding is possible if high type hospitals tend to match with low type physicians. When

physician controls are omitted, the hospital's adoption includes both the facility component and an average

physician component. Adding the physician controls removes the average physician component. When

dispersion in adoption rises when these controls are added, it indicates that the average physician component

was negatively correlated with the hospital component - evidence of negative assortative matching.

1.3.5 Describing the Adopters

In this subsection I first present the ex ante relationships one might expect between hospital characteristics

and productivity based on theory and prior literature. I then show how these correlations are borne out in

my data, with the caveat that these results are descriptive, not causal.

1.3.5.1 Potential Roles of Hospital Characteristics and Productivity

Size (Number of Beds) Larger hospitals may be more likely to adopt detailed HF coding if there are

fixed costs of adoption - fixed costs are smaller, and more worthwhile to incur, on a per-patient basis when

the hospital is larger. However, since size may be confounded with other factors that bear on coding, this

explanation is only suggestive. In particular, a long line of research has documented a strong relationship

between hospital size and quality in many areas, though with an unclear causal link (this is usually called

the volume-outcomes hypothesis; see Epstein, 2002a for a critical review).

Ownership The relationship between hospital ownership and coding straddles two broad strands of lit-

erature: one that investigates differences in the quality of care by ownership, and another that looks at

ownership and the responsiveness to billing incentives. With respect to quality of care, there is no consensus

on whether non-profit or for-profit hospitals are superior (McClellan and Staiger, 2000; Sloan, 2000), though

for-profit hospitals have lagged public and non-profit facilities in the use of standards of care like /3-blockers

(Sloan et al., 2003). The disparities have been clearer in studies of billing and coding, which have found

that for-profit hospitals exploited revenue-making opportunities more aggressively than their non-profit and

government-run counterparts (Dafny, 2005a; Silverman and Skinner, 2004). A key difference between this

setting and the earlier work is that the prior literature focused on upcoding, or the exaggeration of patient

severity to raise payments. In contrast, achieving a high HF coding rate does not require a hospital to risk

the fraud allegations that upcoding can bring. In theory, a hospital can provide a detailed HF code for all

its HF patients with detailed documentation but no upcoding.
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Location Whether rural hospitals should be more effective at adopting the revenue-raising technology

than urban hospitals is unclear ex ante, though evidence on outcomes and processes along the dimension

of hospital location may be suggestive. There is substantial research indicating that health care outcomes

and quality of care are lower in rural hospitals relative to their urban counterparts. At least some of this

difference can be explained by rural hospitals being smaller. Hospitals in the farthest outlying rural areas

appear to be the main driver of rural hospital underperformance (MEDPAC, 2012b; Baldwin et al., 2010).

Teaching Status Teaching hospitals have been found to have better outcomes and higher quality processes

of care than non-teaching hospitals in observational studies (see Ayanian and Weissman, 2002 for a review).

These studies do not necessarily control for hospital size, ownership, and other attributes. Still, teaching

hospitals appear to be regarded in conventional wisdom as purveyors of the frontier of high quality care

(see, for example, U.S. News and World Report rankings of hospitals). Whether this conventional wisdom is

true, and whether it translates into more responsiveness to incentives in the form of takeup of the revenue-

generating practice, is an open question.

Revenue at Stake A hospital with more revenue at stake from the reform, all else equal, would have a

greater incentive to buy software that improves specific coding and to coax its doctors to provide detailed

documentation. However, the revenue at stake depends on the hospital's patient mix - hospitals with more

HF patients and hospitals with more acute HF patients have more to gain. Even after controlling for a host

of observables about the hospitals, unobserved characteristics may still exert an effect on adoption along this

gradient.

Treatment Productivity and Quality Whether high treatment productivity hospitals are more likely

to adopt the coding technology is not obvious. High productivity hospitals may have high quality managers

who effectively work with physicians to incorporate consensus standards of care. These managers may use

the same techniques to extract more detailed descriptions from their physicians. The managers could also

use their treatment productivity-raising techniques to ensure that coding staff does not miss revenue-making

opportunities.

On the other hand, a negative correlation between treatment and revenue productivity is also plausible. To

the extent that productivity depends on managerial quality, the relationship between revenue productivity

and treatment productivity could reflect whether one is a substitute for another in the hospital management

production process. In the substitutes view, managers specialize in either coaxing physicians and staff to

extract revenue from payers or in pushing them to treat patients well.
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1.3.5.2 Results

Table 1.6 displays the key estimates of the role of hospital characteristics and productivity in explaining

takeup of the coding technology. The columns of this table show the results when different sets of first-step

controls are included, repeating the sets of controls used in the dispersion analysis.

Without Physician Controls Columns (1) to (3) depict the correlations with increasingly rich patient

controls, but no physician controls. Column (1), which includes no patient-level adjustments, shows how the

raw probability a HF patient at the hospital is billed with a detailed code depends on hospital characteristics.

However, these relationships could depend on some hospitals having patients that are harder or easier (or

more worthwhile) to code. To address this concern, the next two columns add patient-level risk adjusters.

Column (2) shows how hospital characteristics are correlated with the probability that the hospital uses a

specific code for a HF patient, first adjusting these probabilities to remove the effect of age, race, sex, source

of admission, and main diagnosis. Column (3) adds adjustments for patients' chronic conditions.

There is a robust relationship between coding and hospital size, non-profit status, use of standards of care,

and heart attack treatment productivity. Hospitals that are 10% larger give 0.21pp more of their HF patients

a specific code. Adding patient controls when estimating hospital adoption reduces this effect to 0.15pp -

some of the raw relationship between size and coding can be accounted by larger hospitals tending to have

patients that are more likely to receive a detailed code at any hospital. Likewise, non-profit hospitals give

3.3pp more of their patients a specific code than for-profits and government-run facilities, though adding

patient controls reduces the difference to 2.7pp. There is no significant difference between the takeup rates

of for-profit and government-run hospitals. Finally, with the full set of patient controls, for each standard

deviation rise in heart attack treatment productivity or in the use of standards of care (the composite

measure is the sum of the heart attack, heart failure, pneumonia, and surgeries measures), about 2.4pp more

HF patients tend to get a specific code. In other words, hospitals that appear to be higher quality and more

productive in their treatment are also more likely to use these high-revenue billing codes. Hospital location,

teaching status, and revenue at stake are not robustly correlated with takeup.

With Physician Controls Columns (4) to (6) repeat the results of columns (1) to (3) with first-step

physician controls, changing the interpretation of the coefficients. In these columns, a positive relationship

between a hospital characteristic and coding indicates that the facility was able to extract more detailed

coding out of its physicians - the hospital effect on the left-hand side of these regressions conditions on the

physicians that treated the patients. In this section I focus on the coefficients of column (6), which adjust

for the full set of patient characteristics as well as the physician when estimating the hospital component of

adoption.

The inclusion of physician effects makes the hospital effects noisier, adding left-hand side measurement error
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to the regressions. This measurement error comes from sampling variance, so it does not bias the coefficients

reported in columns (4) to (6), but it lowers the precision of the regression coefficients.

The use of detailed HF codes is clearly correlated with both heart attack treatment productivity and the use

of consensus standards of care: even if all hospitals had the same kinds of patients and doctors, hospitals

with one standard deviation greater use of standards of care or one standard deviation greater treatment

productivity would use specific codes for 2-3pp more of their patients. This gradient was also observed

unconditional on the doctors (in columns 1-3), and these results indicate that it cannot be explained by high

treatment quality hospitals simply having physicians that provide detailed documentation wherever they

practice. Instead, these results indicate that these hospitals are more able to extract the codes from their

physicians than their lower treatment quality peers.

The other significant relationship that exists with first-step patient and physician controls is that between

hospital location and coding. Hospitals in large urban and other urban areas - areas of high and intermediate

population density, respectively - extract specific codes from their doctors for 3-4pp more of their patients

than hospitals in rural areas. This relationship does not exist without the physician controls, which indicates

that urban hospitals have physicians that are less likely to provide detailed documentation wherever they

work, but that the low physician contribution is counteracted by the hospitals' ability to extract codes from

their doctors. The net result is that unconditional on physicians, urban and rural hospitals are about equally

likely to use the detailed billing codes - the finding in columns (1)-(3).

Non-profit and for-profit hospitals were 1.7pp more likely to extract specific codes from doctors than their

government-run counterparts, though these coefficients were imprecisely measured. Compared to the same

differential calculated unconditional on physicians - the result in column (3) - this value is reduced and no

longer significant for the non-profit hospitals. Since removing the physician component of adoption reduces

the coding advantage of non-profit facilities, it appears that the physicians who work at non-profit hospitals

are more likely to provide the detailed documentation wherever they practice.

The gradient between hospital size and extraction of detailed HF codes is positive and significant without

first-step physician controls, but it is eliminated when the physician component of adoption is swept away.

Similar to the results for non-profit hospitals, this finding suggests that larger hospitals outperform smaller

hospitals in column (3) because they utilize physicians that always provide more documentation wherever

they treat patients.

1.4 Discussion

The hallmark features of a new technology are wide variations in the level of adoption at a point in time

and variation in adoption over time as takeup slowly occurs. This pattern is found in Griliches (1957), and

it has also been found in health care, for example in the use of /3-blockers and other therapies (see e.g.
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Bradley et al., 2005 and Peterson et al., 2008). Likewise, a growing literature is finding persistent dispersion

in productivity within narrowly defined industries (Fox and Smeets, 2011a; Syverson, 2011b); this literature

is now expanding to include the health care sector (Chandra et al., 2013). I have shown that adoption of

the HF coding technology across hospitals follows the established pattern.

Some hospitals may be very detailed coders because their doctors are likely to provide specific documentation

wherever they practice. Other hospitals might take up the revenue generating practice by counteracting the

poor documentation habits of their physicians with facility-specific techniques, like aggressively reviewing

physician charts. Uniquely in the HF coding setting I can observe the component of adoption that is specific

to the hospital - the extent to which a hospital can extract more details out of a constant set of physicians

than other hospitals.

Since hospitals but not physicians were paid for the HF documentation, I have argued that the hospital com-

ponent of adoption is an indicator for whether the hospital was able to solve a principal-agent problem. This

component is robustly correlated with the use of consensus standards of care when treating patients. Thus

hospitals that use treatment productivity-raising techniques are able to extract more specific documentation

from a fixed set of physicians than other hospitals. The correlation between these two measures suggests

that agency problems could play a role in the adoption of a variety of technologies in the facility. Another

view of this correlation is that revenue productivity and treatment productivity are positively related.

The dispersion that I find in the hospital component of adoption, which removes the physician and patient

components, is about four-fifths the raw level of dispersion. This residual dispersion has a standard deviation

of 0.16 percentage points, but it is not immediately clear whether this magnitude is small or large. One

point of comparison is the standard deviation of the consensus standards of care scores, which measure

adherence to evidence-based treatment guidelines. The measures of coding of HF and standards of care

are both hospital-level shares, so it is reasonable to compare their variances. To the extent that there are

substantial disparities across hospitals in their adherence to these standards, the disparities in coding also

appear to be nontrivial. According to Table 1.4, the four standards of care scores have standard deviations

ranging from 0.07pp to 0.14pp. The dispersion in the hospital component of HF coding adoption falls just

above the top end of this range.

As public insurers move to incentivize the adoption of consensus health care treatments, the effects that

these incentives will have remain unclear. Looking at the relationships between HF coding and hospital

characteristics sheds light both on the likely effects of future incentives as well as the mechanisms that drive

incomplete takeup. In particular, these correlates offer evidence on which providers are likely to be policy

elastic to financial incentives for other processes of care. For the policy elasticity, it is useful to look at the

correlation between takeup and characteristics without removing the effect of the physician, since the overall

response of the hospital is of interest. I have shown that bigger, non-profit, higher treatment quality, and

more treatment-productive hospitals are more policy elastic.
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One reason to incentivize the use of evidence-based inexpensive medical technologies is to push lagging

hospitals to take them up. Quality disparities have been a key focus of health care literature (see e.g. Fisher

et al., 2003b), and policymakers are increasingly using direct financial incentives with the hope of improving

outcomes at low-performing hospitals. For example, the Medicare Value-Based Purchasing program will

reduce payments to hospitals that fail to use consensus standards of care or whose patients report low

satisfaction with their experiences. Yet it is an open question whether these policies will have their intended

effect of raising quality; according to these findings, policy elastic providers tend to be more productive in

treatment and more likely to follow consensus standards of care already. Lower quality providers - i.e. those

that are less productive or less likely to follow best practices - are less responsive. These results suggest

that hospitals that are behind the curve on medical standards are also less attuned to financial incentives,

which means that policies to incentivize takeup could have their least effect on the providers that need the

most improvement. In turn, these programs could serve to widen disparities in the quality of care across

providers.

1.5 Conclusion

This paper has examined the takeup of a revenue-generating practice - the use of specific, detailed codes

to describe heart failure on inpatient claims - that was incentivized following a 2008 reform. I have shown

that hospitals responded by rapidly improving the documentation of patients in their claims. Yet this

improvement in documentation was incomplete and uneven, a characteristic feature of the adoption of new

technologies. I have also decomposed the takeup of the technology into a component that is due to the

hospital and a component that is due to its doctors. The decomposition exercise shows that hospitals

that had high treatment productivity and followed consensus standards of care were better able to extract

detailed documentation from their physicians. I argue that this is consistent with these hospitals solving

principal-agent problems.

My results have important policy implications as public and private insurers seek to directly raise hospital

productivity by reforming health care payment systems. Principal-agent problems owing to a bifurcated

system that pays doctors and hospitals on separate bases may be major impediments to further technology

adoption. For example, when Medicare opts to pay hospitals to use -blockers, it trusts that the facilities

will recognize the financial gains to changing their processes of care and successfully transmit the incentives

to the physicians who prescribe the drugs. Yet some facilities appear much more able to transmit these

incentives than others.

One potential policy to obviate the incentive transmission problem is to reform the physician payment

system. Provisions of the Affordable Care Act that require this system to incentivize standards of care,

much as Medicare is already doing for hospital payments, are one way forward. By bringing these incentives
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to both hospitals and doctors, these provisions could substantially improve the effectiveness of value-based

payment reforms.
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Figure plots the share of revenue available for detailed coding of HF that was captured by
hospitals over time. Dotted line shows revenue that would have been captured in 2007 if
hospitals had been paid per 2008 rules. The series is at the weekly level and the red line
denotes the reform date.
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Gain in Revenue by Type of Detailed HF Code
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Figure plots the average per-HF patient gain in revenue going from always using vague codes
for HF patients to always using chronic codes or acute codes.
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Figure plots the share of HF patients who received a detailed HF code over time. The series is at
the weekly level and the red line denotes the reform date.

Figure 1-4

Revenue at Stake per HF Patient across Hospitals
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Revenue at stake is calculated using pre-reform (2007) patients processed under post-reform
(2009) payment rules. The amount at stake equals the per-HF patient revenue with all HF
patients given detailed codes less that revenue with all HF patients given vague codes. The
422 hospitals with <50 HF patients are suppressed. The outlying upper and lower 1% of
hospitals were also suppressed.

Figure 1-5
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Revenue at Stake per Patient across Hospitals
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Revenue at stake is calculated using pre-reform (2007) patients processed under post-reform(2009) payment rules. The amount at stake equals the per-patient revenue with all HFpatients given detailed codes less that revenue with all HF patients given vague codes. The422 hospitals with <50 HF patients are suppressed. The outlying upper and lower 1% ofhospitals were also suppressed.

Figure 1-6

HF Coding and Heart Testing Following Reform

2008 2009
Year

2010 2011 2012

Detailed Coding - - - Cardiac Echo Testing
Figure plots the weekly share of revenue available for detailed coding of HF thatwas captured by hospitals alongside the weekly share of all patients who received acardiac echo, a heart test. The dotted line shows revenue that would have been capturedin 2007 if hospitals had been paid per 2008 rules. The red line denotes the reform date.
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Distribution of Adoption across Hospitals over Time
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Box and whiskers show the distribution of adoption across hospitals in each year. A hospital's
adoption equals the share of its HF patients in that year who received a specific HF code.
Hospital-years with fewer than 50 HIF patients are excluded. Red line separates pre- and post-
reform years.

Figure 1-8

Adoption of Coding Practice across Hospitals in 2010
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A hospital's adoption equals the share of its 2010 HF patients who received a detailed
HF code. Hospitals with fewer than 50 HF patients in 2010 (N=441) are excluded.
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Tables

Table 1.1 - Vague and Specific HF Codes

Severity
Code Description Before After

Vague Codes
428.0 Congestive HF, Unspecified High Low
428.9 HF, Other High Low

Specific Codes (Exhaustive Over Types of HF)
428.20 HF, Systolic, Onset Unspecified High Medium
428.21 HF, Systolic, Acute High High
428.22 HF, Systolic, Chronic High Medium
428.23 HF, Systolic, Acute on Chronic High High
428.30 HF, Diastolic, Onset Unspecified High Medium
428.31 HF, Diastolic, Acute High High
428.32 HF, Diastolic, Chronic High Medium
428.33 HF, Diastolic, Acute on Chronic High High
428.40 HF, Combined, Onset Unspecified High Medium
428.41 HF, Combined, Acute High High
428.42 HF, Combined, Chronic High Medium
428.43 HF, Combined, Acute on Chronic High High

Congestive HF (the description of code 428.0) is often used
synonymously with HF. Other HF codes include 428.1 (Left HF);
398.91 (Rheumatic HF); and 402.xl, 404.xl, and 404.x3 (forms of
hypertension alongside HF). These other codes were all high-severity
before the reform and most of them remained medium- or high-severity
after the reform. The only exceptions were two codes that could be
used alongside a specific code to maintain a medium or high level of
severity following the reform.
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Table 1.2 - Statistics about the Full Analysis

(1)
Mean

Sample

(2)
SD

and Mobility

(3)
Min

Hospitals (N=3,414; N=2,868 in
HF Patients
HF Patients (mobility sample)

Distinct Physicians
Mobile Physicians

mobility sample)
552.7 578.5
581.7 553.1

57.9 54.1
19.8 21.9

Physicians (N=134,502)
HF Patients 12.4 18.8 1 644
Distinct Hospitals 1.23 0.55 1 8
Mobile (>1 hospital) 0.188 0.391 0 1

Italicized rows refer to the mobility sample: the subset of the analysis
sample in which I observe the physician and can separately identify the
hospital and physician effects. See text for more details. Full sample

includes 1.9M HF patients. Mobility sample includes 1.7M HF patients.
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(4)
Max

1
1

1
1

5,435
4,607

561
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Table 1.3 - Statistics about Physicians by Mobility Status

(1) (2) (3)
All values are means All Mobile Non-Mobile

Patient and Hospital Volume
HF Patients 12.4 21.6 10.3
Distinct Hospitals 1.23 2.25 1
Mobile (>1 hospital) 0.19 1 0

Type of Physician
Primary Physician 0.44 0.50 0.43
Medical Specialist 0.30 0.34 0.29
Surgeon 0.23 0.14 0.25

Demogra phics
Female 0.19 0.15 0.20
Age 49.1 48.9 49.1

Training and Experience
Years in Training 5.96 6.52 5.83
Years Since Training 16.0 15.4 16.1
Trained in US 0.71 0.59 0.74

Physicians 134,502 25,253 109,249

Mobile physicians are observed attending to HF patients at multiple
hospitals in 2010; non-mobile physicians attend to patients at one
hospital in that period. Data on physician type, demographics,
training, and experience derived from AMA Masterfile.
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Table 1.4 - Hospital Summary Statistics

(1) (2) (3)
Patient Controls N Mean SD

Heart Failure Coding
HF Patients 2,411 709.4 606.3
Share Given Specific Code 2,411 0.546 0.201

Hospital Characteristics
Beds 2,411 285.0 231.4
Ownership

Non-Profit 2,411 0.667 0.471
For-Profit 2,411 0.164 0.371
Government 2,411 0.169 0.375

Location
Large Urban Area 2,411 0.419 0.494
Other Urban Area 2,411 0.350 0.477
Rural Area 2,411 0.231 0.421

Teaching Hospital 2,411 0.371 0.483
Ex Ante $ at Stake / Patient 2,411 268.6 72.22

Standards of Care (share of times standards were used in 2006)
for Heart Attack Treatment 2,411 0.916 0.085
for Heart Failure Treatment 2,411 0.826 0.113
for Pneumonia Treatment 2,411 0.864 0.061
for High-Risk Surgeries 2,411 0.797 0.119

Heart Attack Treatment (all heart attack patients 2000-2006)
In(Productivity) 2,411 0.919 0.171

A large urban area is an MSA with a population of at least 1 million;

the remaining MSAs are considered other urban areas. A rural area is

any location outside an MSA. A hospital's ex ante $ at stake per

patient is the revenue put at stake by the reform per patient in the

hospital (including non-HF patients). See text for more details on the

standards of care and heart attack treatment measures. The standard

deviation of heart attack treatment productivity is adjusted for

sampling variance.
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Table 1.5 - Standard Deviation

(1) (2)

of Coding by

(3)

Type of Hospital

(4) (5) (6)
Patient Controls None Admission Full None Admission Full
Physician Controls None Physician Fixed Effects

Urban Non-Profit Hospitals
Large and 0.168 0.135 0.134 0.145 0.116 0.123
Teaching [281] [281] [281] [281] [281] [281]
Other 0.187 0.142 0.141 0.193 0.158 0.170

[407] [407] [405] [407] [407] [405]

Non-Urban Non-Profit Hospitals
Teaching 0.167 0.134 0.134

[316]
Other 0.211

[604]

For-Profit and Government-Run
Urban For-Profit 0.194

[167]
Non-Urban For- 0.188
Profit [229]
Government-Run 0.222

[407]

[316]
0.161
[604]

Hospitals
0.146
[167]
0.141
[229]
0.163
[407]

[316]
0.159

[593]

0.145
[167]
0.140
[224]
0.161
[400]

0.223 0.191
[316]
0.200
[604]

0.188
[167]
0.178
[229]
0.177
[407]

[316]
0.167
[604]

0.193
[316]
0.169

[593]

0.144 0.135
[167] [167]
0.158 0.156
[229] [224]
0.146 0.148
[407] [400]

All Hospitals 0.199 0.152 0.151 0.191 0.159 0.162
[2,411] [2,411] [2,386] [2,411] [2,411] [2,386]

Numbers in brackets count hospitals used to calculate the standard deviation. All
results are adjusted for sampling variation. Urban hospitals are defined as those
located in a "Large Urban" area. Large hospitals are defined as having at least 250
beds. Columns 1 and 4 include no patient controls when calculating the hospital's
coding score. Columns 2 and 5 control for patient age, race, sex, admission through
the emergency department, and principal diagnosis category. Columns 3 and 6 add
controls for histories of chronic conditions. Columns 4-6 control for physician fixed
effects when calculating the hospital's coding score.

48

I



Table 1.6 - Describing the Distribution of Coding with Hospital Characteristics and Productivity

(1) (2) (3) (4) (5) (6)
Patient Controls None Admission Full None Admission Full

Physician Controls None Physician Fixed Effects

Hospital Characteristics (Ch)

In (Beds) 0.0214*** 0.0146** 0.0145**

Non-Profit

Ownership

For-Profit

Ownership

Located in Large

Urban Area

Located in Other

Urban Area

Teaching Hospital

Ex Ante $ at Stake

per Patient

(0.00775)

0.0328**
(0.0158)

-0.000220

(0.0168)

0.00830
(0.0156)

0.0211

(0.0140)

0.00854

(0.0100)

6.67e-05

(6.4le-05)

(0.00604)

0.0250**

(0.0118)

0.00119
(0.0124)

0.00352
(0.0117)

0.0125

(0.0105)

0.0118

(0.00809)

6.48e-05

(4.82e-05)

(0.00599)

0.0269**
(0.0118)

0.00398
(0.0124)

0.00178
(0.0117)

0.0103

(0.0106)

0.0112

(0.00804)

7.64e-05

(4.66e-05)

0.00603 -0.000296 -0.00256
(0.0117)

0.0194

(0.0160)

0.0176
(0.0198)

0.0627***
(0.0219)

0.0632***

(0.0190)

-0.00531

(0.0144)

9.34e-05

(8.90e-05)

Standards of Care and Productivity (Zh)

Standards of Care 0.0336*** 0.0244*** 0.0247*** 0.0247***
Composite Z-Score (0.00559) (0.00428) (0.00432) (0.00691)

Heart Attack Treat 0.0288*** 0.0240*** 0.0237*** 0.0309***
Productivity Z-Score (0.00629) (0.00479) (0.00485)

(0.0100)

0.0173

(0.0133)

0.0149

(0.0165)

0.0446**

(0.0187)

0.0406**

(0.0167)

0.0111
(0.0123)

8.85e-05

(8.17e-05)

(0.0104)

0.0172
(0.0138)

0.0173
(0.0172)

0.0370*

(0.0196)

0.0332**
(0.0168)

0.0144

(0.0130)

0.000108
(8.64e-05)

0.0209*** 0.0225***
(0.00624) (0.00632)

0.0305*** 0.0272***

(0.00863) (0.00760) (0.00776)

Observations

R2 (adjusted)

2,411

0.091

2,411

0.091

2,386
0.092

2,411

0.037

2,411

0.036
2,386
0.030

Standard errors clustered at the market level in parentheses. Columns 1 and 4 include no patient

controls when calculating the hospital's coding score. Columns 2 and 5 control for patient age, race,

sex, admission through the emergency department, and principal diagnosis category. Columns 3 and 6

add controls for histories of chronic conditions. Columns 4-6 control for physician fixed effects when

calculating the hospital's coding score. The standards of care composite z-score is the sum of the four

standards of care measures, normalized to mean 0 and standard deviation 1.
*** significant at 1% level; ** significant at 5% level; * significant at 10% level
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Chapter 2

Healthcare Exceptionalism?

Productivity and Allocation in the U.S.

Healthcare Sector*

2.1 Introduction

A central observation about the U.S. healthcare sector is the existence of substantial differences in pro-

ductivity across regions and across hospitals. For example, annual Medicare spending per capita ranges

from $6,264 to $15,571 across geographic areas (Skinner et al., 2011), yet health outcomes do not positively

covary with these spending differentials (e.g. Fisher et al., 2003a,b; Baicker and Chandra, 2004b; Chandra

et al., 2010; Skinner, 2011). Similar patterns have been documented across hospitals within geographic

markets (e.g. Yasaitis et al., 2009). These facts have in turn generated substantial academic interest in

understanding the root causes of the underlying productivity dispersion and what can increase productivity

at under-performing hospitals (e.g. Skinner et al., 2006a; Chandra and Staiger, 2007; Skinner and Staiger,

2009a). Outside of academia, these "Dartmouth Atlas" facts have also attracted consider popular attention

(see, for example, Gawande's 2009 New Yorker article) and were heavily cited by the Obama administration

during the discussions leading up to the 2010 Affordable Care Act (e.g. Pear's 2009 New York Times article

or Office of Management and Budget, 2009).

*This section is co-authored with Amitabh Chandra, Amy Finkelstein, and Chad Syverson. We are grateful to Daron Ace-
moglu, Nick Bloom, lain Cockburn, Chris Conlon, Angus Deaton, Mark Duggan, Joe Doyle, Liran Einav, Matthew Gentzkow,
Michael Greenstone, Jonathan Gruber, Ben Olken, Jonathan Skinner, Doug Staiger, Scott Stern, Heidi Williams, and numerous
seminar participants for helpful comments and advice, and to Maurice Dalton and Nivedhitha Subramanian for expert research
assistance. We gratefully acknowledge funding from the National Institute on Aging: P01 AG005842 and P01 AG019783
(Chandra), R01 AG032449 (Finkelstein) and T32-AGO00186 (Sacarny)
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The conventional wisdom in health economics is that the driving forces behind these large average productiv-

ity differences are various idiosyncratic, institutional features of the healthcare sector that effectively reduce

competitive pressures on providers. Oft-cited culprits include uninformed consumers who lack knowledge of

the quality and price differences across providers, generous health insurance that insulates consumers from

the direct financial consequences of their healthcare consumption decisions, and public sector reimbursement

that provides little incentive for productive efficiency by providers. These factors are widely believed to

dull the basic disciplining force of demand-side competition that exists in most other sectors. Echoing and

advancing this view, Cutler (2010) notes:

"There are two fundamental barriers to organizational innovation in healthcare. The first is the

lack of good information on quality. Within a market, it is difficult to tell which providers are high

quality and which are low quality... Difficulty measuring quality also makes expansion of high-

quality firms more difficult [emphasis added]... The second barrier is the stagnant compensation

system of public insurance plans."

In a similar vein, Skinner (2011) states in his overview article on regional variations in healthcare:

"[low productivity producers are] ... unlikely to be shaken out by normal competitive forces,

given the patchwork of providers, consumers and third-party payers each of which faces inade-

quate incentives to improve quality or lower costs.. . "

This notion of "healthcare exceptionalism" has a long tradition in health economics. It dates back at least

to the seminal article of Arrow (1963), which started the modern field of health economics by emphasizing

key features of the health care industry that distinguish it from most other sectors and therefore warrant

tailored study.

But when it comes to productivity dispersion, the ostensibly unique features of the healthcare sector stand

alongside a large empirical literature outside of the health care sector that has documented extensively -

almost without exception - enormous differences in average productivity across producers within narrowly

defined industries (see Bartelsman and Doms, 2000; Syverson, 2011b; and references therein). For example,

on average within narrow US manufacturing (4-digit SIC) industries, the 90th productivity percentile plant

creates almost twice as much output as the 10th percentile plant, given the same inputs (Syverson, 2004a).

This dispersion exists both within and across geographic markets (e.g. Syverson, 2004b,a).

We estimate that productivity dispersion across hospitals in treating heart attacks is about the same order of

magnitude as productivity dispersion within narrowly defined manufacturing industries. Figure 2-1 (whose

construction we describe in much more detail later in the paper) shows, for example, that productivity

dispersion across hospitals for heart attack treatment is slightly lower than productivity dispersion across

ready-mixed concrete plants. Ready-mixed concrete is, like healthcare, a spatially differentiated good in
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that it is produced and consumed locally, but one in which the product is less differentiated, insurance

does not dampen price sensitivity, and prices aren't set administratively. More generally, looking across 450

different narrowly defined (4-digit SIC code) manufacturing industries in the US, average within-industry

productivity dispersion in manufacturing is quite similar to our estimates across hospitals for heart attack

treatment (Syverson, 2004a).

This finding is striking and, we believe, surprising. But, it admits multiple possible explanations. Pro-

ductivity dispersion has been shown, both theoretically and empirically, to shrink with greater competition

within and across industries (e.g. Syverson, 2004b,a; Martin, 2005; Balasubramanian and Sivadasan, 2009).

However, we would not be comfortable drawing any direct inferences about the relative roles of competition

in these two very different sectors from comparisons of their productivity dispersions.

Rather, these facts serve as a point of departure that motivates us to re-examine productivity and allocation

within the healthcare sector using the analytical insights from the broader productivity literature. In par-

ticular, we draw on a long tradition of theoretical and empirical work in manufacturing examining whether

higher productivity producers are systematically allocated greater market shares; in healthcare, the prevail-

ing wisdom captured by the Cutler (2010) and Skinner (2011) quotations above is that these re-allocation

forces are weak or non-existent.

Our findings suggest otherwise. Figures 2-2a and 2-2b (again discussed in more detail later in the paper)

give a qualitative flavor of our results. They show that within a market-year, hospitals that have higher

productivity for heart attack treatment tend to have greater market share (i.e., more heart attack patients)

at a point in time (Figure 2-2a) and experience more growth in market share over time (Figure 2-2b).

Quantitatively, we find that a 10 percent increase in hospital productivity is associated with about a 25

percent higher market share at a point in time and 4 percent more growth over the next 5 years.

A finding that the market allocates more market share to more productive firms at a point in time and over

time is a robust characteristic of US manufacturing industries (Syverson, 201 lb provides a recent review) but

is noticeably absent from manufacturing in less competitive settings such as Central and Eastern European

countries at the beginning of their transition to a market economy (Bartelsman et al., 2013), Chile prior to

trade reforms (Pavcnik, 2002), or the US steel industry in the 1960s (Collard-Wexler and Loecker, 2013b).

As a result, these allocation metrics are often interpreted as "signposts of competition." As in much of

this previous work in manufacturing, we do not establish a causal link between competition and the signs

of competition in the data. It could be that competitive market forces re-allocate market share to higher

productivity hospitals, or it could be that higher productivity hospitals happen to have other features -

such as beautiful lobbies or good managers - which separately increase demand. But whatever the driving

force behind them, some force or forces in the healthcare sector lead it to evolve in a manner favorable to

higher productivity producers. This finding puts US healthcare on a very different part of the map than,

say, Romanian or Slovenian manufacturing in the early 1990s, where there appears to have been little (or
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even negative) correlation between a firm's productivity and its market share (Bartelsman et al., 2013). The

results are particularly noteworthy given the context of heart attack treatments, where the acute nature of

the condition might be expected to generate a smaller role for market forces in allocating patients to more

productive hospitals than for less time-sensitive conditions such as cancer treatment, the management of

chronic conditions, or elective procedures.

Taken together, our results suggest that healthcare may have more in common with "traditional" sectors

than is commonly recognized in popular discussion and academic research. Continued efforts to understand

productivity dispersion and uncover what may improve productivity in the US healthcare sector may there-

fore benefit from greater attention to the theoretical and empirical insights from the broader productivity

literature. Naturally, the converse applies as well.

The rest of the paper proceeds as follows. Section 2.2 describes the analytical framework. Section 2.3

discusses our estimation of hospital productivity - the key empirical input to all our analyses. Section 2.4

presents our main results on the relationship between hospital productivity and market share. Section 2.5

discusses some questions of interpretation, including possible mechanisms behind the findings and various

gauges of their magnitude. Section 2.6 shows that our main findings are robust to a variety of alternative

specifications. A concluding section follows.

2.2 Analytical Approach: Static and Dynamic Allocation

Our primary empirical exercise examines the correlation between producer (i.e. hospital) productivity and

market share at a point in time, and the correlation between producer productivity and growth in market

share over time. These relationships have been analyzed in a variety of industries and countries as a proxy

for the role of competition in these settings (e.g. Olley and Pakes, 1996; Pavcnik, 2002; Escribano and

Guasch, 2005; Bartelsman et al., 2013; Collard-Wexler and Loecker, 2013b). Intuitively, competitive forces

exert pressure on low productivity firms, causing them to either become more efficient, shrink, or exit.

Models of such reallocation mechanisms among heterogeneous-productivity producers have found appli-

cations in a number of fields, including industrial organization, trade, and macroeconomics. 1 While these

models differ considerably in their specifics, they share a common intuition: greater competition - as reflected

in greater consumer willingness or ability to substitute to alternate producers - makes it nore difficult for

higher-cost (lower-productivity) firms to earn positive profits, since demand is more responsive to their cost

and price differentials relative to other firms in the industry. As substitutability increases, purchases are

reallocated to more productive firms, raising the correlation between productivity and market share at a

point in time ("static allocation") and causing more productive firms to experience higher growth over time

("dynamic allocation"). Appendix A describes this archetypical mechanism slightly more formally.

'See, for example, Ericson and Pakes (1995); Melitz (2003); and Asplund and Nocke (2006).
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For the static allocation analysis, we will use the following regression framework:

In (Nh,t) - /o + /3 ah,t + 2'M,t + Eh,t (2.1)

where Nh,t is a measure of the market size of hospital h in year t, -yM,t are market-year fixed effects, and ah,t

is our estimate of total factor productivity (which we refer to throughout as TFP) of hospital h in year t;

we discuss in detail below how we estimate ah,t. Thus 01 reflects the static relationship between a hospital's

TFP and its market share, within a hospital market-year. If the coefficient is positive, as has been found in

many U.S. industries (e.g., Olley and Pakes, 1996; Hortagsu and Syverson, 2007; Bartelsman et al., 2013), it

indicates that higher productivity producers have a greater share of activity. If 01 is zero or negative, as has

been found for example in some former Soviet-bloc countries in the early 1990s (Bartelsman et al., 2013), in

Chile prior to trade reforms (Pavcnik, 2002), and in the U.S. Steel industry circa 1960-70 (Collard-Wexler

and Loecker, 2013b), it indicates that less productive industry producers are the same size or larger than

their high productivity counterparts and suggests that forces beyond standard competition are driving the

allocation of market activity.2

The static allocation analysis in equation 2.1 can reflect the market's ability to reallocate activity from less

productive hospitals to more productive ones. But it shows the outcome of this process rather than the

process itself. To measure the actual dynamics of the market's selection and reallocation mechanisms, we

employ two additional metrics.

Our first dynamic allocation metric examines the relationship between hospital TFP and its probability of

closing. We will estimate:

I [eXith,t+1 = Oo + /3 lah,t + -YM,t + Eh,t (2.2)

where I [eXith,t+1] is an indicator equal to one if hospital h exits at time t + 1, and the right hand side

variables are defined as in equation 2.1. Thus $1 reflects the relationship between a hospital's TFP and

its probability of exit, controlling for any changes in aggregate exit probabilities across market-years. A

negative relationship between TFP and hospital exit is one of the most robust findings in the productivity

literature (See Bartelsman and Doms, 2000 and Syverson, 2011b for surveys). It is indicative of a Darwinian

selection process at work: less productive producers find it more difficult to survive.

Our second dynamic measure is the relationship between hospital TFP and future hospital growth. We will
2 A positive correlation between a hospital's productivity and the number of patients it treats is also consistent with increasing

returns to scale, in which causality runs from scale to productivity rather than vice versa. This is a general issue for interpreting
the static allocation measure in any industry. In the particular context of health care, the "volume-outcome" hypothesis
conjectures that treating more patients improves provider performance. Not surprisingly, it has proven challenging to establish
empirically whether an observed positive correlation between provider volume and outcomes is causal (see e.g. Epstein, 2002a
for a discussion of the interpretation difficulties in this literature). Moreover, it is harder to understand why scale economies
would predict our "dynamic allocation" finding that current productivity predicts increases in the number of future patients.
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estimate:

Ah,t,t+1 - 3o + I1ah,t + 7YI + ht (2.3)

where Ah,t,t+1 is a measure of the hospital's growth rate (in terms of number of heart attack patients treated)

between year t and t + 1. A positive correlation between TFP and growth indicates that more productive

hospitals see larger gains in patient traffic, and points to the operation of a selection and reallocation process.

While not as robust as the negative TFP-exit relationship, there is widespread evidence in developed country

manufacturing and retail that higher TFP producers experience growth in market shares (e.g. Scarpetta

et al., 2002; Disney et al., 2003; and Foster et al., 2006).

Regression equations 2.1 through 2.3 form the heart of our empirical analysis. They describe the associations

between a hospital's productivity and market share and indicate whether forces exist that are favorable to the

expansion of higher productivity producers. Although motivated by models in which competitive forces create

these re-allocation pressures, the correlations are naturally not direct evidence of the impact of competition.

After presenting our results, we discuss possible interpretations in light of other forces that may mimic the

effects of competition.

2.3 Estimation of the Hospital Production Function

The key empirical input for estimation of our analytical equations 2.1 through 2.3 is a measure of a producer's

(i.e. hospital's) TFP. We estimate hospital TFP in the specific context of hospital treatment of heart attacks,

analyzing the treatment and outcomes of about 3.5 million heart attack patients from 1993 through 2007.

TFP is the amount of output a supplier can produce per unit input. In our setting, variation in TFP across

hospitals reflects differences in patient survival (output) conditional on treatments (inputs) the patient

receives. We describe the data and approach we use to estimate hospital TFP, and discuss key estimation

challenges.

2.3.1 Setting: Heart Attack Treatments in US Hospitals

Heart attacks present an excellent setting for studying hospital productivity for a number of reasons. First,

cardiovascular disease, of which heart attacks (acute myocardial infarctions, or AMIs) are the primary

manifestation, is the leading cause of death in the United States. Second, the high post-AMI mortality

(survival rates at one year are less than 70 percent in our Medicare population) provides an accurately

measured outcome with a great deal of variation across hospitals. There is broad agreement that for AMIs,

survival is the most important endpoint both clinically and in terms of patient preferences, and therefore a
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key measure of output, particularly in an elderly population. 3 Third, the emergency nature of heart attacks

provides a setting in which the sorting of patients across providers is likely to be more limited than in

many other healthcare settings, reducing empirical concerns arising from patients selecting into hospitals on

the basis of their underlying health. At the same time, the reduced scope for sorting also makes the null

hypothesis that higher productivity hospitals do not attract greater market share a particularly plausible

one in this context. Finally, inputs are well measured and there exist rich data on the relevant health

characteristics of the patients (called risk-adjusters) which can be used in the estimation. Not surprisingly,

therefore, heart attacks have been the subject of considerable study in the medical and economics literature

on the value of medical technology and the returns to medical spending (e.g. Cutler et al., 1998; Cutler and

McClellan, 2001a; Skinner et al., 2006a; Chandra and Staiger, 2007).

2.3.2 The Hospital Production Function for AMI Patients

We posit a patient-level health production function of the following form:

yP =:Ah,t (A R7xP) e (2.4)

where x is the number of post-AMI survival days of patient p treated at hospital h in year t, and xP is a

measure of hospital inputs used to treat this patient. All production functions relate outputs to inputs; our

particular function uses patient survival days as a measure of output and a single (dollar-denominated) index

of resources spent on the patient as inputs.4 Because patients are inherently heterogeneous, survival may

also depend on characteristics of the patient, which could potentially also be correlated with input choices.

In addition, the marginal effect of inputs on survival may vary with patient characteristics. To capture both

of these effects, we follow the literature and adjust inputs for a vector of observable patient-level risk factors,

Rp,k, where k indexes the factors. The parameters cxk capture the influence of these risk factors on health.

Thus the expression in the parentheses reflects risk-adjusted inputs on the patient. The parameter p is the

elasticity of survival days with respect to risk-adjusted inputs. Finally, the expression eep is a patient-level

error term that accounts for random variations in health outcomes.

The key input into all of our analyses described in Section 2.2 is the logarithm of Ah,t, which we have

previously called aht. Ah,t measures the (exponent of) total factor productivity (TFP) of hospital h in

year t. It is common across all (risk-adjusted) patients in that hospital in that year.5 Holding risk-adjusted
3
Clinical trials for heart-attack therapies compare treatments by focusing on survival as the key outcome (see for example,

Andersen et al., 2003), but this is not true for trials of treatments for more elective coronary conditions such as stable coronary
disease where quality of life concerns make it more difficult to measure output. A review of over twenty-three trials for
heart-attack treatments is provided by Keeley et al. (2003).

4
This sort of single-input production function is unusual but convenient; one could reasonably interpret the single input as

an index of the use of multiple inputs that go into producing health. In Appendix E we show the results are robust to the use
of a multi-input production function instead.

5
We allow hospital productivity to vary across years because it allows us to capture intertemporal variation in hospitals'
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inputs constant, differences in Ah,t across hospitals produce systematic differences in survival length. In

other words, if it were possible to send a particular heart attack patient to two hospitals with different TFP

levels, providing him the same level of inputs at both, the patient's expected survival would be greater in

the higher TFP hospital than in the lower one.

The hospital production function model in 2.4 allows variation across providers in the marginal health

product of inputs (i.e., Ah,ty varies across hospital-years) but constrains them to have the same elasticity

of output with respect to input (i.e., /, is common across hospitals). Our empirical specification therefore

allows the "marginal return to inputs" curve to vary across hospitals, as suggested by Chandra and Staiger

(2007) and Garber and Skinner (2008). Figure 2-3 provides a stylized illustration of our production function

specification.

Taking logs, we have our main estimating equation for the hospital production function:

In (yr) = ln (Ah,t) + /E Zak In (Rp,k) i p In (xp) + Ep (2-5)
k

To estimate equation 2.5 we regress the log of patient survival days on a vector of risk factors (Rp,k), the

inputs applied to each patient (xp), and a set of hospital-year fixed effects. These hospital-year fixed effects

are in turn our TFP estimates (ah,t = In (Ah,t)) which we then use as inputs to estimate our main analytical

equations 2.1 through 2.3.

2.3.3 Data and Measurement of Key Variables

Our primary dataset consists of all Medicare Part A (i.e., inpatient hospital) claims for all heart attacks

(AMIs) in individuals age 66 and over in the United States from 1993 through 2007. We limit the sample

to AMIs in patients who have not had an admission for an AMI in the prior year. We have information on

mortality through 2008, so we can observe at least one year of post-AMI survival for all patients. In order

to have enough data to estimate annual hospital productivity, we follow standard practice (e.g. Skinner

and Staiger, 2009a) and eliminate any hospital-year with fewer than 5 heart attack patients that year. This

restriction eliminates less than 1 percent of patients, but about 10 percent of hospital-years and 6 percent

of hospitals; naturally the dropped hospitals are disproportionately small.

Tables 2.la and 2.1b present some basic summary statistics on our sample. Our final sample consists of about

3.5 million heart attacks in 55,540 hospital-years and 5,346 unique hospitals. The average hospital-year has

about 65 patients, but the median hospital-year has only 39 patients. We follow the literature in defining

a hospital market (M) for an AMI as a Hospital Referral Region (HRR, see e.g. Chandra and Staiger,

efficiencies, and because it is consistent with standard practice in the broader productivity literature outside the healthcare
sector. As we discuss below, we find that hospital productivity is highly persistent across years within our sample.
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2007).6 Our sample includes 304 HRRs, and on average they have about 12 hospitals in them. The Medicare

claims data also include information on patient demographics (age, race and sex) and detailed information

on co-morbidities (i.e. admissions for other conditions) during the prior year. We use this information as a

basis of our risk adjusters Rp,k.

Our baseline output (survival) measure (yr) is the number of days that the patient survives after receiving

initial treatment, up through the first year. Survival includes the first day of treatment itself, so yp is

bounded from below at 1 and above at 367 days. As shown in Table 2.1, average survival through 1 year,

censoring anyone who survives more than 1 year at 367 days of survival, is 268 days; about two-thirds of our

sample survives past one year. We show below that our core results are robust to alternative time horizons

for measuring output (i.e. 30 day or 5 year survival windows).

Our baseline input measure defines hospital factor inputs for a patient as the (dollar-converted) sum of

diagnostic-related group (or DRG) weights during the first 30 days following a heart attack. These DRG

weights reflect the Centers for Medicare and Medicaid Services' (CMS's) assessment of the resources necessary

to treat a patient as a function of the patient's comorbidities and procedures received. This approach

is standard in the literature and ensures that we measure real services rendered to patients, purged of

reimbursement (price) variation across geographic areas or hospitals (see e.g. Skinner and Staiger, 2009a;

Gottlieb et al., 2010). Appendix B gives a detailed description of our baseline input measure and the sources

of variation that contribute to it.7 About 15 percent of the variation is explained by indicator variables for

whether the patient received one of two surgical procedures: bypass or stent.

On average, about $16,000 worth of hospital inputs are used on one of our patients in the 30 days following

a heart attack, with a standard deviation of about $12,000. As is typical in healthcare, inputs are right

skewed; the median is about $12,000 and the 90th percentile is nearly $32,000. We show below that our core

results are generally robust across a wide range of alternative input measures, as well as across alternative

time horizons for measuring inputs.

2.3.4 Estimation Challenges

Estimating productivity in any setting is conceptually straightforward but practically involves a number of

measurement challenges (Syverson, 2011b). In addition to the measurement of output and inputs discussed
6 The Dartmouth Atlas of Healthcare divides the United States into HRRs which are determined at the zip code level through

an algorithm that reflects commuting patterns to major referral hospitals. HRRs, which are akin to empirically defined markets
for healthcare, may cross state and county borders. A complete list of HRRs can be found at http: //www. dartmouthatlas. org/.
Since defining a market is not a straightforward undertaking, in Appendix D (Table A4) we also show that our results are robust
to defining markets based on Hospital Service Areas (JISAs) instead; there are about 10 times as many JISAs as 1IRRs.

7 As described in Appendix B, we make an adjustment to the prior literature's approach to account for the fact that some of
CMS's DRGs are defined partly based on subsequent survival status. We purge our measure of this outcome-based variation
in input measurement by assigning the relevant patients the average weight across the DRGs which distinguish otherwise
similar treatments based on survival. We also discuss some of the challenges in measuring inputs in other settings (such as the
handling of intermediate inputs or different qualities across workers) that we avoid here, as well as shared challenges such as
the appropriate weighting of different inputs.
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above, we describe three other challenges to estimating the hospital production function: endogeneity of

inputs, differences across hospitals in patient characteristics related to survival, and estimation error.

2.3.4.1 Endogeneity of Inputs

A general econometric concern that pervades production function estimation is the potential endogeneity

of inputs. In a typical setting, productivity is the residual in a firm-level regression of outputs on inputs;

therefore, the coefficient on inputs (p in our setting) may be biased by a correlation between input choice

and the residual (productivity). In our setting, however, because we observe production at the unit (patient)

level, we can include hospital-year fixed effects, estimating p solely from within-hospital-year variation. By

identifying the coefficients on inputs only from variation within hospitals, we control for any tendency for

hospitals with different productivity to use different amounts of inputs on average. Of course, any unobserved

inputs that do not vary within the hospital (such as, for example, whether the hospital requires its staff to

use checklists) will load onto our estimate of hospital productivity. This is not a problem per se; as in the

productivity literature more broadly, we think of productivity as the component of output that cannot be

explained by observed inputs.

However, our estimates will be biased if, within hospital-year, hospitals choose different observable input

levels for patients who differ unobservably in their latent survival, or if their choice of unobservable inputs

is correlated with observed inputs at the patient level. The sign of the bias of the estimate of p is not

obvious. Moreover, our focus is not on estimating p. Our primary concern is what impact any bias in

p will have on our analysis of the relationship between estimated productivity and market share, which

are the ultimate objects of interest for the analysis. We therefore evaluate below the robustness of our

main results to imposing, rather than estimating, various values for the scale parameter p. This method

amounts to following the index number, or Solow residual, approach to measuring productivity in which

factor elasticities are taken from auxiliary data such as factor cost shares. We are re-assured that our main

results are quite insensitive to the choice of p. This insensitivity also has an economic interpretation that

we discuss below.

2.3.4.2 Differences Across Hospitals in Patient Characteristics

Even if p is known and imposed based on auxiliary information, if patients at different hospitals differ

on average in their unobserved survival probabilities, this variation will cause us to misestimate hospital

productivity. As noted earlier, one of the reasons for the focus on heart attacks in the empirical literature

is the belief that such patient sorting across hospitals may be less of an issue in an emergency setting. But

this does not mean there is no potential for sorting; indeed, were there no mechanisms by which patients (or

their surrogates) actively selected hospitals for AMI treatment, it would be difficult to view our re-allocation

findings as consistent with a role for market forces.
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Therefore, to try to minimize the impact of any unobserved patient health differences across hospitals, we

follow the standard practice in the literature and include various risk adjusters (Rp,k) to control for observable

patient characteristics that are related to health. In particular, our baseline specification controls for a full

set of interactions between age (in five-year groupings), gender, and whether the patient is white, as well

as various co-morbidities. Each co-morbidity is included as an indicator for whether the patient has been

to the hospital for a specific condition in the year prior to the AMI admission. Table 2.1b shows that on

average our patients are 78 years old (recall our sample is for the Medicare population), about half are

female, and about 90 percent are white; it also presents the means for the 17 co-morbidities we include in

our baseline specification. We show below that our main results are quite insensitive to using fewer or more

(for a subsample of patients where they are available) risk adjusters.

2.3.4.3 Estimation Error in TFP Measures

The median hospital-year in our sample has less than 40 patients, and for 20 percent of our hospital-years we

observe fewer than 15 patients. The consequence of a relatively small number of patients in some hospital-

years, together with the stochastic nature of our outcome (survival), means that our key object of interest

and input into all of our productivity metrics - hospital TFP, ah,t - may be estimated with error. Such

estimation error will cause attenuation bias in our analysis of the relationship between market share and

hospital productivity in equations 2.1 through 2.3.8

We therefore apply the standard shrinkage or "smoothing" techniques of the empirical Bayes literature (e.g.

Morris, 1983) to adjust for estimation error in our estimates of hospital productivity.9 Appendix C provides

a detailed description of this procedure. The intuition behind it is that when a hospital's productivity is

estimated to be far above (below) average, it is likely to be suffering from positive (negative) estimation error.

Therefore, the expected level of productivity, given the estimated productivity, is a convex combination of

the estimate and the mean of the underlying productivity process. The relative weight that the estimate

gets in this convex combination varies inversely with the noise of the estimate (which is based on the

standard error of the hospital-year fixed effect). In practice, as we show in Appendix C, our core finding that

hospitals with higher estimated productivity get allocated more market share at a point in time and over time

remains statistically significant without the empirical Bayes adjustment, although naturally the magnitude

is attenuated. All the analyses of hospital TFP use the empirical Bayes adjustment unless explicitly noted.

8This small-sample problem is probably much less of an issue in more traditional settings for estimating productivity, since
the number of units of output produced (the statistical analog of patients in our context) is much larger. Increasingly, however,
the productivity literature is also trying to adjust for other sources of measurement error in output (e.g. Collard-Wexler, 2011;
Dobbelaere and Mairesse, 2013).

9 McClellan and Staiger (1999) introduced this approach into the healthcare literature when estimating quality differences
across hospitals, and it has since been widely applied in the education literature for estimating and analyzing teacher or school
value added measures (e.g. Kane and Staiger, 2001; Jacob and Lefgren, 2007).
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2.3.5 Estimates of the Hospital Production Function

Table 2.2 presents our estimates of the "returns to scale" parameter (p) from estimating equation 2.5.

Column 1 presents our baseline estimates, which use our full set of risk adjusters. We estimate a coefficient

on log patient inputs (p) of 0.446 (standard error = 0.005), which suggests that every 1 percent increase in

inputs per patient is associated with a 0.45 percent increase in survival days. A comparison of columns 1

through 3 indicates that our estimate of p increases from 0.45 to 0.59 as we reduce the set of risk adjusters to

just age, race and sex (column 2) or to nothing (column 3), with the age-race-sex risk adjustment accounting

for most of the difference between the results with no risk adjusters and with all risk adjusters included.

Our estimates of p are in the middle of the (very wide) range of estimates that papers in this literature have

produced. "

The key input into our productivity metrics is not our estimate of p but rather our estimates of TFP, ah,t.

These objects are the hospital-year fixed effects from equation 2.5 and are the key right-hand-side variables in

our estimating equations 2.1 through 2.3. We find a great deal of within-hospital persistence in productivity

over time, with ah,t exhibiting an AR(1) coefficient of about 0.7.

As a validity check on whether our estimates are picking up differences in hospital productivity, we verify

that these estimates correlate positively in the cross-section with observable and independently gathered

hospital quality measures. This exercise is in the spirit of Bloom and Reenen (2007), who perform the

reverse procedure: validating an observable measure of management quality by correlating it with estimates

of firm level productivity.

The results are summarized in Table 2.3, and several are presented graphically in Figure 2-4." The first two

columns of Table 2.3 show the correlation between our estimates of hospital TFP and two quality measures

that were first collected by the Center for Medicare and Medicaid Services (CMS) in 2003; they have been

publicly reported by the agency's "hospital compare" website (http: //www. hospitalcompare. hhs. gov)

since 2005. They are calculated by hospitals and submitted to CMS independently of the data that we use.

These measures are created to indicate the fraction of patients who received the treatment(s) that CMS

determined were appropriate for their medical conditions. In the regressions, we convert them to z-scores

by normalizing their means and variances to 0 and 1, respectively. In Table 2.3 column 1 we look at the

1 0
Skinner and Staiger (2009a) note that various papers have used different right hand side specifications or sample periods

to produce estimates of the "return to spending." They re-estimate many of these alternative specifications in a within-hospital

linear probability model of an indicator for one year survival on one year inputs and produce estimates ranging from -0.015 to

0.122. In our data such linear probability models produce estimates of the "return to spending" of 0.072 to 0.100, depending on

the risk adjusters. Within-hospital estimates of the return to input use tend to produce a positive relationship between inputs

and survival, in contrast to the cross-region or cross-hospital comparisons that tend to find no or negative association between

inputs and health-related outcomes. One parsimonious explanation for this difference would be if low productivity hospitals

tended to compensate by using more inputs.
1 1

Table 2.3 and Figure 2-4 examine regressions of our estimates of hospital TFP in 2003 on various hospital characteristics. We

omit the EB correction for hospital TFP since classical measurement error on the left-hand side does not affect the consistency

of a regression. The estimates of a hospital's 2003 TFP come from our full sample estimates of equation 2.5, but we use only a

single year since most of the hospital characteristics are only available cross-sectionally. We choose 2003 estimates since that is

the first year that the CMS quality measures are available.
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hospital's z-score for beta blockers, which are inexpensive drugs that reduce the demands on the heart and

are long-established as having important benefits for AMI patients after discharge. In column 2 we look

at the z-score of a combined measure that sums across the number of patients who are given each of eight

consensus AMI treatments and divides by the sum of patients appropriate for each of these treatments.' 2 All

of these measures have been studied in the literature and are considered indicative of good quality care (e.g.

Higashi et al., 2007; Skinner and Staiger, 2009a; Jha et al., 2005; and cites therein). We use the measure in

the first year it was collected to minimize the chance that hospitals responded to the reporting by changing

the measure and thus reducing its signal of quality.

In column 3 we use the Bloom et al. (2012a) measure of hospital management quality. 13 It is based on

a survey of management practices that were administered to a sample of approximately 300 hospitals in

2009 and 2010; a higher management z-score indicates closer conformance to management best practices.

This measure of management quality has been found to be significantly negatively correlated with 30 day

risk-adjusted mortality for patients in cardiac units (McConnell et al., 2013a); outside the hospital sector, it

has also been found to correlate positively and significantly with productivity, profitability, Tobin's Q, and

firm survival (Bloom and Reenen, 2007).

Reassuringly, the results indicate a positive correlation between these "external" measures of the quality

of the hospital and our estimates of hospital productivity. For example, we estimate that a one standard

deviation increase in the hospital's beta blockers score is associated with a 3 percent increase in hospital

productivity. The results are statistically significant for the beta blockers and composite score; the results for

the hospital management measure (which are available for only a very small subsample of our hospitals) are

significant at the 10% level. We also find that teaching hospitals and urban hospitals have higher estimated

productivity; estimated productivity is higher for non-profit hospitals than for for-profit or public hospitals.

2.4 Main Results: Static and Dynamic Allocation

Table 2.4 presents our central results on the static and dynamic allocation of patients across hospitals. In

our discussion, we focus on column 1, which presents our baseline estimates based on the full set of risk

adjusters (i.e. the same specification as shown in Table 2.2, column 1); the results are not sensitive to the

choice of risk adjusters (columns 2 and 3).

The first row shows our static allocation analysis based on estimation of equation 2.1, examining the cor-

relation between a hospital-year's productivity, ah,t, and the logged number of heart attack patients it
12

The eight measures are 1) given aspirin at arrival, 2) given aspirin at discharge, 3) given ACE inhibitor for left ventricular
systolic dysfunction (LVSD), 4) given smoking cessation advice/counseling, 5) given beta blockers at arrival, 6) given beta block-
ers at discharge, 7) given fibrinolytic medication within 30 minutes of arrival, and 8) given percutaneous coronary intervention
(PCI) within 90 minutes of arrival.

1 3
We are extremely grateful to Nick Bloom for providing us with these measures.
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treats, In (Nh,t). Because we include market-year (HRR-year) fixed effects, this estimate is within market-

year, relating a hospital's market share of heart attack patients to its TFP relative to other hospitals in its

market-year. Our right-hand side measure of aht (= in (Ah,t)) is the estimate of productivity from estima-

tion of the hospital production function in equation 2.5. We bootstrap the standard errors, clustering at the

market level.

The results show a statistically significant positive relationship between productivity and market share,

suggesting that within markets, more market share (patients) tends to be allocated to more productive

hospitals at a point in time. In particular, our baseline estimate suggests that a 10 percent increase in a

hospital's productivity is associated with about a 25 percent higher market share." A visual presentation

of the results is given in Figure 2-2a.

The second row shows our analysis of the TFP-exit relationship based on estimation of equation 2.2, which

examines the within market-year relationship between a hospital-year's productivity ah,t and an indicator

variable for whether the hospital "exits" next year. The regression's right-hand side and standard errors are

calculated as in the static allocation analysis. We define the dependent variable I [exith,t+1] equal to one if

hospital h has less than 5 heart attack patients in each year from year t + 1 to t + 5.15 We measure exit

as the lack of more than 5 patients in each of five subsequent years to try to ensure that we've captured a

"permanent" reduction in volume, as opposed to measurement error stemming from idiosyncratic fluctuations

in the number of patients that a hospital receives.

We find a statistically significant negative relationship between hospital productivity and subsequent exit.

The baseline results suggest that a 10 percent increase in hospital productivity within a market-year is

associated with a statistically significant decline in the probability of exit next year of about 0.3 percentage

points (about an 8 percent decline relative to the baseline exit rate of 4.4 percent).

The bottom row of Table 2.4 shows our analysis of the TFP-growth relationship based on estimation of

equation 2.3, which examines the within market-year relationship between a hospital-year's productivity

(ah,t) and its subsequent one-year growth. The right-hand side and standard errors are calculated as in the

prior analyses. For our left-hand side measure of the hospital's one-year growth rate Ah,t,t+l we define

Nh,t+1 - Nh,t
Ahtt (Nh,t+1 + Nht) (2.6)

where Nh,t is once again the number of heart attack patients treated by hospital h in year t. Our measure

14
Because our sample is limited to hospital-years with at least 5 patients, there is a potential concern about selection on

the dependent variable in the static analysis. (This is not a concern for the subsequent dynamic analysis). We explored the

sensitivity of our static allocation results to an alternative, Tobit-style truncated regression and found that the static allocation

results were slightly strengthened by this adjustment.
15

There are a non-trivial number of hospital mergers over our time period. If hospital A merges with hospital B and physically

shuts down, hospital A is coded as having 0 patients in subsequent years. If however, hospital A and B both continue to exist

physically and admit their own patients (e.g. Beth Israel and Deaconess), they continue to be coded as separate hospitals with

each still assigned the AMI patients whom they admit.
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of the hospital's one-year growth rate thus divides the change in the number of patients between this year

and next year by the average number of patients across these two years. 16

Again, the estimates are statistically significantly different from zero. The baseline results suggest that a 10

percent increase in hospital productivity within a market-year is associated with over a 1 percent increase

in the number of patients the hospital treats in the next year.1 7 Figure 2-2b gives a visual- presentation of

this relationship between hospital productivity and growth.

2.5 Interpretation and Discussion

2.5.1 Mechanisms

The above findings indicate that more productive hospitals have statistically significantly higher market share

at a point in time and are more likely to increase that market share over time. These findings contrast with

the conventional wisdom - summarized in the introductory quotations - that there is little in the healthcare

sector to encourage the growth of higher productivity providers or weed out lower productivity ones. Our

findings place US healthcare, at least qualitatively, in the same part of the spectrum as US manufacturing,

and differentiate it from many less competitive manufacturing settings where these relationships have been

found to not exist or even to have the opposite sign.

What mechanisms might act to allocate more patients to higher productivity hospitals in an emergency

setting like heart attacks'? A definitive answer is beyond the scope of this paper. However, we try in this

section to present some initial, suggestive evidence.

We begin by examining whether the positive relationship between productivity and market share is primarily

driven by patients choosing hospitals that, for a given amount of inputs, are more likely to produce high

survival, or hospitals that, for a given amount of survival, use fewer inputs. Figures 2-5a and 2-5b there-

fore show the within market-year correlation, respectively, between risk-adjusted survival and market share

(conditional on risk adjusted inputs) and between risk-adjusted inputs and market share (conditional on

risk adjusted survival). 18 The results suggest that the productivity-market share relationship is primarily

driven by the relationship between risk-adjusted survival and market share. The positive correlation between

risk-adjusted survival and market share (Figure 2-5a) is virtually the same as that between risk-adjusted
16

This monotonic transformation of the standard percentage growth rate metric bounds growth between -2 (exit) and 12
(growth from an initial level of 0). An attraction of this transformation is that it reduces the chance that the results are
skewed by a few fast-growing but initially small hospitals that would have very large percentage growth rates. This growth rate
transformation has been used in other contexts to avoid unnecessary skewness in the growth rate measure; see, for example,
Davis et al. (1998).

1
7
Table 2.4 reports negative average annual growth; this is primarily due to the fact that our measure conditions on the

hospital initially being in the market.
18As with our productivity estimates, we use an empirical Bayes correction to adjust our estimates of risk-adjusted survival

and of risk-adjusted inputs for measurement error; our procedure accounts for the correlation in measurement error between
these two objects.

64



productivity and market share in Figure 2-2a. The negative correlation between risk-adjusted inputs and

market share (Figure 2-5b) is statistically significant but less than half the magnitude. These findings are

consistent with patients and their surrogates primarily seeking out hospitals that achieve higher risk-adjusted

survival (conditional on risk adjusted inputs) rather than seeking out ones that use fewer risk-adjusted inputs

(conditional on risk-adjusted survival). In practice, we find that risk-adjusted survival and productivity are

extremely highly correlated.

It is not immediately obvious how patients know which hospitals offer longer survival. This ambiguity is

not unique to our study. Indeed, a long-standing question in the field - dating back at least to Arrow

(1963) - is how patients can acquire information on provider quality. One possibility is some form of market-

learning; hospitals acquire a reputation for good outcomes and this reputation spreads through physicians'

professional networks and patients' social networks and influences patients, family members. physicians, and

ambulance drivers to request treatment at hospitals that are better at producing survival. Indeed, in a

related setting, Johnson (2011) finds that cardiac specialists who have higher risk-adjusted survival rates for

their patients are less likely to stop practicing. She interprets this and related evidence as consistent with a

model of market learning by the referring physician. Patients or their family members may also obtain such

information themselves; there is some evidence, for example, that patients respond to provider report cards

(e.g., Dranove et al., 2003 and Dranove and Sfekas, 2008).

An alternative view, however, is that there is no scope for AMI patients or their surrogates to exercise choice

over hospitals because in emergency situations all (or most) patients simply get taken to the nearest hospital.

This hypothesis seems particularly natural given the famous McClellan et al. (1994) use of distance as an

instrumental variable for which hospital treats a given AMI patient. With mechanical assignment of many

patients to the nearest hospital, our static and dynamic allocation results could be produced spuriously if,

for example, within a market, more densely populated (e.g. urban) areas have both higher productivity

hospitals and faster population growth.

In practice, however, this type of strict mechanical allocation rule does not seem able to explain our findings.

For one thing, we estimate that slightly over half of AMI patients go to a hospital that is not the closest

one in their market; in other words, while the McClellan et al. (1994) distance instrument has a significant

first stage with respect to hospital choice, its R2 is far from 1. There is therefore scope for demand to affect

patient allocation to hospitals in the AMI context. Moreover, when we produce a counterfactual allocation

of patients by assigning each patient to his nearest hospital within an HRR instead of the one at which

we observe treatment, our static and dynamic allocation results either substantially attenuate or actually

reverse. 19

Of course, the presence of active hospital choice by AMI patients or their surrogates does not establish

1 9
Specifically, the exit result reverses sign and is statistically insignificant; the growth result is less than 20 percent of

the baseline estimate and is statistically insignificant; the static allocation result remains statistically significant but with a

magnitude that is 20 percent of the baseline estimate; see Appendix Table A4 (Columns 1 vs 3) and Appendix D for more

detail.
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that they are choosing on the basis of hospital productivity or risk-adjusted survival as in the speculative

discussion of market learning above. It is possible that the correlation between productivity and market

share reflects omitted factors that independently drive demand and correlate with productivity. For example,

higher productivity hospitals might also have better non-health amenities like nicer lobbies, which would in

turn influence hospital demand. Alternatively, high productivity hospitals could have better managers who

improve both the production process and separately increase demand for the hospital.

As one highly imperfect and indirect way to gauge what may be driving the observed correlations between

productivity and market share, we briefly examine how the magnitude of these static and dynamic relation-

ships varies across hospitals and across markets. The results, which are shown in Appendix D (especially

Table A5) are mixed. For example, within a market the allocation results are stronger for hospitals facing

more competition for their patients (following Gaynor and Vogt, 2003's use of distance to nearest hospital

as a proxy for hospital competition); however, at the market level there is no evidence that the allocation

results are stronger for more competitive markets (following Syverson, 2004b) use of population density as a

proxy for market competition for a spatially differentiated product. More work is clearly needed to establish

to what extent the allocation and re-allocation to more productive hospitals is a direct result of competition

or the result of other factors that are correlated with both productivity and demand.

2.5.2 Magnitudes

For many economic and policy questions, the mechanism by which market share is allocated to higher

productivity firms is quite important. However, the exact mechanism is less important for forecasting

whether and to what extent the market is evolving in a manner that favors higher productivity firms. Here,

the magnitude of the productivity-market share relationships we estimate becomes important.

To begin to try to shed some light on these magnitudes, we investigate how a hospital's productivity correlates

with its within-market growth and exit over longer horizons than the one-year horizon examined in Table

2.4. Specifically, we re-estimate equations 2.2 and 2.3 replacing the dependent variables I [exith,t+1] and

Ah,t,t+1 with I [exith,t+K] and Ah,t,t+k, respectively.

Table 2.5 shows the results. The first row shows the allocation relationships one year out (i.e. the results

from Table 2.4 where k = 1), and the subsequent rows show results up to 10 years out (k = 10). The

relationship between productivity and growth or exit strengthens in absolute value over time. For example,

a 10% increase in hospital productivity is associated with about 1 percent more patients next year, 4 percent

more patients in 5 years, and almost 6 percent more patients in ten years.20

As another way to provide a sense of magnitude, we calculate the market re-allocation associated with

a standard deviation change of productivity. Our baseline estimate of the national standard deviation of
2 0

Because our data on growth and exit ends in 2007, as k rises, a smaller sample of hospital-years is available for these
analyses. We verified that the finding that these relationships strengthen over time also holds (with quite similar magnitudes)
if we restrict our sample to the hospital-years for which we observe at least 10 years of subsequent growth data (not shown).
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hospital productivity is 0.17.21 Thus a hospital that has one standard deviation higher productivity has

about 40 percent higher market share at a point in time, and grows about 6 percent more over the next five

years.

On the other hand, many other factors besides hospital productivity create the observed variation in market

share. We estimate a partial R 2 on productivity in the static allocation regression (equation 2.1) of about

5 percent, and in the growth regression (equation 2.3) of about 0.06 percent. Of course, noise in our

productivity estimate causes us to understate the ability of (precisely measured) productivity to explain

market share.

As a final way to provide a sense of the magnitudes of these relationships, we compare them to those in

other industries. To do so, we produced estimates of the static and dynamic allocation analyses for the

ready-mixed concrete industry, which produces a physically homogenous product. Details on the data,

estimation and results can be found in Appendix D. Like healthcare, concrete is consumed and produced

locally, so that spatial differentiation (i.e. physical distance) can be an important barrier to competition.

Otherwise, however, concrete lacks many of the features deemed to be important impediments to competition

in healthcare: prices are not set administratively, consumers are likely well informed about their choices,

and they bear the financial consequences of their decisions.

Across all of our static and dynamic allocation measures, the results indicate a stronger (often an order of

magnitude larger) relationship between producer productivity and market allocation for hospitals than for

concrete plants. Likewise, Figure 2-1 shows that national productivity dispersion appears larger for concrete

than for hospitals; we estimate a standard deviation of 0.25 in concrete, compared to 0.17 for hospitals. 22

This comparative finding is not limited to concrete. The static and dynamic allocation analyses are not

easily comparable to pre-existing estimates in other sectors. However, productivity dispersion in other

U.S. manufacturing industries also tends to be similar to (indeed, somewhat larger than) our estimates for

healthcare.2 3

2 1
Appendix D (especially Table A6) presents the dispersion estimates and also shows that they are quantitatively stable

across alternative sets of risk adjusters.
2 2

We follow the tradition of the existing productivity literature and compute productivity dispersion metrics at a nationwide

(within-year) level, even though the market for treating heart attacks is (like many of the manufacturing industries studied)

plainly local. This standard practice arose in part because manufacturing industries, the focus of the previous literature, are

often geographically broad. But the literature has also typically reported nationwide numbers even for those industries that

are more locally oriented, such as ready-mix concrete (Syverson, 2004b), in part because geographic differentiation is itself one

of the possible causes of productivity dispersion within an industry. In practice, we find within-market year dispersion to be

only slightly lower (standard deviation about 0.16) than our national dispersion estimate. Put another way, we estimate that

about 88 percent of the within-year variation in hospital productivity is within (rather than across) markets. For concrete, we

estimate that about 70 percent of the variation in productivity is within market.
2 3

Compared to our estimate of a standard deviation of hospital productivity of 0.17, Foster et al. (2008b) estimate an

average within-industry standard deviation of productivity of 0.22 across a dozen manufacturing industries in the US selected

for having physically homogeneous products (e.g. white pan bread, block ice, raw sugar cane, etc.); Bartelsman et al. (2013)
estimate an average within-industry standard deviation of 0.39 across a broader range of manufacturing industries. Across

450 different narrowly defined (4-digit SIC code) US manufacturing industries, Syverson (2004a) estimates an average within-

industry interquartile range of logged plant productivity of 0.29, compared to our estimate in Table A6 of 0.23 for hospitals.

Although most of the work in productivity dispersion has focused on the manufacturing sector, the more limited work on

productivity dispersion in service industries suggests that in general it is roughly similar to that found in manufacturing.

For example, Fox and Smeets (2011a) estimate productivity dispersion in four Danish service industries and four Danish
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We are not the first to perform such cross-industry comparisons in productivity dispersion. For example,

looking across narrowly defined manufacturing industries, Syverson (2004a) finds that the extent of within-

industry productivity dispersion is negatively correlated with proxies for the amount of substitutability

or competition across firms within that industry. We caution, however, against drawing inferences about

the extent of competition in such different settings as heart attack treatment and manufacturing from

comparisons of productivity dispersion. Basic measurement differences - such as differences in the output

definition (survival vs. revenue), how inputs are measured, and estimation error - raise real comparability

concerns, albeit without creating a clear direction of bias.2 4 Moreover, as noted earlier, the causal force

behind reduced dispersion is unclear, and need not be competitive pressure.

Nonetheless, at a broad level, the comparison may serve as a useful benchmark against which to assess

the quantitative relationships we have estimated for productivity and allocation in the US healthcare sec-

tor. They also seem inconsistent with the conventional wisdom that the variations in inputs across areas

and hospitals without concomitant output gains are unique to healthcare and must therefore result from

idiosyncratic features of the sector.

2.6 Robustness

We explored the robustness of our allocation and dispersion findings along a number of dimensions and

were generally quite reassured by the results. Here, we briefly describe some of our robustness analysis

concerning risk adjustment, measurement of inputs, measurement of output, and potential endogeneity of

inputs. Appendix E presents the results in more detail.

2.6.1 Controls for Patient Health

A key concern is whether we have adequately controlled for patient characteristics that are correlated with

both hospital choice and survival. We have already seen that our core results are robust to controlling for

fewer observable characteristics than in our baseline specification; specifically all of our tables have shown

results with no patient covariates and with only covariates for age/race/sex interactions, in addition to the

"full" set of demographics and co-morbidities. In addition, for one year of our sample we have access to

considerably richer data that are abstracted from patients' medical charts and contain many additionally

manufacturing industries and find generally comparable estimates. Similarly, looking at 4-digit retail industries, Foster et al.
(2006) estimate an average interquartile range for logged labor productivity which is comparable to Syverson (2004a)'s estimate
of the interquartile range for logged labor productivity in manufacturing.

24
To take but one example, the extent of measurement error in output - which would serve to attenuate estimates of the

correlation between productivity and market share and to increase estimated dispersion - is likely different in healthcare than in
manufacturing, although the sign of the difference is unclear. On the one hand, AMI survival is an accurately recorded account
of output, in contrast to manufacturing revenue which could be reported with error and may confound output variation with
price variation (see Foster et al., 2008b and Foster et al., 2012). On the other hand, in manufacturing industries output is more-
or-less a deterministic function of inputs, while survival in our setting is stochastic. As discussed, we use the empirical Bayes
"shrinkage" estimator to try to adjust for this stochastic element and the relatively small sample size within hospital-years.
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relevant clinical characteristics such as test results and medical histories. We find that our results are not

sensitive to including this more extensive set of controls (see Table A8).

2.6.2 Input Measure

We face several key choices with the construction of our input measure. One is how coarsely or finely

to measure inputs. There is a tradeoff between our relatively coarse baseline measure of inputs (with its

associated measurement error stemming from input variation that we do not capture) and more granular

measures which suffer from potential survivorship bias (a patient cannot receive many procedures if she

does not survive very long); we experimented with considerably more granular input measures based on the

individual procedures received and the length of hospital stay. We also explored using these inputs directly in

a multi-input production function rather than aggregating them to a single index as in our baseline approach.

Finally, our baseline measure follows standard practice and defines inputs based only on hospital inpatient

treatments, thereby excluding physician inputs - which may occur both inside and outside the hospital - and

other outpatient inputs. We tried an alternative input measure that incorporates non-hospital inputs. Again

there is a trade-off; some non-hospital inputs may be closely linked (or indeed part of) the care received

in the hospital, while others may be quite distinct. These alternative input measures are each described in

more detail in Appendix B and the results are presented in Table A9.2

2.6.3 Time Horizon

Another issue concerns the time horizon over which we measure inputs and outputs. Our baseline measures

use a 30 day window for inputs and a 1 year window for output (survival days). We explored the robustness

of our results to shorter and longer time horizons - 7 days and 1 year on the input side, and 30 days and 5

years on the output side. Again, there are tradeoffs in the length of time horizon. 26 We find our results are

generally robust to these alternative input and output horizon windows (Table A10).

2 5
Estimation in more traditional settings must also deal with input measurement problems, including issues we do not confront

here stenuing from differential qualities across types of workers and capital, trying to capture the flow of capital services using
measures of capital stocks, and intermediate inputs typically measured by expenditures rather than quantities. Additionally,
and more directly to the issue here, these inputs must also be aggregated to a single-dimensional input index by weighting the

individual inputs appropriately. The theoretically correct weights are the elasticities of output with respect to the respective

inputs. Estimating these elasticities involves its own set of measurement challenges. Our approach in the hospital sector avoids

many of these additional issues.
2 6 On the input side, a shorter time horizon will miss some of the resources the patient receives, while a longer horizon creates

greater scope for survival bias as well as treatments that are linked to providers other than the original hospital. On the output

side, for our baseline measure we chose the relatively standard 1-year horizon since it seemed substantively more of interest

than shorter-term (e.g. 30 day) survival. Analysis of a shorter horizon might capture aspects of hospital productivity that

reflect only a slight postponement in death, and might not capture aspects that affect outcomes through long-term mechanisms
such as the management of complications due to co-morbidities and the quality of the hospital's follow-up care. On the other

hand, with a longer output horizon there is greater scope for the impact of non-hospital factors - such as patient compliance in

terms of diet, smoking and medication, and the impact of doctor quality regardless of whether the doctor was associated with

the initial hospital - on our productivity estimates.
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2.6.4 Potential Endogeneity of Inputs

Finally, as noted earlier, a pervasive concern in the productivity literature is the potential endogeneity of

inputs to producer productivity. This can bias the estimates of the returns to scale parameter p. There is a

wide range of estimates of this parameter in the literature (see e.g. Cutler et al., 1998; Fisher et al., 2003b;

Baicker and Chandra, 2004b) and uncertainty as to the "right" estimate. We are therefore reassured that

our results are quite robust to imposing (rather than estimating) a range of "reasonable" values of y and

then calculating productivity under different imposed values (see table All). The lack of sensitivity of our

static and dynamic allocation results to alternative values of p, is consistent with the results in Figures 2-5a

and 2-5b that the correlation between market share and estimated productivity is driven primarily by the

correlation between market share and risk-adjusted survival. 7

2.7 Conclusion

This paper has examined the relationship between productivity and market allocation in healthcare, specifi-

cally for hospital treatment of Medicare patients' heart attacks. We have done so by drawing on the insights

of several decades of theoretical and empirical work in productivity more broadly. Qualitatively, we find

that higher productivity hospitals have greater market share at a point in time and grow more over time.

Quantitatively, a hospital with a one standard deviation higher productivity has about 40 percent higher

market share at a point in time, and grows about 6 percent more over the next five years.

These relationships, which are driven primarily by the relationship between risk-adjusted survival and market

share, mean that over time the healthcare market evolves in a manner favorable to higher productivity

producers. This qualitative pattern is generally viewed by the broader productivity literature as an empirical

sign of the workings of competition; it has been consistently found within manufacturing industries in the

United States but not in less competitive settings such as post-Soviet Eastern block countries or Chile prior

to trade reforms. Our more speculative quantitative comparisons between healthcare and manufacturing

industries in the US suggest that, if anything, these re-allocation results are stronger, and dispersion similar

or smaller, in healthcare.

Taken together, our qualitative and quantitative findings indicate that the healthcare sector may not be

as idiosyncratic as the conventional wisdom has claimed. In this sense, our results are in the same spirit

as Skinner and Staiger (2007b)'s finding of a common "innovativeness factor" across healthcare and other

sectors within a geographic area; they found that areas of the country that were early adopters of hybrid
2 7

Referring back to the basic estimating equation for hospital productivity (equation 2.5), the fact that the market share-
productivity covariance is not sensitive to ft must mean that there is little variance in risk-adjusted inputs and/or a low
covariance between risk-adjusted inputs and market share - otherwise, changes in the value of p, which ties risk-adjusted input
variation to our estimate of hospital's productivity levels, would change the correlation between estimated productivity and
market share.
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corn in the 1930s and 1940s were also early adopters of beta blockers for heart attacks at the beginning of

the current century.

Such findings suggest that, going forward, research on the determinants of productivity in the health care

sector may benefit from more attention to the insights, both theoretical and empirical, from research about

productivity and allocation in other industries. By the same token, insights from the health care sector

may likewise be a useful laboratory for thinking about other industries. A recent series of papers by Bloom,

Van Reenen and co-authors have begun to do just this, empirically investigating the role of such factors

as management style and labor quality on hospital performance (usually survival rates; see Bloom et al.,

2010; Propper and Reenen, 2010; Bloom et al., 2012a; McConnell et al., 2013a). Moreover, in our healthcare

setting as in the manufacturing setting more broadly, the estimated re-allocation relationships stop far short

of indicating what economic or policy forces could be unleashed to create still greater reallocation to higher

productivity producers. We see a great opportunity for further work that tries to estimate the causal impact

of competition - or other factors - on allocation in healthcare and in manufacturing settings.

Of course, a given amount of re-allocation to higher productivity producers - or a given improvement in this

re-allocation process - may be much more valuable in healthcare than in manufacturing, not to mention of

greater consequence for public sector budgets. In this case, more than healthcare having different market

dynamics, perhaps it is this feature of healthcare that makes it exceptional.
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Productivity Distribution Across Hospitals
and Across Manufacturers
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Figure shows estimated productivity dispersion across hospitals for heart attack treatments
and across concrete plants for the production of ready-mixed concrete. We show the average
within-year fitted normal density for each. Hospital productivity estimates (which reflect the
hospital's ability to produce patient survival given a fixed set of inputs), are from our baseline
specification (Table 2.2, column 1); concrete productivity estimates are from Table A7. See text
for more details on the construction of these estimates.

Figure 2-1
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Relationship between Productivity and Market Share

Static relationship between
productivity and market share

slope=2.42
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Dynamic relationship between
productivity and growth in market share

-. 2 -. 1 0 .1 .2 -. 2 -. 1 0
Productivity (year t) Productivity (year t)

(2-2a) (2-2b)

.2

Figure shows relationship between a hospital-year's market share and productivity after partialing
out market-year fixed effects. Figure 2-2a shows the static relationship between the hospital's log
number of heart attack patients in year t and estimated productivity in year t; Figure 2-2b shows the
dynamic relationship between the hospital's percent growth in heart attack patients between year t
and t+1 (defined in equation 6) and estimated productivity in year t. Hospital productivity estimates
(which reflect the a hospital's ability to produce patient survival given a fixed set of inputs) are from
our baseline specification (Table 2.2, column 1). Figures show results for a random 5% of hospital-years,
with hospital-years that have less than 11 patients suppressed form the scatter for confidentiality reasons.
In addition, in Figure 2-2b for visual clarity the y-axis is restricted to the almost 95% of hospital-years
with residual growth between -0.8 and 0.8. In both graphs, line shows the linear fit based on the whole
sample (prior to any suppression).

Figure 2-2
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Model of Production Function
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y=A1*x" (Hospital 1) - - - - - - y=A 2 *xu (Hospital 2)
Hospital 2 has higher productivity than hospital 1.

Figure 2-3
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Relationship Between Productivity and Quality
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Figure plots the relationship between our estimate of 2003 hospital-year TFP (from our baseline
specification in Table 2.2, column 1, but without the empirical Bayes adjustment) against specific
observable measures of hospital quality. Left hand panel plots relationship between the hospital's
TFP and its beta-blockers z-score in 2003 for the 1,045 hospitals where we observe both (6 hospitals

with outlying z-scores are not shown). Right hand panel shows the relationship between the hospital's
2003 TFP and its management z-score for the 179 hospitals where we observe both. See text for more

detail on both of these z-scores. Hospitals that have less than 11 patients in 2003 are suppressed
from the scatter for confidentiality reasons. Line shows the linear fit based on the whole sample
(prior to any suppression and removal of outliers).

Figure 2-4
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Unpacking the Relationship between
Productivity and Market Share

Relationship between Survival and
Market Share
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Figure shows relationship between a hospital-year's
market share and risk-adjusted survival after partialing outmarket-year fixed effects and risk-adjusted inputs. Y-axis
is the log number of heart attack patients in year t; x-axis
is the hospital's risk-adjusted average log-survival in yeart. Baseline risk adjusters (shown in Table 2.1b) are used.
Figure shows results for a random 5% of hospital-years, with
hospital-years that have less than 11 patients suppressed
from the scatter for confidentiality reasons. For visual
clarity, the x-axis is restricted to the 97% of hospital-
years with residual survival between -0.2 and 0.2. Line
shows the linear fit based on the whole sample (prior to
any suppression or restriction).
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Relationship between Inputs and
Market Share
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Figure shows relationship between a hospital-year's
market share and risk-adjusted inputs after partialing outmarket-year fixed effects and risk-adjusted survival.
Y-axis is the log number of heart attack patients in yeart; x-axis is the hospital's risk-adjusted average log-input
in year t. Baseline risk adjusters (shown in Table 2.1 b) areused. Figure shows results for a random 5% of
hospital-years, with hospital-years that have less than 11
patients suppressed from the scatter for confidentialityreasons. For visual clarity, the x-axis is restricted to the
99.9% of hospital-years with residual inputs between -0.2
and 0.2. Line shows the linear fit based on the whole sample
(prior to any suppression or restriction).

(2-5b)

Figure 2-5
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Tables

Table 2.1a - Hospital and market statistics

(1) (2) (3) (4)
Mean SD Min Max

Hospital-Years (N=55,540)
Patients 63.57 69.63 5 917

Market-Years (N=4,560)
Patients 774.2 735.2 63 5,700
Hospitals 12.18 11.38 1 97

Note: The number of hospitals is 5,346.

Table 2.1b - Patient Summary Statistics

(1) (2)
Mean SD

Outputs
Survival (days; censored at 365) 268.1 149.4
Binary: Survival > 365 Days 0.660 0.474

Inputs
Baseline (30 day) input measure ($) 15,996 12,172

Risk Adjusters
Age 78.17 7.546
Female 0.507 0.500
White 0.906 0.291
Hypertension 0.207 0.405
Stroke 0.0232 0.150
Cerebovascular Disease 0.0398 0.195
Renal Failure 0.0521 0.222
Dialysis 0.00670 0.0816
COPD 0.0981 0.297
Pneumonia 0.0592 0.236
Diabetes 0.128 0.334
Protein Cal Malnut 0.0118 0.108
Dementia 0.0412 0.199
Paralysis/FD 0.0256 0.158
Periph Vasc Disease 0.0639 0.245
Metastatic Cancer 0.0117 0.107
Trauma 0.0392 0.194
Substance Abuse 0.0225 0.148
Major Psych Disorder 0.0138 0.117
Chronic Liver Disease 0.00281 0.0529

Note: The number of observations is 3,530,401.
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Table 2.2 - Production Function Parameter Estimates

(1) (2) (3)
Risk Adjustment: Baseline Age/Race/Sex None

Parameter
0.446 0.481 0.589

(0.00511) (0.00523) (0.00552)

Notes: N = 3,530,401 patients, 55,540 hospital-years, and
5,346 hospitals. Standard errors are bootstrapped with 300
replications and are clustered at the market level (304
markets). "Baseline" risk-adjustment includes a full set of
interactions between age (in five year groupings), gender
and whether the patient is white; it also includes indicators
for the various co-morbidities shown in Table 2.1; column 2
excludes the co-morbidities and column 3 has no risk
adjusters.
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Table 2.3 - Relationship Between Hospital TFP and Hospital Covariates

(1) (2) (3) (4) (5) (6)
ln(Prod) ln(Prod) In(Prod) ln(Prod) In(Prod) ln(Prod)

Beta-Blockers Z-Score 0.0299

(0.00667)
Composite Z-Score 0.0299

(0.00676)
Management Z-Score 0.0511

(0.0290)
Teaching Hospital 0.0799

(0.0129)
Urban 0.0696

(0.0160)
For-Profit 0.0228

(0.0266)
Non-Profit 0.101

(0.0221)

Constant 0.0382 -0.0147 -0.0609 -0.0810 -0.102 -0.127
(0.00577) (0.00590) (0.0248) (0.00890) (0.0144) (0.0202)

Observations 1,045 2,183 179 3,361 3,361 3,363

Unit of observation is a hospital. Dependent variable is our estimate of 2003 hospital-year TFP from our

baseline specification (Table 2.2, column 1) without empirical Bayes adjustment. Right hand side variables

in columns 1 through 3 are z-scores for hospitals that reported the measure indicated. Data on beta-

blockers and composite scores are from CMS Hospital Compare; beta-blockers score includes hospitals

with at least 30 patients appropriate for the treatment, while composite score includes hospitals with a

sum of at least 30 patients appropriate for each of the treatments within the score. Data on management

score are based on a 2010 survey of management practices adminstered by Bloom et al. (2012); see text

for more details. Right hand side variables in columns 4 through 6 are indicators for whether the hospital

is a teaching hospital (Column 4), in an urban area (Column 5), or is a for-profit or non-profit entity

(Column 6, public is the omitted category). Indicators for hospital characteristcs are coded from CMS

Provider of Services and Impact files; we define a teaching hospital as one that has residents. Standard

errors are bootstrapped with 300 replications and are clustered at the market level.

79



Table 2.4 - Main Results - Allocation Metrics

(1) (2) (3) (A) (B)
Risk Adjustment: All Age/Race/Sex None DV Meana Observations
Static Allocation 2.418 2.496 2.618 3.641 55,540

(0.0889) (0.0851) (0.0779)
Dynamic Allocation

Exit Regression -0.0329 -0.0353 -0.0458 0.0438 40,379
(0.00935) (0.00884) (0.00766)

Growth Regression 0.133 0.154 0.201 -0.126 52,777
(0.0225) (0.0214) (0.0184)

Notes: "Static Allocation" reports the results from estimating the relationship between a
hospital's log(patients) and TFP (i.e. productivity) within a market year given by equation
(1). "Exit regression" reports the results from estimating the within-market relationship
between a hospital "exit" as defined in the text and last year's productivity as given by
equation (2). "Growth regression" reports the results from estimating the within-market
relationship between a hospital's one-year percent growth and its base year productivity as
defined in equation (3). Productivity is estimated based on the corresponding
specifications from Table 2.2. Standard errors are bootstrapped with 300 replications and
are clustered at the market level. Observations are hospital-years.

al DV mean" reports the mean of the dependent variable for the regressions, which is
ln(Patients) for the static allocation regression, 5-year exit for the exit regression, and 1-
year growth for the growth regression. See text for more detailed definitions of dependent
variables.
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Table 2.5 - Dynamic Allocation Varying Time Horizons

Growth from t to t+k

Std Err Mean DVa
(0.022)
(0.027)
(0.038)
(0.047)
(0.052)
(0.062)
(0.068)
(0.070)
(0.074)
(0.077)

-0.126
-0.224

-0.314

-0.392
-0.462

-0.530
-0.598
-0.666
-0.735
-0.807

Obs
52,777

49,954
46,961
43,742

40,379

36,864
33,163
29,338
25,359

21,320

Coeff
-0.033
-0.056
-0.085
-0.122

-0.147

-0.165
-0.203
-0.224

-0.242

-0.212

Exit in t+k

Std Err Mean DVa Obs

(0.009)
(0.014)
(0.019)
(0.023)
(0.028)
(0.030)
(0.037)
(0.040)
(0.049)
(0.060)

0.044
0.077
0.108
0.137
0.166
0.195
0.226
0.255
0.284

0.313

40,379

36,864
33,163
29,338
25,359

21,320

17,226

13,050
8,761

4,412

These results report the coefficient and its standard error from the regressions of growth or
exit on productivity, controlling for market-year fixed effects. These are modified versions of
equations (2) and (3) where the time horizon over which growth or exit is measured is now k
years rather than 1 year. Each row considers a different time horizon k. Longer horizons have
smaller samples because data on growth ends in 2007 and data on exit ends in 2003. Standard
errors are bootstrapped with 300 replications and are clustered at the market level.

' "Mean DV" refers to the mean of the dependent variable (growth or exit) in the sample over

the time horizon indicated.
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1
2
3
4
5
6
7
8
9

10

Coeff

0.133
0.207
0.270
0.345
0.365
0.397
0.477
0.526
0.573
0.587



Chapter 3

Do Incentives Affect Treatment

Decisions in the Hospital? Evidence

from a Medicare Reform*

3.1 Introduction

A central question in public policy is how to set prices optimally in regulated industries. The health care

sector is perhaps the most salient among such industries, accounting for nearly one-fifth of output in the

United States. Price-setting offers a lever to improve the efficiency of this sector; depending on how health

care providers respond to alternative payment regimes, properly set prices could reduce wasteful spending

and nudge providers to practice more cost-effectively (McClellan, 1996). How providers alter their treatment

patterns in response to changes in relative payments - and how patient outcomes are affected in turn - is

therefore a key topic of both academic research and a significant parameter for health policy (Cutler, 1995;

Gilman, 2000; Ellis and McGuire, 1996).

I utilize a recent Medicare payment reform to isolate shocks to payments to hospitals for treating lung cancer

patients. These shocks affected the relative reimbursement rates for the three broadly defined treatment

approaches that Medicare recognizes for these patients. By exploiting exogenous variation in relative prices,

I am able to estimate the substitution matrix of treatment approaches with respect to relative treatment

*1 am grateful to Amy Finkelstein, Michael Greenstone, and Jon Gruber for their advice and guidance on this project. I thank
Isaiah Andrews, David Chan, Arun Chandrasekhar, Manasi Deshpande, Kate Easterbrook, Ben Feigenberg, Matt Fiedler, Eliza
Forsythe, Greg Leiserson, Conrad Miller, David Molitor, luliana Pascu, Maxim Pinkovskiy, Maria Polyakova, Miikka Rokkanen,
Annalisa Scognamiglio, Brad Shapiro, Mark Shepard, Henry Swift, Melanie Wasserman, and participants in the Harvard Works
in Progress Seminar and MIT Public Finance lunch for their comments and suggestions. I would also like to thank Jean Roth
for her assistance with all aspects of the Medicare data. I gratefully acknowledge funding from the National Institute on Aging
grant T32-AGO00186.
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prices - the full set of own- and cross-price elasticities. I find estimates of these elasticities that are right-

signed and economically meaningful. For example, I show that increasing the relative reimbursement for

minor surgery (the treatment approach of intermediate intensity) by $1,000 would increase the surgery rate

by about 1.6pp, with patients drawn partly from medical management and partly from major surgery (the

low and high intensity approaches, respectively) - though this estimate is marginally insignificant at the

10% level. This variation also allows me to explore whether the changes in treatment patterns had effects on

patient outcomes like readmission and mortality rates, though issues with statistical power make it difficult

to reach conclusions in these specifications.

This research speaks to several open questions in health economics and policy. First, though it may be a priori

obvious that hospitals respond to prices, the scale of that response is not at all clear from theory. I show that

the response appears to be substantial. Second, the own- and cross-price elasticities are highly policy relevant,

relating to the potential effects of Accountable Care Organizations (ACOs) and other proposed reforms to

payment systems. In a policy simulation, I show that a reform that eliminates incentives for treatment at the

margin would reduce treatment intensity, though the magnitude of the reduction is measured with so much

noise that it is not statistically significant. Finally, the health effects of manipulating treatment patterns

with prices are ambiguous, but are clearly central in evaluating the costs and benefits of these policies. I

attempt to isolate a measurable effect of the reform on health outcomes, but weak identification limits my

power in these specifications.

As public and private insurers have increasingly focused on paying for quality and value rather than volume,

the effects of powering down incentives for intensity have become a key policy input. Public agencies play

an outsize role in price-setting, controlling payments to the health care providers of the millions who receive

insurance through government programs and providing a baseline against which private insurers set their

own policies (Clemens and Gottlieb, 2013). The Affordable Care Act (ACA) has placed a renewed emphasis

on using payment policy to improve the efficiency and value of the US health care system. The results from

this study provide important evidence to predict some of the effects of reform law projects like ACOs, which

lower the incentives for treatment intensity at the margin.

At the sane time, insurers are considering refinements to the existing prospective payment systems which

pay health care providers based on the expected but not realized costs of treatment. Real-world prospective

payment systems deviate from full prospectivity by also allowing payments to depend on the broadly defined

treatment approach chosen by the provider, but the granularity of the treatment approaches differs from

system to system. Insurers - and state Medicaid programs in particular - frequently consider switching to

payment systems with more narrowly defined categories of treatment. This study provides evidence that

changes in incentives due to treatment category refinements will influence treatment patterns.

I exploit variation in reimbursements due to a 2008 Medicare hospital payment reform.' I focus on lung

1 All years are federal fiscal years unless otherwise noted. Federal fiscal years start on October 1 of the preceding calendar
year. Therefore the FY2008 Medicare reform took effect on October 1, 2007.
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cancer because the Medicare payment system recognizes just three treatment approaches for these patients,

reducing the number of own- and cross-price elasticities to be estimated. Figure 3-1 shows the evolution

of reimbursement for major treatment and minor treatment relative to medical management due to the

reform - the key variation that the study will exploit. The reform changed how payments to hospitals were

adjusted for the severity of illness of patients - conditional on treatment approach, the reform tended to raise

payments for treating relatively sick patients and reduce payments for treating relatively healthy patients.

Crucially, these changes differed by treatment approach.

The econometric strategy that I utilize is an instrumental variables differences-in-differences approach. To

address concerns about the endogeneity of prices, I construct instruments for the returns to treatment ap-

proaches. Research has demonstrated that hospitals respond to severity adjustment by providing better

documentation of high-severity conditions for marginal patients (Dafny, 2005a; Sacarny, 2014). Documen-

tation and coding improvements induce a correlation between the return to treatments following the reform

and a patient's unobserved appropriateness for those treatments. My instruments take advantage of per-

sistent differences across hospitals in the average severity of illness of their patients. In this strategy, the

instruments are hospital-level predictions of the returns to treatment approaches. To eliminate the possibility

that endogenous documentation improvements drive variation, the predictors are constructed using patients

in years prior to the analysis sample; these patients are re-priced under the payment rules of the analysis

sample.

The differences-in-differences strategy exploits witbin-hospital over-time variation in the instruments; this

variation is driven by base year variation in patient severity of illness across hospitals interacted with the

changes in the price of severity induced by the reform. This strategy makes two strong assumptions: that

the sorting of patients to hospitals along the severity dimension does not change systematically due to the

reform, and that hospitals do not respond to the reform by adjusting their propensity to admit patients

to the inpatient setting. I perform specification checks to test whether these margins were operative, but

the checks are inconclusive. The four specifications mostly fail to reject a null consistent with instrument

exogeneity, but do so with low statistical power.

This work adds a new perspective to existing literature studying the effects of prospective payment reforms

on how patients are treated in the hospital and how their outcomes are subsequently influenced. Cutler

(1995), perhaps the most notable work of this literature, finds that the Medicare Inpatient Prospective

Payment System (IPPS) had slight effects on the timing of death, and bases its hypothesis on a view of

IPPS as reducing marginal incentives for treatment intensity across the board. Ellis and McGuire (1996),

similarly, derive and test predictions of prospective payment assuming it eliminates incentives for intensity

of treatment.

In contrast, I follow Gilman (2000) in considering the implications of the partial non-prospectivity of the

IPPS. Gilman looks at the introduction of new payment categories for HIV inpatients covered by Medicaid
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in New York state in the mid 1990s. The New York reform recognized certain surgical approaches as distinct

payment categories, creating a return to surgery; the study estimates that the partial effect of the incentives

for treatment at the margin was an increase in treatment intensity, though other incentives created by the

reform made the total effect of the policy on intensity negative. More recently, Dafny (2005a) uses a reform

to the Medicare inpatient PPS severity adjustment system as a shock to the price of different treatments,

but finds no evidence that hospitals alter their "real" treatment patterns in response.

I differ from earlier work by focusing directly on the choice of treatment approach that the patient receives,

estimating the full substitution matrix of own- and cross-price elasticities over the approaches; to do so I

limit my analyses to lung cancer patients, for whom the treatment approaches are limited and the estimation

therefore tractable. This analytical approach is novel in the literature and I have heretofore been unable to

find any economic work that has used it in the context of prospective payment.

I proceed as follows: in section 3.2, I provide an overview of prospective payment and the 2008 reform and

discuss the data. In section 3.3, I explain the instrumental variables differences-in-differences approach and

its identification assumptions. Section 3.4 presents the results. In section 3.5 I present specification tests,

and I conclude in section 3.6.

3.2 Background and Data

Lung cancer accounts for about one-sixth of cancer deaths worldwide and about 160,000 deaths in the United

States annually (Hoffman et al., 2000). In my data, I observe about 90,000 hospital admissions each year

for lung cancer among elderly Medicare patients. Patients with lung cancer may present in the hospital

for a variety of reasons and their treatment may take courses of varying intensity. Treatment approaches

include relatively minor non-operating room procedures like fine needle biopsies, which can be useful in the

diagnosis of the cancer; more intensive diagnostic methods like mediastinoscopy, in which a diagnostic scope

is introduced through a chest incision; and extremely invasive surgeries involving the opening of the chest

cavity, such as the removal of an entire lobe of the lung. Treatment guidelines depend on the type of cancer

suspected and are evolving as technology improves and new research is released (Goldstraw et al., 2011).

This study focuses on the interaction of two key aspects of payment for patients with lung cancer: treatment

approach intensity and patient severity of illness. The former term refers to the level of resources that tend

to be utilized in the treatment approach - a higher intensity approach involves more inputs, including time

at the hospital, labor from nurses and physicians, and use of operating rooms. For example, treating a lung

cancer patient outside the operating room with a fine needle biopsy is of much lower intensity than treating

the patient with an operating room procedure like a lobectomy (the removal of a lobe of the lung).

Likewise, severity of illness refers to the patient's mortality risk and loss of function. Patients with higher

severity, or equivalently with a greater level of illness, are likely to require greater hospital resources condi-
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tional on treatment approach (3M Health Information Systems, 2007). High severity conditions (as defined

by Medicare's payment mechanisms) common among lung cancer patients include pneumonia and respira-

tory failure. These conditions are associated with greater resource utilization in the hospital. Common low

severity conditions include hypertension and type II diabetes - patients with these conditions do not tend

to have greater utilization than those without them.

The analyses in this study concern the incentives for different treatment approaches under the Medicare

Acute Inpatient Prospective Payment System (IPPS), the $111 billion program that pays most hospitals in

the United States for inpatient stays (MEDPAC, 2012a). A 2008 reform to the IPPS - the most substantial

change to the program since it was created - refined how hospital payments depended on patient severity

of illness. In this section, I explain how the IPPS generates a financial return to broadly defined treatment

approaches and how this return was changed by the 2008 reform.

3.2.1 Prospective Payment and the Return to Treatment Approaches

Under prospective payment, hospitals are paid a fixed, largely predetermined sum for treating each patient.

The word prospective is meant to indicate that payments are set ex ante independent of the intensity of

treatment, in contrast to earlier retrospective systems in which facilities were fully reimbursed for all so-called

"reasonable and customary" charges realized in the course of care. By reducing incentives for overtreatment

at the margin, prospective payment offered the potential to improve the efficiency of the health care sector

(Newhouse, 1996; Weisbrod, 1991).

Since 1984 Medicare has paid most acute care hospitals prospectively under the IPPS. The unit of payment

in the IPPS is the diagnosis-related group (DRG). Each DRG is associated with a "weight", or resource

intensity. To determine reimbursement, DRG weights are converted into dollars using a national conversion

factor adjusted for attributes of the local labor market and certain hospital characteristics (Centers for

Medicare and Medicaid Services, 2013). Since each hospital has one conversion factor, the relative prices of

DRGs are the same across facilities.

The IPPS deviates from an idealized model lacking any incentive for treatment at the margin. DRGs are

partitioned into two branches, medical and surgical. Medical DRGs classify patients who were treated

without an operating room procedure using their primary diagnosis, the diagnosis ruled responsible for the

patient's admission to the hospital. Surgical DRGs handle patients who received such a procedure and

classify patients on the basis of the highest intensity procedure that was performed. Hospitals that opt to

treat a patient with a qualifying procedure receive the surgical DRG payment rather than the medical DRG

payment, which can create an incentive (or counter-incentive) to perform such procedures.

The presence of surgical DRGs helps to ensure that hospitals that treat patients relatively intensively are

reimbursed their expected costs (McClellan 1996 discusses the implications of this aspect of the IPPS for
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productive efficiency). These categories are defined broadly, and within a category additional treatments

do not generally result in greater reimbursements to the facility. In other words, the IPPS reimbursement

depends on the treatment approach, but hospitals that treat intensively conditional on the approach will not

systematically receive greater payments from Medicare. For example, for the vast majority of lung cancer

patients, running additional laboratory tests and diagnostic scans will not raise the hospital's reimbursement

regardless of the treatment approach that the patient receives. 2

Return to Surgery for Lung Cancer Patients

This study focuses on patients with a primary diagnosis listed in the "Respiratory Neoplasms" medical

DRG - a set of diagnoses covering benign and malignant cancers throughout the lung and other parts of

the respiratory system. If these patients receive medical management or low-intensity non-operating room

procedures, they fall into the Respiratory Neoplasms DRG and hospitals receive the payment associated

with that DRG's weight.

However, when these patients receive operating room procedures, the IPPS classifies them into a surgical

DRG. The vast majority fall into two such DRGs: "Other Respiratory Procedures", which I refer to as minor

surgery, and "Major Chest Procedures", which I refer to as major surgery.3 Patients in the minor surgery

category receive procedures like mediastinoscopy and closed (i.e. not requiring chest incisions) biopsies.

Procedures in the major surgery category include higher intensity operations like lobectomies and open (i.e.

requiring chest incisions) biopsies. A patient who receives procedures in both categories is classified into the

"major" DRG.

This arrangement of medical and surgical DRGs implies that the IPPS recognizes three key treatment

approaches for lung cancer: medical management, minor surgery, and major surgery. Relative to medical

management, the returns to major and minor surgery are given by the reimbursement for these surgeries less

the reimbursement for medical management.

3.2.2 Patient Severity and Payment Reform

Much of the difficulty of designing health care payment systems centers on how to reduce the incentive for

providers to cherry-pick inexpensive patients and how to ensure that providers that treat expensive patients

are compensated sufficiently that they remain solvent. The IPPS addresses these concerns by adjusting its

payments for patient severity of illness. Many DRGs "split" on the basis of severity, yielding a higher weight

2
Thc exception to this rule comes from outlier payments, which reimburse hospitals for 80% of their costs above a fixed loss

threshold. These payments act as insurance for hospitals against unusually expensive cases.
3
There are three other categories of classification, accounting for 3% of lung cancer patients. The first contains patients who

receive extraordinarily intensive procedures like lung transplants. The second includes patients receiving mechanical ventilation.

The last comprises patients who have lung cancer but receive a major surgical procedure unrelated to the respiratory system.

I exclude patients who fall into these categories from my analysis.
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- and thus a higher reimbursement - for higher severity patients. Conditional on treatment approach, a

hospital's reimbursement for a patient depends almost entirely on the patient's severity of illness.

A patient's severity is defined as the highest severity diagnosis that was submitted by the hospital on its

insurance reimbursement claim (though the severity of the patient's primary diagnosis is not counted in

the calculation). The severity system therefore comprises a mapping from the approximately 13,000 ICD-9

diagnosis codes to a set of severity levels.

The 2008 IPPS reform updated and refined the severity system to address policymakers' concerns about

patient selection incentives and underpayment of providers. Prior to the reform, the IPPS recognized two

levels of severity. 7% of lung cancer patients were classified in the low severity (called "no complication or

coinorbidity") category and 93% were high severity ("with complication or comorbidity"). With so many

patients crowded into the upper category, the capacity for severity adjustment to improve the matching of

reimbursements to expected costs was curtailed.

To address policymakers' concerns, the reform carved out an additional severity level for patients who were

particularly ill and rewrote the mapping of diagnosis codes to severity levels, demoting many codes to low

severity. The result was a more even distribution of patients into the categories: in the year after the

reform, 13% of lung cancer patients were low severity ("no complication or comorbidity"), 49% were medium

severity ("with complication or comorbidity"), and 38% were high severity ("with major complication or

comorbidity"). With more granular categories, the IPPS was able to raise reimbursements for sicker patients

while lowering them for healthier ones. 4

Table 3.1 shows the levels of reimbursement for the three lung cancer treatment approaches and how they

changed following the reform. Since the reform was phased in over 2 years, the table shows payment rates

in 2007, the last year prior to the reform, and compares them to payment rates in 2009, the first year in

which it was fully phased in. It shows that payments for treating the sickest patients rose substantially,

while payments for treating relatively healthy patients fell.5

One can define the return to surgery for minor and major surgery as the payment for the surgical DRG less

the payment for the medical DRG. For a patient p of severity s (p) in year t, this return is:

ret = payment - paymrent" ca (3.1)

retmajor mentma or - tmedicaleS(p)t payse(p)t spymn(p)t (3.2)

4 To reflect the role of severity in the DRGs, the name of the IPPS methodology was changed from CMS-DRGs (CMS, or
Centers for Medicare and Medicaid Services, is the agency that administers the Medicare program) to MS-DRGs - Medicare
Severity DRGs.

5While reimbursements for performing minor surgery on low severity patients ostensibly rose from $7,645 to $8,640, the low
severity definition was expanded due to the reform. Many patients in the post-reform low severity category would have been
categorized as high severity before the reform. Reimbursements for treating these patients therefore fell substantially.
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The shocks to reimbursements differed substantially across treatment approaches and depended on patient

severity. As a result, the returns to surgery given in equations 3.1 and 3.2 were also dramatically altered.

Table 3.2 lists these returns before and after the reform, and figure 3-1 depicts the evolution of these returns

for three types of patients: low severity (low before and after the reform), medium severity (high before the

reform, medium after it), and high severity (high before and after the reform). By these definitions, 6% of

patients were low, 49% were medium, and 35% were high. Most of the remaining patients were classified as

medium severity before the reform and low severity after it.

The right pane of figure 3-1 shows that the severity adjustment raised the return to major surgery for the

sickest patients and lowered it for the healthiest. The left pane tells a somewhat more complicated story -

the return to minor surgery for the healthiest patients actually rose. This counterintuitive result occurred

because the low severity category was expanded to include more patients, which meant including sicker and

thus more costly patients. On the other hand, the return to minor surgery for medium severity patients fell,

while the return rose for high severity patients.

3.2.3 Data and Summary Statistics

My study analyses the effect of incentives for treatment approaches using a dataset of hospital insurance

claims for reimbursement from Medicare. The dataset is called the MEDPAR RIF, which is a 100% sample

of these claims. The MEDPAR file includes all of the information needed to determine a patient's DRG,

including the patient's primary and secondary diagnoses and the major procedures they received during

their hospital stay. I use the data to construct two datasets: an analysis sample of patients in the years

immediately before and after the reform, and an instrument sample of patients in earlier years.

Both the analysis and instrument samples are limited to lung cancer patients. To isolate these patients, I

use a piece of software called a grouper that takes information about the reimbursement claim and maps

it to the patient's DRG.6 I define lung cancer patients as those who, when their surgical procedures are

removed from the claim, are classified by the grouper into the Respiratory Neoplasms DRGs. These patients

have a primary diagnosis - the diagnosis ruled responsible for their admission to the hospital - of benign or

malignant cancer in the lung or other parts of the respiratory system.

I limit to short-term US hospitals that are paid according to the federal IPPS. Hospitals that are exempt from

this system include Critical Access Hospitals, which are small rural facilities, and Maryland hospitals, which

use a special PPS system administered by the state government; I exclude these facilities from the analysis.

At the patient level, I limit to individuals who were at least 65 years old and whose stays were covered by

Original (i.e. fee-for-service) Medicare, not private Medicare Advantage plans. The non-elderly covered by

Medicare are a unique population and may not be comparable to the elderly. Medicare Advantage stays
6
The grouper was purchased from http://www.drggroupers.com.
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may be poorly observed in the data; in addition, these plans have latitude to use their own reimbursement

methods, so incentives for treatment are not well measured for these stays.

In addition, because the econometric approach requires data about the patients at the hospital in a base

period before the reform, I also limit to hospitals in which I observe lung cancer patients in 2003, 2004, and

2005. The lung cancer patients discharged in these years form the instrument sample, consisting of 288,791

patients discharged across 2,946 hospitals.

The analysis sample consists of lung cancer patients discharged from 2006 through 2009 - two years before

and after the reform - that fit the listed criteria. The sample contains 337,198 patients across 2,946 hospitals.

Summary statistics on these patients are given in Table 3.3. Lung cancer patients are 76 years old on average

and about half are female. 57% are managed medically, 13% receive minor surgery, and 30% receive major

surgery. By the pre-reform severity definitions 93% were high severity, but by the post-reform definitions

only 35% were at the top level.

Outcomes for lung cancer patients in the analysis sample are generally poor. Almost 10% die in the hospital,

over 30% die within 30 days of discharge, and nearly half die within 90 days of discharge. About one-fifth

are readmitted to an inpatient facility within 30 days of discharge; that share increases to about one-third

when the readmission window is expanded to 90 days.

3.3 Research Design

This study seeks to estimate the elasticities of treatment approaches with respect to reimbursement.7 I

specify the minor and major surgery treatment rates as linear in the returns to the treatments given in

equations 3.1 and 3.2:

treatinor _ minor minor minor tmajor minor
Pt own s(p)t + across reS(p)tr pt

treatjaior __ ma3r tminor + ,major etmajor major
Pt cross s(p)t own s(p)t Pt

Where p indexes patients, t indexes years, and s (p) is the patient's severity. treatx indicates that the patient

received treatment X, while retX is the return for treatment X in $1000s relative to medical management.

The -yown coefficients are therefore the percentage point increase in the treatment rate of X following an

increase in the return to treatment X of $1000. The Icrss coefficients are the percentage point increase in

the treatment rate of X when the return to treatment -X is raised by $1000. Economic theory suggests

that the own-reimbursement coefficients should be positive and the cross-price coefficients should be negative

(under the assumption that they are substitutes).
71n section 3.4.4 I consider how my instruments can identify the effects of treatments on health outcomes.
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Due to the design of the DRGs, the estimation of these equations raises significant endogeneity issues. In

this section, I explain the sources of endogeneity and how my identification strategy attempts to resolve

them. I also explain potential concerns with this strategy.

3.3.1 Sources of Endogeneity

There are two key omitted variables from the equations of interest that prevent a simple regression from

revealing the causal effects of reimbursements on treatment and of treatment on outcomes: unobserved

patient appropriateness for the treatments and endogenous exaggeration of patient severity.

The first unobservable in equations 3.3 and 3.4 is a measure of the patient's appropriateness for the treatment.

In these equations, the source of variation in the return to treatment within a year is due to the patient's

severity of illness s (p). There is good reason to think that this severity is correlated with appropriateness:

a patient's level of illness can affect the probability that she survives the surgery and the expected benefit

of the treatment conditional on surviving the operation.

To provide some suggestive evidence on differences in appropriateness, figure 3-2 breaks out the treatment

approaches that patients receive by their post-reform severity categories and reveals dramatic differences

along that dimension. Sicker patients are more likely to be treated with medical management and minor

surgery; they are less likely to receive major surgery. Though these statistics reflect equilibrium treatment

choices, the incentives for intensive treatment are rising with severity even though intensity falls along this

dimension. The figure is therefore strongly suggestive of differences in appropriateness for treatments across

the categories.

Within a year, controlling for the full set of observables about a patient would effectively absorb all the

variation in the returns to treatment - that return is solely a function of the patient's severity, a report of

which is observed in the data. The severity adjustment reform is therefore attractive, because conditional

on a patient's severity, it induces time variation in the return to treatment. This intuition suggests that

simply adding time-constant severity controls to equations 3.3 and 3.4 could solve the issue of unobserved

appropriateness. For example, the equations could be augmented with year fixed effects It and a set of

dummies for the patient's severity classification by the pre- and post-reform rules S.:

treatA =t + SPO- + 2 r - retx s)t + -Ycoss, ret () + E (3.5)

In this specification, patients that were low severity before and after the reform would receive one shock

to the returns to treatment, while patients that were high severity before and medium severity after would

receive another, and so on. An identifying assumption is that conditional on severity, there is no residual

correlation between patient unobservables and the return to the treatment approach:
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E -ret(P)tjret-S ,..., S,] =0

This identifying assumption is unlikely to be satisfied due to the endogenous documentation and coding

response of hospitals. It has been well established that when hospitals are paid more to treat sick patients,

they go to greater lengths to find evidence of illness and submit higher-severity codes on their reimbursement

claims (Dafny, 2005a; Sacarny, 2014; Silverman and Skinner, 2004). Figure 3-3 provides evidence of this

phenomenon in the analysis sample. The left pane shows how patients in 2006 (prior to the reform) would

have been classified according to the post-reform severity system. The right pane shows how patients in 2009

were actually classified following implementation and the documentation and coding response. The share

of low and medium severity patients fell, with a nontrivial share of patients moving into the high severity

category.

The coding response implies that patient unobservables within a severity category are changing over time

- for example, the strong incentive to move patients into the high-severity category likely drove down the

average underlying (unobservable) level of illness of patients in this category. However, since the return

to surgery also varies within a severity category, it is likely that the return and the unobservables were

correlated. This violates the identifying assumptions of the specification .

3.3.2 Instrumental Variables Strategy

The endogeneity of returns to treatment even after severity group controls suggests a need for an instrument.

The instruments that I propose are predictions for a patient's return to surgery based on patients who were

treated at her hospital in a base year prior to the reform. The return to treatment in year t is predicted by

re-pricing the constant set of base year patients under the year t payment rules. This method isolates the

change in the return to treatments that is due solely to the changing IPPS rules, not to the innovations in

how patients are reported by hospitals to Medicare.

The intuition behind this strategy is that if average severity differs and is persistent across the hospitals,

then high-severity hospitals will experience price changes similar to high severity patients and low-severity

hospitals will experience price changes like low severity patients. Calculating the returns using base year

patients - whose severity levels were coded before even the announcement of the reform - constructs these

returns in a way that is not confounded with the reform's incentives for better documentation and coding

of severity.

____ o minorpropose predicted return instruments, called T 7J and rn which are the average returns to surgery

that patients from year to in hospital h would have experienced under the IPPS payment rules of year t.

The return is calculated by passing patients from year to through a DRG grouping program initialized with
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grouping rules from year t.8

To exploit only within-hospital over-time variation in the predicted return, the specification includes hospital

and time fixed effects. This approach yields the OLS and first stage equations for treatment X:

treatx Vy +1 *Y(~ retX ~ 08*t + exrt~~c (3.6)
t = 't + Sh"(p) + (3.7)( r " P t P

rs(p)t = t+6~ ) + P-OWO reth,(P)tito + Pcos *reth(p)tIt 0 + vpt(37

This specification is an instrumental variables differences-in-differences approach. Consider the reduced form

regression of the receipt of treatment X on the predicted return to treatments X and -X:

S=_ X Xtreat = Tt + Th,(p) + KOUM * rct(p)t to + x cross * +ev ) pt (3.8)

In this setup, low-severity hospitals (not patients) act as controls for medium- and high-severity hospitals.

In the extreme, if each hospital only received patients of one severity category, the regression would match

equation 3.5. Figure 3-4 provides a visualization of the first stage and reduced form of the experiment. In

the figure, the hospitals are divided into terciles on the basis of the severity of their lung cancer patients

in 2003-2005. To construct the terciles, the 2003-2005 patients are classified under the 2008 severity rules.

Hospitals are ranked according to their average severity, with patients getting 1, 2, or 3 points depending on

whether they are low, medium, or high severity, respectively.

The upper row of figure 3-4 visualizes the first stage of the experiment, showing the realized returns to minor

and major surgery according the base period hospital severity. Following the reform, bottom and middle

severity tercile hospitals saw the return to minor surgery fall relative to top severity tercile hospitals, and

bottom tercile hospitals saw the largest decline in the return. Likewise, while the return to major treatment

rose for all terciles, the increase was particularly large for hospitals in the top base period severity tercile.

These results show that there is persistence in the types of patients that hospitals treat - the severity of

the hospital's base period patients is predictive of the shocks to treatment incentives that the hospital will

ultimately experience.

The lower row of figure 3-4 depicts the reduced form of the experiment. While it is hard to discern a

pattern in these graphs, they are instructive in how the experiment works. For example, recall that the

upper row shows that bottom tercile hospitals received relatively large decreases in the return to minor

8From year-to-year, ICD-9 diagnosis and procedure codes are sometimes deleted. Processing patients under DRG rules that

post-date their discharge thus entails translating the handful of deleted codes to the appropriate current codes. I construct

mappings from deleted codes to current codes by finding the current code that contains the deleted code's diagnosis or procedure.

If no unique current code matches, I use the most popular current code that includes the diagnosis or procedure.
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surgery and relatively small increases in the return to major surgery. That shock to incentives is the forcing

to which the regression will attribute the relative changes in treatment rates depicted in the reduced form

graphs. Of course, by aggregating to hospital terciles rather than using all of the information about base

period severity interacted with the evolving pricing rules, this visualization throws away useful potentially

exogenous variation in the returns to treatment. The results in section 3.4 have greater statistical power to

identify relationships between the instruments and the treatment approaches utilized.

3.3.3 Identifying Assumptions

The key identifying assumption of this strategy is that beyond year effects and time-constant hospital effects,

the instruments eajo and in1
lo are uncorrelated with the error terms ma" and en" o. Since the

assumption concerns variation in these values above and beyond the time and hospital effects, the assumption

can only be violated by within-hospital, over time correlations between the instruments and the error term.

The error terms contain unobservable patient appropriateness for the surgeries, so one necessary condition

is that the hospital's change in incentives from the new payment rules is uncorrelated with changes in the

unobservable appropriateness for the surgeries of the hospital's patients. There are two key scenarios that

would violate this condition.

Changes in Admitting Patterns

The first scenario concerns a systematic change in admitting patterns by hospitals that is correlated with

the shock to treatment incentives. In response to the incentives, some hospitals may seek to move less

intensive surgical procedures to outpatient facilities or perform medical management in physicians' offices or

even a hospice setting. Since hospitals often have their own or affiliated outpatient facilities, the decision of

where to treat a patient is likely as salient to administrators as how to treat her. Indeed, the rapid rise of

outpatient facilities like ambulatory surgical centers has allowed hospitals to treat patients more quickly and

potentially reduce costs; research suggests that these centers have grown in response to prospective payment

for inpatients (Cullen et al., 2009).

The reform under study changed the prices of inpatient major and minor surgical treatment and inpatient

medical treatment. It also changed the price of these courses relative to outpatient treatment because

outpatient reimbursements more or less held steady over the period. Recall that the inpatient payments

became more finely severity adjusted, raising the payments of all treatments for the very sick and lowering

them for the very healthy. Even though the payments for the approaches were often moving in the same

direction, the return to major surgery relative to medical management for the very sick rose substantially

because the payment for the former increased more than the latter.
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Outpatient payments were not severity adjusted at all. Thus the payment for major inpatient surgery relative

to outpatient treatment rose even more than the payment for major inpatient surgery relative to inpatient

medical management. This is because the risk adjustment of major surgery was partially offset by the risk

adjustment of inpatient medical management. Given the long-term growth in outpatient clinics in response

to the incentives of prospective payment, there is good reason to think that hospitals were sensitive to the

price of inpatient treatment relative to outpatient treatment.

Re-Sorting of Patients

A related violation of the identifying assumptions would occur if the matching of patients to hospitals were

altered by the reform in a way that was systematically correlated with the shocks to incentives. This concern

would be operative even if the set of patients who were treated in the inpatient setting remained fixed - a

pure re-sorting of patients to hospitals that was due to the reform would introduce a correlation between

the instrument and unobserved hospital-level appropriateness for the treatments.

For example, the hospitals that received the largest shock to the incentive for major surgery might look

to draw patients appropriate for these surgeries to the hospital. Likewise, hospitals that received small or

negative shocks to the incentive for major surgery could downsize their operating rooms and send marginal

patients to other facilities. The appropriateness for major surgery within a hospital over time would therefore

change in a way that was correlated with the shocks to incentives due to the reform.

Testing for Endogeneity

If the predicted returns to treatments are correlated with changes in unobservables of patients who are

treated at the hospital, they are invalidated as instruments. The admitting patterns and re-sorting concerns

discussed in this section emit two potential ways to test for endogeneity. First, changes in patient volume

at the hospital level that are correlated with the instruments would suggest that admitting patterns were

modified or re-sorting occurred. A regression of patient counts on the instruments can explore this concern.

Second, observable correlates of unobserved patient appropriateness for surgery could be regressed on the

instruments. For example, patient age is correlated with health status and is well observed in the data.

In section 3.5 I consider a variety of specification tests along these lines, the results of which are inconclusive.

Most of the specification tests fail to reject null hypotheses consistent with instrument validity, though one

of the four rejects at the 10% level. In light of the plausible scenarios under which the instruments may

not be valid. the specification tests suggest that the results of this study should be interpreted with some

caution.
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3.4 Results

This section presents the results taking the specifications of equations 3.6 and 3.7 to the data. I make several

changes to these equations that improve the power of the instruments. First, I include time effects at the

quarterly level, rather than the yearly level. I add controls for well-observed patient characteristics: five age

categories (5-year bins from age 65 through 84, and 85+) interacted with sex. Lastly, rather than use two

instruments to predict the returns to surgery, I use six: the predicted returns for minor and major surgery

based on the hospital's patients in 2003, 2004, and 2005 repriced under the contemporaneous payment

rules. Each year yields a prediction for minor treatment and a prediction for major treatment. Allowing

the prediction from each year to enter the first stage separately improves the explanatory power of the

regressions, though the results are robust to using only the two instruments that are based on 2005 patients.

3.4.1 Baseline Specification: First Stage and IV

The first stage results are given in table 3.4. In column 1, I show the first stage for retmio and in columnS(p)t

2 I show the first stage for rt,, jr. The explanatory power of the instruments is substantially greater forS(p)t

the return to major surgery than for the return to minor surgery. This is perhaps unsurprising: the minor

surgery DRG was risk adjusted (albeit coarsely) in the old IPPS, damping the variation in prices that was

induced by the reform.

Five of the six "own" price instruments are positive and significant. Since the first stage includes quarterly

fixed effects and hospital fixed effects, this implies that, fixing pre-period patients and exploiting only the

change in prices due to the reform, the predicted change in the return to treatment is positively associated

with the realized change in the return to treatment. 9

The instruments constructed from 2005 patients are particularly strong predictors of realized prices in the

analysis sample. Given that the types of patients visiting the hospital may be evolving over time, predictors

based on more recent samples of patients may be stronger than those constructed on earlier samples. Still,

the instruments based on 2003 and 2004 patients are frequently significant and have coefficients of greater

magnitude than their 2005 counterparts, suggesting that the decay in power from using earlier samples of

patients to predict returns is not large.

Table 3.5 presents the results of the instrumental variables regression using the six predicted returns variables

as instruments. On the diagonals of the table are the own-price elasticities and on the off-diagonals are the

cross-price elasticities. The coefficients should be interpreted as the percentage point increase in the treat-

ment rate due to a $1000 increase in the reimbursement for the treatment relative to medical management.
9 Some of the "cross" price instruments are also significant. One story consistent with this fact is that the instruments are

becoming weaker predictors of the return over time, contrary to the specification with time constant coefficients. As a result,
the cross price instrument,, which is highly correlated with the own price instrument, may effectively allow the coefficient to
attenuate over time.
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Thus raising the reimbursement for minor treatment by $1000 is estimated to raise the minor treatment rate

by 1.6pp (own-price) and reduce the major treatment rate by Ipp (cross price). Since medical management

is the omitted category, the remaining 0.6pp of the shift to minor treatment would come from this treatment

approach. Likewise, raising the reimbursement for major treatment by $1000 is estimated to raise the major

treatment rate by 1 pp (own price) and reduce the minor treatment rate by 0.8pp (cross price) - the remain-

ing 0.2pp of the increase in the major treatment rate comes from patients who would have been medically

managed.

These coefficients are right-signed according to economic theory - the own-price elasticities are positive

and the cross-price elasticities are negative (consistent with the treatment "goods" being substitutes, not

complements). However, one concern with interpreting the coefficients is that the effects with respect to

the return to minor treatment are measured imprecisely and are not statistically significant, a result of the

relatively weak first stage for this variable. In addition. the results should be read with caution due to the

concerns about identification discussed in section 3.3.3.

3.4.2 Effects by Hospital Control

Previous literature on hospital payment under the IPPS has found that for-profit facilities are more responsive

to incentives for documentation and coding. Dafny (2005a) shows that when the IPPS was reformed to pay

more for patient severity for some patients, for-profit hospitals were more likely to respond to the incentive

to list patients as high severity than their non-profit and public peers. Silverman and Skinner (2004) show

that for-profit hospitals were more likely to manipulate diagnosis codes to push patients into higher-paying

DRGs. They also find that non-profits in markets with greater for-profit penetration are more likely to

manipulate the codes.

This research showed a differential "nominal" coding response by hospital control; Dafny looked for, but

found no evidence of a differential effect of incentives on "real" treatment decisions. I pursue evidence for

such a response by interacting the endogenous returns and return instruments with indicators for whether the

hospital has for-profit or government ownership. If the interaction effects were significant, it would suggest

that elasticities to incentives differ by hospital control.

Table 3.6 shows the results of the IV regression. Columns 1 and 4 replicate the baseline results, while columns

2 and 5 add the hospital control interactions. The tripling of the instrument set causes the Kleibergen-Paap

Weak Identification F-statistic to fall to 6.6, well below the rough cutoff of 10 suggested by Stock et al.

(2002), so in columns 3 and 6 I estimate the equations using LIML, which is approximately median-unbiased

in weakly identified specifications (Angrist and Pischke, 2009).

None of the interaction effects is significant in these specifications, though with such weak identification the

power to detect these parameters is limited. The question of whether the response to treatment incentives
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differs by control clearly remains an open one.

3.4.3 Policy Simulation

One policy question is how treatment approaches would be affected if incentives were powered down. For

example, in fully capitated arrangements, provider groups receive a fixed payment per beneficiary in ex-

change for assuming responsibility for that beneficiary's care - hospital payment is no longer a function

of the treatment approach at all. Following provisions of the Affordable Care Act, Medicare is currently

implementing Accountable Care Organizations (ACOs), which create novel contracts with provider groups

to remove some of the incentives of traditional fee-for-service payment.

The two new ACO programs, Medicare Shared Savings and Pioneer, make provider groups more responsible

for the overall cost of caring for patients. Under Medicare Shared Savings, the provider group receives

additional payments at the end of the year if its assigned Medicare beneficiaries incurred lower than expected

costs; these upside payments are larger if the group opts to accept downside risk, in which the group's

payments are reduced if beneficiaries incurred greater than expected costs. The Pioneer program goes

further and introduces the potential for partial capitation: the group's fee-for-service payments are reduced

in exchange for a monthly payment for taking responsibility for the beneficiary's care (Boyarsky and Parke,

2012). These policies have the effect of reducing the return to treatments, since the additional payments the

hospital would receive for choosing, for example, a high intensity treatment approach would be partly clawed

back from the provider group at the end of the year (in the case of Medicare Shared Savings) or attenuated

(in the case of Pioneer).

In table 3.7, 1 simulate the effects of a policy that goes further than these programs and eliminates the

return to treatment approaches entirely. In 2009, the average return to minor surgery was $7,830 and the

return to major surgery was $13,232. The first row shows the overall effect of reducing the incentives for the

treatment approaches by these averages according to the elasticities estimated in the baseline specification.

Therefore the point estimates for the effects on the minor and major surgery rates reported in the table are,

respectively:

d7 minror -3*' minor(39"" .8* own - 13.23 * cross (3.9)

-7.83 * mjor - 13.23 * , ma3or (3.10)

The ' are the estimates of the elasticities from the baseline specification (see table 3.5). The standard errors

are for the hypotheses that d""'"' = 0 and dcfaor = 0.10

1 0 The instrumental variables regression produces a local average treatment effect (LATE) estimate of the -y, and one issue
that these results raise is whether the LATE would be valid for a large change in incentives. The policy prediction relies on the
assumption that the y are constant or can be effectively treated as such for the range of policies being studied.
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The point estimates suggest that the share of lung cancer patients receiving minor surgery would fall by 2pp

and the share receiving major surgery would fall by 5pp - though neither estimate is statistically significant.

The subsequent rows show how treatment rates would change for each severity group assuming that the 2009

returns to treatment displayed in table 3.2 were reduced to zero. The higher severity groups are estimated

to have larger reductions in their surgery rates, a result of their greater returns to the surgical treatment

approaches. However, none of these estimates is statistically significant.

3.4.4 Effects on Outcomes

The equation of interest for patient outcomes considers how mortality and readmission respond to the

treatment approach that the patient receives:

outcomept 
7Tmajor . treat2"j + 7Trninor treat'inor +Ipt, (3.11)

Where the rx coefficient is the percentage point increase in the mortality rate or readmission rate due to

the receipt of treatment X. Of course, a simple regression of outcomes on treatment approach will not

recover causal effects of the treatments since treatments are chosen endogenously. The 2008 reform offers

the possibility of resolving this endogeneity by using the shocks to the return to treatment induced by the

reform as instruments for the realized treatment approach. In this setup, the reduced form of the baseline

specification becomes the first stage:

XX +X rev + (.2
treatpt = t + Th(p) + +' 1 *Cth(P)tlto ceross * r h( p)tlto + Gt (3.12)

The OLS equation is augmented with time and hospital fixed effects:

outcomept = At + Ah(p) + 7
major treatma"or + rminor - treatmin"r + '1 pt (3.13)

The identifying assumption is that the within-hospital, over-time variation in the instruments is uncorrelated

with patient unobservables. For example, a necessary condition is that unobservables - the underlying

propensity of patients to die or be readmitted - were not, within a hospital, evolving in a manner that was

correlated with the shock to the returns to treatments. In this sense, the concerns of section 3.3.3 remain

operative. If hospitals systematically change their admitting patterns of patients in response to the reform,

or if patients re-sort to facilities due to the shocks, then the identifying assumptions are invalidated. Section

3.5 presents mixed results on whether these assumptions hold.
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Table 3.8 presents the 2SLS results on outcomes. Column 1 puts in-hospital mortality on the left-hand side,

colunin 2 considers mortality within 30 days of discharge, and column 3 considers mortality within 90 days

of discharge. Columns 4-6 look at whether the patient was transferred (admitted to the same or another

inpatient facility on the day of discharge), readmitted within 30 days of discharge, or readmitted within 90

days of discharge, respectively. The coefficients can be interpreted as the percentage point effect of receiving

the treatment on the probability of the outcome occurring.

Though some of the results have economically substantial coefficients, the regressions suffer from severe

weak identification - the Kleibergen-Paap F-statistic is 0.5, suggesting that the IV coefficients are likely

to be biased in the direction of the OLS coefficients. With such a low F-statistic, there is little power to

identify any effect. However, following standard suggestions in this situation, in table 3.9 I estimate the

regressions with LIIL. The coefficients here are all statistically insignificant, and the magnitudes are often

greater than 1, a result that is suggestive of low statistical power in a linear probability model with dummy

variables on the right-hand side. In light of the weak identification and endogeneity concerns, it is hard to

draw conclusions from these results.

3.5 Specification Tests

The key issue regarding the identification strategy of this study is whether patient unobservables are evolving

in a manner that is correlated with the instruments. In section 3.3.3, I proposed two mechanisms of particular

concern. First, hospitals could be responding on the admission decision margin, with hospitals that received

positive shocks to incentives loosening their admission standards and hospitals that received negative shocks

moving marginal patients to the outpatient setting. Second, patients could re-sort due to the reform: even if

the pool of patients treated in the inpatient setting did not change, sicker patients could move to hospitals

that got positive shocks and healthier patients could move to hospitals that got negative shocks.

These concerns emit two falsification tests. The first, a covariate balance test at the patient level, asks if the

instruments are correlated with observable factors that are likely to be related to unobservable severity and

appropriateness. If a correlation exists, it suggests that further endogeneity may remain in the error term

even when the observables are used as controls. To run this test, I repeat the reduced form specification

of equation 3.8 replacing the left-hand side with patient age and log-age - this differences-in-differences

specification relates within-hospital over-time variation in patient age to the instruments for the return

to treatment. The age variables are likely correlates of unobservable severity and appropriateness for the

treatments.

The second test is at the hospital level and asks whether hospitals that received shocks to the treatment

returns systematically changed their admitting patterns. A correlation in this test would suggest that the

instrument was correlated with a change in admission standards. To run this test I take the specification of
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equation 3.8 and place patient counts on the left-hand side. This regression is at the hospital-quarter level

and includes hospital effects, time effects, and the instruments on the right-hand side.

These specification tests are presented in table 3.10. Columns 1 and 2 regress age and log-age, respectively,

on the instruments. Four of the 12 coefficients in these regressions are significant at the 10% level, but in

neither regression does the test that all the coefficients are zero reject. Column 3 regresses the log of the

hospital's lung cancer patient count on the instruments. In the linear regression specification, the patient

count is incremented so that it is never zero. Column 4 repeats the specification as a fixed-effects Poisson

counting model. This model can accommodate zeroes on the left-hand side, so it is not necessary to increment

the count. The linear regression and Poisson models return somewhat conflicting results - the joint test that

all coefficients are zero easily fails to reject in column 3, but rejects at the 10% level in column 4.

The interpretation of these results depends crucially on one's prior about the validity of the instruments.

Under the prior that the instruments are valid, the findings are broadly consistent with this belief. In

columns 1 through 3, the joint tests that the coefficients on the instruments are zero fail to reject. Only in

column 4 does the test reject, but this is only at the 10% level and is inconsistent with the test results of

the similar specification of column 3.

On the other hand, if one's prior is that the patient selection and re-sorting channels were operative, the

results of these regressions may not be convincing enough to invalidate that belief. First, the confidence

intervals of the coefficients in columns 1 and 2 include nontrivial potential effects. In column 1, the 95%

confidence interval on the 2004 minor return to surgery instrument ranges from -.01 to 0.21. The standard

deviations of the return instruments are all around 1, so the effect at the upper end of the confidence set

would be that a hospital that receives a one standard deviation increase in the 2004 minor return to surgery

instrument would begin to admit patients several months older.

In addition, the fact that the Poisson model rejects the null that all coefficients are zero is consistent with a

response on the admissions margin - and even though the linear model of column 3 fails to reject the null,

the point estimates of its coefficients are economically nontrivial. For example, the point estimate of 0.015

on the return to minor surgery predicted with 2004 patients suggests that a 1 standard deviation increase

in that return is associated with a 1.5pp increase in the number of patients.

The results of this section are clearly mixed, and they help to color the credibility of the estimates of section

3.4. Under the presumption that the instruments are valid, the specification tests broadly fail to reject and

when they do, the rejection is sensitive to the specification. On the other hand, if one presumes that the

concerns about endogeneity are valid, the tests are not highly powered enough to refute these concerns.

101



3.6 Conclusion

In this study, I have considered how hospitals alter the approach they use to treat lung cancer patients

in response to incentives. My identification strategy instruments for the relative returns of the treatment

approaches using a 2008 reform that differentially shocked these returns across hospitals. I estimate a sensible

substitution matrix of own- and cross-price elasticities for the treatments, with positive own-price elasticities

and negative cross-price elasticities. Though the point estimates are economically substantial, they are

often statistically insignificant - a result of an identification strategy that exploits only limited variation in

the endogenous variables. The instruments also produce a strategy for identifying the effects of receiving

a treatment approach on patient outcomes, though the power issues are multiplied in this specification; I

unsurprisingly fail to detect any real effects on outcomes. Furthermore, concerns about the identification

strategy indicate that my results should be interpreted with some caution.

The question of how hospitals alter their treatments in response to changes in incentives remains of first-

order importance in health policy. Current policy discussion revolves around reducing or eliminating the

incentives for high intensity treatment common in fee-for-service systems - as this paper has shown. these

incentives are common even in prospective systems like the IPPS. As insurers expand their involvement in

Accountable Care Organizations and other programs with lower-powered payments for treatment, it will be

crucial to track the resulting treatment intensity response by providers and its further effects on patient

outcomes. While this study demonstrates significant elasticities of treatment to prices, they are estimated

with some imprecision, rely on strong identification assumptions, and are limited to lung cancer patients;

estimates with greater precision and for other treatments could be useful for optimal policy.

Studying treatment decisions by hospitals raises further questions about how payment incentives for facilities

translate into treatment decisions taken by physicians in consultation with patients. Research on docuien-

tation and coding responses by hospitals has pointed to organizational mechanisms by which physicians were

pressured to exaggerate the illnesses of their patients (Dafny, 2005a; Silverman and Skinner, 2004) or to

improve the level of detail in their notetaking (Sacarny, 2014). These studies suggest, but do not prove,

that organizational factors play a role in moving the treatment decisions of physicians into line with the

hospital's incentives. The mechanisms that allow facilities to transmit their incentives to decisionmakers in

the treatment process remain under-explored, and a potentially fruitful avenue for further research.
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Figures

Evolution of Returns to Treatment Approaches
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Figure plots the additional revenue that a hospital would receive for treating a patient with major or minor surgery
instead of medical management. The returns are broken out by patient severity of illness. The red line denotes the
reform date. See text for more details.

Figure 3-1
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Treatment Approaches by Patient Severity of Illness
Low Severity Medium Severity High Severity

Medical Minor Surg Major Surg Other

Figures reflect 2006-2009 lung cancer patients. Patients receiving "Other" treatment excluded from
analysis. See text for more details.

Figure 3-2
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Severity Levels over Time
2006 Patients 2009 Patients

Low Severity Medium Severity High Severity

Figures reflect 2006-2009 lung cancer patients. Patients are classified according to the post-reform
severity rules. See text for more details.

Figure 3-3
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Visualization of Experiment Using Hospital Severity Terciles
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Severity terciles are constructed using average severity of hospital's patients in 2003-2005. The upper row plots the
realized returns to surgery relative to medical management by severity tercile. The lower row plots treatment rates by
severity tercile. The red line denotes the reform date. See text for more details.

Figure 3-4
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Tables

Table 3.1 - Reimbursements for Treatment Approaches

Pre-Reform (2007) Post-Reform (2009)
Severity Payment Severity Payment

Medical Management ("Respiratory Neoplasms")
Low* 9.08 Low 5.62
High* 9.08 Medium 7.92

High 10.90

Minor Surgery ("Other Respiratory Procedures")
Low 7.65 Low 8.64

High 18.26 Medium 13.03
High 23.74

Major Surgery ("Major Chest Procedures")
Low* 19.52 Low 11.60
High* 19.52 Medium 16.69

High 32.15

* DRG was not adjusted for patient severity. Payments
are in $1000s for an average US hospital according to
2009 conversion rates from DRG weights to $.
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Table 3.2 - Returns to Treatment Approaches by Severity

Pre-Reform (2007) Post-Reform (2009)
Severity Return Severity Return

Return to Minor Surgery - Medical Management
Low -1.44 Low 3.02
High 9.18 Medium

High

5.11
12.84

Return to Major Surgery - Medical Management
Low 10.44 Low 5.98
High 10.44 Medium

High
8.77

21.24

Returns are in $1000s for an average US hospital
according to 2009 conversion rates from DRG weights to
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Table 3.3 - Summary Statistics

(1) (2)
Mean SD

Patient Characteristics
Age 75.65 6.972
Female 0.496 0.500

Treatment Approach Taken
Medical Management 0.574 0.494

Minor Surgery 0.129 0.335
Major Surgery 0.297 0.457

Return to Treatment vs. Medical Management ($1000s)
....... .. .......... .. ................................................................................-- . - -.... m.--...-...-- - . - - - - - -- - - - . - - - -- - - - - - - - -

Minor Surgery 8.337 3.036
Major Surgery 11.52 3.635

Patient Severity (Pre-Reform Rules)

Low ("Non-CC") 0.0689 0.253
High ("CC") 0.931 0.253

Patient Severity (Post-Reform Rules)
Low ("Non-CC") 0.150 0.357
Medium ("CC") 0.496 0.500
High ("MCC") 0.354 0.478

Patient Mortality
In Hospital 0.0910 0.288
30 Day Mortality 0.309 0.462

90 Day Mortality 0.463 0.499

Readmission and Transfer
Transferred 0.0132 0.114

30 Day Readmission 0.200 0.400

90 Day Readmission 0.319 0.466

The sample includes 337,198 patients across 2,946

hospitals. CC refers to Complication or Comorbidity.

MCC refers to Major Complication or Comorbidity.
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Table 3.4 - First Stage Regressions

(1) (2)
Patient Received: Minor Major

Surgery Surgery

Return to Minor Surgery

(Predicted, 2003 Patients)

Return to Minor Surgery

(Predicted, 2004 Patients)
Return to Minor

(Predicted, 2005
Return to Major

(Predicted, 2003
Return to Major

(Predicted, 2004
Return to Major

(Predicted, 2005

Surgery

Patients)
Surgery

Patients)
Surgery

Patients)
Surgery

Patients)

Observations
R2 (adjusted)

Joint F-test P-value

0.00451

(0.0297)

0.130***
(0.0289)

0.0840***

(0.0302)

0.0385*
(0.0217)

0.0223
(0.0207)

0.0476**

(0.0198)

337,198
0.017
0

-0.180***

(0.0430)

-0.0972**

(0.0450)

-0.206***

(0.0465)

0.231***
(0.0313)

0.269***
(0.0339)

0.334***

(0.0309)

337,198
0.098
0

Standard errors clustered at the
Regressions include quarterly fixed

hospital level.
effects, hospital

fixed effects, and controls for 5 age categories
interacted with sex. F-test null is that all 6 predicted
return coefficients are 0. Returns are in $1000s.
*** significant at 1% level; ** significant at 5%

level; * significant at 10% level
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Table 3.5 - Instrumental

Patient Received:

Variables

(1)
Minor

Surgery

Regressions

(2)
Major

Surgery

Return to Minor Surgery

Return to Major Surgery

Observations
Joint F-test P-value
KP Weak ID F-statistic

0.0155

(0.00952)

-0.00758**
(0.00305)

337,169
0.0399
19.30

Standard errors clustered at the hospital level.
Regressions include quarterly fixed effects, hospital

fixed effects, and controls for 5 age categories
interacted with sex. F-test null is that both return
coefficients are 0. Returns are in $1000s.
*** significant at 1% level; ** significant at 5%

level; * significant at 10% level
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-0.0101

(0.0135)

0.00977**
(0.00453)

337,169
0.0419
19.30



Table 3.6 - Instrumental Variables Results by Hospital Control

(1) (2) (3) (4) (5) (6)
Patient Received: Minor Minor Minor Major Major Major

Surgery Surgery Surgery Surgery Surgery Surgery

Return to Minor Surgery 0.016 0.013 0.013 -0.010 -0.015 -0.013

(0.0095) (0.0098) (0.010) (0.014) (0.014) (0.015)
* Government-Run 0.0044 0.0045 0.015 0.015

(0.0074) (0.0075) (0.0094) (0.0095)
* For-Profit 0.0011 0.0011 0.012 0.012

(0.0078) (0.0079) (0.012) (0.012)
Return to Major Surgery -0.0076** -0.0077** -0.0078** 0.0098** 0.0099** 0.0097**

(0.0031) (0.0030) (0.0031) (0.0045) (0.0045) (0.0045)
* Government-Run 0.0013 0.0013 0.0021 0.0020

(0.0020) (0.0020) (0.0030) (0.0031)
* For-Profit 0.0027 0.0027 -0.00011 -0.00015

(0.0023) (0.0023) (0.0033) (0.0033)

Observations 337,169 337,169 337,169 337,169 337,169 337,169
KP Weak ID F-statistic 19.3 6.58 6.58 19.3 6.58 6.58
Model 2SLS 2SLS LIML 2SLS 2SLS LIML

Standard errors clustered at the hospital level. Regressions include quarterly fixed effects, hospital fixed
effects, and controls for 5 age categories interacted with sex. The omitted interaction category is Non-
Profit. Returns are in $1000s.

* significant at 1% level; ** significant at 5% level; * significant at 10% level
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Table 3.7 - Policy Simulation

Patient Received: Minor Major
Surgery Surgery

Overall -0.021 -0.050
(0.049) (0.073)

Low Severity -0.002 -0.028
Patients Only (0.018) (0.027)

Medium Severity -0.013 -0.034

Patients Only (0.032) (0.047)

High Severity -0.039 -0.078
Patients Only (0.082) (0.120)

Results predict the effect of setting the
returns to minor and major surgery to zero

on the probability patient receives surgery,
relative to 2009 payment rules.
*** significant at 1% level; ** significant at

5% level; * significant at 10% level

Table 3.8 - Patient Outcomes - 2SLS Model

(1) (2) (3) (4) (5) (6)
Patient Received: Died in 30 Day 90 Day Transferred 30 Day 90 Day

Hospital Mortality Mortality Readmission Readmission

Received Minor Surgery 0.303 -0.311 0.142 0.307 -0.673 -0.472

(0.594) (0.803) (0.622) (0.299) (0.678) (0.645)

Received Major Surgery -0.573 -1.130* -0.654 0.218 -0.561 -0.258

(0.443) (0.606) (0.479) (0.225) (0.494) (0.492)

Observations 337,169 337,169 337,169 337,169 337,169 337,169

Joint F-test P-value 0.0260 0.0468 0.0476 0.577 0.515 0.764

KP Weak ID F-statistic 0.495 0.495 0.495 0.495 0.495 0.495

Standard errors clustered at the hospital level. Regressions include quarterly fixed effects, hospital fixed

effects, and controls for 5 age categories interacted with sex.
*** significant at 1% level; ** significant at 5% level; * significant at 10% level
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Table 3.9 - Patient Outcomes - LIML Model

(1) (2) (3) (4) (5) (6)
Patient Received: Died in 30 Day 90 Day Transferred 30 Day 90 Day

Hospital Mortality Mortality Readmission Readmission

Received Minor Surgery -0.194 -0.940 4.516 0.411 -2.591 -3.285

(4.694) (2.300) (181.0) (0.453) (6.189) (15.96)
Received Major Surgery -1.104 -1.682 2.494 0.295 -1.974 -2.290

(3.492) (1.723) (134.3) (0.342) (4.609) (11.89)

Observations 337,169 337,169 337,169 337,169 337,169 337,169
Joint F-test P-value 0.177 0.254 0.892 0.656 0.912 0.973
KP Weak ID F-statistic 0.495 0.495 0.495 0.495 0.495 0.495

Standard errors clustered at the hospital level. Regressions include quarterly fixed effects, hospital fixed
effects, and controls for 5 age categories interacted with sex.
*** significant at 1% level; ** significant at 5% level; * significant at 10% level
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Table 3.10 - Specification Tests

(1) (2) (3) (4)
Age In(Age) In(1+Pats) Patients

Return to Minor Surgery

(Predicted, 2003 Patients)

Return to Minor Surgery

(Predicted, 2004 Patients)
Return to Minor Surgery

(Predicted, 2005 Patients)
Return to Major Surgery

(Predicted, 2003 Patients)
Return to Major Surgery

(Predicted, 2004 Patients)
Return to Major Surgery

(Predicted, 2005 Patients)

Observations
2 (adjusted)

Joint F-test P-value
Model

-0.0179

(0.0531)

0. 102*
(0.0550)

-0.0424
(0.0530)

0.0172
(0.0355)

-0.0649*

(0.0371)

0.0329
(0.0359)

337,198
0.001
0.677
OLS

-0.000238

(0.000690)

0.00135*
(0.000715)

-0.000548
(0.000687)

0.000233
(0.000462)

-0.000871*
(0.000482)

0.000427
(0.000466)

337,198
0.001
0.650
OLS

Standard errors clustered at the hospital level. Regressions include quarterly
fixed effects and hospital fixed effects. F-test null is that all predicted return
coefficients are 0. The age regressions are at the patient level and the patients
regressions are at the hospital-quarter level. Coefficients in column 4 are raw
Poisson coefficients, not incidence-rate ratios. Returns are in $1000s.
*** significant at 1% level; ** significant at 5% level; * significant at 10%
level
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0.00573

(0.00904)

0.000414
(0.0108)

0.0153
(0.00972)

0.000536
(0.00643)

0.000833
(0.00705)

-0.0102
(0.00667)

11,220
0.059
0.682
OLS

0.0156

(0.00966)

0.000995
(0.0104)

0.0133
(0.00963)

-0.00789
(0.00700)

-0.00483
(0.00722)

-0.0116*
(0.00661)

11,142

0.0709
Poisson
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Appendix A

Analytical Framework

As mentioned in the text, models of reallocation mechanisms among heterogeneous-productivity producers

have found applications in a number of fields. including industrial organization, trade, and macro-economics.

While these models differ considerably in their specifics, they share an archetypal mechanism that connects

the extent of competition in the market to the shape of the productivity distribution among market producers.

We describe this central mechanism here.

Producers (indexed by i) earn profits which depend positively on their idiosyncratic productivity levels Ai -

more productive firms earn higher profits due to their lower costs - and negatively on the number (or mass, in

models with a continuum of firms) of producers in the industry N.1 Hence 7ri = 7r (Ai, N), with 9 > 0 and

< 0. The monotonic relationship between productivity and profits implies that, for any given N, thereaN

is a critical cutoff productivity level A* (N) at which firm profits are zero. Only producers with productivity

levels at or above A* (N) will operate in equilibrium.

The zero-profit cutoff productivity A* (N) is endogenously determined by a free entry condition, where ex-

ante identical potential entrants consider whether to pay a sunk cost o to take an idiosyncratic productivity

draw from a known distribution, G (.) with upper bound A. The expected value of entry, which equals zero

by the free entry condition, is:

.A

V = r(A, N) g (A) dA - 0
SA*(N)

1
Standard presentations of these models consider profit-maximizing firms. Although we keep this terminology to be more

familiar relative to the existing literature, we note that in the context of hospitals, it might be more appropriate to consider firms
as earning (and maximizing) "surplus" rather than "profits". This more general terminology recognizes that many hospitals are

legally structured as nonprofits and does not affect the qualitative comparative statics. Nonprofit hospitals are often modeled

in the literature as having an objective function that is a convex combination of profits and other objectives; therefore on the

margin they should respond qualitatively the same way as for-profit hospitals to factors like competition. Moreover, even if a

hospital's objective is not profit maximization, it is likely that for any given level of output(s) the hospital produces (in order

to meet whatever outcomes are in its objective function), surplus will be larger if the hospital's costs are lower. In practice, a

large empirical literature finds essentially no evidence of differential behavior across for-profit and non-profit hospitals, calling

into question whether the non-profit label has any substantive meaning for behavioral responses (see Sloan, 2000 for a recent
review of this literature).
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The expected profits from entry depend upon the equilibrium number of entrants N in two ways. First, an

increase in N shifts upward the zero-profit cutoff productivity level A* (N), reducing the probability that

the entrant's productivity draw is high enough to earn nonnegative profits and thus making successful entry

less likely. Second, a higher number of firms N also reduces the producer's profits if it does enter. Thus

expected profits fall monotonically in N. In equilibrium, the number of firms choosing to pay the entry

cost yields a number of entrants N that, through these two effects, exactly equates the expected profit from

taking a productivity draw to the sunk entry cost.

The endogeneity of A* (N) means the industry productivity distribution observed in the data is determined

in equilibrium. Specifically, it is a truncation of G (.), the underlying productivity distribution from which

potential entrants take productivity draws, where the truncation point is A* (N). Changes in market prim-

itives that shift the equilibrium location of A* (N) therefore shift the observed productivity distribution as

well.

The primitive that we are interested in here is the extent of competition, as reflected in how easily consumers

can (or how willing consumers are to) substitute to alternate producers. The specific mechanism through

which primitives map into substitutability may vary, from changes in the differentiation of firms' products,

to shifts in openness to trade, to movements in the size of transport costs. The particulars of the mechanism

aren't important here; what matters are the effects on the equilibrium.

Higher substitutability has three effects that can be examined empirically. First, it makes it more difficult for

higher-cost (lower-productivity) firms to earn positive profits, as demand is now more responsive to their cost

and price differential relative to other firms in the industry.2 In turn, the zero-profit cutoff productivity level

A* (N) rises: the threshold for operation is greater than before. This truncates the equilibrium productivity

distribution, reducing observed productivity dispersion.3 Second, higher substitutability means that, among

operating firms, market shares are more sensitive to productivity differences. Purchases are reallocated to

more productive firms, raising the correlation between productivity and market share at a point ill tile

("static allocation'). Third, over time more productive firms are likely to grow in market share ("dynamic

allocation').4

2
In the case of hospitals, this demand response can be manifested either directly in patients' choices in response to out-of-

pocket costs, or indirectly through insurers' decisions to include the hospital in its covered network.
3
This dispersion implication requires some additional regularity assumptions on the underlying productivity distribution.

Most "standard" distributions exhibit declining second moments as they are truncated from below. The exponential distribution,
however, is an example of one that does not. Nevertheless, if we assume the productivity distribution is bounded at the top (i.e.,
there is some maximum productivity level), as we do here, then all distributions will eventually exhibit decreased dispersion as
they are truncated from below.

4 The model just described is static, so the effects of changes in competition on equilibrium should be thought of as comparing
two different markets or the same market across different long-run steady states. However, several of the models in the literature
are explicitly dynamic and have similar predictions about the effect of competition on the productivity of entrants and growth
of incumbents (e.g. Hopenhayn, 1992; Asplund and Nocke, 2006).
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Appendix B

Measuring Inputs

Our baseline input measure (as well as many of the alternative measures discussed below) is derived from the

formulas used to determine Medicare's Hospital (Part A) reimbursement. Some alternative measures also

use information derived from the formulas used to determine Medicare's reimbursement of physicians and

outpatient facilities (Part B). It is therefore useful to begin with a very brief overview of the key features of

Medicare hospital reimbursement needed to understand the construction and composition of our baseline and

alternative input measures. Considerably more detail can be found in Centers for Medicare and Medicaid

Services (2011).

The amount Medicare reimburses a hospital is determined by the patient's Diagnosis Related Group (DRG),

national factors, and hospital-specific factors. A patient's DRG is a function of his principal diagnosis,

procedures performed, and secondary complications and comorbidities. Some DRGs also depend on whether

the patient died in the hospital.

Each DRG is assigned a (national) weight based on how much it costs to treat the nationwide average

patient with that DRG; a national conversion factor is used to convert these DRG weights into dollar

payments. The weights and the conversion factor are updated annually. The national rate is then adjusted

for hospital-specific considerations. The major adjustments are due to geographic factors (e.g. the local

wage rate) and characteristics of the hospital (such as whether it operates a resident training program or

has a disproportionate share of patients on Medicare or SSI).

For most stays the hospital will receive payments solely based on the patient's DRG. However, in certain

extraordinarily costly cases hospitals receive additional "outlier payments" covering 80 percent of costs

beyond a threshold level. To compute costs, the hospital's billed charges are deflated by a hospital-specific

cost-to-charge ratio. If a patient has a short stay and is transferred to another hospital, Medicare reduces

payments to the transferring hospital but pays the receiving hospital as it would for a standard inpatient

stay. For our purposes, we assign all inputs for the patient in the time horizon (30 days for our baseline
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measure) back to the initial hospital.

B.1 Baseline Input Measure: Part A "Resources"

Our baseline input measure follows the approach of Gottlieb et al. (2010) and Skinner and Staiger (2009a)

to purge the "price" variation in the reinbursenent formula from the "input" variation. Specifically, our

starting point is the DRG weight (multiplied by a national conversion factor to convert it to a dollar metric)

plus outlier payments (also in dollars). It does not reflect any variation in reimbursement prices across

hospitals due to geographic factors or specific characteristics of the hospital.

According to this measure, the inputs a patient receives equal the sum of his converted DRG weights and

outlier payments at all hospital stays in the 30 days following his AMI. Variation across patients in the

input measure therefore comes from 3 sources: variation in the patient's DRG(s); whether there are (and

the extent of) outlier payments; and the number of hospital stays during the 30 day window. We discuss

each in turn.

B.1.1 Variation across Index Event DRGs

To give a sense of the nature and variation across DRGs, Table Al lists the top 20 DRGs for the index event

(initial AMI hospital stay), their patient share and their weights in 2000.1 The top five DRGs account for

over 90 percent of the index events, and the top 20 account for virtually 100 percent.

Looking within the top five we see substantial differences in weight based on whether an invasive procedure

is performed. There are two separate DRGs for invasive procedures (#107, "Coronary Bypass with Cardiac

Catheterization" and #116, "Other Permanent Cardiac Pacemaker Implant or PTCA with Coronary Artery

Stent Implant") and they respectively have weights of 5.46 and 2.47. By contrast, the other three DRGs in

the top five are medical DRGs (i.e. do not involve invasive procedures) and have weights ranging from 1.11

to 1.51. For the year 2000, two dummies for these two surgical DRGs (bypass and stent) explain 15 percent

of the total variation in our 30 day input measure.

Within the three most common medical DRGs, we see that there is variation for a medically treated AMI

based on whether or not the patient died (#123), survived following a stay with major complications (#121)

or survived following a stay without major complications (#122). This variation has, to our knowledge, not

previously been noted by the large empirical literature on the relationship between inputs for heart attacks

and subsequent survival which has used the variation in inputs stemming from survival. However, this source

of variation in the standard input measure seems suspect: it partly causes in-hospital death - not inputs,

per se - to explain survival, an association that must exist trivially.

'For presentation purposes, we limit Table Al to one year because DRG weights and classifications change slightly from
year to year.
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Therefore. for these three DR.Gs that refer to the same diagnosis but differ on the basis of patient survival,

we eliminate the variation in inputs across DRGs within this group at the hospital-year level. We assign

each DRG the patient-weighted average of the different DRG weights. The averaging weights are equal to

the share of patients in the DRG in that year. Almost three-quarters of hospital stays were grouped into

DRGs that were affected by this fix.2

B.1.2 Variation from Outlier Payments

Approximately 8.2% of our patients trigger outlier payments due to unusually costly cases. These payments

are triggered when a hospital's cost of treating a patient exceeds a national threshold. Conditional on

receiving an outlier payment, the average outlier payment as a share of DRG reimbursement without outlier

payments is 53.9; the standard deviation of outlier payments is 13,154.8. (All statistics calculated for patients

in the year 2000.)

B.1.3 Variation Due to Number of Hospital Stays

Even ignoring outlier payments, the total variation coming from DRGs is in fact larger than that indicated

in Table Al because of the possibility of multiple (and potentially non AMI) hospital stays in the 30 days

following the index event (AMI). Our baseline input measure is constructed for the 30 days following the

initial AMI, meaning that it includes all hospital stays in these 30 days. On average, an AMI patient has

1.07 stays in this window. Conditional on having multiple stays, the average patient visits the hospital 2.07

times in the month following the AMI.

If a hospital stay straddles the end of the time window (e.g. a patient stays in the hospital for 10 days and

is admitted on day 25 days following the heart attack), the inputs attributed to that hospital are reduced;

in particular, we multiply our input measure by the share of days in the hospital that were inside the 30

day analysis window. We adjusted all DRGs (not just those associated with index events) to purge variation

stemming from mortality in the manner described above.

2
Note that this "fix" also purges the variation across the three most common medical DRGs in whether the patient had a

major complication or not. Although the case in question is the only one where different DRGs are assigned based on patient

survival, there are other cases where separate DRGs are assigned based on the presence of complicating conditions (CCs). For

example, the 6th-ranked DRG #110, "Major Cardiovascular Procedures with CC" (weight 4.16) and the 18th-ranked DRG

#111, "Major Cardiovascular Procedures without CC" (weight 2.23) differ only on this basis. It is a priori unclear to us whether

we want to purge variation due to the presence of CCs. On the one hand, conditional on a rich set of patient risk adjusters,
the presence of a CC may be a useful measure of the intensity of resources required to treat the condition; on the other hand,
with imperfect risk adjusters, it may also capture correlates of mortality (our outcome of interest).

As noted, in practice our approach to purging mortality-based variation across DRGs also purges complications-based variation

in the most common DRGs. We experimented with an alternative measure that purged variation due to CCs in all DRGs. The

procedure took DRGs that were identical but for the CC requirement and assigned them the same DRG weight within each

hospital-year. This DRG weight was a weighted average of the component DRG weights; the averaging weights were the shares

of patients in each DRG in the hospital-year. For example, in 2000, DRGS #110 and #111 were assigned the same weight in

each hospital-year. This correction affected only a few percent more patients and made no noticeable difference to our findings

(results available on request).
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Table A2 lists the top 20 DRGs across all stays in the 30 day window following the index event. The index

events are included in this table. As expected, there is more variation across these DRGs.

B.1.4 Empirical Variation in Baseline Input Measure

The panels of Figure Al show the variation in the input measures across patients for one year (2000). Figure

Ala shows the variation in the DRG index events (using our "collapsed" DRG measure that purges mortality

variation). Figure Alb shows the variation from the DRG index events plus outlier payments in the index

event. Figure Alc shows the total 30 day variation (our baseline input measure), which adds in additional

hospital stays (their DRGs and outlier payments) within the 30 days. As would be expected, the input

distribution gets less "lumpy" at each step.

B.2 Alternative Input Measures

We confronted a number of choices in defining our baseline input measure. We therefore constructed several

other alternative input measures. This section describes them.

B.2.1 Alternative Measures of Hospital Inputs

A central tension in our choice of input measurement is how coarse or detailed we make our input measure.

The tradeoff is between the survival bias that can occur with finer input measures - since the longer a patient

survives, the more can be done to a patient - and the measurement error which occurs at coarser definitions

of inputs. Our baseline measure, following standard practice, is aggregated to a relatively high level, and

may therefore measure inputs with a non-trivial amount of error.

We experimented with two alternative hospital-based input measures. One measures Part A spending rather

than Part A inputs; it therefore includes variation in reimbursement rates stemming from hospital specific

factors like geographic location or type of hospital. As shown in Figure Ald the distribution of Part A

reimbursement is less "lumpy" than our baseline input measure; the correlation between the two is 0.90.

The other measure is designed to be more detailed than our baseline measure to reflect that fact that input

use may vary substantially within the relatively coarse DRGs. We used data on the length of hospital stay

and the procedures performed during the stay (up to six may be listed). Procedure codes are themselves

available at different levels of granularity; there are 3 levels of CCS procedure codes ranging from the least

granular level 1 to the most granular level 3; the much larger set of ICD-9 procedure codes is more granular

still. The ICD-9 codes account for over 3878 possible procedures that may be performed on patients.

To reduce the dimensionality of the set of procedures, we use the following algorithm. We start with the

coarsest set of procedures (level 1 CCS codes, of which there are 16) and move iteratively to the finest set
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of procedure codes (ICD-9). At each step we aggregate codes that are rare and disaggregate codes that are

very common. Thus, beginning with CCS level 1 codes, we include indicators for level 1 procedures that

were performed on less than 10% of patients; if the level 1 procedure was performed on 10% or more of

patients, we disaggregate it by looking at CCS level 2 components.

In similar fashion, if the CCS level 2 procedures were performed on 1-10 percent of patients, we include an

indicator for it. Within a level 1 code, all level 2 codes performed on less than 1 percent of patients are

grouped together and included as one indicator. If the level 2 procedure was performed on 10 percent or

more of patients, we disaggregate by looking at its level 3 components.

We follow the same process for level 3 components; when we disaggregate these codes we look at the

component ICD-9 codes. If the ICD-9 code was performed on at least 1 percent of patients we include an

indicator for it. Within a level 3 code, all ICD-9 codes that were performed on less than 1 percent of patients

are grouped together and included as one indicator.

This algorithm results in 60 procedure indicators: 18 for ICD-9 codes, 6 for level 3 CCS codes, 22 for level

2 CCS codes and 14 for level 1 CCS codes.

B.2.2 Incorporating Non-Hospital Inputs

A limitation of our input measures thus far is that, following standard practice in the heart attack literature,

they reflect only inpatient hospital inputs. Notably, they do not include physician inputs, which may occur

in an inpatient or outpatient setting. They also do not include outpatient tests and procedures like MRIs.

Many of these inputs are directly related to the treatment of the AMI. For example, the work of physicians

who treat the patient surgically or medically in the hospital is obviously an input that may bear on the

patient's survival. Likewise, an MRI done in an outpatient facility that is closely affiliated with the hospital

will inform treatment decisions and influence mortality.

There are two reasons why we follow most of the literature on heart attacks and do not include inputs by

physicians or outpatient facilities in our baseline measure. First, while some of these inputs are closely linked

to the care received in the hospital, many of the payments reflect care that is independent of the hospital. In

particular, doctor visits and outpatient diagnostic tests at long time horizons from the initial AMI admission

may be less dependent on initial treatment decisions. The second reason is practical: data on much of these

other input measures are only available for 20 percent of the sample and only since mid-2000, reducing the

set of hospital-years in which we can observe at least 5 AMI patients by 70.0%.

Still, we sought to evaluate the sensitivity of our results to including physician and outpatient services.

Medicare reimburses physicians based on their assessment of the "Relative Value Units" (RVUs) of the

services the physician provided: the RVU of a service is intended to reflect the resources required to provide

that service. The RVUs attributed to procedures are constant across geographic areas and practitioners,
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although Medicare makes further adjustments based on geography and provider type to derive reimbursement

rates (see MedPAC, 2010b or Clemens and Gottlieb, 2014 for more details). We construct our measure of

physician inputs by summing all RVUs associated with the patient in the 30 days following his initial hospital

admission. We multiply the RVUs by a national conversion factor to convert them to a dollar metric; the

national conversion factor eliminates variation due to Medicare's geographic price adjustments.

Calculating outpatient contributions to the production function is significantly more complicated than calcu-

lating physician or inpatient contributions. While physician services and inpatient stays are each reimbursed

using a single payment system that is designed to reflect resource utilization, different outpatient services

are covered by different types of systems (MedPAC, 2010a provides more details). Some outpatient services

are covered prospectively - although the payment groups are so fine that treatment decisions may be reim-

bursed at the margin. Providers are paid for other services according to a fee schedule that is geographically

adjusted. Some services are reimbursed according to local prices.

For the portion of outpatient services covered prospectively, there is a series of classification groups (Am-

bulatory Payment Classification groups or APCs) which function analogously to DRGs. Each APC is given

a weight that is based on its expected resource costs; we translate these weights into a dollar basis using a

national conversion factor that is an analogous to the procedure we use to convert DRG weights. For services

that are reimbursed on a fee schedule, we mimic the method used for physician inputs by applying the fee

schedule prior to geographic adjustments.

These adjustments eliminate much of the variation in outpatient prices that is region- or provider-specific.

Still, some payments, like those for certain prescription drugs and new technologies, do not have an associated

national fee schedule and are included unadjusted.
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Appendix C

Empirical Bayes Adjustment

C.1 Introduction

In this appendix we describe the empirical Bayes (EB) procedure we use to adjust our estimates of hospital

productivity for measurement error. This procedure is based on Morris (1983). For another example see

Jacob and Lefgren (2007).

The exponentiated productivity of hospital h at time t is Aht and its productivity is aht = In (Aht). These

objects are the "true" productivities and their distribution is the "underlying" distribution of productivity.

We denote by &hat the estimate of productivity; it equals productivity plus an error term rp1t:

aht = aht - rht

The goal of the EB procedure is to adjust the estimates of productivity so that the presence of the error

term does not introduce bias into our regressions, which use our estimate of productivity (aht) as a key right

hand side variable. The procedure adjusts the estimates by shrinking them toward the mean of the true,

underlying productivity distribution.

True productivity is not observable, but we show in this appendix that its distribution is estimable. We

also show how this shrinkage estimator fixes the attenuation bias that measurement error would otherwise

introduce into our regressions.
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C.2 Background on Empirical Bayes Procedure

C.2.1 Statistical Background

We start with an overview of the EB procedure assuming that all parameters of the distributions are known,

and refer to the EB-adjusted estimated productivity as a EB. We then describe the feasible EB-adjusted

estimate, which we denote a E(f)

Suppose that the estimated productivities are independently normally distributed around the true produc-

tivities with known variance 7r 2:

dht Iaht, 7t~ N (aht, r) independently

One can think of 7r 2 as the variance of the measurement error of the estimate.

We also assume that the true productivities aht are independently normal with underlying mean Xht/3 t (a

known, year-specific linear function of the hospital-year's covariates) and underlying variance oat (known

and common across hospitals within a year).

The prior distribution of the productivity aht - the distribution before conditioning on the estimated pro-

ductivity - is therefore:

aht Xht, 13, o,t ~ N (Xht3t,0 ,t) independently

Conditioning on the estimated productivity &ht produces the posterior distribution of aht:

aht2ht, 2 a , '- N (a EB, 72t (1 - Bht)) (C.1)
ah hXht, 1Rt 9a ,tI ht ht ht - I

a EB denotes the EB adjusted productivity. This object is the expected value of aht conditional on the

estimated value dht and the parameters Ot, a2t, and 7r2 and is given by the formula:

htB =( - Bht) at + Bhtxht#

Bht -- w/ (7ht + 0,,)

The adjustment amounts to attenuating the estimate &ht toward the mean Xat3t. As the variance of the

measurement error 7r 2 rises, the EB correction increasingly disregards the value of the estimate and closes

in on the mean.

C.2.2 Feasible Version of Procedure

This section describes how we implement the EB procedure when parameters must be estimated.
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The productivity estimate &ht is the estimated coefficient on a hospital-year fixed effect from equation 2.5.

The regression that produces the estimated coefficient also yields a standard error for it - an estimate of the

standard deviation of the asymptotic distribution of dit. We estimate 7rht by squaring the standard error

and call this value _k .

We estimate /3 t and ca using a method outlined in section 5 of Morris (1983) which we reproduce here. Fix

yearly estimates:

3t: ( XlWt Xt I XlWt At

( Nh - ht 2

2 = max 0,EhWhtUa t Eh Wht

1
W1,t := 2 + 2

lht + a,t

Xt is the stacked xht for year t, Wt is a diagonal matrix of the What for year t, and At is the stacked &hlt for

year t. Nht is the number of hospitals, or equivalently the number of &,at, in year t. N1 is the number of

regressors, i.e. the dimensionality of Xht.

f, is a WLS regression of the aht on xht. 6 is the weighted average of the squared deviations of d&ht from

%taft less the weighted average of f. The weights are Wht, giving more weight to observations with less

measurement error. The max operator ensures that T is always nonnegative in finite samples.

/t and a are simultaneously determined in these equations, so for each year they are estimated by the

following iterative procedure. We by fixing Wt = IV h, then iterate the following to convergence:

1. Compute /t and then a new estimate &o

2. If t has converged, exit. Otherwise, fix new weights Wht and return to step 1

EB(f)
With a degrees of freedom correction, the (feasible) best estimate of the posterior mean a is:

a EB(f) -\ -+
ht I -Bht ) iiht + B~,tXht/

Nt - Ni - 2 fit
Nhat - Nx frt + &l T

The variance of productivity unconditional on covariates, called ^2, is given by the following formula:
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mx Wht { (Nil) (1ht - At) - t
t maxEh 

Wht

A - EZh What(lt

Eh Wht

Where At is the weighted mean productivity.

C.3 Implementation of Empirical Bayes Adjustment

We assume that the underlying mean of productivity is equal to a market-year fixed effect. i.e. Xhtt - TM,t,

where M indexes markets. Thus Xht becomes a vector of 304 indicators for whether hospital h was in each

of the 304 markets and Bt is a vector of the 304 market fixed effects for year t.

We perform the EB procedure separately year-by-year, producing estimates of the underlying market-year

means 3 t and year-specific conditional - i.e. within-market - variance 6a. Running the procedure also

yields EB-adjusted estimated productivities aEB(f) and also can be used to produce the unconditional - i.e.

national - estimated variance < , as described below.

Our procedure ensures that when the EB-adjusted productivities are used in our main regressions (equations

2.1 through 2.3 in the main text) which have market-year fixed effects, all regressors are orthogonal to the

measurement error term.

C.4 Reported productivity metrics

C.4.1 Standard Deviation

To estimate the standard deviation of productivity using the EB adjusted values, we rely on the estimates

of the yearly underlying national variance of productivity ,,t that the procedure computes.1 The root of

these estimates is taken, forming a,t. The yearly values are then averaged together.

The EB adjustment produces (2, by taking the weighted empirical variance of the aht and subtracting

the weighted average squared standard error r. Hospital-years with larger standard errors receive lower

weights. In effect, this process takes the variance of the noisy productivity estimates and subtracts off the

variance due to measurement error.

'While it might seem natural to instead estimate the standard deviation of the EB-adjusted values, this would cause us to
erroneously under-estimate dispersion. Underlying productivity is composed of a best prediction (the EB-adjusted productivity)
and the prediction error. These two components are orthogonal. The variance of true productivity is thus strictly greater than
the variance of EB-adjusted productivity (see Jacob and Lefgren, 2007).
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C.4.2 90:10 and 75:25

We define the 90:10 ratio of productivity as F- (0.9) -F-' (0.1) and the 75:25 ratio as F-1 (.75) -F-1 (.25)

where F-1 is the inverse CDF of the productivity distribution. The 90:10 is the 90th percentile value of the

distribution minus the 10th percentile value, and likewise for the 75:25. Exponentiating these ratios would

produce the 90:10 ratio of the exponentiated productivity distribution (that is, an actual ratio: p90 / plo).

As with the standard deviation, it is not possible to estimate these ratios using the distribution of the a EB(f).
fit

The EB correction does not produce a variable with the same asymptotic distribution as the underlying

process. The procedure is only intended to estimate the parameters of an underlying normal distribution

and correct for measurement error in regressions.

To estimate these ratios we use the inverse CDF of the underlying normal distribution that the EB procedure

uncovers, so the yearly 90:10 and 75:25 are:

F-1 (0.9) - F-1 (0.1) = at [4)-1 (0.9) - I)_ (0.1)]

F-' (0.75) - F-1 (0.25) = <,t [4)-1 (0.75) - 4)-' (0.25)]

Where 4 (.) is the standard normal CDF.

C.4.3 Allocation Metrics (Patient, Growth, and Exit Regressions)

The allocation metrics use noisy estimates of productivity on the right-hand side of regressions, and rely on

EB adjustment to correct for measurement error. Jacob and Lefgren (2007) show that with the adjustment,

these regressions are estimated consistently.

Suppose that there is a relationship between growth ght, market-year fixed effects 'j<,t, and productivity

aht:

ght = A,t + 6aht + Cht

where E [Cht IXht, aht] 0 (xhbt is a vector of indicators for the market-years - the design matrix for the

market-year fixed effects.) The left-hand side variable could alternatively be the number of patients or an

indicator for hospital exit.

Since we do not observe true productivity aht, we use the estimate lat = aht + /ht, where rlht is measurement

error. Then substituting into the equation:

9ht - )A,t + Mitt + (Cht - "/hlt)
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This regression produces a biased and inconsistent estimate of 3 due to the correlation between aht and rqlt

in the error term. We use the EB-adjusted productivity a EB to eliminate this correlation. Equation C.1

implies:

We represent the prediction error of the EB procedure as vht:

LB
at = aht + Vht

By construction the prediction error is orthogonal to ahtB and any regressor included in xht - i.e. the

market-year fixed effects:

E [Vhtlat , Xht -t, 07a,w t] 0

(aht is replaced by aht because given the parameters, knowing one determines the other)

The regression of ght on market-year effects and a EB adds only vht to the original error term Eht:

9ht = ~t + 3ahtB + (Cht - EVht)

Therefore there is no correlation between any of the regressors and the new error term. The consistency of

6 follows.

C.5 Comparison of estimates

We run all of our regression analyses with the EB-adjusted productivities a EB(f)and calculate our dispersion

metrics using the EB-adjusted dispersion estimates as described above. Table A3 explores the impact of the

EB correction on our main results. The first column reproduces the EB-adjusted main results from Tables

2.2, 2.4, and A6. The second column shows the results without the EB correction.

To produce the uncorrected allocation metrics, we use the estimates &ht rather than aEB(f) in our regressions.ah~

Due to measurement error in the estimates, the allocation metrics computed without the EB correction

will be attenuated. We calculate the uncorrected dispersion metrics in the same manner as the corrected

versions, but using uncorrected estimates of productivity. For example, to calculate the standard deviation,

the empirical weighted standard deviation of the estimated productivities - SD (dht) - is taken year-by-

year, then averaged (we use the same weights that were used to calculate 2 so that the statistics are

comparable.) Likewise, the 90:10 and 75:25 ratios are calculated by fitting a normal distribution to the

estimated, uncorrected productivities and reporting the ratios implied by it (the ratios are calculated year-

by-year, then averaged). Due to measurement error, the dispersion metrics computed without the EB
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correction will overstate the true dispersion.

The results show that the EB correction has a substantial effect on our baseline estimates, and moves them

in the expected direction. Comparing our baseline (EB-adjusted) estimates in column 1 with the un-adjusted

version in column 2, we see that the allocation results are substantially larger and the dispersion estimates

are substantially lower with the correction. For example, we find that measurement error explains nearly half

of the dispersion of the productivity estimates; without correcting for measurement error, these estimates

have an average yearly standard deviation SD (&at) of 0.293, while the EB procedure estimates that the

underlying productivity process has an average yearly standard deviation (It of 0.173.

A quantiatively large impact of the EB correction (i.e. a large amount of measurement error) is not surprising

ill light of results from other applications. For example, looking at estimates of teacher fixed effects in value

added regressions, Jacob and Lefgren (2007) estimate a ratio of the unadjusted standard deviation to the

EB-adjusted estimate of the standard deviation of about 1.3 to 1.6. We find ratios of about 1.7.
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Appendix D

Additional Results

D.1 Counterfactual allocation rule

An alternative explanation for our findings is that patients go the nearest hospital to treat their AMI, and

it happens that areas with higher productivity hospitals are both higher in population density and higher

in population growth. If this story held, a mechanical allocation rule that assigned patients to their nearest

hospital would spuriously produce our static and dynamic allocation results. In practice, based on geocoding

hospital addresses and patient zip codes to latitudes and longitudes, we estimate that less than half of our

AMI patients go to the nearest hospital in their market. Moreover, we examined what the static and dynamic

allocation results would look like if (counter-factually) each AMI patient did go to the nearest hospital within

his market. We would be concerned if this mechanical rule produced similar static and dynamic allocation

results, as that would suggest the result could be generated without any role for patient demand. In fact,

as shown in Table A4 (column 3 vs. column 1), with this assignment rule the dynamic allocation results

are either the wrong sign or an order of magnitude smaller (and not statistically significant) and the static

allocation result declines to 20 percent of the baseline estimate.

D.2 Static and Dynamic Allocation For Different Hospitals and

Markets

Appendix Table A5 looks at how the static and dynamic allocation results vary across different types of

hospitals within a market, and how they vary across different markets. The results are mixed. Within a

market, the allocation results are stronger for hospitals facing more competition for their patients (using

distance to the nearest hospital as a proxy for competition as in Gaynor and Vogt, 2003); the allocation
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relationships are also weaker for public (compared to private) hospitals. However, at the market level, there

is no evidence that the allocation results are stronger in more competitive markets (using population density

as a proxy for competition for a spatially differentiated product as in Syverson, 2004b); there is also no

evidence that the allocation result is stronger in markets with more educated consumers.

D.3 Productivity Dispersion Across Hospitals

Appendix Table A6 shows our estimates of productivity dispersion across hospitals. The calculation of the

metrics was described in Appendix C.

D.4 Static and Dynamic Allocation in Concrete and Health Care

We use data on ready-mixed concrete from the Census of Manufactures, which we have for every five years

from 1972 - 1997. We observe approximately 2,500 ready-mixed concrete plants per data year; by way of

comparison, we have approximately 3,700 hospitals per year. We use these data to estimate plants' physical

total factor productivity levels. A plant's physical total factor productivity is the number of cubic yards

of concrete it produces per unit input, where inputs are a weighted composite of labor, capital, and inter-

mediates. The weights are the inputs' cost shares. These weights are theoretically correct, equaling the

elasticities of output with respect to each input assuming cost minimization and no adjustment costs in

inputs. Our market definition is the Bureau of Economic Analysis' Component Economic Areas, which are

approximately 350 mutually exclusive and exhaustive groupings of economically interrelated U.S. counties.

(See, e.g. Syverson, 2004b for more details on productivity and market measurement in ready-mixed con-

crete.) To reduce the influence of outliers, we trim the top and bottom 1% of the industry's productivity

distribution in each Census of Manufactures.

Table A7 reports the results. Across all of our static and dynamic allocation measures, the results indicate

a stronger relationship between market allocation and producer productivity for hospitals than for concrete

plants. The first row reports the results for static allocation. We estimate a slight variant of equation 2.1;

as before, the specification regresses output on productivity (both measures are in logarithms) and market-

year fixed effects. However, we now use lagged productivity on the right-hand side to facilitate comparisons

between hospitals and concrete plants.' Strikingly, the correlation between output and lagged productivity

is an order of magnitude larger in healthcare than in concrete.

1 Due to how productivity is measured for concrete plants, regressing output on contemporaneous productivity would yield

spuriously expanded coefficients: for concrete, output is effectively the numerator of the productivity measure. To fix the bias,
we use the productivity measure from 5 years earlier on the right-hand side, rather than contemporaneous productivity. The

lag is 5 years for both sectors because data for concrete plants is only available at that frequency.
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The second row reports our exit analysis, based on equation 2.2 but modified to account for the fact that

in concrete we only have data every five years; therefore, for purposes of comparability, we look at exit five

years later for both hospitals and for concrete. However, comparability is limited by the fact that "exit" is

defined quite differently in the two data sets. 2

The filial row reports our growth analysis. To make the analysis comparable across the two industries, for

both we run the following regression:

Nh,t+10 - Nb,,t+5
Nht±1+ Nht±5 , o + /31ah,t + 7IM,t + Eh,t

S(Nh,t+1o + Nh,t+5)
(D.1)

Here, "size" (N) is defined as the number of patients in hospitals or the amount of physical output for

concrete plants. 3

2 In the concrete data, exit is directly observed; in the hospital data we infer "exit" based on the hospital having less than 5
patients for five consecutive years. Therefore, for concrete we regress an indicator for whether the firm has exited at year t +5
on productivity in year t (and market-year fixed effects). For hospitals, we regress an indicator for whether the hospital has
less than five patients in every year from year t + 5 to year t + 9 on productivity in year t (and market-year fixed effects).3

1n order to make the growth analysis comparable for hospitals and for concrete, this regression differs from our baseline
growth regression (equation 3) in two ways. First, because the concrete data is only available every five years, it looks at growth
between 5 year periods rather than 1 year periods. Second, it lags the productivity estimate on the right hand side back another
time period. As in the static allocation metric, we do this because in manufacturing, our measure of size is output, which also
enters the numerator of the productivity estimate; if there is mean reversion in output and we had ah,t+5 on the right-hand
side instead, this would create negative bias in the 31 coefficient.
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Appendix E

Robustness Analysis

E.1 Additional risk adjusters

For approximately one year of patients, we have access to even more detailed information on health than

in the Medicare claims data. These data comes from the Cooperative Cardiovascular Project (CCP), which

abstracted information from patient charts to create an extremely detailed dataset of clinically relevant

characteristics, like test results and medical histories, for a nationally representative sample of Medicare AMI

patients in 1994 and 1995. These data, which are described in more detail in Chandra and Staiger (2007),

are considered superior to administrative data because of the much more specific and reliable information

available on patient charts than in claims data. In Table A8 we re-run our analyses on this subset of the

data and show that the results are not sensitive to adding this additional, more extensive, set of controls.

Column (7) shows the results for the CCP sample with the all the information abstracted from the patient

chart. These results are very similar to results from the CCP data that use fewer risk adjustors (columns 8

and 9). Results with fewer risk adjustors in the CCP data (columns 8 and 9) look roughly similar to results

in one year (1994) of Medicare claims data with the same risk adjustors (column 5 and 6), which are also

roughly similar to the results on our full set of Medicare claims data (columns 1-3).

E.2 Alternative Input Measures

Appendix Table A9 explores the robustness of our results to alternative input measures; more detail on their

construction is provided in Appendix B. Column 1 replicates our baseline results. As noted in Section 2.6,

there is a tradeoff between our relatively coarse baseline measure of inputs (with its associated measurement

error) and more granular measures which suffer from potential survivorship bias (a patient cannot have a

lot of procedures done if he does not survive very long). Columns 2 and 3 explore the sensitivity of our
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estimates to more granular measures which use as inputs a series of approximately 60 indicators for whether

various procedures were performed as well as a continuous variable measuring the log of the number of days

in the hospital during our 30 day window.

We incorporate this more granular input measure in two different ways. In column 2 we explore a multi-input

production function; specifically, we replace our single index measure with all of the procedure indicators

as well as the log hospital days variable. In column 3 we return to a single-input production function but

one that is based on this more granular input measure; we create the single input by regressing log hospital

charges on these same procedure indicators and the log hospital days variable, as well as hospital-year

fixed effects.1 We use the coefficients from this regression - ignoring the hospital-year effects - to produce an

estimate of predicted charges for each patient in our data. The correlation between this predicted log charges

measure and our baseline log input measure is 0.77 (with actual log charges it would be 0.75). As would be

expected from survivorship bias, the returns to scale coefficient p in column 3 is substantially higher than

that in our baseline column 1.

Yet another alternative approach to inputs is to measure Medicare reimbursement to the hospital for a

patient, rather than the hospital's use of inputs per se. Like our baseline approach, this approach is also

often used in the literature (e.g. Cutler et al., 1998; Skinner and Staiger, 2009a). Medicare reimbursement

depends not just on the patient's DRGs (our baseline resource measure) but also characteristics of the hospital

(such as whether it is a teaching hospital or whether it treats a disproportionate share of low income patients)

and its location (MedPAC, 2011). Part A Medicare spending per AMI patient is the standard measure used

in the economics literature in studying the relationship between heart attack treatment and outcomes (e.g.

Cutler et al., 1998; Skinner and Staiger, 2009a). The results in column 4 use this Medicare reimbursement

measure; the returns to scale parameter p is therefore interpreted here as the return to federal expenditures

(in the form of post-AMI survival) rather than real inputs. The correlation between our baseline resources

measure and the reimbursement measure is 0.90. The main results are all quite robust to this alternative

measure.

A final input measure incorporates physician and outpatient inputs for the subsample of hospital years

beginning in 2001 (see Appendix B for more details; our sample starts in 2001 because it is the first full year

with data). Column 5 shows our baseline results limited to the sample where we can observe these other

input measures; this cuts our sample of hospital-years substantially, by about 70 percent. Column 6 shows

the results for this same "overlap" sample with our expanded input measure. For the overlap sample, the

correlation between our baseline input measure and the expanded measure is 0.98.2

1Hospital "charges" are accounting charges for rooms and procedures and do not reflect transacted prices. They have
been used in the literature as a convenient, price-weighted summary of treatment, albeit at somewhat artificial prices (Card
et al., 2009; Finkelstein et al., 2012). The hospital-year fixed effects in the log charges regression eliminate variation across
hospital-years in the charge-to-cost ratio (i.e. differential hospital markups of list prices above costs).

2
This high correlation reflects the fact that outpatient resources are, on average, about one-fifth the size of the inpatient

resources devoted to one of our patients; in addition there is a high (about two-thirds) correlation between outpatient and
inpatient resources devoted to a patient.
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Looking across the columns, the basic qualitative findings concerning the role for competition in allocating

more market demand to more productive firms both at a point in time and over time are quite robust to

alternative input measures. In particular, the static allocation analysis and the growth analysis remain

statistically significant in virtually all alternative specifications. The statistical significance of the exit-based

regression results is more sensitive to the choice of input measure. Perhaps not surprisingly, the magnitudes of

the static and dynamic allocation analyses vary somewhat across the specifications. The dispersion estimates

are remarkably robust to alternative input measures.

E.3 Alternative Time Frames for Measuring Inputs and Outputs

Appendix Table A10 considers how our metrics are affected by alternative time windows for measuring

survival and inputs. Our baseline specification looks at survival over 1 year and at inputs over 30 days.

A shorter time horizon for inputs will miss some of the resources provided to the patient. There is also a

practical limitation to very short horizons; we observe resources at the level of a hospital stay, not a hospital

day or hour; 96% of hospital stays are at most 30 days long, but a measure like 7 day utilization would

require arbitrary spreading of resources across the 7 days for the 33% of patients who spend more than 7

days in the hospital. Longer time horizons have their own limitations: issues of survival bias (the longer

the patient lives, the more that can be done) and the fact that as time passes since the first incident, the

treatments that are undertaken are increasingly linked to providers outside the original hospital. Columns

2 and 3 show, respectively, that the results are robust to a longer (one year) survival horizon and a shorter

(7 day) survival horizon, rather than our baseline 30 day time frame.

In terms of the time horizon for outcomes, we choose a 1-year survival window because it is of more interest

than short-term survival, which may reflect only a few days postponement of mortality. As a practical matter,

censoring is also less prevalent at 1 year than at shorter horizons. Finally, another advantage of our 1-year

window is that it will pick up aspects of hospital productivity that affect outcomes through longer-term

mechanisms such as the management of complications due to co-morbidities like congestive heart failure or

diabetes. Longer time windows will also better capture the quality of continuing care like the prescribing

of statins and the follow up to make sure the patient is taking these medications. Such inputs are less

likely to affect survival at much shorter horizons but can be quite important over longer intervals. On the

other hand, the longer measurement horizon introduces greater scope for patient autonomy (e.g. in terms of

changes in behavior such as diet and smoking, compliance with recommended medications, follow-up visits,

etc.) and for the impact of doctors (regardless of which hospital the patient went to) or admissions to other

hospitals to affect survival. Longer horizons may therefore attenuate differences across hospitals in measured

productivity. Our results are robust to moving away from our baseline 1 year survival to 30 day survival

(column 4) or to 5 year survival (column 6); the 5 year horizon requires that we limit the sample to heart
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attacks through 2003 so that we observe the patient for 5 subsequent years; column 5 shows our baseline 1

year survival measure on this sample.

E.4 Alternative Market Definition

Our analysis looks at within-market static allocation and dynamic re-allocation. The baseline results use a

Hospital Referral Region (HRR.) as the market definition. An alternative definition of the hospital market

which is sometimes used is a Hospital Service Area (HSA). HSAs are partitions of HRRs; there are about

10 times as many HSAs as HRRs.3 Table A4 shows that our core static and dynamic allocation results are

robust - indeed, they become slightly larger in magnitude - when using this alternative market definition.

E.5 Imposing scale parameter p

We evaluated the robustness of our main results to imposing, rather than estimating, various values for

the scale parameter . This method amounts to following the index number, or Solow residual, approach to

measuring productivity in which factor elasticities are taken from auxiliary data such as factor cost shares.

We impose a p of 0.1, 0.3, and 0.9. These results are shown in Table All.

3For more information see http://www.dartmouthatlas.org
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Appendix Figures

Histograms of Input Measures
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Top row shows the component of our baseline input measure that is attributable to the patient's "index event",
or initial hospitalization for the AMI. Bottom row shows the distribution of the baseline input measure and
compares it to an alternative measure that captures actual payments to hospitals. Specifically, Figure Ala
shows the component of the baseline measure due to the patient's index event DRG weight. Figure Al b adds index
event outlier payments. Figure Alc, our baseline input measure, adds inputs (due to DRGs and outlier payments)
from subsequent hospital stays within 30 days of the index event. Figure Ald shows the Part A (hospital-based)
spending measure, an alternative input measure which incorporates the same hospital stays as the baseline
measure but adds in geographic and hospital-specific price adjustments to capture actual Medicare payments to
providers. See Appendix B for more details. All measures are in logarithms and are for the year 2000 only.
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Appendix Tables

Table Al - List of Top DRGs for Index Events (Initial Hospital Stays for the AMI Episode) in 2000
Rank Number DRG Name' Weight Share Cum. Share

1 121 Circulatory Disorders with AMI and Major Complications, 1.63 41.2% 41.2%
Discharged Alive

2 122 Circulatory Disorders with AMI, without Major 1.11 20.9% 62.1%
Complications, Discharged Alive

Other Permanent Cardiac Pacemaker Implant or PTCA with3 116 2.47 13.0% 75.1%
Coronary Artery Stent Implant

4 123 Circulatory Disorders with AMI, Expired 1.51 10.9% 86.0%
5 107 Coronary Bypass with Cardiac Catheterization 5.46 5.4% 91.4%
6 110 Major Cardiovascular Procedures with CC 4.16 2.0% 93.4%
7 112 Percutaneous Cardiovascular Procedures 1.92 1.6% 95.0%

Permanent Cardiac Pacemaker Implant with AMI, Heart
Failure or Shock, or AICD Lead or Generator Procedure
Cardiac Valve and Other Major Cardiothoracic Procedure
with Cardiac Catheterization

10 483 Tracheostomy except for Face, Mouth, and Neck Diagnoses 16.12 0.5% 97.3%
11 106 Coronary Bypass with PTCA 7.33 0.4% 97.7%
12 109 Coronary Bypass without PTCA or Cardiac Catheterization 4.04 0.4% 98.1%
13 144 Other Circulatory System Diagnoses with CC 1.15 0.3% 98.4%
14 478 Other Vascular Procedures with CC 2.35 0.3% 98.7%
15 468 Extensive OR Procedure Unrelated to Principal Diagnosis 3.64 0.3% 99.0%
16 120 Other Circulatory System OR Procedures 2.01 0.2% 99.2%
17 108 Other Cardiothoracic Procedures 5.77 0.2% 99.4%
18 111 Major Cardiovascular Procedures without CC 2.23 0.1% 99.5%
19 477 Non-Extensive OR Procedure Unrelated to Principal 1.77 0.1% 99.6%

Diagnosis
20 145 Other Circulatory System Diagnoses without CC 0.65 0.1% 99.7%

Notes: "Rank" refers to the share of patients with the DRG; "Number" refers to CMS's assigned number for that
DRG; "Weight" is a CMS-assigned value that is designed to be proportional to the average cost of treatment and
is used to determine reimbursement - the weights are set by CMS so that the average Medicare patient across all
conditions has a weight of 1.

'Abbreviations: CC - Complicating Conditions, OR - Operating Room, PTCA - Percutaneous Transluminal
Coronary Angioplasty.
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Table A2 - List of Top DRGs for All Claims

Rank Number DRG Namea Weight Share Cum. Share

1 121 Circulatory Disorders with AMI and Major Complications, 1.63 15.1% 15.1%
Discharged Alive

2 127 Heart Failure and Shock 1.01 8.4% 23.5%

3 116 Other Permanent Cardiac Pacemaker Implant or PTCA with 2.47 8.0% 31.5%
Coronary Artery Stent Implant

4 122 Circulatory Disorders with AMI, without Major 1.11 7.3% 38.8%
Complications, Discharged Alive

5 123 Circulatory Disorders with AMI, Expired 1.51 3.8% 42.6%

6 132 Atherosclerosis with CC 0.67 2.8% 45.4%

7 107 Coronary Bypass with Cardiac Catheterization 5.46 2.7% 48.1%

8 462 Rehabilitation 1.36 2.7% 50.8%

9 89 Simple Pneumonia and Pleurisy, Age > 17, with CC 1.09 2.5% 53.3%
10 14 Specific Cerebrovascular Disorders Except TIA 1.19 1.9% 55.2%
11 88 Chronic Obstructive Pulmonary Disease 0.94 1.8% 57.0%
12 144 Other Circulatory System Diagnoses with CC 1.15 1.5% 58.5%
13 174 Gastrointestinal Hemorrhage with CC 1.00 1.2% 59.7%
14 112 Percutaneous Cardiovascular Procedures 1.92 1.2% 60.9%

15 124 Circulatory Disorders Except AMI, with Cardiac Cath and .40 1.2% 62.1%
Complex Diagnosis

16 138 Cardiac Arrhythmia and Conduction Disorders with CC 0.82 1.2% 63.3%

17 143 Chest Pain 0.53 1.2% 64.5%

18 296 Nutritional and Miscelaneous Metabolic Disorders, Age > 0.86 1.2% 65.7%
17, with CC

19 109 Coronary Bypass without PTCA or Cardiac Catheterization 4.04 1.1% 66.8%

20 182 Esophagitis, Gastroenteritis, and Miscelaneous Digestive 0.78 1.1% 67.9%
Disorders, Age > 17, with CC

Notes: "Rank" refers to the share of patients with the DRG; "Number" refers to CMS's assigned number for that

DRG; "Weight" is a CMS-assigned value that is designed to be proportional to the average cost of treatment and
is used to determine reimbursement - the weights are set by CMS so that the average Medicare patient across all

conditions has a weight of 1.

'Abbreviations: CC - Complicating Conditions, OR - Operating Room, PTCA - Percutaneous Transluminal

Coronary Angioplasty, TIA - Transient Ischemic Attack.
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Table A3 - Sensitivity of Results to EB Adjustment

(1) (2)
EB Adjustment: Yes No
Parameter

0.446 0.446
(0.00511) (0.00511)

Static Allocation 2.418 0.440
(0.0889) (0.0182)

Dynamic Allocation
Exit Regression -0.0329 -0.0138

(0.00935) (0.00347)
Growth Regression 0.133 0.0373

(0.0225) (0.00759)
Dispersion

90:10 0.442 0.751
(0.0112) (0.0136)

75:25 0.233 0.395
(0.00590) (0.00714)

Standard Deviation 0.173 0.293
(0.00438) (0.00530)

Notes: Column (1) is baseline specification. Column
(2) shows results without the empirical Bayes
adjustment. Standard errors are bootstrapped with
300 replications and are clustered at the market level.
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Table A4 - Tests of Robustness of Allocation Results

(1) (2) (3)
Smaller Nearest

Risk Adjustment: Baseline Market Hospital

Static Allocation 2.418 2.816 0.449

(0.0889) (0.152) (0.0685)
Dynamic Allocation

Exit Regression -0.0329 -0.0675 0.00407

(0.00935) (0.0189) (0.00889)
Growth Regression 0.133 0.161 0.0219

(0.0225) (0.0446) (0.0220)

Notes: The allocation

specifications given in

results are produced by estimating the
the notes to Table 2.4. Column (1) repeats

the baseline full risk adjustment results. Column (2) reports the

results from running the same specification with the market

defined as an HSA (Hospital Service Area; HSAs partition the

baseline set of markets into approximately 10 times as many
markets). Since the coefficients are identified by market-years with

multiple hospitals, this reduces the effective number of

observations by about half. Column (3) reports the baseline results

but counterfactually calculates hospital size, growth, and exit by

assigning all patients to the nearest hospital in their market, rather

than the hospital at which they were actually treated. Standard

errors are bootstrapped with 300 replications and are clustered at

the market level.
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Table A
5 -

A
llocation M

etrics By 
H

ospital- and M
arket-Level C

haracteristics

(1) 
(2) 

(3) 
(4) 

(5) 
(6) 

(7) 
(8) 

(9) 
(10)

In(Pats) 
G

row
th 

In(Pats) 
G

row
th 

In(Pats) 
G

row
th 

In(Pats) 
G

row
th 

In(Pats) 
G

row
th

In(Productivity) 
2.418 

0.133 
2.371 

0.143 
2.280 

0.174 
3.644 

0.171 
3.104 

0.202

(0.0889) 
(0.0225) 

(0.0931) 
(0.0236) 

(0.119) 
(0.0286) 

(0.363) 
(0.0883) 

(0.357) 
(0.0627)

x G
overnm

ent-R
un H

ospital 
-0.341 

-0.0802
(0.143) 

(0.0369)
x In(M

in 
D

istance to N
earest H

ospital) 
-0.150 

-0.0392

(0.0537) 
(0.0118)

x Share C
ollege+ 

in M
arket 

-5.372 
-0.166

(1.467) 
(0.357)

x ln(P
op/K

M
2) in M

arket 
-0.157 

-0.0159

(0.0763) 
(0.0127)

G
overnm

ent-R
un H

ospital 
-0.511 

-0.0358
(0.0398) 

(0.00816)
In(M

in D
istance to N

earest H
ospital) 

-0.273 
-0.0186

(0.0155) 
(0.00258)

O
bservations 

55,540 
52,777 

55,540 
52,777 

55,540 
52,777 

55,540 
52,777 

55,540 
52,777

N
otes: C

olum
ns (1) 

and (2) 
replicate our baseline static and dynam

ic allocation results from
 Table 2.4, colum

n 1. C
olum

n (1) 
show

s the static allocation relationship betw
een a hosital-

year's log(patients) and productivity w
ithin a m

arket-year 
(see equation 1). 

C
olum

n (2) 
show

s the dynam
ic allocation relationship (w

ithin a m
arket-year) 

betw
een a hospital's one year

percent grow
th and its base year productivity (see equation 3). In the rem

aining colum
ns these analyses are augm

ented to include the specified interactions w
ith m

arket- and hospital-level

variables (as w
ell as the m

ain effect of these variables as indicated). Standard errors are bootstrapped w
ith 300 replications and are clustered at the m

arket level.

G
overnm

ent-R
un 

is defined using the hospital control field in the C
M

S P
rovider of Services file. M

in D
istance is the distance betw

een the hospital and the nearest hospital to it that

treated 
an A

M
I patient in that year. Share C

ollege+ 
is defined as the share of the population 

in the hospital's m
arket that had at least a bachelor's degree in the 2000 Census. P

op/K
M

2 is

the population density in the hospital's m
arket according to the 2000 C

ensus.



Table A6 - Productivity Dispersion across hospitals.

(1) (2) (3)
Risk Adjustment: All Age/Race/Sex None

90-10 0.442 0.469 0.521
(0.0112) (0.0117) (0.0126)

75-25 0.233 0.247 0.274

(0.00590) (0.00614) (0.00666)
Standard Deviation 0.173 0.183 0.203

(0.00438) (0.00455) (0.00493)

Notes: Productivity is estimated based on the corresponding

specification in Table 2.2. Dispersion measures in productivity

are constructed nationally each year, and then averaged across

years. The top row reports difference in productivity between

the 90th percentile hospital and the 10th percentile hospital;

the next row reports the difference in productivity between the

75th percentile and the 25th percentile hospital; the bottom

row reports the estimated standard deviation of the productivity

distribution. Standard errors are bootstrapped with 300

replications and are clustered at the market level.

Table A7 - Allocation Metrics: Concrete vs Hospitals

Concrete Hospitals

Risk Adjustment: Estimate DV Mean Sample (Approx) Estimate DV Mean Sample

Static Allocation 0.299 5,500 plant-years 2.166 3.585 33,155 hospital-years

(0.076) (0.094)

Dynamic Allocation

Exit Regression -0.066 0.20 12,400 plant-years -0.147 0.17 25,359 hospital-years

(0.018) (0.028)

Growth Regression 0.080 -0.075 2,600 plant-years 0.480 -0.62 18,569 hospital-years

(0.069) (0.069)

Notes: Estimates for concrete are based on data from the quinquennial Census of Manufactures from 1972-

1992. Estimates for hospitals are based on Medicare AMI patients from 1993-2007 and use our baseline

specification (see Table 2.2, column 1). Standard errors are robust analytic (Concrete) or bootstrapped with

300 replications and clustered at the market level (Hospitals). See text for further details on metrics and data

(described in more detail in Appendix D).
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Table A
8 -

CCP

(1) 
(2) 

(3) 
(4) 

(5) 
(6) 

(7) 
(8) 

(9)
D

ataset 
M

edicare C
laim

s 1993-2007 
M

edicare C
laim

s 
1994 

C
C

P 1994-1995
R

isk A
djustm

ent 
B

aseline 
A

ge/R
ace/S

ex 
N

one 
B

aseline 
A

ge/R
ace/S

ex 
N

one 
E

ntire C
hart 

A
ge/R

ace/S
ex 

N
one

P
aram

eter

0.446 
0.481 

0.589 
0.456 

0.482 
0.600 

0.282 
0.412 

0.530
(0.00511) 

(0.00523) 
(0.00552) 

(0.00857) 
(0.00869) 

(0.00875) 
(0.0074) 

(0.0087) 
(0.0091)

S
tatic A

llocation 
2.418 

2.496 
2.618 

2.560 
2.540 

2.332 
1.942 

2.104 
2.118

(0.0889) 
(0.0851) 

(0.0779) 
(0.268) 

(0.249) 
(0.181) 

(0.3362) 
(0.3284) 

(0.2910)

D
ispersion
90:10 

0.442 
0.469 

0.521 
0.447 

0.465 
0.523 

0.366 
0.401 

0.424

(0.0112) 
(0.0117) 

(0.0126) 
(0.0221) 

(0.0219) 
(0.0221) 

(0.0247) 
(0.0267) 

(0.0266)
75:25 

0.233 
0.247 

0.274 
0.235 

0.245 
0.275 

0.193 
0.211 

0.223
(0.00590) 

(0.00614) 
(0.00666) 

(0.0116) 
(0.0115) 

(0.0116) 
(0.0130) 

(0.0141) 
(0.0140)

S
tandard D

eviation 
0.173 

0.183 
0.203 

0.174 
0.181 

0.204 
0.143 

0.156 
0.166

(0.00438) 
(0.00455) 

(0.00493) 
(0.00861) 

(0.00853) 
(0.00861) 

(0.0096) 
(0.0104) 

(0.0104)

P
atients 

3,530,401 
244,070 

136,434

H
ospitals 

5,346 
4,349 

3,829
H

ospital-Y
ears 

55,540 
4,349 

3,829

N
otes: C

olum
ns 1-3 reproduce our m

ain results from
 Tables 2.2, 2.4 and 2.6. C

olum
ns 4-6 perform

 the sam
e analysis on a single year of our data (1994),

and colum
ns 7-9 show

 the analysis on the 1994-1995
C

C
P sam

ple. The C
C

P sam
ple is sm

aller than the year of M
edicare claim

s because it only collected

data for each region o
f the country for 8 m

onths and because it excluded patients w
hose charts had been incorrectly coded 

as show
ing evidence of A

M
I. 

The

C
C

P results using age/race/sex adjustm
ent (colum

n 
8) 

look sim
ilar to our results for one year of data using age/race/sex adjustm

ent (colum
n 5). 

(W
e are

unable to replicate our baseline set of covariates in the C
C

P data due to som
e differences in variable availability). In the C

C
P, w

e find that relative to age,
race, and sex risk adjustm

ent (colum
n 8), 

using all inform
ation that w

as abstracted from
 the patient chart (colum

n 7) 
slightly w

eakens the static allocation
relationship and slightly reduces dispersion. S

tandard errors are bootstrapped w
ith 300 replications and are clustered at the m

arket level



Table A9 - Comparison of Input Measures

(1) (2) (3) (4) (5) (6)
Input Measure: Baseline Procedures Fitted Chg Spending Baseline Base+Part B

Sample: Full Full Full Full With Part B Data

Parameter

0.446 0.714 0.395 0.369 0.399
(0.00511) (0.00652) (0.00508) (0.00699) (0.00715)

Static Allocation 2.418 1.497 0.972 1.749 2.326 2.232

(0.0889) (0.0879) (0.0996) (0.0834) (0.233) (0.232)

Dynamic Allocation

Exit Regression -0.0329 -0.0199 -0.00661 -0.0245 -0.0330 -0.0347

(0.00935) (0.0106) (0.0106) (0.00943) (0.0450) (0.0476)

Growth Regression 0.133 0.0611 -0.00515 0.0762 0.220 0.211

(0.0225) (0.0258) (0.0263) (0.0230) (0.0762) (0.0798)
Dispersion

90:10 0.442 0.431 0.428 0.453 0.353 0.343

(0.0112) (0.00891) (0.00908) (0.0104) (0.0229) (0.0227)
75:25 0.233 0.227 0.225 0.239 0.186 0.180

(0.00590) (0.00469) (0.00478) (0.00545) (0.0121) (0.0120)

Standard Deviation 0.173 0.168 0.167 0.177 0.138 0.134

(0.00438) (0.00348) (0.00354) (0.00404) (0.00895) (0.00887)

Patients / 1000 3,530 3,530 3,530 3,525 271.3 271.3

Hospital-Years 55,540 55,540 55,540 55,529 15,039 15,039

Hospitals 5,346 5,346 5,346 5,346 3,092 3,092

Notes: Column (1) is baseline specification. All other columns use alternative input measures (described

in more detail in Appendices B and E). Column 5 and 6 are Ii

30 percent of hospital-years for which we observe Part B physi
nited to the sub-sample of approximately
cian and outpatient data for at least five

AMI patients in that hospital-year; in column 6 our baseline input measure (which uses only Part A

inputs) is expanded to include Part B inputs; see text for more details. Standard errors are bootstrapped

with 300 replications and are clustered at the market level.
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Table A10 - Comparison of Results with Varying Survival and Input Horizons

(1) (2) (3) (4) (5) (6)
Survival Horizon: 1 Year 1 Year 1 Year 30 Days 1 Year 5 Years
Input Window: 30 Days 1 Year 7 Days 30 Days 30 Days 30 Days

Sample Thru: 2007 2007 2007 2007 2003 2003
Parameter

I-L 0.446 0.790 0.172 0.292 0.451 0.585
(0.00511) (0.00504) (0.00959) (0.00243) (0.00544) (0.00791)

Static Allocation 2.418 2.694 2.421 3.992 2.347 2.047
(0.0889) (0.0955) (0.0906) (0.146) (0.0938) (0.0811)

Dynamic Allocation

Exit Regression -0.0329 -0.0317 -0.0372 -0.0660 -0.0221 -0.0201
(0.00935) (0.00969) (0.00918) (0.0173) (0.0105) (0.00815)

Growth Regression 0.133 0.138 0.147 0.213 0.101 0.101
(0.0225) (0.0230) (0.0220) (0.0409) (0.0251) (0.0189)

Dispersion

90:10 0.442 0.422 0.450 0.224 0.446 0.583
(0.0112) (0.00981) (0.0117) (0.00626) (0.0119) (0.0146)

75:25 0.233 0.222 0.237 0.118 0.235 0.307
(0.00590) (0.00516) (0.00617) (0.00330) (0.00628) (0.00770)

Standard Deviation 0.173 0.164 0.175 0.0874 0.174 0.227
(0.00438) (0.00383) (0.00457) (0.00244) (0.00465) (0.00571)

Patients / 1000 3,530 3,530 3,530 3,530 2,702 2,702
Hospitals 5,346 5,346 5,346 5,346 5,180 5,180

Notes: Column (1) is baseline specification. In other columns the time horizon in which we measure
survival and/or inputs is modified as indicated in the column headings. Standard errors are
with 300 replications and are clustered at the market level.

bootstra pped
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Table All - Sensitivity of Results to t

(1) (2) (3) (4)
Source of 1±: Estimated Imposed
Value of k: 0.446 0.1 0.3 0.9

Static Allocation 2.418 2.358 2.399 2.278
(0.0889) (0.0883) (0.0884) (0.0835)

Dynamic Allocation
Exit Regression -0.0329 -0.0361 -0.0343 -0.0263

(0.00935) (0.00923) (0.00930) (0.00891)
Growth Regression 0.133 0.144 0.138 0.107

(0.0225) (0.0220) (0.0223) (0.0215)

Dispersion
90:10 0.442 0.449 0.445 0.457

(0.0112) (0.0116) (0.0114) (0.0104)
75:25 0.233 0.237 0.234 0.241

(0.00590) (0.00611) (0.00599) (0.00549)
Standard Deviation 0.173 0.175 0.173 0.178

(0.00438) (0.00453) (0.00444) (0.00407)

Notes: Column (1) shows results based on estimation of our baseline
specification (Table 2.2, column 1). In the other columns IL is imposed rather
than estimated. Standard errors are bootstrapped with 300 replications and are
clustered at the market level.
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