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ABSTRACT.

An analysis and comparison of Unit Conventional UO2 Fuel-Assemblies and
proposed Plutonium Recycle Fuel Assemblies for the Yankee (Rowe) Reactor
has been made.
The influence of spectral effects, at the watergaps -and spectral-and
transport effects at the UO2 - Mixed Oxide interface, on the powerpeaking
has been determined.
Two one thermal group methods have been developped for the calculation of
powerpeaking in the two dimensional assemblies. The accuracy of the
LEOPARD code and LASER code (thermal cut off 1.855 ev) for the calculation
of the powerpeaking in conventional and plutonium recycle assemblies has
been evaluated.
The power distribution and local power peaking factors during burnup,
including spectral effects, were also calculated with a macroscopic
depletion model.
Powergradients inside the peak UO2 rod and peak mixed oxide rod were also
determined, and the variations in the heat flux,. at the pellet and cladding
surface, around these peak pins were calculated. Finally preleminary
comparisons of engineering factors for the peak U02 rod and the peak mixed
oxide rod have been made.
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SUMMARY AND KEY CONCLUSIONS.

A) DESCRIPTIONS ASSEMBLIES : key Table 1-4, key Figures : 1-4, 1-5, 1-6, 1-10.

B) KEY CONCLUSIONS CONCERNING THE EFFECTS THAT INFLUENCE THE CALCULATIONS OF

THE POWERDISTRIBUTIONS & LOCAL POWER PEAKING FACTORS.(Chapter III-V)

1)-The much larger fluxgradient in the Pu-recycle assembly is responsible

for differences in diffusion theory models. The effect on the power

peaking factor is minor. The few group diffusiontheory calculations

with standard unit cell codes such as LASER is adequate for the calcu-

lation of the powerdistributions.

2)-The accurate description of the Pu-240 resonance is a major factor of

concern for the calculation of the power distribution and local power

peaking in the Pu-recycle assembly, but is not too important in conven-

tional applications even at high burnups.

3)-The spectral effects at the watergaps and at the mixed oxide - UO2

interface are major factors of concern for the accurate calculation of

local power peaking factors.

(Key Tables : Table ll-4, iV-4, V-1, V-2, V-3. Key Figures : Fig.Il-2,

111-3, 111-4, 111-5, IV-15, IV-16, V-5, V-8)

C) KEY CONCLUSIONS ABOUT THE SIMPLE POWER PEAKING CALCULATION METHODS,

(Chapter IV, V)

1)-The developed spectral- cross section Synthesis method (SXS) and the

more simple generalised mixed number density method (GMND) which can be

used with the LASER codes are adequate for the calculation of power

peaking in the Pu-recycle assemblies.

2)-By comparison with experiment the standard LASER code to generate the

X-sections was found to be more accurate tham the LEOPARD code for the

calculation of the powerdistribution and local power peaking factors,
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for Plutonium Recycle applications.

(Key Tables : IV-4, V-1, V-3. Key Figures : 111-3, IV-12, IV-13,

Iv-14, IV-15, Iv-16)

D) KEY CONCLUSIONS ABOUT THE POWERDISTRIBUTION AND LOCAL POWER PEAKING

FACTORS (Chapter V) IN THE CONVENTIONAL AND PU-RECYCLE YANKEE ASSEMBLIES,

D -1 Beginning of Life

( Key Tables : Table V-1, V-3, V-4. Key Figures : Fig.V-5, V-9, V-10,

V-11)

1)-The power peaking factor in a plutonium-recycle assembly increases

with the w/o of PuO 2 used in the mixed oxide rods by about 10 % per

w/o (Fig.V-11)

2)-At 4 w/o of PuO2 the local nuclear power peak in the plutonium recycle

assembly is about equal to the local power peaking factor in a conven-

tional assembly (Fig.V-11)

3)-The local power peaking factor in a Pu-recycle assembly is rather

insensitive to the number of mixed oxide rods and loading configuration.

4)-The spectral effects at the mixed oxide UO2 interface increase by about

1.6 % per w/o of PuO 2 in the mixed oxide fuel.

D -2 Burnup.

(Key Figures : Fig. V-19, V-31, V-32, V-37, V-38, V-4O, V-41)

1)- There is a considerable powerflattening in the Pu-recycle assembly

with burnup (Fig.V-37) and no flattening in a conventional assembly

(Fig.V-31).

2)-There is a decrease of the local power peaking factorwith burnup in a

Pu-recycle assembly, especially for the peak mixed oxide rod; and an

increase in the local power peaking factor in a conventional assembly

(Fig.V-41).
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3)-There is a shift in peak rod position from the peak mixed oxide rod to

the peak UO2 rod in a plutonium recycle assembly (Fig.V-41)

4)-The increase in local power peaking due to spectral effects remains

strong, even at high burnups. in conventional applications the

spectral effects at the fresh fuel - burned fuel interface are negli-

gible.

5)-Both the isolated conventional and plutonium recycle assemblies reach

zero reactivity at about 30,000 MWD/MTM. In a batch fueled Yankee

Reactor, the plutonium recycle assemblies have a rather severe lifetime

penalty. However equal lifetime conditions in the actual two zone

out-in fueled Yankee reactor can probably be obtained.

E) KEY CONrl"SIjj$ gON THEPOERDISTRIBUTION INSIDE THE PEAK UO2AND PEAK MIXED

OXIDE RODS.(Chapter VI)

(Key Figures VI-12, VI-13, VI-14)

1)-The peak mixed oxide rods have a larger power gradient inside the pin

than a peak UO2 rod.

2)-The power distribution inside a mixed oxide rod is much more non

uniform than in a UO2 rod.

F) GENERAL KEY CONCLUSIONS ON HOT CHANNEL FACTORS,

(Chapters V, ViI) (Key Tables : Vil-3, Vil-5. Key Figures : Vil-2, VII-3)

1)-The peak mixed oxide rod has a larger circumferential heat flux hot

channel factor than a UO2 rod. The larger powergradient i-s responsible

for this effect.

2)-Due to the beneficial "internal" location of the peak mixed oxide rod,

next.to the low power U02 rods and other mixed oxide rods, the engineering

flow redistribution factor and nuclear enthalpy rise hot channel factor

ae lower.
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3)-The non uniform power distribution inside the peak mixed oxide pin

compared to the peak UO2 pin has a potential to allow an increase of

about 2.6 % in linear power in order to get the same maximum fuel

temperature as in the UO2 pin.

4)-it is estimated that due to the beneficial effects of internal loca-

tion of the mixed oxide rods in the graded assembly design, an increase

of at least 5 % in peak power can be allowed in the peak mixed oxide

rod, relative to the peak UO2 rod, to get the same minimum departure

of nucleate boiling ratio(assuming equal nuclear power peaking factors.

As an overall conclusion, the analysis indicates that the conventional and

plutonium recycle unit assembly designs, in which the 4 w/o mixed oxide rods

of only one enrichment are loaded in the center of the assembly, are compa-

tible in powerpeaking, heat flux and enthalpy rise hot channel factors, and

have about the same lifetime in an infinite reactor.

A capsule comparison of the conventional and plutonium-recycle unit assembly

design study is given on Table S-1.
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T C S

TABLE S-1.

CAPSULE COMPARISON CONVENTIONAL AND PLUTONIUM RECYCLE YANKEE ASSEMBLY
DES I GN

Pu-recycle Reason for difference Consequence.

- accuracy power distribu-
tion calculation.

- local powegpeaking BOL

- local power peaking with
burnup.

- lifetime in an
- infinite reactor

- batch Yankee reactor

- accuracy burnup calcu-
lations.

- powergradients inside
peak rods.

- powerdistribution inside
the rods.

reduced

increased

decreased

about same
reduced

reduced

increased

more non
uniform

larger flux gradients, Pu-240
description.

spectral effects at mixed oxide
and UO interface, higher
absorption in mixed oxide.

decrease of thermal absorption
cross section with burnup.

kanversus burnup mixed oxide
rod.

errors Pu cross-sections,
buildup higher isotopes.

high absorption cross-section.

high absorption cross-section.

- Proper choice of the code
(LASER or LOCALUX).

- limitation on the w/o of PuO
or 2 Pu enrichments necessary
to flatten the power.

- Improved power flattening with
burnup.

- noror possible increase w/o PUO2 1
reduce number of Pu rods, or other
fuel management action.

- lower lifetime, revision burnup
codes, or reactivity bias
necessary.

- higher circumferential heat flux
hot channel factor decreasp MDNBR.

- lower fuel centerline temperature.

enthalpy rise. reduced internal location, lo%
flowredistribution an
enthalpy rise HCF.

wer - improved DNB margin.
d nuclear

Parameter

CO

DESIGN
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CHAPTER 2%: INTRODUCTION.

1- 1 BACKGROUND - PLUTONIUM RECYCLE IN THERMAL REACTORS.

I - 1 - 1) Economic Aspects of Recycling Plutonium in Thermal Reactors.------------------------------------- -----------

The development of large FAST BREEDE6 has proceeded slowly in the

U.S. and elsewhere, whereas the demand for electric power doubles almost

every ten years.

With this increasing demand for electricity and a spiraling increase of

nuclear powerreactors, huge amounts of plutonium are expected to pile up

within the next 10years or more, before this plutonium will be consumed by

the firsteries of large fast breeder reactors,

In the U.S. alone 300 metric tons of Pu-fissile will be produced by 1985,

representing a value of roughly 3 billion dollars.(Ref. 1).

In the U.S. and elswhere (except the U.K. where inventory charges for

government holdings of Pu can be set quite low - and breeders are expected

earlier) stockpiling the Pu and carrying the accumulated interest charges,

has been considerednot economic and harmful for the development of future

LMFBR's. (Liquid Metal Fast Breeders). Therefore effective the 1st January

of 1971, the U.S. Atomic Energy Commission terminated the buy-back of

plutonium produced in commercial powerreactors, and forced the electric

utilities to take immediate action for recycling their Pu.

Before the Pu-fissile was sold at about 8 $ per gram. One typical Light

Water Reactor of 430 MWe produces about 70 kg. of Pu 239, and 18 kg. Pu 241

fissile isotopes per year, repre.senting a value of about 812,000 $ per year

or roughly. 16 % of the total fuel cycle cost. (Fig, :C- 1, Table :r- 1).
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Table C- 1 Makeup of Steady State Fuel Cycle Cost in a Pressurized Water

Reactor.

2,913 w/o U-235 in Feed

0.8 Capacity Factor

(1969 prices - from Prof. M. 3enedicts course
Nuclear Reactors - MIT).

Dollars
per Fuel Lot

z
q

"Economics for

Mills
per kwh
e
q

Uranium feed

Uranium credit (subtract)

Uranium burnup

Plutonium credit (subtract)

Net material cost

Fabrication

Reprocessing

Conversion

Total direct costs

Fuel carrying charge

Operations. carrying charge

Total fuel cycle cost

$ 3,069,755

531.286

2,538,469

812,000

1,726,469

1,199,129

477,368

39.366

3,442,332

1,669,371

224.3 13

$ 5,336,016

Component

1.0441

0.1807

0.8634

0.2762

0.5872

0.4078

0.1624

0,0134

1.1708

0.5678

0.0763

1.8149
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If Pu recoverable from U.S. Light Water Reactors were assigned zero value,

the fuel cycle cost would be increased by 812,000 $ per year, for a 430 M*

reactor, but may reach 1.5 to 3 mill ion $ for a 1000 MW(e) ireactor.

In the evaluation of plutonium recycle economics the term "value" of

plutonium is widely used. The value is defined as the maximum price that

can be assigned to plutonium in a given reactor to produce the same unit

power cost whether the reactor is fueled with plutonium or enriched uranium.

if no market for plutonium exists at the assumed price and it must be

carried on inventory, the capital outlay for Pu would double every 7 years.

Thus the capital-cost factor will become significant, if reactor use of

plutonium is longdelayed.

If a utility decides to store Pu in anticipation of a future price rise a

storage cost of 0.20 $ per gram must be paid at AEC facilities and= 0.35 $

per gram at commercial facilities.

The increase in Pu price due to potential increases in the cost of enriched

uranium or reduction of the plutonium fabrication-cost penalty will not

justify Pu storage for more than 2 or 3 years.

The high Pu-fabrication cost is one major drawback for economic recycling.

It has been estimated that the minimum Pu-value required for recycling is

1 to 3 $ per gram. In a preliminary study after receiving the bids of

fuel fabricators the Pu-value in the Yankee Reactor was found to be low,

which wasdue to the very high present fabrication cost of Pu-fuels.

The low throughput of the facilities for Pu-fuels & its toxity are major

factors for the high fabrication cost factor, presently about twice that of

UO2 rods.
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.- 1 - 2) Technical Aspects on Pu-Recycle Cores.-------------------------- ---

Based on preleminary design work for largePWR's Westinghouse concludes

that (Ref. 2 )

1) during the 1970's plutoniumrecycle will constitute lessthan 15 %

of the fuel for most LWR's, and the most likely mode is a self generated

cycle where plutonium processed from discharged fuel is reloaded in a given

reactor.

2) The reload region will have the same mechanical design for both

the plutonium recycle and.enriched uranium fuel assemblies. This will

result in the same coolant flow conditions outside the mixed oxide rods

since the same fuel rod pitch, outside diameter and grid designs will be used.

In PWR's the same type of cladding (zircalloy 4) will be used.

3) The plutoniumrecycle assemblies for PWR reload regions will consist

entirely of mixed-oxide fuel rods.

4) There will be minimum three different plutonium enrichments in

each plutoniumrecycle assembly.

5) Additional design work will be required for each application of

plutoniumrecycle to determine control worth and powerdistributioncontrol

requirements for each reactor. Powerdistribution and adequate control rod

worth are the principle concerns for plutonium recycle applications.
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-2 DESCR I PT ION OF THE YANKEE (-ROWE) PWR (1~/5 M1el AND COMPAR ISON W ITH

CURRENT 1000 MWe PWR's.

.- 2 -1) GROSS CORE DESCR I PT 1ON & COMPAR I S ION

The Yankee Nuclear Povier Station is one of the first privately

owned nuclear power stations and is located at Rowe in Massachusetts,

It is owned and operated by the Yankee Atomic Electric Company, a combine of

10 electric utilities in New England.

The reactor is of a. PVIR type, water moderated and cooled, and using slightly

enriched uranium.

The main contractors were Westinghouse Electric Corp. for the nuclear plant

and Stone & Webster Engineering Corp. for the steam plant. The- reactor reached

full power in june 1961 and produced a gross heat output of 392 MW thermal,

and a gross electric power of 110 M4e' Table I:- 2 shows the

differences in the design characteristics of the Yankee reactor compared to

the initial design, and the differences that exist between this reactor and

the more recent PWR's.

A vertical section of the Yankee reactorvessel isshown in Fig. T - 2, and a

horizontal cut in Fig. I- 3.

Of specific importance for the interpretation of our results compared to

other design studies of large PWR's is - the smaller reactor core, this -
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results in higher leakage, and a smaller effective multiplication factor

which in turn has a marked effect on the burnup & the choice of the

enrichment in order to get about 1 year of reactor operation.

Coastdown is a current practice in the Yankee reactor to extend the burnup

according to the load demands, and the fuel management is of the out-in

type, compared to the modified scatter refueling in large PWR's.

The presence of cruciform controt rods with zirc followers in the Yankee,

has for obvious space saving reasons (& other advantages) been replaced by

controlrodclusters'without followers in large PWR'S.

The followers in the Yankee serve 2 purposes, the/ reduce the powerpeaking

due to the increased watergap when control rods are withdrawn, and they

preserve the same flow distribution in the assemblies, for each control

rod position.

It is further important to notice .(Fig. I.- 3) the particular asynmetric

location of the cruciform controlrods & followers in the Yankee reactor

respective to the location of the fuel assemblies.

This layout, although .it gives the highest density of the core, makes it

impossible to shuffle the assemblies freely, and makes it necessary to have 2

mechanically different assembly designs.
number

Furthermore the V-of possible fuel assembly. patterns for optimum fuelmanage-

ment is obviously reduced.

Not all the assemblies in current large PWR's contain control rod clusters.
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FIG 1-3, FUEL ELEMENT
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TABLE T- 2 : COMPARISON OF YANKEE (ROWE) & RECENT PWR DESIGN CHARACTERISTICS.

I
D

Power Level, MWt

Power Level , MWe (net)

Specific Power, KWt/KgU

Power Density, KW/iiter

Power per ft 3 coolant inventory KWt 1

Fuel Exposure (Discharge)MWD4TU 8,4

Reactor Outlet temp (OF) 5

Reactor At, OF

Pounds Coolant circulator/KWt/hr

Heat transfer surface2
(steamgenerators), ft /MWt. 1

Primary Pressure(psia)

Secondary Steam Pressure psia, max 4

Load ing Kg U

Fuel Program

Core equiValent diameter inches (cold)

Active Fuel height(cold) inches

Number of Fuel Assembl ies

Avg KW/ft (nuclear) at 600 MWt

Heat Transfer area ft2 (hot)

Core heat deposited outside fuel rods %

avg. heat flux at 600 MWt BTU/hr.ft 2

Movable control rods

Shape

Absorber material

YANKEE (ROWE)
NITIAL CURRENT
ESIGN OPERATION

392 600

110 175

18.8 28.12

58.4 86.8

51 165

70 26,000

32 548

33 42

96.5 68

68

65

110

2,000

533

20,664

OUT- IN

73.35

91.0

76

3.48

15,767

2.7

126,372

24

Cruc iform

5% Cd,15% In.
80% Ag

RECENT PWR
DESIGN.

3,090

1 ,035

35

93.5

249

30,000

605

59.6

43.4

60

2,250

780

100,000

MODIFIED SCATTER

132.7

144

193

52,200

2.7

207,000

53

Rodcl usters

5% Cd,15% In.
80% Ag.
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I - 2 - 2) DESCRIPTION OF YANKEE FUEL ASSEMBLIES & COMPARISON WITH CURRENT

DESIGNS.

2)A : The SS clad Yankee Assemblies.

In the Yankee Reactor and other PWR'S the fuel rods are assembled

in "open" bundles, suitably shaped to provide control rod passage, and held in

place between the upper and lower grid plates.

The two types A and B are not identical due to the mechanical lay out of the

cruciform control rods.

The fuel rod matrix in the SS. type assemblies is 18 X 18, to provide slots

for the passage of control rods, the actual number of rods in the SS.assembl ies

is either 304 or 305. As seen on Fig, 1-3, either type of assembly contains

9 subassemblies, each of which is formed by nominally 6 by 6 square arrangement

of fuel rods. The rods are joined to form the subassembly by 1/2 in.long

tubular spacer or ferrules, brazed between the fuel rods at 8 inch axial intervals.

2)B : The Yankee Zircalloy-Clad Type Assemblies,

The reason for going to the zircalloy clad type assemblies are

economic. The thermal macroscopic cross-section of SS is about 0 .1 10 5 0cm-1

and for zircalloy 0 .040 0cm-1 Because of this, neutrons are used more econo-

mically, and the result is substantial savings even with a higher cost of Zr-4.

These assemblies again consist of 2 types A & B. The mechanical design of the

two types of assemblies are pictured in Figs. -4 and 1-5.

From comparison between Fig. 1-3 & Figs. 4,5, the mechanical design of the

brazed SS.-clad type assemblies & the zircelloy clad types assemblies is obvious.

The latter assemblies have a matrix of 16 X 16 rods as a base but actually

contain 236 or 237 rods. No devision in subassemblies exist, no ferrules are

used, no rods are brazed to the structure, which consists of a perforated

35 mils (.035 inches) stainless steel can (SS 304 L), with upper and lower end

nozzles. The fuel rods are held in their matrix by 6 spacers of iconel.
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The spacers are attached to the center instrumentation tube and form in this

way an integral part of the assembly. The spacers are suitably designed to

improve the turbulence & directional mixing of the coolant between the fuel

rods. Westinghouse claims that a 10 % savings on the MNBR (minimum

departure of nuclear boiling ratio) is obtained through their design of mixing

vanes in the spacers. Usually spacers consist of an open box structure.

Suitably designed Straps are attached to this box and form a matrix with the

unit dimensions of the pitch. Depending on the design, the straps are shaped

or contain special attachments to form a springtype structure in which the

fuel rods are held in place in the center of the unit cell, still allowing

some axial & radial expansion (without causing too much fretting or mechanical

wear) due to coolant vibrations, thermal bowing & the like.

A little bit off-centered is the instrumentation tube on which the spacers

are attached and which contain the SS. wire and instrumentation for the neutron

flux measurement.

In the S-corners of the assembly, the fuel rods are replaced by solid zircalloy

rods. Noticible on the Figs. -4,5 are that the assembly can is perforated

with holes, leaving the assembly an open structure, so that coolant mixing

between assemblies can take placee. The dimensions of the holes in the

assembly are such that roughly 16 % of the can is open (except near spacers).

In Fig.1-6 the type B assembly has been fitted in the control rod positions,

thus showing more clearly the clearances that exist, in comparison with the

SS.assembl ies on Fig. -1-3.

Yankee core N0lowill consist of 36 zircalloy assemblies and 40 SS assemblies.

It is anticipated that Core 11 will consist entirely of zircalloy assemblies.
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2)C : CURRENT 1000 MWe ASSEMBLY DESIGNS,

The current large PWR assemblies as shown on Fig. 1-7 differ

from the Yankee assemblies in the follawing aspects :

- the assemblies are square, with basic 16 X 16 matrix.

- the bundle is more open.

- cruciform control rods & attached followers are now replaced by control

rod clusters, which are placed in selected assemblies in the core.

- when withdrawn the CRC (the control rod cluster ) leaves small watergaps

with dimensions of a pitch - no followers are used.
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T.- 2 - 3) DESCRIPTION OF THE PROPOSED PLUTONIUM RECYCLE ASSEMBLY AND COMPARISON

.)A, ; Key differences in Conventional & Pluton. Recycle cores,

Because of the short period involved for the recycle of Pu.

in thermal reactors it is unlikely that a reactor will be build with an optimized

design for Pu recycle. Although it has been shown that increasing the pitch

or moderator-fuel ratio can increase the Keff & burnup substantially, and

saving of .1 to .2 mills/KWhr (1) can be realized, the mechanical design of

the core & fuel assemblies will be unaltered. The technical aspects will

thus be mainly nuclear & of a fuel management character.

Extensive engineering studies were carried out e.g. in the Edison Electric-

Westinghouse Plutonium Utilization Program in order to investigate the factors

that influence the feasibility of recycling Po-fuel in large PWR's.

During the course of this work the basic differences between the nuclear design

characteristics of plutoniom & uranium fuels were identified, and the possible

adverse effects were pointed out. A qualitative summary of these characteris-

tics and their effect on the nuclear design are included in Table 1-3

extracted from Ref. 2.

The basic key conclusions from the studies may be summarized as follows :

- An all plutonium fueled core has a more negative moderatortemperature coefficient

an a more negative doppler coefficient than thus an all uranium fueled core.

These more negative coefficients result in an increase in the control requirements.

Furthermore the control rod worth is reduced in the core containing plutonium

fuel. This reduction in control rod worth combined with an increased rod

requirement. has thus been identified as the principal problem area in converting

an existing reactor to one fueled solely with plutonium.



.TABLE 1-3

CAPSULE COMPARISON OF URANIUM AND PLUTONIUM NUCLEAR DESIGN CHARACTERISTICSI . IParameter Plutonium Core Reason for Difference Consequence

Moderator Temperature More Negative Increased resonance absorption Improved stability and transient
Coefficient and spectrum shift .characteristics except for steam

break

Doppler Coefficient More Negative Pu-240 resonances .Improved transient characteristics

Cold-to-Hot Reactivity Increased Larger moderator temperature None-boron used for compensation
Swing coefficient

Installed Reactivity Reduced Reduced depletion rate- None
Reactivity saturates

Control Rod Requirement Increased Larger moderator and Possible increase in number
doppler coefficients of rods

Control Rod Worth Reduced Thermal flux reduced Possible increase in number of ro s

-Boron Worth Reduced Thermal flux. reduced None

Xenon Worth Reduced Thermal flux reduced Improved stability

Fission Product Poisons Increased Increased yields- Reactivity penalty

Increased resonance absorptions

Local Power Peaking Increased Increased water worth. Fuel management action required

Delayed Neutron - Reduced 8 < 8 Rod ejection accident-pu uFraction-p u
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- In mixed fuel cores, which contain both plutonium and the regular uranium

fuel, we may expect that some of the conclusions of above also apply.

However more flexibility in the loading exists. The main difficulty found

in the study of mixed fuel cores was the power peaking near water slots and

interfaces between the two fuels. Powerdistribution control is thus a

principal problem.

From those key conclusions it is clear that careful design considerations

must be given in order to convert an existing reactor to the plutonium

recycle operation.

3)B: PROPOSED WESTINGHOUSE DESIGN OF A PU-RECYCLE ASSEMBLY FOR

.LARGE REACTORS,

After extensive engineering & fuel management studies, the

proposed published design ( 2 ) of a Pu-recycle assembly is pictured on

Fig. -8

It may thus be noticed that in the W-proposed design

- the Pu-recycle assembly contains only mixed oxide fuel.

- 5 different mixed oxide fuels are used to flatten the power.

- The Pu-recycle assemblies are located in selective positions in the core,

mostly were no control rods are inserted. (Fig. 1-9)

The reason is mainly to avoid substantial reduction in control rod worth

due to both the harder spectrum in an all Pu-assembly & the reduction

of the neutron flux in the Pu-region.
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3) C : PROPOSED DESIGN OF A PU-RECYCLE ASSEMBLY FOR THE YANKEE REACTOR.

In the much smaller Yankee core, the presence of cruciform control

rods & the specific layout makes it impossible to locate all mixed oxide

assemblies from control and watergaps.

Therefore the proposed design which is pictured on Fig.j-10 together with

the conventional cell UO2 assembly :

1) contains both U02 & mixed oxide fuel.

The latter fuel is loaded in an island in the center of the assembly,

away from the watergaps & cruciform control rods.

2) All the assemblies contain the mixed oxide fuel & are,apart

from the mechanical differences between type A & B assemblies, identical.

3) In the basic proposed design there is only 1 type mixed oxide fuel

consisting of 4w/o PU 02
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The reason is that in a small reactor as the Yankee, the smaller number

of purchased rods would make the cost of different type fuel rods more

disadvantageous.

However serious powerpeaking problems exist at the interface as will be

shown further in the study.

This type of assembly design, is identical to the proposed design of the

Belgian SENA reactor, (3) which is nearly identical to the YANKEE reactor.

Although some calculations were made for a design with different mixed

oxide fuels& another loading ine one assembly , the basic proposed design

has been used for our study. No calculations have been performed with a

mixed oxide slightly enriched UO2 fuel, although in the SENA reactor study a

slight economic advantage has been anticipated for that reactor.

The number of Mixed oxide rods In the assembly Is dependent on the amount of

Pu available from the reactordischarge and the W/O of PUO 2 choosen.

A 4 W/o PUo2 - nat UO2 mixed oxide fuel together with a regular conventional

4 W/o U235 U02 fuel has been tentatively choosen as the base fuel for the

Pu-recycle assembly study and a 4 W/O U235 U02 fuel for the conventional

assembly, (Fig.i-10 ).

The mixed oxide rod was assumed to be identical to the U02 rod, with the same

% of theoretical density.

The discharge (Kg Pu-total) and the isotopic compositions of the previous &

future Yankee-cores are shown on Table 3-5.

* w/o PU 02 = weight PU 02

weight PU 02 + weight net UO2
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TABLE X - 5 NUCLEAR CHARACTERISTICS OF THE UNLOADED FUEL ASSEMBLIES OF

THE YANKEE REACTOR

CYCLE
YEAR. NUMBER AVG. BURNUP(MWD/HT) TOTAL Kg ISOTOPIC COMPOSITION.

(w/O PU 239, PU 240,
PU 241, PU 242)

SS. ZIRC PU
assemblies assy.

1970-71 8 23581 0 99.8 74.84 / 13.98 / 9.83 / 1.35
(36) (0)

1971-72 9 24813 103.2 73.97 / 14.28 / 10.27 / 1.48
(36) (0)

1972-73 10 24667 102.8 74.07 / 14.24 / 10.22 / 1.47
(36) (0)

1973-74 11 30110 26270 86.7 66.87 / 18.45 / 11.93 / 2.75
_ (4) (32)

Since there is no definite plan about the year when the Yankee Reactor will

start recycling i-ts plutonium, it has been assumed that the isotopic compo-

sitions of the design mixed oxide fuel is 66.87 W/0 PU 239, 18.45 PU 240,

11.93 PU 241, 2.75 PU 242.

Further it has been assumed that a total of 99 kg PU was available.

From the choosen 4 W/0 PUO 2, the 2 zones, the dimensions & characteristics of

the rod shown in Table I- 4. The design of the

base-case-assembly was calcel-ted to contain 68 mixed oxide rods out of a

total of 236 rods, and could be geometrically arranged as on Fig. T-10

In short the base case design was thought of being economical & representative.

,



TABLE 1-4 : DESCRIPTION OF UNC CONVENTIONAL FUEL

Enrichment w/o

O.D. rod, in,

l.D. rod' in.

Clad material

t clad, in.

tgap, in.

0.0.pellet' , in.

Lactive fuel' in.

N0 of rods / assembly

Heat transfer area, ft2

Max. permissible linear heat rate, kw/ft

Hydraulic diameter, in.

Flow area, ft2

Fuel Rod Pitch, in.

Density UO2 gm/cm

Weight UO2 / Rod, Kg

Number of Spacers

Spacer Material

Number of Poison Rods / Assembly

Linear Density of Poison in Poison Rods

ASSEMBLY DESIGNS AND FUEL RODS.

4.0

.365

.317

Zr-4

.024

.0065

.3105

91.0

236.5

71.4

13.8

.368

.1951

.468

10.153

1.146

6

inconeI

The Mixed oxide rods & Plutonium Recycle Assemblies are assumed to have identical

characteristics, except for the nuclear specifications

Basic Case, Mixed Oxide : 4 w/o PUO 2 - natural UO2

PU-isotopic composition (a/o) : 66.87 PU 239, 18.45 PU 240, 11.93 PU 241, 2.75 PU 242

45.
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CHAPTER IL.: STATUS OF THE COMPUTERMETHODS USED FOR NUCLEAR ANALYSIS IN

THE U.S. INDUSTRY AND AT THE NUCLEAR ENGINEERINGDEPT. M.I.T.

- AND - DESCRIPTION OF THE COMPUTERCODES USED IN THIS STUDY,

S STATUS OF COMPUTERMETHODS & CODES (REFS. 11.',()

The day of reactor-design calculations by handbook and slide rule

has long since passed in the industry. Every major manufacturer has a

package of codes that is flexible enough to treat everything from complete

plant lifetime studies and safety, control, burnup, and fuel-management

studies to fuel-inventory and plant-cost analyses. The adequacy as well

as the costs of their code packages is of great financial importance to the

manufacturer. For the smaller companies who cannot afford this expense,

there exist computer-service organizations that provide expertise with

comparable code packages.

Most of the codes used by the various manufacturers are in the public domain,

but some refinements in code development, cross-section modification,

thermal-hydraulic recipes, control, fuel management, or operating experience

may be regarded as proprietary, and this has been found to be particularly

true for Plutonium Recycle Applications.

Descriptions of the codes and methods used by manufacturers as well as consi-

derable additional design information can be found in their PSARs(preliminary

safety-analysis reports) for specific power plants.

Industrial practice in PWR reactor-physics calculations varies to some extent

since a larger number of vendors are involved.
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The basic tool in reactivity, power distri-

bution, and depletion analysis is the LEOPARD-PDQ-7 (or the earlier AIM-5)

sequence, with proprietary refinements related to user convenience, higher

isotopes represontation, and temperature feedback. For a very detailed

analysis, a full 3D, few-group, nuclear-thermal-hydraulic program, THUNDER

is available, it is clear that this code is not used for routine calculations.

Experience on the IBM-7094 incicates that a 10,000-mesh-point problem can be

solved in 2 hr. at a cost of about $ 1,000, and it is estimated that the

same cost would permrit the use of 30,000 mesh points on the CDC-6600.

THUNDER indicates the trend in industry toward greater detail in the spatial

representation of large, complex cores, such as those being proposed for

water reactors in the 1000-MW(e) range. Greater detail in neutron energy

and angular distributions would only increase the cost, as would greater

detail in transient studies, It remains to be seen what impact the next

generation of such large U.S. computers as the CDC-7600 and the IBM 360-195

will have on these costs.

At Combustion Engineering the basic lattice code is CEPAK, which is made up

of MUFT, THERMOS and a group of subsidiary operator codes that connect these

two basic blocks and introduce approximations for resonance shielding,

fuel-temperature effects, and improvements in the cell approximation.

In addition, the CEPAK code performs fuel-depletion calculations using

few-group cross sections with occasional respectralization in the multigroup

calculations at given points in fuel life. Resonance capture is based on

formulas incorporating 0.7-b reduction in Hellstrand's correlation..for the

resonance integral of U238 and Levine's form of the equivalence principle
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for lattices . Account is taken of the effect of fuel cladding and

overlap of U235 and U238 resonances. Plutoniun240 self-shielding and Doppler-

broadening are based on analytical fits to ZUT calculations. Since none of

the fuel assemblies is entirely uniform, considerable work is continuing on the

proper treatment of fuel-assembly boundaries, water-hole peaking effects, and

non-uniform Dancoff corrections.

For spatial calculations, Combustion Engineering uses PDQ-7 on its CDC 6600

computer as the basic tool because if its reliability, speed an flexibility.

The cross sections required for these diffusion calculations come from CEPAK,

as do changes in cross sections with fuel depletion which are represented in

the HARMONY adjunct to PDQ-7. For reactivity lifetime calculations a rather

coarse mesh is generally adequate and is used in analyzing operating reactors.

The use of coarse mesh requires awkward fuel-assembly heterogeneities to be

incorporated somehow into CEPAK calculations and these studies are continuing.

The normal design calculations employ a fine mesh 2D calculation with PDQ-7 to

evaluate thermal conditions in various fuel assemblies. Thus far 3D synthesis

methods have not been used, since it is hoped that Combustion Engineering

reactors can be operated with soluble boron control throughout core life so

that the resulting power distribution will be nearly separable.

Little difference has been found between coarse-mesh, 3D PDQ-7 calculations

and those obtained by combining 1D and 2D depletion calculations.

The current methods employed by Babcock & Wilcox are described in the FSAR

for the Oconee Nuclear Station. Their standatddepletion calculations

are made with a ID depletion package code called LIFE, which is a composite of

conventional codes, MUFT-5, KATE-1, RIP, WANDA-5, and a depletion routine.

The 1D WANDA, calculation uses four-energy-group cross sections, which are



49.

obtained by collapsing a 34-energy-group MUFT calculation and the use of the

Wigner-1 ilkins heavy-gas model for the thermal constants. Disadvantage

factors f3- the thermal group are c3lculatec v.-ith THERAOS.

Sim-larl/ 2D calcuiations are done with conventional PDQ-5, PDQ-6 or TURBO.

cod.... These calculations are car-ried out to determine the effects o-. strong

lecalized absorbers such as their movable control-rod assemblies. Additional

controls in Oconee include soluble boron, part-length axial-power-shaping

(and xenon-control) rods, and, in Oconee 2, burnable poison rods. Burnable

poison rods are used in Oconee 2 to compensate for fuel burnup an fission-product

burldup to reduce total control requirements. The required properties of the

ID system are then matched to the 2D analysis. In this manner It is possible

to analyze the simpler ID system in a depletion survey problem with, it is

stated, only a small loss in accuracy.

Current work at Babcock & Wilcox Co. lnvolv!s the upgrading of their basic

code lib-ary that apparently now Includes PDQ-7 and its HARMONY adjunct.

All water-r3actor nanufacturers relate their basic lattice codes and cross-

se tion data to critical experiments and ether integral data. Agreement

with critically data on enriched-uranium-fueled assemblies is generally quoted

to within + 0.5% in reactivity. This agreement offers some reassurance in

reactor design, although It may be based In part on a cancellation of errors of

opposite sign. There would be greater reassurance if these results could be

compared with unadjusted cross sections and rigorous calculations.

However the standard U.S, cross-section library ENDF/B still has a number of

important uncertainties and omissions, and thermal-reactor data have a low

AEC priority. Rigorous calculations are also expensive, infrequently

attempted, an then may ccm to grief becau-e of an ovweagerness to draw con-

clusions on the basis of an incomplete or insufficiently broad study.
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Concerning plutonium-fueled water reactors, there seems to be general agree-

mient that t'e available data are rather sparse. Many of the data available

have been ttained on small, h i~-Lukling asseiblies, which should require

winr ela'.orate anilysis. There is disagreement between industrial evaluat'rs

an the general adequacy of ENDF/S plutonium-isotype cross secions and concern

about the adequacy of reactivity calculations for high burnup of U-enriched or

plutonium-enriched fuels.

As a part of their Plutonium Recycle Program. Westinghouse has developped

ai modified LEOPAAD version, which eliminated the reactivity bias needed in

previous cal:ulations (Ref. 2. ). The analytical improvement include :

1) The availability of ENDF/B cross-sections for PU-239, PU-240 and PU 241

containing appropriate modifications to improve the correlation with the

ESADA Plutonium Critical Experiments.

2) The ava::ability of a modified version of the LEOPARD code, which included

a detailed treatment of the buildup and depletion of individual fission

product and transuranic Isotopes Np-237, Am-241, Ajn-243. These elements

accounted for 99 % of the total reactivity penalty associated with the

transuranic elements.

3) The availability of improved fission product and transuranic cross-sections.

The use of these cross-sections significantly improved the correlation

with depletion date in uranium fueled systems.

4) The availability of an improved L-factor treatment for different fuel rod

diameters based on improved fits to Monte Carlo & LASER calculations.
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The adequacy of a lattice code such as LEOPARD is very important and is the

basoc in'ormation on fuel input and discharge inventories. (details of 2D

and 3D spa:ial calculations appear to be of secondary impor-ance for the

inventories).

The modified LEOPARD version however still remains proprietat': to Westing-

At M.I.T., a lot of work has been done the last years to acquire, (through

the ANL Computor Code Center), the standard computorcode packages that have

been developed at National Laboratories and Companies as Westinghouse.

The department has access to the IBM 360 computor of the MIT Information Processing

,enter.

Presently tiee Nuclear Engineering -Department Code Library includes the released

IBM 360 versions of LEOPARD, LASER ( 7 ) and the Argonne THERMOS package

(with GAKER to generate scattering kernels) for the generation of cross-sections.

Errors in THERMOS have been repaired, and part of the LASER library with a

cut-off at 1.855 eV has been included in the THERMOS code.( 8 ), also a

self-shielding factor homogenization scheme has been included ( 9 ) as an

option in the code.

For zero dimensional burnup calculations LASER and LEOPARD and the less

accurate but cheap code CELL, developed at MIT ( 9 ), can be used to obtain

cross-sections versus burnup, isotopic compositions verus burnup etc.

The determination of fluxes, powerdistribution reactivity using diffusion
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calculations has been done frequently with EXTERMINATOR 1i ( 10 ), but are

slowly being replaced by the elaborate PDQ-5, and PDQ-7 codes.

S-N, P-L Transport theory codes, suh as the one dimensiona' ANISN code ( ii ),

ian been used in the department mainly for fast reactor appl cations, but

have occasionally been used for thermal reactors as a checkpcint for

dif fus iontheory.

-ectntly the I !rary acquired a 2-dimensional X-Y SN, PL Transporttheory Code

VWTRAN ( '| ), but some calculations made with the code ind'catf that more

N.eshpoints are needed than with diffusiontheory and that, due to steaming

e1,ffects at reflectory boundaries, low order S.N. (e.g. S-4) calculations are

inaccurate.

For diffusion depletion calculations, the PDQ-HARMONY ( I3 ) package has

rerently become available. The time for the set-up of a problem & the

expense (one depletion step costs about 4 X more than a regular calculation,

ard the set up is estimated to take 3 months). are limitations to the easy

use of this package. Simplified diffusion-depletioncalculations have been

made for over years with the cheap CELL & MOVE codes, developed at MIT ( 9 ).

Their use for Plutonium recycle work has been questioned ( !Le ), although

ENDF/B X-sections haven been included in the CELL code ( 15~ ).

Simplified 3 dimensional calculations for BWR studies and general core

reactivity & lifetime-fuel management studies, have been made with the FLARE

code ( 16 ), and the MIT modified FLARE-G ( Il ).

An attempt for using both CELL-MOVE, and FLARE for our study failed.

For thermal hydraulic applications efforts have been underway to set up codes

3S COBRA and COBRA IlI-A ( Is) 19) for the study of mixing & general

thermal hydraulics of fuel assemblies, and HEATING ( A.X ) for the calcu-

ration of 1, 2 and 3 dimensional temperature distributions in complex geometry
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Presently HEATING is operational, whereas COBRA has only recently been put

on the IBM 360 System, but still seems to have convergence problems.

With regard to the nuclear analysis of conventional U02 cores. the computorcode

packages and methods used at MIT are very satisfactory , and are generally

the codes and methods used in industry.

As far as analysis of Pu-recycle cores is concerned, the present study has

indicated that Zhe LASER code used with 2 groups (1 thermal up to 1.855 eV)

rave very good results for the calculation of the powerdistriLutien,

The present LEOPARD codes have been found to be inaccurate for the calculation

of the detailed powerdistribution. It has been identified that the treatment

of the giant PU 240 resonance is probably responsible for the large part of

the discrepancies in LEOPARD.

Modifications to the LEOPARD code have been made by H.Spierling, who introduced

the ENDF/B X-sections and included the buildup of higher isotopes and a 1.4 fission

product X-section modifier. Although substantial improvements seem to be

echieved ( 14 ), the study performed by the author indicates that the

modifications should also include a more detailed PU-240 resonance treatment.

In short, the present computercodepackage LASER, available-at MIT seems to be

adequate for the calculation of the powerdistribution in PU-recycle assemblies

& cores. With respect to burnup, the present standard methods may be thought

of as being of the same level of the methods used for the design of the Saxton

Reactor, and in the later Phase ~ - Preliminary Study of PU-recycle in large

PWR's by Westinghouse, where a bias of 2.5 % on k. was used in the LEOPARD

code. The standard method is also probably as good as the any of methods used
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at BNWL in their PU-recycle Program Report of Ref. 21 for the calculation

of the powerdistribution of several critical experiments in the

PRCF (Plutonium Recycle Critical Facility).

_-_2 : FLOW OF THE NUCLEAR ANALYSIS CALCULATIONS,

The starting point foo the nuclear analysis of conventional and plu-

tonium-recycle assemblies (or in general for the whole core analysis) is a

set of re'ctor, fuel assembly F fuel rod design characteristics ikcluding

material coxmpositions, dimensions, temperatures and thermal hydraulic para-

me'.ers.

The overall problem of establishing the distribution of neutrons& the power in 3

space dimensions, in time and in neutron energy, must be broken down into

smaller segments, each of which is small enough to be economical solvable with

available techniques and computorcodes.

Fig. IL~- 1 shows the Flow Diagram for the nuclear analysis of the isolated

assemblies and their behaviour in the Yankee Reactor Core.

The first calculations that are performed are those of generating the spectrum

and the cross-sections of a unit cell consisting of the fuelrod, its cladding

and the amount of moderator.

A small unit cell is thus isolated and the assumption is made that the core

is composed of an infinite array of unit cells, only sensitive to their

own spectrum. One dimensional codes such as LASER, LOCALUX and-zero dimen-

sional codes as LEOPARD may be used for generating the thermal, the fast &

epithermal spectrum and the cross-sections of this unit cell. The cross-

sections for extra regions, water, cans etc. can be obtained from these codes,

or separate calculations can be performed with THERMOS, to get the thermal

N -- - I
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FIG, !1 -1 FLOW FOR THE ANALYSIS OF CONVENTIONAL & PLUTONIUMRECYCLE ASSEMBLIES

FOR THE YANKEE REACTOR.

Reacto , Fuel Assembly and Fuel Rod Characteristics

UNIT CELL CALCULAT IONS (LASER ,LOCALUX,THERMOS)

BURNUP BOL

BURNUP OF UNIT ASSEMBLIES (PDQ-5) BOL-UN!T ASSEMBLYCALCULATIONS (PDQ-5)

- locai po4erpeaking factors

burnuo

- spectraieffects vs burnup

vs

ESTIMATE IN-CORE PERFORMANCE

(simulation model/

- jross assembly radial

powerpeaking(BOL- Burnup)

- estimate rod by rod
powerdistribution in peak
assembly.

- Spectrum coupling effects (PDQ-5,THERMOS)

- Space detail

- design influences

- local powerpeakingfactors

- fine in rod powerdistribution

EVALUATION OF THERMAL-HYDRAULIC ASPECTS,

- comparison peak mixed oxide & UO2

- calculation circumferential engineering
heat flux hot channel factors.
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X-Sections, or LOCALUX , to get the fast & epithermal X-sections.

Detailed spectrumcoupling effects of more complicated structures can be

obtained from THERMOS using a one dimensional model and eventually the

SSF-homogenization option in the code.

The use and validity of unperturbed-1 thermal group diffusion theory calcu-

lations can be checked with a 35 thermal group THERMOS model to evaluate

the spectral coupling effect, and with a 1 thermal group THERMOS (integral

transportthaory) and a thansporttheory code ANISN to evaluate the use of

1 group "diffusion" theory calculations and homogenization procedures.

The- generated X-sections from LASER, LOCALUX or LEOPARD, eventually with

spectral coupling corrections from THERMOS, are then used in a 2 dimensional

diffusiontheory calculation (PDQ-5) of the fuel assemblies, which are just as.

the unit cells, isolated from the reactorcore.

The !:dimensional rod by rod powerdistribution & powerpeaking in the assemblies

en also be calculated with GMND (generalized mixed Number Density)

X-sections, a method that has been developed (see Chapter V) to calculate the

powerpeakinq, taking spectral & transporteffects into account, in a very

simple and direct way.

Jsing the method, comparisons and parametric studies may be performed for the

design of the assemblies.

In order to calculate the burnup in an assembly, the unit cells are again

isolated and zero demensional depletion is performed on the fuel rod with

LASER, LOCALUX or (LEOPARD).

At each burnup step, the spectrum is recalculated and the micro & macroscopic

X-sections are obtained, which can be fed in the PDQ-5 program to calculate the

paoerdistribution, rod by rod in an assembly versus burnup.

On order to make a core analysis of complicated assemblies, such as the ones
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proposed for PU-recycle, macroscopic cross-sections are constructed from

the unit-assembly calculations, in the same way as has been done with unit cells.

These X-sections of a homoganzed assembly are then inputted in a PDQ-5,

diffusion theory run of the whole core at BOL. The Powerdistiribution &

reactivity, for a whole core are then obtained.

From the "nit assembly calculations vs. burnup, the k. vs. burnup of a

whole asse-mblv can be put into FLARE which after tuning with a PDQ-5

core run, will give the 3 dimensional core behaviour (powerdistribution &

burnup distribution per assembly at each axial mesh).
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':T~l DESCRIPTON OF THE COMPUTORCODES USED IN THIS STUDY,

3- 1) The Argonne-MIT revised and extended THERMOS-code ( .. 8 ),

computes the scalar thermal neutronspectrum as a function of position in a

lattice unit cell or other 1 dimensional arrangement, by solving the integrel

transporteoaniation with isotropic scattering (Eq. 2-1) with 35 thermal energy

groups.

The code also computes flux & spectrum averaged values of 5a. . , v ,

and D for the cell compositions and supplies values of 2 , vif ,

and !TR for the isotopic constituents.

The usefulness of THERMOS has also been increased by modifications ( 8 )

which permit an automated sequence in which one problem generates a correct,

energy dependent, spatially averaged set of cross-sections for the use in the

rnaxt problem. This "pseudo-material" generating feature, (which at MIT, refers

to the moderator) facilitates the solution of geometrically complex systems in

I dimension.

A library tape containing scattering kernels and absorption cross-sections as

a primary irput to THERMOS is prepared by the LIBP and GAKER codes,

Melkins scatteringkernel with transportcorrection by Honeck ( 13 ) is

employed forH 2 0, and for other elements the scattering is' described by the

Brown and St.John free gas kerne). The usefulness of THERMOS for PU-recycle

applications has greatly been increased through the use of a library with a

cut t-of f at 1.855 eV, which was taken from LASER.

In this way a very detailed spectral description of the PU-isotopes was

obtained as can be seen from Fig. 2-2, picturing the cross-sections of U235

& PU-isotopes, and the LASER energymesh shown on TableTI -1.
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in this way the important PU 240 giant resonance at 1.0 eV is completely

described. Prior to this work the PU-isotopes and some other elements,

w4ere not included in the library. Therefore the PU, isotopes from LASER were extracted

For PU-240, 35 group doppler broadened cross-sections at 1100 "K, calculated

seperately in the LASER code, was used.

The Integral Transport Eq. solved by THERMOS numerically by dividing the

energy & geometric space into subintervals, using an iterative procedure, is

were N(r,v) is the neutrondensity at point ', of neutrons with speed v.

T (F, 'F, v) = the flux at F due to an isotropic point source at r'

(point kernel)

$ (F' v) = the slowing down source

V'

V* = thermal cut-off = 1.855 eV (before a value of 0.625 or 0.78 eV was used)

Since V* is large enough so that thermal effects are ignored (even for PU 240

the cut-off is higher th n the peak res. at 1 eV) and small enough so that
resonance in U 238 & U 235 can be
ignored , the energy-dependence of N(rI/) can be written as

- ' N
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let Sd (P) be the spatial distribution of epithermal neutrons then

= C S FL) k" L

The high energy from the scattering kernel is given by

z0

.L Xs o 0,4 _-1 I

0 1 M - I

1 - o/- 
)

0 ( p<.ot*)

The constant £ is determined from the condition that the total slowing

down into the cell be one neutron/sec.

The scatteringkernel in the thermal energy region P (r',V, V') satisfies

the condition.cT

$.r'< V *)

.= Y

This scatteringkernel is either the Nelkin kernel for H20 with a transport-

correction by Honeck, ( 21 ) or the Brown-St.John free gas kernel for other

elements.

Convergence problems have been noticed in THERMOS with PU-fuelschanging the

iterationparameters helped but with varying, success.
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3-2) THE LASER CODE.

The LASER code ( 7 ) is a multi-energy, one dimensional

(cylindrical) unit cell cross-section generating code and burnup-program.LASER is

based on a modified versbn of the slowing doai programMUFT (,2 ),anidthe therrmallsation transport-

theory program THERMOS, and performs the calculation of the neutron spectrum

in space, of a uniform lattice made up of cylindrical rods, cladding and

surrounding moderator. The LASER program is only restricted to that geometry,

which is pictured in Fig. 11-3. An isotopic scattering ring surrounding

the cell is automatically provided. Honeck has shown that the inclu-

sion of a white scattering rina4eliminates to a large extent the errors

introduced by cylyndricalizing the unit-lattice cell.

The fuel compositions are allowed to vary spatially, this permits the code

to allow for the non-uniform buildup and depletion of isotopes in the fuel

rod when a burrupcalculation is performed.

The thermal cut-off in LASER is 1.855 eV & the energy mesh is shown in Table 11-1.

The program will at option perform a burnup calculation for the lattice, and

the spatial distribution of burnup within the fuel rods is explicitely

calculated. A usual linear burnup option in which the flux is taken constant

during a Time-step, as well as solving the non-linear system of equations can

be choosen as options, the latter being more expensive but- allowing a larger

time step.

In LASER, the F.P. cross-section must be supplied in the form of a polynomial

vs. burnup. In order to get the constants a separate CINDER code calculation

mustbe performed.
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TABLE jj.1

LASER Thermal Energy Mesh

Mesh Widthe

ZSvi±
Ei (ev)int %

Speeda

.2

.4

.6

.8
1.0
1.2
1.4
1.65
1.95
2,25
2.55
2.85
3.075
3.21
3.33
3.42
3.505
3.66
3.91
4.26
4.715
5.265
5.845
6.23
6.375
6.435
6.465
6.495
6.55
6.69
6.99
7.39
7.765
8.10
8.41135

i
2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

a

.2
.2
.2
.2
.2
..2
.2
.3
.3
.3
.3
.3
.15
.12
.12
.06
.11
.2
.3
.4
.51
.59
.5T
.2
.09
.03
.03
.03
.o8
.2
.4
.4
.35
.32
.3027

.001012

.oo4o48

.009108

.016192

.0253

.036432

.049588
.068879
.096203
.12808
.16451
.20550
.23923
.26069
.28055
.29592
.31081
.33891
.38679
.45913
.56245
.70132
.86435
.98197

1.02821
1-04765
1.05744
1.06728
1.08543
1.13233
1.23616
1.38169
1.52547
1.65993
1.79000

unit = 2200 m/sec

Energy
E (ev)

.002277
-.006325
.012397
.020493
.030613
.042757
.056925
.081972

-11157
.14573
.18444
.22770
.25104
.27053
.29075
.30113
.32064
.35768
.41704
.50326
.62493
.78211
.95070

1.01374
1.04277
1.05254
1.06236
1.07222
1.09873
1.16645
1.30791
1.45748
1.59500
1.72616
1.85500
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3-3). THE LOCALUX CODE,

The LOCALUX code is a proprietary code from United Nuclear

Corporation, and is essentially identical to LASER, with only a few modifi-

cations which include :

1) The inclusion of an extra region. This extra region is particularly useful for

the calculation of a supercell. The output of LOCALUX

essentially dual one with the extra region & one without.

2) The inclusion of a version of the CINDER program ( 2 );

which calculates the fission product X-iection with burnup.

3) The inclusion of a modified version of the Dancoff-Jr. Code (2) which

enables the user to calculate small 6 X 6 or 7 X 7 assemblies.

Results have shown that the Dancoff-factor variations as a function of

assembly configuration, damps out very rapidly & approaches that of an

infinite lattice for a 10 X 10 lattice.

The usual Dancoff-factor can also be calculated using the regular Sauers

method.

4) Edit changes.

The edit in LOCALUX has been reduced compared to LASER. However the code

calculates , just as in the LEOPARD code, microscopic differential removal

X-sections for each isotope of interest, and a pseudo-transport microscopic

X-sectionCrt4 for each isotope in fast, epithermal & thermal energies.

The pseudo O is def ined as 15v

J -1,E5E-V

d4 (;i.,E.) dE
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These cross-sections are of particular interest for the calculation of macroscopic

cross-sections of extra regions, water, cans etc. without any need for making an

other separate calculation. This rrocedure is simple & gives much better results

-:L THE LEOPARD CODE, ( 17 ).

The LEOPARD computorprogram determines fast & thermal spectra

using only basic geometry & temperature data. The code optionally computes

fuel depletion effects fora dimension-3ess reactor andrecomputes the spectra

before each discrete burnup step.

LEOPARD as LASER, assumes that every reactor contains a large array of unit

calls in either square or hexagonal lattice; consisting of the fuel rod, a

metallic clad & moderator,

in a real reactor, this geometry is adequate in a large fuel bundle, but commonly

7 to 10 % of the core is taken up by control rod followers, waterslots, assembly

cans, structure etc. LEOPARD accounts for this by allowing a fictituous extra

region to be included in the unit cell (see e.g. also LOCALUX).

Spectrumcalculations are dornon such an equivalent unit cell.

The method is based on MUFT-SOFOCATE( 28 ) for the homogeneous calculations.

A 54 group MUFT calculation in the B-i approximation is used to cover the energy

range from 10 eV to 0.625 eV.

The B-1 approimation is rigorous only to second moments in the slowing-down

distribution and may therefore be inaccurate for high leakage systems.

The SOFOCATE code calculates the thermal group constants, avaraged over a

Wigner-Wilkins (heavy gas) spectrum below 0.625 eV ( 29 ).

Thermal group X-sections are not too sensitive to thermalization models,

provided integral quantities are preserved. Since the calculation is zero-
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dimensional (in contrast to THERMOS, LASER, LOCALUX), the thermal disadvantage

factors are obtained by a modification of a formula due to Amouyal Pnd

Benoist.

it is important to notice at this point that the thermal cut-off is at 0.625 et,

although completely adequate for uranium fueled systems, it is inaccurate for

the description of plutomiumrecycle fuel and for high burnuo calculations

(note the PU-240 resonance). The more that in the resonance range self shielding

is neglected except for U 238.

The lattice self-shielding of U 238 is calculated by a recipe that is fitted to

Hellstrand's correlation.

As has been discussed earlier, Westinghouse has modified the standard LEOPARD,

although even at this company, the THERMOS-LASER procedure is gradually repla-

cing LEOPARD. The low running cost of LEOPARD (5 X less then LASER) makes

this code however very attractive for parametric studies & the results of

beginning of life powerdistribution calculations for uranium systems Is very

good ( 3O) . Its use, in an unmodified form is unfortunately not

recommended for PU-recycle applications as this study has shown.

3-51 THE ANISN CODE.

The ANISN computor program ( 11 ) solves the one-dimensional

multi-group neutron transport equation in slab, cylindrical & sferical

geometry using Carlson's S-N method.

It has a large number of options, including higher oder anisotropic scattering

and the ability to use any order of SN calculation desired.

Boundary conditions include vacuum, reflection, periodic & white/ albedo

options. A complete shell source option described by group and angle is

available, and void streaming corrections can be made.
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Fixed source, k calculation, concentration search & other options are avai-

lable. Cross-sections can be input on cards or can be called from a tape,

the code will as on option also collapse cross-sections to any desired

few-group scheme.

_-).. THE PDQ-5 CODE,

The PDQ-5 program ( 31 ) solves the one or 2 dimensional

ieutron diffusion equations in x, r, r-z, or x-y geometry. Zero flux,

zero derivative (zero current), and 1800 degrees rotational Syrmmetry boundary

conditions are available. Up to 5 energygroups (1 thermal), can be used.

Between 300 to 500 meshpoints are permitted in each coordinate direction,

with variable mesh-sparing allowed. Up to 100 compositions and up to

500 edit regions may be asked.

Diffusioncalculations are relatively easy to imput, but depletion problems

including the HARMONY package in PDQ-5 which does the point depletioncalcula-

tions is difficult and very timeconsuming. Although the PDQ-5 HARMONY package

ts extremely flexible in terms of types of reactors analysed, the input becomes

quite complex.

For depletioncalculations one must set up his own depletion chains, and

microscopic input X-sections in function of burnup.

Even experienced people require about 3 months to set up one depletionproblem,

which costs for one time step about 4 X as much as a regular calculation.

Therefore onother procedure has been used in this study without need of the

HARMONY package to make a rod by rod unit assembly burnup study.
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CHAPTER SPECTRAL EFFECTS & TRANSPORT EFFECTS IN ONE DIMENSIONAL

CONVENTIONAL & PU RECYCLE ASSEMBLY MODELS.

II INTRODUCTION.

In this chapter a one dimensional analysis of conventional and

Pu-recycle assemblies is made with the 35 group THERMOS code (cut.off 1.855 eV).

Detailed spectraleffects were obtained. Comparisons have also been made

with a 1 group THERMOS integral transporttheory, 1 group ANISN S-N transport-

theory code with the P-1, S-4 approximation and 1 group diffusiontheory PDQ

runs using different homogenisation models.

The geometrical model of the assemblies that have been used in these calculations

is shown on Fig. JJI.- 1.

-2 : THE THERMOS - 35 GROUP FUEL ELEMENT HOMOGENUZATION PROCEEDURE,.

Since the THERMOS code is a one dimensional code with a maximum of

20 spacepoints, it is impossible to treat the 2 dimensional assembly. Even with a

circular 1 dimensional assembly model, the fine details of a unit cell consisting

of the fuel, clad and moderator (Fig. 3I-'5 ) can not be treated.

The usual procedure for homogenizing the unit cell, and to preserve the reaction-

rates in the unit cell consists of using self-shielding factors in the macroscopic

parameters.

In such a 1 group homogenizing scheme the macroscopic and effective microscopic

cross-sections are calculated from
v*

2:~~~ J__________ 3-,)C
i c e et 0

V0
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where N (r,V) is the neutrondensity at pointr, of neutrons with a velocity

VT, in a more explicit form (1) is also

where 0CELL is the spectrum & spaceavgd. flux In the cell & the spectrum

and spaceavgd. flux in region i. V1 is the volumefraction of region I, and

Z. is the energy avgd. macroscopic X-section.

The ratio SSFL9= is called the self-shielding factor of region i,

and is thus in a one group model only dependent on that region.

The effective 1 group microscopic X-sections are thus defined as

o- = r x SSFC) (3- 3)

A similar homogenizing procedure but for 35 groups has been included in the

THERMOS code at MIT ( 8 ), and is available in the code as an option.

With this option, a unit cell (Fig..r-3 ) is calculated with THERMOS, and

self-shielding factors are calculated for each element M, each region L, and

each of the 35 thermal energy groups K according to

55F (K,L ) = *o t L )

molvXmoot)-

It is important to notice that in this scheme the self-shielding factors are

calculated relative to the moderator ! and all the materials In the moderator

have unity self-shieldingfactors in all the groups.
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These self-shieldingfactors (Eq.4) are then punched out on cardswhich are

included in the next THERMOS calculation using a homogenized cell input.

In the next calculation, the code uses now a fictitious cross-section set

(for each of the 35 thermal groups)

instead of O'(K,M, L) to calculate the spectrum, fluxes and homogenized

I group macroscopic parameters .

As an input the user has to supply the volume-homogenized atomdensities of

the materials in a unit cell.

Using this procedure it is thus possible to include the spatial effects of a

unit cell into a 35 thermal group calculation of a more complex arrangement

such as an assembly or a core.

This procedure describes thus the spatial & spectral effects in a unit cell in

a cell homogenized calculation.

Table I - 1 shows the calculated self shielding factors of some elements as

U 235 in a U02 unit cell and of the elements U235, PU 239, PU 240 in a mixed

oxide (4 W/o PU 02 - nat UO 2) unit cell.

IT- 3 : THE THERMAL SPCTRAL-DISTRIBUTION IN ONE DIMENSIONAL CONVENTIONAL &

PLUTONIUMRECYCLE ASSEMBLY.

}-l INTRODUCTION.

The SSF homogenization procedure described above has been used with

THERMOS to calculate the conventional UO2 assembly and the PU-recycle assembly.

First 2 unit cell calculations (Fig. =-5-3 ) were made for the UO2 & mixed

oxide fuel in order to get the punched output self-shielding factors.
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A second run with the circular assembly model (see Fig. E[21 ) , was

then made using volume homogenized material concentrations and the SSF deck.

Using this procedure detailed results of the important thermal spectrum

distribution in the assemblies have been obtained for both the conventional

& PU-recycle assembly and its effects have been studied. The results have

been compared with a THERMOS calculation using only 1 thermal group library.

This 1 thermal group library included the macroscopic, unperturbed X-sections,

obtained from homogenized unit cell calculations (with SSF's). (Note thatnodiffu-

sion constant is needed in the THERMOS code, sol.ing the integral transport-

theory equations).

In this way, the details of the thermal spectrum distribution and its influence

in the assemblies were obtained without disturbances of any other effects due

to the use of different codes & different calculationprocedures.

3-2_) RESULTS FOR THE CONVENTIONAL ASSEMBLY,

Fig. III- shows the spectrum in a regular UO2 assembly at 3 positions

1- in the watergap

2- in the UO2 - at the watergap

3- in the UO2 at the center (asymptotic - unperturbed spectrum).

It is thus easily noticed that compared to the asymptotic unperturbed spectrum

of a unit cell, the spectrumdistribution in an assembly varies with the position.

The spectrum in the UO2-fuel is thus noticed to be softer near the watergap.

In Fig.I7-1I, the pointwise thermal velocity distrLbution of the neutrons

(in units of 2200 m/sec) in the conventional assembly, has been drawn, together

with the 1 group velocity distribution model.

It is thus easily observed that the velocity of the neutrons is continuous



I.o - 1.0 E(eV)

FIG 111-2 Spectra at different Positions in the cylindrical UO2 and Plutonium Recycle Assemblies

C

d0

13

10



76.

whereas the standard model, thus assuming the unit cells from an infinite

unperturbed array is unable to predict the spectral effects near interfaces.

Fig. III-3 finally shows the powerdistribution of thermal neutrons in a conven-

tional assembly as calculated with the 35 groups THERMOS library compared to

the calculation of the powerdistribution using the standard unperturbed 1 group

X-sections.

It is thus important to notice from a practicle point of view that the standard

1-group calculation underpredicts the powerpeaking by about 5%.

The spectralsoftening effect near the watergap is thus responsible for a

supplementary powerpeaking.

j-). RESULTS FOR THE PLUTONIUM RECYCLE ASSEMBLY.

Fig. TII-2, shows the spectrum in a plutonium recycle assembly at

4 positions : 1- in the UO2 near the watergap

2- in the U02 near the mixed-oxide region

3- In the mixed oxide near the UO2 region

4- in the center of the mixed oxide region together with the

unperturbed spectra in the UO2 & mixed regions.

It is thus easily noticed that the unperturbed spectra in the U02 and mixed

oxide are entirely different, in the mixed oxide the spectrum is harder, which

is evidently due to the much higher (about twice) absorption X-sections of the

PU 239 compared to the U235 (Fig. L-,4 ).
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Noteworthy is also the dip in the mixed oxide spectrum at the giant 1- 0 eV

PU 240 resonance.

When looking at the spectra at different positions In the assembly it is

noticed that now compared to the UO2-assembly,spectraleffects at the boundary

of as well the UO2 -mixed oxide interface as the watergap are introduced.

Jn the mixed oxide the spectrum is softened at the interface & in the U02
the spectrum is hardened at the interface & softened near the watergap.

Fig. IW-11, pictures the neutron-velocity versus the distance in the assembly,

compared to the 1 group velocity distributionmodel.

Again the strong spectralvariations in a PU-recycle assembly can be noticed.

It is however Important to notice that the spectraleffects are only felt

approximately within the distance of one unit cell from a boundary.

The rest being virtually unperturbed.

4 : THE EFFECTS OF ONE-GROUP MODELS ON THE CALCULATION OF THE POWERDISTRI-

BUTION IN CONVENTIONAL AND PLUTONIUMRECYCLE ASSEMBLIES.

4 -_1) THE DIFFERENT ONE GROUP CALCULATION MODELS,

The 3 basic techniques that can be used to calculate the flux &

powerdistribution are

1- S-N, P-L TRANS0RTTHEORY (ANISN, TWOTRAN)

2- INTEGRAL TRANSPORTTHEORY (THERMOS)

3- DIFFUSION THEORY (PDQ)
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In order to get the one-group macroscopic X-sections of a homogenized unit

cell needed for the calculations basically 2 methodscan be used for the

homogenization of the heterogeneous unit cell.

1- CELL HOMOGENIZATION (C.H.) which is the regular & standard procedure.

In this procedure the macroscopic X-sections are calculated from

2- MODERATOR EDGE FLUX-HOMOGENIZATION ( 21 ), abbreviated M.H.

In this procedure the macroscopic X-sections are calculated from

1= ZVF Tr 1 :

This homogenization scheme is sometimes used in D 20 systems

(SGHWR group at Winfrith)

There is no theoretical justification for either of the 2 definitions, but

sometimes it is claimed that the M.H. model should be better because the flux

in the water must be continuous between cells or between core & reflector.

It must be remarked that the effective microscopic cross-sections used in the,

THERMOS 35 group, SSF-homogenized calculations were generated with the M.H.

scheme (the only version built in the MIT-THERMOS option).

The 1 group output follows thus a M.H. scheme, whereas a heterogeneous unit cell

calculation with THERMOS follows a C.H. scheme.

Both cell homogenizationschees can thus be used te generate the 1 group macro-

scopic cross-sections for THERMOS, ANISN and PDQ. In THERMOS and ANISN no
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use is made of the diffusionconstant (only -. a' s, 2e are needed).

In diffusion theory however the definition of the diffusionconstant varies

wildely ; and therefore different diffusion theory models can be constructed

eccording to the energy and T. tr weighting & the use of the C.H. or M.H.

procedure.

4 -2) THE DIFFERENT DIFFUSION THEORY MODELS,:

Since the definition of the diffusion constant thoough its

derivation from transporttheory is highty mathematical (which is beyond our

scope), no attempt has been made to go in too much detail. Interested

readers may consult references ( '5 , ) or any other book on

transporttheory.

Instead we will start with Pomranings discussion of the energy weighting of

the diffusionconstant (33), to clarify the subject.

If one expands the transportequation in a low order (P-1) spherical harmonic

series, making use of the transport X-section to account for P-1 scattering,

one obtains the energy dependent diffusionapproximation i.e. the conservation

equation :
0o

and Fick's law of diffusion

I VcLi) (3-7)

(4-4 &E)



where Z t = + s = total macroscopic X-section

0 (FE) = scalar flux, J (?,E) = current, 's (r,E'4 E ) is the macroscopic

differential scattering X-section, & .tr (rE) =

n tegrato NE =lt ov er) +t

Integration the eq.(7) over the i th group

5 L~)
S

~1

~~LLj):~ j
L

dE 4( E)

z
L I 1

4.I.1

01 E E(J )

$
from this definition it Is thus seen that parallel averaging (E)=

Z )+ -fj) E)
with respect to the gradient seems appropriate

However Eq. 7 can be written equally well as

-t-V4Lid~) (3-13 )

integrating ( 13 ) bver the I th group gives

-3 t& )] C(i) + 0 (3-144)

80,

where

(3-8)

(3-9)

and

~3 jo

VT ( iE)

d1EF

-fOe)'(iEN

t4 (f E) T("i. E)

0
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where we have defined

dE JC'E)

Eq. ( 15) indicates that one should series average -tr with respect to

the current.

Comparing Eqs. 12with 15 we deduce

Thus if one has the exact solution of the current J(r,E) of equations 6 & 7

the 2 procedures should be equal.

However neither O(F,E) or J(r,E) are known in advance, therefore the

0(F,E)'s or J (,E,)'s of the unit cell calculations are used as approximations,

in the thermal group, or a zero dimensional calculation .is performed from

which we get the spectrum (usually in the higher groups -MUFT).

The most commonly used approximation Is to assume the seperability of flux

& current in space & energy.

In this way 0(T,E) = 0 (r) (E) - (V4LCS) )A(E) and

we obtain the formulas 8 & 15 in which now the fluxspectrum O(E) replaces

the J('F,E) call 2 * and 15'*).

If this seperability holds, then again the statement of eq. (16) can be

assumed.

Another assumption is to assume a seperability of the directional flux

,/ F A.) . E.') , in this case coming from

transporttheory one should use the series avaraging. However since this
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seperability assumption is more restrictive,(all angular components have the

seperability) this is generally not used in practice.

In short, 2 practicle methods can be used : parallel or series avaraging

1 tr (r,E) over the Flux.

Thus far nothing has been said about the space & volumeweighting of the

diffusionconstant in the unit cell. Taking those possibilities into account

the following definitions exist usually :

D 1) first space and volumeweighting the transport X-section using

cell homogenization & then parallel avg. 2 tr over the spectrum of

the cell

Calling M = material , L = region

f FL, E) cLg

where ( =(LE[ (3-12)

thus t7 i (E) =

and then :
3

or with 0 (E) the spectrum of the cell

L eL

0 c'LL

SXV(t.) N(LN- S LV ,M
H L.

C-4L

E* E

(3-151)

(3-.to)
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(19) becomes :

( s-21)

0

D 2) first space & volume

avg. Xtr over the spectrum of

In this way we get :

3 0

weighting ztr using M.H., and then parallel

the cell.

[ NN V( L P ~O-C * M.E)J-

where

-(N rE) -. a'1 ( )E) . SS F O ( j jE)

D 3) First space & volumeweighting in the - over the spectrum of thetr

cell.

In this case

I :M [M

D 4) same as (3) but M.H.

fl:,4 /j E [ LL.)N(p-N)0(,j~E (3-24L)

D 5) FIRST energyweighting the parallel tr over a region and then

volume and fluxweighting.
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EW -1

In this case : .i C LZTR(MjE))

L0

then

J Y(VL).~L ~~LJ
3 L

D 6) FIRST energy weighting the parallel tr over a region, and then

density, volume and fluxweighting.

( (L.) (_ 34~7)

After careful examination of the most important unit cell codes, THERMOS,

LASER, LOCALUX, LEOPARD it was found that ;

- SCHEME D-1 IS THE MOST COMMON USED.

LASER-LOCALUX AND LEOPARD calculate the diffusionconstant of a unit cell

according to this scheme and eqs. (17) to (19).

- SCHEME D-2 is used by THERMOS IN HOMOGENIZED UNIT CELL-SELF SHIELDING

FACTOR OPTION AT MIT.

- SCHEME D-3 CAN BE OBTAINED FROM THERMOS IN A HETEROGENEOUS UNIT CELL CALCULATION;

since THERMOS prints out Zj(M) for each material.



85.

- SCHEME D-5 has been found to be the STANDARD OUTPUT FROM A HETEROGENEOUS

UNIT CELL CALCULATION WITH THERMOS.

-SCHEME D-6, CAN BE OBTAINED FROM LOCALUX OR LEOPARD SINCE IN THOSE CODES

PSEUDO MICROSCOPIC X-SECTIONS as calculated from Eq. 26 are also printed on

the output. Those pseudo-microscopic X-sections are especially useful for

the calculation of the diffusion-ct.of extra-materials, such as watergap, cans,

reflector etc.

Table "t - 2 shows a comparison between the one-group macroscopic cross-

sections as determined with the homogenization -(C.H.) or moderator edge flux

homogenization (M.H.) schemes for both a UO2 and mixed oxide unit cell and

for the water.

Table 3T - 3 shows the different diffusionconstants for both the U02 &

mixed oxide unit cells & the water as calculated with the 6 different schemes

described above.

From TableIET;2, it is thus noticed that the differences in the macroscopic

X-sections are mainly due to the differences in weighting (M.H.) versus

.U (C.H.).

For a mixed oxide cell for which the is higher the difference are thus

higher.

From Tablefl -3, a large deviation in the diffusion constants is noticed between

the different schemes. The normal scheme but using the moderator edge flux homo-

genization (THERMOS-homogenized SSF procedure) (scheme 2), seems to give a

particularly high diffusion constant. The other schemes give rather similar

results, although the deviations between the schemes are much larger than the

deviations 'between the macroscopic cross-sections. In the water (which was

taken with a U02 cell generator spectrum), large deviations exist in the diffusion-

constants between the different methods.
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The usual adopted practible Technique generating a water-diffusionconstant

from a unit cell calculation is through the scheme D-6 using the LEOPARD or

LOCALUX CODES.

TABLEL f~- 2 COMPARISON OF ONE GROUP MACROSCOPIC X-SECTIONS OF AN UNPERTURBED

U02 AND MIXED OXIDE UNIT CELL USING THE C.H. OR M.H. METHOD.

(cut-off 1.855 eV - THERMOS).



COMPARISON OF THE ONE GROUP DIFFUSION CONSTANTS OF UNPERTURBED

CELLS USING DIFFERENT HOMOGENIZATION SCHEMES (1,855 eV CUT-OFF).

HO2
H20
+ 1400 ppm B

MIX OXIDE.

4 -3) RESULTS OF THE CALCULATION OF THE POWER DISTRIBUTION IN A

CONVENTIONAL ASSEMBLY & PU-RECYCLE ASSEMBLY USING DIFFERENT

ONE GROUP MODELS (WITH UNPERTURBED UNIT CELL CONSTANTS).

a) the UO2 assembly Fig. JIL-3, shows the powerdistribution

for a conventional UO2 assembly calculated with two

different methods.

1) the THERMOS - group M.H. model (integral transporttheory).

2) PDQ - 1 group diffusiontheory, M.H. model, with a M.H. diffusionsonconstant

from scheme D2.

It isthus noticed that there is a rather good agreement between the X methods,

U0
2
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In general, because of the differences in the diffusionconstantdiffusiontheory

calculations using the moderator edge flux homogenization scheme (M.H.) under-

predicts the powerdistribution compared to the cell homogenezation (C.H.) scheme.

It should therefore not be recommended for the study of H20 cooled & moderated

reactors. However the results are rather insensitive to the

1 group model choosen (see also reference 21).

b) The PU-recycle assembly.

As can be seen from Figs TIT-J"the powerdistribution varies

wildely according to the choosen calculationmodel.

5 models have been used :

1) THERMOS - 1 group M.H. method.

2) ANISN - 1 group M.H. method

3) PDQ - 1 group M.H. method, diffusionconstant D-2.

4) PDQ - 1 group M.H., diffusionct. D-4

5) PDQ - 1 group, C.H., diffusion constant D-5.

From the comparison between THERMOS & ANISN, using the same M.H. method, it is

seen that transporttheory gives more powerpeaking compared to integral trans-

porttheory. This suggest that angular effects are present in a PU-recycle assembly.

Table 3 - 4, shows the angular flux in the U02 region and the

angular flux in the mixed oxide region

The differences are small but noticible. Also from Fig.=I-I, the PDQ-1 group

M.H. method with the diffusionconstant D-2 (regular M.H. method), is thus seen

to be very inaccurate.

Deviations in power of about 12 % may be noticed. Decreasing the diffusion-

constant using the series E TR (M.H.) weighting already gives a substantial

improvement. However the errors are still substantial.
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FLUX BY ANGLE AND

PNT. ANGL 1
1 1.6)185E-02
2 1.70090E-02
3 1..71920E-02
4 1.74942F-02

- 5 1.79694E-02
6 I.87099E-02
7 1.989 56E-02
8 2.20612E-02
n 2.61106E-02

(103 2.79999E-O
.1. 2.93316E-02

12 3.06249'f-02
13 3.I98S37E-02

0 14 3.33297E-02
5 3.52923E-02

16 3.3?695E-02
7' 4.3096'E-0?

.4.)2404E-02
19 4.26229E-02

'Yt'NT FOR GRO

ANIGL 2
1 .69144E-0?
1 .n9862E-02
1.71458E-02
i.'41 70E-02
1.78449P-02
1 .85091E. -02

?.*3004E-02
2 .57055E-02
2.7687377-02
2.0 093E-02
3 .03469c-02.
3.15614E-O2
3.28S65E-02
3 .457RE-02
3 .72443E-02
4.30716E-02
't.34177F- 02
4.26229E-02

I

ANGL 3-
1.6914' E-02
1. 69212E -02
.. 70042E-02
1. 71.725E-02'
1.74546 E-02
1.78978E-02
7.85803E-02
... 96292E-02
2.16071 E-0?
2. 55276E -C2

2.75676E-02
2.90077E-02
3.02468E-02
3.14502E-02
3.27557E-02
3.43641 E-02
3.69107E-02
4.05626E-02
4.26244E-02

ANGL . 4
?1.70540E-02
i.72363c-02
1.75462E-02
1.80348E-02
1.87831E-02
1..99145E-02
2.1'6068E-02
2.41061E-02
?.73808F-02
2.90708F-02
3.04540E-02
3.17896E-02
3.32162E-02
3.48497E-02
3.57854c-02
3.90244E-02
4.10035E-02
4.03353E-02
3.90300E-02

ANGL 5
1.70518E-02
1.72184E-02

1.75099E-02

1.79729E-02
1.86860E-02
1.97725E-02
2. 14187E-02
2.39023E-02
2.72423E-02
2.89452E-02
3.03249E-02
3.16493E-02
3.30621E-02
3.46896E-02
3. 6645 9E-32
3.89676E-02
4.10969E-32
4.04121E-02
3.90300E-02

ANSL 6
1.70504E-02
1.71489E-02
1.73473E-02
1.76730E-02
1.8181.3E-02
1 .89501E-02
2.01545E-02
2.13454E-02
2.60338,-02
2.79521E-02
2.93584E-02
3.06065E-02
3.18511E-02
3.32240E-02
3.48926E-02
3.72191E-02
4.28723E-02
4.33813E-02
4.32470E-02

ANGL 7
1.70504E-02
1.70488E-02
1.71249E-02
1.72901-02
1.75717E-02
1.80129E-02
1.87069c-02
1.97203F-02
2.20934E-02
2.60704E-02
2.77903E-02
2.91496E-02
3.03432-02
3.15.97E-02
3.281775-02
3.44770E-02
3.75884E-02
4.12582E-02
4.32486E-02

3

4

TABLE III-4, FLUX BY ANGLE AND BY POINT IN A PLUTONIUM RECYCLE ASSEMBLY
AS DETERMINED WITH ANISN

5

AGL 8
1.7051JE-02
1.69797E-02
1.69933E-32
1.70918E-02
1 .72919E-02
1. 7628 E-02
1.81585E-02
1.99887E-02
2.03437E2-02
2.30419E-02
2.54653E-02
/0.76784r-02
2.89138E-02
3.02663E-02
3.15897E-02
3. 3045SE-02
3.49257EI-02
3.71 162El-02
3.90312E'-02

1 angle

7

NI
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The best agreement of diffusiontheory with transporttheory was obtained

using the standard THERMOS cell homogenization scheme (D-5) and the standard

LASER scheme (D-1).

As a general conclusion it has thus been found that large differences in the

calculated powerdistribution exist, between the different calculation methods

applied to a PU-recycle assembly. In particular M.H. diffusiontheory seems

to underpredict the powerpeaking to a great extend.

The M.H. method used with diffusiontheory is completely inadequate.

The best results were obtained with the standard cell homogenized (C.H.)

THERMOS 1 group parameters (scheme D-6) & the standard LASER & LOCALUX

schemes (D-1).

SUMMARY,

In summary it has been found that very good agreement exits between different

methods in a conventional UO2 assembly, although the M.H. slightly underpredicts

the powerpeaking.()21

In a PU-recycle assembly, large deviations (up to 13 %) in powerdistribution

exits between a regular diffusiontheory calculation using the M.H. method for

the macroscopic X-sections & diffusion constant, and transportcalculations

with THERMOS & ANISN.

The alarm that had been risen, was greatly tempered when diffusion-theory with

the standard C.H. and diffusionconstants were used.

Although some differences of about 2 % remain between diffusion theory &

transporttheory, the standard 1 group LASER & LOCALUX diffusiontheory procedures,

in comparison with 1 group transporttheoryyshould be considered adequate in

practice for the calculation of the powerdistribution and powerpeaking in both

UO2 en PU-recycle assemblies.
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Due to the influence of the diffusionconstant for the calculation of PU-recycle

assemblies this parameter requires special attention. Careful examination of

the scheme adapted in the code to calculate the diffusionconstant as well as the

particular use made of the codes is thus recommended.

Angular flux effects have also been noticed in a PU-recycle assembly and an

additional 1 to 2 % increase in powerpeaking may result from these effects.

With regard to the spectraleffects it has been found that in a conventional assembly

powerpeaking is Increased by about 5 % due to spectralsoftening near the watergap.

In a PU-recycle assembly spectralsoftening in the mixed oxide region increases

the powerpeak by a 5 %, and spectralhardening decreases the power in the UO2

fuel near the interface by about 2 %; whereas the softening near the watergap

takes a 4 % increase in the powerpeak.

Because of the special importance of the peak power in the design of nuclear

reactors, it is thus necessary to take into account the additional powerpeaking

produced by thermal spectrumcoupling of the different fuel rods between each

other and between fuel rods & extra materials such as water. For the calcu-

lation of angular transporteffects there is only one solution :

one & 2 dimensional transporttheory codes. Because of the expense involved- and

special need for generating scatteringcross-section, it is unlikely that they

will be used as standardcalculations.

The effect, even in a PU -recycle assembly however is small & the 1 % error is

also in the range of experimental errors.
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CHAPTER IV DEVELOPMENT OF GENERAL AND SIMPLE ONE THERMAL GROUP METHODS FOR

THE CALCULATION OF POWERPEAKING IN ONE-TWO & THREE DIMENSIONS.

IV- 1 INTRODUCTION - DESCRIPTION OF EXISTING METHODS.

In the preceeding chapter we have noticed that the standard methods of

using 1-thermal group X- sectionsets of unperturbed unit cells underpredicts the

powerpeaking produced at watergaps & UO2- Mixed Oxide interfaces.

For simple one-dimensional geometries, the THERMOS code using 35 energy-groups &

the most accurate scattering-kernels for H 0 can be used. In the case of 2D and1 2

3D geometries, generally no such codes exist or have serious limitations.

Although in principle the 2D diffusiontheory codes, which allow several thermal

groups & upscattering could be used, the problem is generally to find multi-

hermalgroup collapsed X-sections, & especially up-scattering cross-sections.

Another big disadvantage is cost, since the cost of a computorrun is roughly

proportional to I . J . K , G where 1, J, K are the # of meshes in the X, Y,Z

coordinates and G is the number of groups.

Therefore several more simple 1-thermal group methods have already been proposed

for the calculation of watergap-peaking.

The most popular methods for the calculation of watergap-peaking are

1)- spatially varying 1-group cross-sections as determined'from a 1 dimensional

THERMOS model.

2)- Calumes overlapping group model ( 99)

3)- Breen's MND (mixed Number Density Model) ( 35 )

4)- Correctionfactors of Leve dahl ( 36 )

5)- using X-sections of a supercell.

6)- the use of a Maxwellian spectrumavgd. diffusionconstant.

An excellent treatment of the most shnple methods 2, 3, 4, 5 & 6 for the cal-

culation of watergap peaking In BWR's using the LEOPARD code with some extensions
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can be found in Ref.30

Because of the importance, a discussion of the several methods also in the light of
mix

the new problem introduced at the UO Interface will be given here.

1-1)The Spatial X-Sections Method.

This is probably the mostaccurate, but also the most time consuming

& costly method, since it involves making a 35 thermal group calculation with

THERMOS. The method is general, in the sence that it is accurately applicable

to UO 2-Mixed Oxide interfaces & other structures as burnable poison rods as

well.

One particular drawback is the need for a 1 dimensional model of a more com-

plicated structure such as a X-Y assembly in our ease.

Since the method however is general & considered to be the most exact, a par-

ticular effort has been made to improve the restriction on the geometry & a relative"

ly simpl 2 D spatial-X-Section Synthesis method based on 1 D THERMOS calculations

has been developed.

1-21 CALUME'S OVERLAPPING GROUP MODEL.

In complexity, Calume's overlapping groupmodel may be thought of

being between the THERMOS-Spatial X-section Model and more- simple methods as

Breen's MND model. It is easily applicable to 1, 2 & 3 D calculations.

Calume's basic assumption is that in diffusing, the neutrons maintain their

original asymptotic spectrum, even In media were they are not born.

They will not in fact, retain that spectrum, but will through energy exchange

collisions slowly become distributed in the spectrum of that medium.
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So, for an arrangement with a watergap e.g., if we assume that the source of

thermal neutrons (slowing down source , 0 ) In the UO2 fuel region is zero,

it is assumed that neutrons from the H20 diffuse in the UO2 region, without

their spectrum being altered, & vice versa if the source in the water is put to

zero neutrons from the U02 region diffuse in the water without a change in their

spectrum. In short Calume's method consits of : first finding the X-sections

of the material L ( U235 e.g.) in region A (water e.g.), of materials M in their

own region B, materials M in region A & L in B;

second making 2 diffusiontheory runs : in the first the source of thermal neutrons

in region A is put to zero (zero fast removal X-section in 2 group calcula-

tions, or zero fixed source in fixed source problems) & the X-sections of region A

are those of the materials M in region B, in the second the source in B is put to

zero & the cross-sections of materials M & L are taken over region A.

from a study performed with THERMOS, in which alternatively the sources of

2 regions were removed, it had been found that Calume's basic assumptions break

down, In order to overcome this problem for watergap peaking Calume has suggested

some variational methods, which makes the problem more com-

pl icated Especially for the treatment of the UO2-Mixed Oxide interface, this

method should not be recommended.

Futhermore Calume's method requires a lot of preparation, -it needs cell averaged

X-sections of materials in a region which are not present in this region, and requi-

res at least 2 diffusiontheory calculations in which the sources are removed

alternatively.(for a PU-recycle assembly, 3 calculations are necessary).

Therefore the method has not been used in this study.
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1-3) BREEN'S MIXED NUMBEK DENSITY (MND) MODEL. ( 3 )

Breen has developed a very interesting & simple one group model

for the calculation of powerpeaking near watergaps.

Several comments & limitations of the model are noteworthy after reading the

article & some familiarity with the LEOPARD ( f,8 ) Code, which contains

the SOFOCATE program for the calculation of the thermal spectrum.

1) Breen's model seems only applicable to watergap peaking & not to mixed

oxide UO2 interface peaking.

2) In the water, the same spectrun and y, is used as in the unit cell.

3) Theassumption that the gradient spectrum near a watergap approaches a

Maxwellian spectrum, is not always correct.

4) The LEOPARD code is the only standard code which prints out the Mixed

Number Density Cross-sections needed for the application of the model.

5) The Standard LEOPARD code has been found, apart from spectraleffects,

to be inaccurate for the calculation of powerpeaking in PU-recycle

assemblies.

6) The LEOPARD code has a cut-off at 0.625 eV, and is thus insufficient to

describe the Thermal spectrum in a mixed oxide fuel completely.

Because of those limitations a more general one-group model,

based on Ideas of the MND model has been developed, which can : *

1) be used with unit cell codes LEOPARD, THERMOS, LASER, LOCALUX and probably

other, without a need for any modifications in these codes , and

2) be used for Mixed-Oxide UO2 interface peaking as well as for watergap peaking.

As the original MND model, the developed General MND model is easy &

quick to apply.

see further.
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1-4) CORRECTIJN FACTORS OF LEVEDAHL.

The method of Levedahl seems to give similar results to Calumes

method (34). The method however suffers from the drawbacks that it is only

applicable to watergap peaking and that the diffision constants must be

obtained over spectra which are not directly available from a standard unit

cell code.

1-5) THE USE OF X-SECTIONS OF A SUPERCELL,

The use of X-sections of a supercell, cr a unit cell with the extra

region, which volume fraction in the super cell is the same as the volume

fraction of the extra materials (other materials than the regular fuel unit

cell) in an assembly core, may improve the calculatior of the power peaking

somewhat in BWR'S(30). The smeared spectral effects and smeared X-secticns

over the whole assembly are insufficient to describe the much larger spectral

effects and X-section variations at the peak locations.

1-6) THE USE OF A DIFFUSION CONSTANT AVGD, OVER A MAXWELLIAN SPECTRUM.

This approaci is evidently not applicable to Pu-recycle applications,

since the assumption of a maxwellian gradient at the UO2 - Mixed Oxide inter-

face, has been found to be inexact

IV - 2 DEVELOPMENT OF THE THERMOS SPATIAL CROSS-SECTION SYNTHESIS METHOD C-)

IN X - Y DIMENSIONS,

As mentioned earlier the THERMOS code is a one dimensional code and

it is therefore impossible to obtain directly the spectrum variation and

spectrum averaged 1-group X-sections at a position I, J in a 2 dimensional X - Y

structure such as the conventional and Pu-recycle assemblies pictured on the

Fig. IV - 1 (only a portion of the assemblies are shown).

Therefore a 2-dimensional synthesis method was developed, based on the follo-

wing reasoning.

# abbreviated SXS method.
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2-1) 20 SPECTRUMSYNTHESIS.

Assume that we have a complicated assembly such as the PU-recycle

assembly portion pictured on Fig. IV - 1.

The cell homogenized flux at each unit cell or node 1, J, & each neutronenergy E

can be written as

where 9 (E, I, J) is the unperturbed spectrum at node I, J.

Assume that a one dimensional calculation has been made in the X-direction,

and one in the Y direction such that the 2 directions cross each other at

I, J; and that no spectrumcoupling exits.

These fluxes can be written at the positions I and J as

( I,E) = -I)T ( T) (9-

Let us now write at each mode I, J

where the first term on the right hand side makes up for a complete sepera-

bility in X, Y and energy, and the second term takes the correction of this

assumption in account.

Since no spectralcoupling has been ssumed

Lf j ~X) -yCELX r

(4-6)
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In the case that we have spectrumcoupling, and assuming that the perturbation-

effects are small we can write :

[ (I,3)

y (E, ) + y, (7E)J

+-[ (F/ .T) + st T)][ (-I.,0) E)]

After taking only first order perturbations and after dividing the resulting

eqs. by -(; )

we get taking (4-4) and (4-5) into account

+ 9$(r, J E)

(I) - A o(r T) Z 7, E)

S*~d:L)

ystr)
+

*x~~;r

(Lt. ~7 )

~Y~A-)

Since spatial effects only affect spatial terms I, J we have :

0

'+-{IT7 E

- ~4%LT~

~+~( (ZJ~.)

4- P 7

*1- t~y (YE

(4-6)%o (rljE STo

( .q. 3)

+ I )$ E ,+Et(E I, T)

gf,, (:r) I C 4 , (.T)

E) + STY (Ij E)j -I L
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Since the purpose is not to make a spatial synthesis (2-D diffusiontheory codes

are available) only EQ (4-9) is of interest.

EQ (4-9) thus says that the spectrumdisturbance (E, I, J) at a mode 1, J

is the superposition of the spectrum disturbance T (, E) at from the

X direction and the spectrumdisturbance 6'i(J~, E) at J, from the Y direction;

which can be calculated with a 1 dimensional spectrumcode like THERMOS.

2-2) 2D VELOCITY DISTRIBUTION,

From Eq. (4-9), the 2 dimensional velocitydistribution can be cal-

culated with the following reasoning :

Assume a 1vabsorber with a unity cross-section at 2200 m/sec.

The activation of this absorber, in a disturbed spectrum at node 1, J can be

written as

E_*

0

.L (E I) +1 (E 7)]d

i I r+ Y(i~i ) VO

(Lt. I v)

-------- ------
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S ince j). we get after some manipulations

r ~~ (Ij T) L-4,T)x )

or assuming

2-j) 2D CROSS-SECTION SYNTHESIS,

Of much more practicle importance is the s

macroscopic X-sections .

Replacing now in general the Lr X-section in EQ. (

Eq. (4-11) can be written as

- -=g + ~

ynthesis of the 1-group

and the diffusionconstant D.

4-10) by Z (E, I, J)

(.'t-J)

Thus all the spectraldisturbed macroscopic data at any position (I, J) in a

2 dimensional X-Y assembly can be calculated approximately from one dimensional

THERMOS-calculations and the superposition principle of EQ (4-13).

2-4) APPLICATION OF THE S X S-METHOD TO THE CONVENTIONAL & PU-RECYCLE

ASSEMBL IES,

a) Preliminary runs:

The THERMOS Spatial-X-section Synthesis Method has been applied to

determine the velocity distributions and deviations of the macroscopic X-Sections

in the portions of the conventional & PU-recycle assemblies pictured in Fig.

IV-1

J( 1: - -e V. CZ

( - L t) .

I)
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From the diagonal symmetry in the conventional assemblies, it is noticed that

only 1 THERMOS calculation is necessary. The SSF-homogeni-zationscheme (*) in

THERMOS was used on a geometry pictured in Fig. IV-2 for the conventional

assembly.

Fig. iV-4 shows the % deviations in the macroscopic cross-sections

(defined as were L. = the unperturbed cross-section);

and the (-%) deviations in the thermal neutronvelocity, avgd. over the unit

cell positions I or J from 1 to 8.

It was noticed that the % deviations in Z2' y were very close, so that

only one % deviation in I is necessary.

The % deviation in D was max. 2 %, and its effect has been neglected.

Fig. IV-5 shows the % deviations in macroscopic X-sections for the positions

1, 2, 3 when the watergapthickness was varied from.135" original up to .30inches.

As can be noticed the % deviations, especially for the mot important position 1.,

increases nearly linearly with the watergapthickness. Therefore the % devia-

tions due to spectralcoupling of a watergap with thickness t can be thought of

being the superpositon of 2 deviations due to a watergap thickness tI and t2'

were tI + t2 = t. This observation is consitent with the S X S model

equations 4-13.

For the PU-recycle assembly portion of Fig. IV-1-B, the above results of the

1 dimensional configuration of Fig. IV-3 were used for the region were only the

watergapeffects are present. (region bounded by the I = 0 to 3 & J = 0 to 3

positions). The 1 D model pictured in Fig. IV-3, was used to determine the

spectraldisturbances of both watergap & U02 - MIXED OXIDE interface, bounded by

the I = 4 to 8 and J = 4 to 8 positions).
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Fig. IV-6 shows the % deviations in X-sections and (.r) thermal velocity, due

to the watergap & UO2-MIXED OXIDE boundary at various positions, as the deter-

mined with THERMOS on the geometry of Fig. IV -3.

b) The 2-D Synthesis.

From the preliminary ID THERMOS calculations & the 20 synthesismethod,

the 2 D velocity distribution & 2D spatial distribution of I thermal group cross-

sectiondeviations has been obtained for the portions of the conventional &

PU-recyule assemblies, (Figs I.V-1, A & B).

Fig. IV-7, shows the thermal neutronvelocitydistribution (in units of 2200 m/sec)

in the conventional assembly, whereas Fig. IV-8 shows the result for the

PU-recycle assembly.

It is thus noticed that now the velocities change more continuously from one

region to the other, in contrast to the unperturbed model in which the velocities

changed abruptly from 2.129 (in units 2200 m/sec) in the water to 2.304 in the

UO2 cells. Due to the more continuous change in spectrum, the macroscopic

X-sectionschange near the interfaces, compared to their unperturbed values.

Fig. IV-9 & Fig. IV-10, show the 2D distribution of the macroscopic X-section

changes, relative to their unperturbed values, in respectively a conventional

& PU-recycle portion of the assemblies.

As an example how these perturbations were obtained at each location (I, J)

consider e.g. in the conventional assembly the node (3 ,1).

From Fig. IV-4, the perturbation from the watergap along X alone in the Y direction

at location J = 1 is seen to be + 3.8 %, whereas the perturbation from the water-

gap along.Y in the X direction alone, at location.= 3 is + 1.30/.

According to the superposition6  (1?, J) = &43 (T) + 9 (J) the perturbation
x y

due to the watergaps along X & Y is thus : (+1.3%) + (+3.8%) = + 5.1%.
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Fig. IV -7: AVG. THERMAL NEUTRON VELOCITY DISTRIBUTION IN A PORTION OF

CONVENTIONAL UO2 ASSEMBLY.
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Fig. -V-8 : AVG, THERMAL NEUTRON VELOCITY DISTRIBUTION IN A PU-RECYCLE

ASSEMBLY.- (IN UNITS2200 m/sec).

Unperturbed velocity UO2 : 2.304

MIX : 2.637

Avg. velocity in this portion :v UO2 = 2.267, v assy. = 2.293(whole assembly)

v MIX = 2.567, v assy. = 2.567(whole assembly)
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Fig. IV-9 : % DEVIATIONS IN CROSS-SECTIONS IN A CONVENTIONAL UO ASSEMBLY.
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iq IV-10 DEVIATIONS IN MACROSCOPIC X-SECTIONS IN A PU-RECYCLE ASSEMBLY.
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In a si m ilar way, but making now use of both Figs. IV-4 and 6; the %

deviations in macro6copic X-sections at each location I, J in the PU-recycle

assembly were obtained.

JV-3 DEVELOPMENT OF THE GENERALISED MND METHOD,

3-11 INTRODUCTION.

In the previous section a method was developed which enabledus to

get the spectraleffects in 20 X - Y geometries. The method is however time

consuming & involves making 1 D THERMOS calculations.

In this section we will develop a much simplier method. We will first show,

based on one D, THERMOS results, that the suggested continuity of activation

by M. Goldsmith and S. Stein is much more powerful than Breen emphasizes in

his article on the development of his MND method, which is applied exclusively

to the problem of watergappeaking.

Second we will show that it is possible to obtain macroscopic & microscopic

MND cross-sections with unit cell codes such as LASER and LOCALUX, and that

they are not exclusively intrinsic to the SOFOCATE-LEOPARD code which calculates

the MND cross-sections.

Afterwards we will develop a method for the calculation of the avg. of the gra-

dientspectrum at a watergap and a method for the calculation of the avg.(_L) of
A 61AD

the gradientspectrum at the U02-MIXED OXIDE interface or any other 2 difficult

fuels interface, with any other unit cell codes such as LASER & LOCALUX.

The results are compared to calculations made with the THERMOS code and the

LEOPARD code,

Finally the results are blended to a new Generalised Mixed Number Density (GMND)

Method for the calculation of powerpeaking at both watergaps & U02- mixed oxide
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interface (or any other spultifuel boundary).

]-2) THE CONTINUITY OF ACTIVATION OF A rABSORBER AND ITS IMPORTANCE FOR

THE PREDICTION OF POWERPEAKING.

In the standard 1 thermal group calculations, the cross-sections were

obtained from a unit-cell calculation. Since one unit cell has been isolated,

the intrinsic assumption has been made that the reactor consists of an infinite array

of such unit-cells. Therefore no coupling between other regions such as the

watergap. other fuels (UO2-MIXED OXIDE) are assumed.

The normalised activation of a 1/V absorber with a unity 2200 m/sec absorption-

cross-section (normalised activation = 4C;) E d I

will therefore be discontinuous in the standard model.

Because of spectrumcoupling it is not surprising to find a continuity in the

activation in an actual case, such as a conventional assembly consisting of

UO2 cells & watergaps, and a PU-recycle with 2 fuels Mixed-Oxide & UO2 & a

watergapregion.

Fig. IV-11, shows the results that were obtained with the l-D THERMOS calcula-

tion on a circulized conventional & PU-recycle assembly. (see Chapter JIJ~).

It is thus clearly noticed that the activation of a '/,.absorberfoil is continuous in

both assemblies. The effect in the PU-recycle is particularly striking.

In a real physical model this continuity should appear, therefore instead of

writing the usual diffusion eq.

D7 4 ~ & -CE) 2: ~ to 50 1 Lt~
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with the boundary condition at an interface

it A)

D, VO' (R,)

where the activation of a I/V absorber would be

(-- ( R,)

or V.'(R,) $ ra(R)

(where n is the neutrondensity.)

we could write : the boundary condition

0 0

rt ( R,)

1 DIRI1 J
40

(4-14)
0

Since the usual diffusion eq. with 1 thermal group for region I

+ S'tL) =0

where D" have been averaged over the unperturbed spectrum of this

region, we can write since Lii) &t' . i) -, ~ ~LL

6&AP

(/4 76k2lD

* WS C
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(&) #Oft)

(A -5)

(q -16)

(4-17)

as 0'(6. E d,)dE

X v ; c L6)

is :

= D, 70 (k,)

.....

YL 
I

-D Vf( RjlE

(L' -9,2)
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So if we use, in a diffusiontheory code with 2 groups ( 1 thermal & 1 fast +

epithermal) the thermal group X-sect ions;

D C. PAD

the code will automatically handle : Lj V D A tI,

at an interface.

In order to clarify the use of the principle, at this point, for the calcula-

tion of the powerpeaking, it is instructive for the reader to calculate by

hand to compare the normalised powerdistribution of a s imple geometry such as

2 different infinite slab media in contact with each other -

(e.g. H20 - UO2 interface or MIXED-OXIDE UO2 interface), using the regular

1-group diffusioneq. (4-14) & boundarycondition (4-15) & the eq. (4-22) with

the B.C. (4-19).

It is very easy to show that for such a simple case the normalised power at

the peak location X = 0 is given by

(x)= o) +| - --
RE(o

and with the model of eqs. 4-19 & 22 by

T ft s t ifi i, -14N WID 1+ SL Y(/L /

Thus if the spectrum in J is softer than in in,

LV
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For a mixed-oxide; UO2 fuels the V,) was found to be 1.145,

whereas the UV) /VV)2o was about 1.083

The differences in powerpeak are thus significant.

Spectrumhardening & softening-effects can thus efficiently be treated with

the 1 group model of equations (4-19) and (4-22).

In Breen's article it is stated that the application of "only the 1/V continuity

is insufficient & gives essentially the same results as the regular method.

The reason is that in the cases of pitticle interest before PU-recycling the

differences in spectrum in unperturbed U02 fuels (e.g. interface of 2.5. &

3.5 w/o U235) is very small , so / QIur) in those cases.

In the case of a watergap, / Is taken to be equal toLg- ), since
20 O VOL

the same spectrum from LEOPARD is used as well in the UO2 fuel cell as in the

water.

Therefore in Breen's model the application of the activationcontinuity alone

for the prediction of watergap-peaking gives essentially the same results as

the regular method; which is thds generally an oversimplified model.

Breen however goes one step further & argues that the diffusionconstant should

not be weighted over a fluxspectrum 0 (E), but over a gradient-spectrum V4(E)

As Breen noticed with his SLOP-1 calculations, this was found to be the case,

and in Chapter :M it was also observed that this is a more exact definition.

It was furthermore found that the gradientspectrum approaches a Maxwellian

spectrum at the watergap.

Therefore in Breen's MND model for the calculation of waterqap peaking:

V (EI) (f4s.
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However we have :

0 0

0 a

0 k

0

ol-E

0

(qt ..x 7)

GE LL.

Since : . as well as a pointwise velocity V in the unit cell Is calculated

In the LASER & LOCALUX codes, it is thus possible to get the MND X-sections

from -

Thus by multiplying the spectrum cell averaged cross-sections with the average

thermal velocity Lf- of the cell, the -MND X-sections can be obtained.

So the only thing missing in order to obtain all the MND X-sections is to find

the '/, of the gradient spectrum at the water & the(./O..) at the mixed-oxide, UO2CAP
interface.

')4 THE METHOD TO GET YV'OF THE GRADIENTSPECTRUM AT THE WATERGAP AND TO

GET THE GMND X-SECTIONS.

The gradient at each point r, and energy E is defined as ;

'ABA

121,

tivA
At-+o
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Considering the unit cell consisting offfuel, clad & moderator, EQ 4-29

may be approximated as :

ULL
C( RCe~a .{Evq# (,E) 9ELL.- 3

where 4 (fRL E) is the flux at any energy E at the edge point in

the moderator (point 12 in LASER & LOCALUX), or simply the 0 avg.flux in the

moderator, and E) is the whole cell avgd fluxspectrum =

1. 2 *

L.E LL. f

which is also printed out by LASER or LOCALUX.

A r is an arbitrary value, e.g. taken as the distance of the center of the

first unitcell to the center in the watergap.

The (/.) is now difined as
GRADIENT 1.ggg

6 RAD. W, 0()E a

or with EQ (4-30) (9t?) *(-4.) -

~~RftP2IIL cR) ~ "'CLL . t. L
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where N is the neutrondensity.

In absence of the edge point in the moderator, the moderator avgd. values can

be used

Therefore EQS (4-33) can be us ed to obtain an -approximate vealue of

of the gradientspectrum at the FUEL CELL-WATER interface.

We will call the macroscopic X-sections multiplied with Er, i-.RAD

the GENERALISED MIXED NUMBER DENSITY CROSS-SECTIONS (GMND).

Thus a method has been developed, for the calculation of the GMND X-SECTIONS

with LASER or LOCALUX, or any other unit cell code which prints out the fluxes

of the cell, the flux at the edge of the moderator (or eventually over the

whole moderator), or the moderator disadvantage factors, the avg. velocity of

the edge moderatorpoint (or eventually the whole moderator).

It may be observed that in our model

1) the diffusionconstant D is not averaged over the gradient-spectrum; only

the gradient ("/")6RAD is used. The reason is that codes generally do

not calculate the gradient-spectrum, & would therefore require a change,
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but the most important reason is that the difference between a model in which

the gradient spectrum is assumed to be the flux-spectrum & the MND model in

which the gradientspectrum is used is not only in the energy averaging of the

diffusionconstant but mainly in the difference : .2
%ELL ()

As a whole the knowledge of the diffusion constant is rather vague, since no

general expression exists for the diffusion constant, coming from general

transporttheory; & no general gradientspectrum exists.

2) It has not been assumed that the gradientspectrum is Maxwellian.

This is certainly more general, since now in our model, the C(r/)6tD. H4O

can vary from case to case, in contrast with Breen's MND method, in which

once the temperature of the moderator is fixed, every gradientspectrum is

assumed to be the same.

3) It has not been assumed that the in the H20 = CELL'

Therefore the MND X-Sections in the water are obtained by multiplying the

regular X-sections with t & not with (

As far our GMND is ready for the calculation of powerpeaking near a watergap.

In the next section our GMND method is further extended to. the MIXED OXIDE /

UO2 INTERFACE;

3-i) THE METHOD TO GET THE ('II R4 OF THE GRADIENTSPECTRUM AND GMND X-SECTIONS

AT THE MIXED-OXIDE / UO INTERFACE.

With.respect to the GMND macroscopic X-Sections, the method has already

been indicated in section 3-3.
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Neglecting again averaging of the diffusionconstant D over a gradient-spectrum,

the problem is to find U"GRADIENT MIXED OXIDE/U02 interface from two

unit-cell runs.

However it may be observed that in all practicle applications, powerpeaking is

avoided, therefore the average power in a mixed oxide fuel will be very close

to the avg. power in the U02 fuel.

Thus, assuming an equal power in the MOx and U02 , the gradient can be approxi-

mated by :

Ve( E)
Mox -o

C"J4.

Vol(E) - C; ( E)
Mon

Az

Thus after the same manipulations as above :

-A 0

{ JA 2
H10 e -V U4

6 RAD 2
HIX 0x-U04

-CEL..U 0 Moir- CL~L..

Thus it is possible to get an approximate value of the 1/v of a gradientspectrum

at any-different fuel interface by making, two sperate unit cell runs & EQ (4-37).

Since all the codes print out %- & the flux 4 CELL , the method can be
C.y.

applied with any unit cell code.

3-6) COMPARISON BREEN'S MND X-SECTIONS & OUR GMND X-SEC'1ONSi

AN EVALUATION OF THE ASSUMED GRADIENT SPECTRA.

3-6)-a) INTRODUCTION.

In the preceeding section, we have developed a method to calculate

the generalised MND X-sections with codes as LASER, LOCALUX or others, for both

applications of watergap powerpeaking and mixed oxide / U02 interface powerpeaking

(L -. 3 7)

Noyis
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(or any other different fuel interface).

The method to obtain these GMND X-sections is entirely different from Breen's method

built in the LEOPARD code. It should therefore be useful to compare the GMIND

X-sections obtained with LEOPARD.

One particular difficulty for the comparison is that LASER has a cut-off at

1.855 eV, & LEOPARD at 0.625 eV.

Since the LASER code only prints out the macroscopic cross-sections at 1.855 eV

a direct comparison of the MND X-Sections is impossible.

Hcwever the MND X-Sections are obtained from

So
clt),,r ( Mte~

& with our GMND method

2- PI'"

Therefore the only pertinent information for the comparison is

-) -i) .5 both at 0.625 eV

DNA X ; DW-W .MA X .) ) 6 RADVLASERt

at 0,625 eV,

Fortunately LASER prints out values for Le.ELL * H 00 acE.. NPOD, DLASEA

for both cut-offs at .625 eV an 1.855 eV.

Therefore a direct comparison of our GMND 1/V values (obtained with LASER) &

Breen's I/V values (obtained from LEOPARD) is possible.

Particular attention has been paid to make the LEOPARD & LASER imputs identical,

such that no other effects could disturb the comparison.
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3-6)b) COMPARISON OF THE MND & GMND X-SECTIONS FOR WATERGAP POWERPEAKING

CALCULAT IONS,

3 cases were examined

- the regular UO2 (4 W/o U235) fuel at a H2# gap,

- the regular MIXED OXIDE fuel (4 W/o PUO 2 - nat UO2 ) at a H20 gap.

- the regular MIXED-OXIDE fuel but with the PU-240 removed.

The first case consits of standard fuel & a watergap, therefore we should expect,

that our GMND values as determined with LASER at a cut off of 0.625 be very close

to the MND values as obtained with LEOPARD; since Breen's MND method was developed

for such standard cases.

The second case is already much more stringent, since the spectrum in a mixed

oxide fuel is much harderand we should expect Breen's method, with respect to

his assumption of a Maxwellian gradient spectrum to break down.

In the third case we would expect the same as the second, however now since we

removed PU 240 with a giant resonance at 1.0 eV; some information with respect

to the importance of the 1.855 eV cut-off should become apparent.

Table IV-1, shows the results of the comparison of the 2 methods.

In order to obtain the 1/V of the gradient spectrum at the FUEL/H 20 interface,

2 methods were used with LASER, 1.855 eV cut off :

The first is using the velocity & fluxvalues averaged over the moderator in the

cell & the second using the velocity & fluxvalues in the outermost edgepoint of

the moderator (pt 12 in LASER).

The first observation that we can make, after comparison of the divisionfactors

r WIGNER WILKINS & V/t LASER at 0.625 eV, is that in all cases, those

factors are very close. The only difference comes from the intrinsic differences

in the code such as LEOPARD is a zero dimensional code using the Wigner-Wilkins
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equations for the calculation of the spectrum.

Therefore our method, if used with a cut-off at 0.625 eV would give the same

MND macroscopic X-sections MND . If we use the cut-off at 1.855 eV, the

values will evidently differ, but this is only due to the intrinsic cut-off

& has nothing to do with the MND or GMND method.

Another remark that we can make is that in Breen's MND method the (1/V) in

the H20 is the same as for the fuel cell; whereas in our GMND method they are

different, as they should be. However the difference is so small (the order

of 2 %) that with fair confidence the same 1/V values could be used.

With respect to the gradient-spectrum, near the watergap, it is this noticed

that the VGRAD is much smaller than the VCELL in all cases & with both methods.

However in Breen's MND Nodel, (2 )GRADIENT is the same in all cases and is

0.63443.

This is due to his assumption that the gradientspectrum is a Maxwellian in

all cases, which differs only when the temperature of the moderator is varied.

On the contrary with our method, different values for GA are found
u - GRAD

according to the fuel in contact with the water. E.g. In the case of the

Mixed oxide fuel it is observed that the avg. velocity VGRAD is greater than

the avg. velocit VGRAD in the UO2-/ H2o interface case, which is to be expected

physically & the influence of the cut-off is also remarkebly.

It is very interesting to note that in case of the standard fuel UO 2/H 20 interface,

our GMND method gives values which are very close to Breen's MND-method.

Which proves not only the validity of our method, but also Breen's assumption

that in case of conventional fuel/H 20 interfaces the gradientspectrum approaches

a Maxwelli.an spectrum.
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Another argument is that now the (1/V)GRAD for a cut-off at .625 eV is very close to

the value with a cut-off at 1.855 eV, which is to be expected with a spectrum close

to a Maxwellian, since the Maxwellian spectrum drops off very quickly beyond .20 eV.

Comparison of the gradient avg.velocities (or its reciprocal) in case of the MOX

fuel with our method proves that the gradientspectrum is much harder than a

Maxwellian.

From comparison of the colums of (1/V)GRAD) taken with the moderatoraveraged

flux & velocity values at 1.855 eV, & the(l/V)GRAD taken at the edge of the

moderator, it is seen that both methods agree very weli. Therefore both methods

can be used, maybe with same slight preference to the moderatoredge, since it

will be somewhat more conservative.

From comparison of DWW & DLASER at 0.625 eV, it is noticed that the values

disagree by about 5 %, which is mosdy due to the use of the more accurate

Nelkin scatteringkernel for H2 0 in the LASER code.

The values of the diffusionconstants averaged over a Maxwellianspectrum are

seen to be a 15 % to 20 % lower than the Wigner-Wilkins averaged values.

Therefore, strictly speaking, the diffusionconstant should be averaged over

the gradientspectrum. Since this would require a basic modification in codes

like LASER, the diffusionconstant is our method averaged over the cell spectrum.

(in the GMND method however D is multiplied by VGRAD).

Although this is recognized as a drawback there are many reasons to accept this

shortcoming. The first argument is that in Breen's model the assumption of a

Maxwellian spectrum breaks down anyway, the second is that the diffusionconstant

is the least sensitive parameter, the third is that our method for obtaining a

gradient-spectrum is by itself an assumption, the forth that the influence of

(1/V) instead of(1/V)CELL is as big or even bigger than the averaging overGRAD aset

the spectrum and the fifth is that the knowledge of the diffuslonconstant is
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the most inaccurate through its basic assumptions from transporttheory & the

inaccuracies of the scattering kernels; and the last argument is that although

it is possible to get the gradient-spectrum at the H20-gap approximately with

our method from only one unit cell calculation, the same cannot be said for

the gradient spectrum at e.g. the MIXED-OXIDE/UO2 interface,

Therefore, since most of the gradient-effects are already taken care of by the

calculation of (1/V)GRAD or V Gradient, the proposed GMND method in its simpliest

format (without special averaging of the diffusion-constant over the different

spectra) should be as accurate as Breen's MND method & does not require any

changes in the codes.



TABLE IV-1, COMPARISON OF DIVISIONFACTORS FOR BREEN'S MND X-SECTIONS (LEOPARD) &

OUR GMND X-SECTIONS (LASER), FOR THE CALCULATION OF POWERPEAKING AT

A FUEL / H 20 INTERFACE.

CASE BREEN'S MND (LEOPARD) OUR GMND (LASER)

FUEL/H2 0 ( )W IGNER ( )MAXW D WIGNER D MAXW. SER LASER ('/J ) GRAD.AT 20 D LASER

INTERFACE WLNEWILKINS .625 eV 1.855 eV (.625 eV
.625 eV Cut .625eV) (.625 eV) (.625 eV) cut off INTERFACE

off or approx. MODAVG,'D MODEDGE
also .625 eV 1.855 eV 1.855 eV
1.855 eV

4 w/o UO2  .514403 444 .402488 .338317 .502083 .433990 .677031 .65485 .6607 8 6  .38547

H2 0 at U02  .514403 .634443 .323520 .265228 .509606 .442008 .677031 ,65485 .660786

4 w/o MIXDX. .48587 .6444 .353405 .291208 .482649 .379291 .50941 .441622 .450996 .33623

H 20 atMIX,0X. .48587 444 .301922 .249076 .485296 .384600 .50941 .441622 .450996

4 w/o MIXOX..488128 .64t .356733 .293489 .483270 .374830 .51080 .50001 .50880 .33.92
without
PU 240
H 20 atMIX,0X. .488128 ,_664443 .301976 .249000 .485910 .383318 .51080 .50001 .50880

:1
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3-6-c : COMPARISON OF THE MND & GMND X-SECTIONS FOR MIXED OXIDE/ UO2OR

FUEL / FUEL INTERFACE POWERPEAKING CALCULATIONS.

Using the same unit cell calculations as above 3 cases wene examined

- UO / MIXED OXIDE - interface

- UO / MIXED OXIDE w.o PU 240 - interface

- MOX / MOX (w/o PU 240),interface.

Using the standard MND-LEOPARD outputs , & the LASER outputs together with the

EQS. (4-27) , (4-38) , Table IV- 2 was prepared.

From this table it is again noticedthat inthe unit cells both MND methods agree

for a cut-off at 0.625 eV. With respect to the gradient-spectrum at the inter-

face, Breen's MND method breaks down, since it is noticed that the gradientspectra,

more realistically obtained with our method, is not as soft as a Maxwellian.

In case of the w/o Mix-Oxide Fuel without PU 240/ 4 w/o Mix-Oxide fuel interface,

the particular influence of the 1.855 eV cut-off is noticible.

In short Breen's MND method with the assumption for a maxwellian gradient spectrum

at the interface is unrealistic in PU-recycle applications, but will be remarkably

close in conventional applications.

3-7) EVALUATION OF BREEN'S MND & OUR GMND METHOD THROUGH COMPARISON OF

1/V. 1I/VGRAD WITH THERMOS.

The THERMOS 35 group code has been used to calculate the pointwise

average gradientvelocity VGRAD or ( Y. GRAD) & the pointwise average fluxvelocity

VCELL or ( 1/-.)CELL'

Since THERMOS doesn't calculate the gradient explicitly, the finite difference

formula (4-29) & more directly

I N (TK+0, -N Ck

6D 1LLr-)- c

was used.



TABLE IV -2, COMPARISON BETWEEN BREEN'S MND PARAMETERS & OUR GMND PARAMETERS FOR THE

CALCULATION OF POWERPEAKING AT FUEL/FUEL INTERFACES.

CASE BREEN'S MND (LEOPARD) OUR GMND (LASER)

FUEL 1 / ( )W/ )MAX D D )LASER (' )LASER ( '/r )GRADIENT D LASER
FUEL 2 .625 eV .65 eV .625 eV 1.855 eV AT FUEL/ FUEL .625 eV

or also .625 eV .62V .1.855 eV
1.855 eV

4 w/o MOx .48587 .634443 .353405 .291208 .482649 .50941 .51875 .49849 .33623

4 w/o UO2 .514403 .634443 .402488 .338317 .502083 .433990 .51875 .49849 .38547

4 w/o MOx .488128 .634443 .356733 .293489 .483270 .374830 .51995 .51768 .33992
wo PU 240

4 w/o U02  .514403 .634443 .356733 .338317 .502083 A41990 .51995 .51768 .32547

4 w/o Mox .488128 .634443 .356733 .293489 .483270 .374830 .49465 .32080 .33992
wo PU 240

4 w/o Mox .485870 .634443 .353405 .291208 .482649 .50941 .49465 .32080 .33623
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Fig IV-12, shows the results of the comparison between the 1/V , /LrGRAD

pointwise values obtained from THERMOS & the values obtained with BREEN'S

MND model (extrapolated to 1.855 eV) & our GMND model in a conventional cir-

culized assembly.

As a first observation, it is thus indeed seen from THERMOS, that the average

velocity of the flux-gradient is smaller than the average velocity of the

flux & as a second remark it is noticed that the 1/V & Vt/GRAD values of

both Breen's MND model & our GMND model are very close. However our model

fdlows the 1/V curve, a little bit closer since now the 1/V in the water was

not taken to be the same as in the cell.

This Breen's MND model & our GMND model give nearly identical 1/V parameters,

for conven t'ional applications.

Fig. IV-13, shows the results for a PU-recycle assembly.

Again Breen's MNQ & our GMND have the same 1/V values for the fluxspectra

(except in the H20-gap).

For the 1/V GRAD of the fluxgradient-spectra however it is observed that our

GMND method gives much better agreement with the THERMOS calculations, which is

particularly important for PU-recycle applications since large fluxgradients

exist, therefore the . V.. term in the GMND diffusionequation (EQ-39) or the

MND diff, EQ (4-25) has a greater influence on the powerdistribution.

3) V~&i n.L, 450(L2)

4.
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I/V (in units 2200 m/sec)

.700

. 00

,LI O0

FIG IV- 12

-4- 14 A D *0

- /(' 4 0 ( li

tirD

. /1- ( MND

I/

10.0 C.

DISTANCE FROM CENTER

COMPARISON I/V AND I/V GRAD THERMOSBREEN'S MND
AND OUR GMND METHOD. IN A CONVENTIONAL ASSEMBLY

I/V OR I/V GRAD (in units 2200 m/sec)

-~ I-' / RA DN

PiJCID ox fix -0 'la"
10.0 ~

DISTANCE FROM CENTER

FIG IV-13 COMPARISON I/VI/V GRAD ,THERMOS,BREENOOUR GMND

IN A PU-RECYCE ASSEMBLY

.- oo

.6oo

. 500

-- AX)

m



136.

Although it is thus seen that our GMND method, is more realistic for PU-recycle

applications, it is thus also noticed from Fig. IV-13, that whereas the MND method of

Breen only requires 3 zones (mixed oxide, UO2, H20) in which the MND macroscopic

X-sections are fed, our GMND-method requires 1 more zone, namely a UO2 zone with

MIX-0X/UO 2 boundary GMND X-sections an a UO2 zone with GMND X-sections of the

UO /H 0 interface (however only the values differ).

It is also observed that , a continuity of activation in a gradient-

spectrum ( - \7') or continuity of Vn is implicitly taken into account.
Lr

3-8). CONCLUSION.

A simple Generalised Mixed Number Density method has been developed,

which can be used with more accurate unit cell codes such as LASER & LOCALUX.

From comparison with Breen's MND method, it has been noticed that our GMND

method & Breen's MND method are essentially identical for conventional UO 2/H2 0

interface applications. For Pu-recycle applications, Breen's Maxwellian

gradient spectrum breaks down, whereas our GMND method describes the gradient

spectrum more realistically, as has been shown with THERMOS calculations.

Further refinement could be introduced in the model if the diffusion-constant is

averaged over the gradientspectrum.

Especially for the UO 2/MIX.OX. interface this is not easy & a modification in

the unit cell codes and the writing of a separate program would be necessary,

which would greatly complicate the standard procedures from a practicle standpoint.
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Iv -4) EVALUATION OF THE SXS AND GMND METHODS FOR THE CALCULATION OF

POWERPEAKING AT WATERGAPS AND UO2-MIXEDOXIDE INTERFACES.

4)-l Introduction.

Three methods have been used to evaluate the use of the Spatial Cross-

section Synthesis method (SXS) and the General ised Mixed Number Density (GMND)

method.

The first is through comparison of the 2 methods with the THERMOS code on a one di-

mensional U02 conventional assembly & a PU-recycle assembly.

Since no codes as THERMOS exist for 2 dimensions, the second evaluation consits of

the inter comparison of the SXS & GMND methods & the standard method.

Finally the standard method & most practicle GMND method have been compared to an

experiment & other calculations of a small inter-reflected core (19 X 19 rods)

containing mixed oxide fuel in the middle, surrounded by U02, on its turn sur-

rounded by the reflectorwater. The powerdistribut ion which was calculated

with 2-group X-sections generated with the LASER code are also compared to the

powerdistribution obtained with 2 group X-sections from a modified LEOPARD

code & other Battelle calculations.

4)-2 COMPARISON of SXS & GMND METHODS FOR THE CALCULATION OF POWERPEAKING,

WITH ONE DIMENSIONAL THERMOSCALCULATIONS.

The normalised powerdistribution (avg. value = 1.0) in a one dimensional

conventional & PU-recycle assembly modeU(Fig. TET- ) was calculated with

the THERMOS - 35 thermalgroup code & a cut-off at 1.855 eV, using the self-

shieldingfactor homogenizationscheme.

These powerdistribut ions were compared with one thermalgroup diffusiontheory-

calculations using PDQ-5.
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Fig. IlC .3 shows the powerdistribution from thermal neutrons in a conventional

assembly using

1) THERMOS-integral transport-theory (35 groups)

2) PDQ-5, 1-group fixed source diffusiontheory in which the unperturbed X-sections

of a THERMOS (ssf-homogenized)unit cell were used.

3) PDQ-5, 1 group-fixed source diffusiontheory, in which the GMND X-sections were

used. (which were thus obtained from the unperturbed X-sections from THERMOS

unit cell after division by (1/V) values in Table I3Z.-I

From the comparison it is thus noticed that the GMND X-sections are a substantial

improvement for the calculation of the powerdistribution & powerpeaking.

Whereas a standard calculation underpredicts the powerpeak by about -5%, due to

spectralsoftening at the watergap. The use of the GMND X-sections reduce the

error to about -0.2 %.

In the case of a PU-recycle assembly, the comparison between THERMOS & integral

transport-theory & PDQ-5 diffusion theory is complicated by the different

weighting schemes that can be used for the diffusionconstant, as has been

investigated in Chapter IfL-

Several PDQ-5 calculations were made

1) Using the regular unperturped X-Sections from the unit cell.

2) Using spatially varying X-Sections at each point, as determined from THERMOS

(SXS-method, but without a need for synthesis).
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3) Using GMND X-sections over 4 zones (H20' U02 / H20, U02/MIX, MIX /U0 2)

with the 1/VGRAD at the UO / MIX interface

as determined with our method (Table IT - )

4) Using GMND X-sections over 4 zones, but now with a 1/VGRAD at the UO 2/MIX

interface = 1/VCELL

Fig E - I- . showsthe results.

Several observations may be made

1) it is noticed that

regardless the diffusionconstantscheme used, the SXS & GMND methods are a

substantial improvement in the calculation of the powerpeaks at the H20-gap

& MIX/UO2 interface, compared to the standard calculation using unperturbed

unit cell X-sections.

2) The influence of the diffusion-constant is substantial for the calculation

of the powerdistribution in the mixed oxide especially. But whereas the

powerpeak at the watergap is appreciably affected with the use of different

diffusionconstants, the powerpeak at the MIX/UO2 interface is not so much

influenced. It is thus observed that in a PU-recycle assembly, a 100 *

reduction in diffusionconstant, increases the powerpeak at the H20 / UO2

interface by 8 %, and less than 1 7 at the MIX/UO interface, but reduces the
2

error at the center of the assembly from 12 % to 2.5%.

3) The Spatial varying X-section method; (which is thus essentially the SXS

method without a need for synthesis) gives in both cases a very good agreement

with our GMND method.

4) The influence of the 1/VGRAD in the GMND mathod at the MIX/UO2 interface can

be substantial. In both cases an improvement can be noticed with the use of

the more realistic 1/VGRAD from Table IV- .2, instead of the 1/V CELL
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Since 1/VMAX is > 1/VGRAD CELL it is noticed that our method is more

conservative than Breen's assumption of a maxwellian gradient.

5) At the H2 0 -gap & using the standard diffusion constants (C.H.), both

pseudo-SXS & GMND methods seem to overpredict the powerpeaking, compared to

THERMOS. If we compare these peaks with the ANISN, transporttheory calculation

( Fig '-f ), (including the angular effects), it is seen that the conservatism

is not unjustified.

CONCLUSION,

From the preceeding results it may be concluded that the developed GMND

method for the calculation of powerpeaking, gives substantial improvement compared

to the regular diffusiontheory practice, which underpredicts quite heavily the

powerpeaks in the Yankee assemblies.

Furthermore the much simplier GMND method gives results which are essentially

identical to the use of Spatialy varying X-sections as determined from THERMOS

(pseudo SXS-method). Since both are different methods the very good

agreement between the pseudo SXS and GMND, emphasizes the use & worth of the

much simplier GMND method.

4)s) INTERCOMPARISON OF THE SXS- AND GMND METHOD, ON THE 2 DIMENSIONAL

YANKEE ASSEMBLIES.

In the preceeding section a direct comparison of diffusiontheory 1

thermalgroup methods was possible with the 35-thermalgroup integral transport-

theory code THERMOS. Since this is impossible in 2 dimensions, we will

evaluate the SXS and GMND methods through comparison with a standard calculation

in which spectralcoupling effects are negleted. Since both methods are very

different, the intercomparison would also add to the evaluation of both methods,
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& in particular to the much simplier GMND.

All the calculations were done with PDQ-5 diffusiontheory code, with 2 groups.

The basic 2 group macroscopic X-sections of the 4 w/0 U 235 U02 unit cell & the

4 w/o PU 02-nat UO2 unit cell were generated with the LASER-code using 1400 ppm

B in the H20 (1 thermal group frcn-1,855 eV, 1 fast + epithermal group from

1.855 eV to 10 MeV). The diffusion-constants of the homogenized-follower, can,

watergap region as well as the internal instrumentation cell were calculated

from pseudotransport-cross-sect ions obtained with LOCALUX. 2 X 2 meshes per unit

cell were used in the PDQ-5 calculations & 4 meshes in the smeared watergap.

The deviations of the X-sections in the 2D assembly due to spectralcoupling

effects were calculated & Synthesized with THERMOS in section 2.-4 & are

shown for the conventional assembly on Fig. JY-5 & for the PU recycle

assembly on Fig. .Z-10 . These corrections were applied to the unperturbed

unit cell calculated thermal macroscopic X-sections from LASER, except the

diffusionconstants which were unaltered since the deviations were too small (<3 *).

In this way thermal spectrumcoupled, macroscopic X-sections, for each unit cell

in the 2D assembly were obtained for both the conventional & PU-recycle

assemblies. Thus for the SXS-method there were 36 different compositions

(diagonal symetry), which were put in the PDQ-5 code.

In case of the GMND-method, the unperturbed unit cell thermal macroscopic

X-sections from LASER were divided by the 1/V factors displayed on TablesEM-If

& the diffusionconstants by the 1/VGRAD according to our method.

The fast & epithermal X-sections are unchanged.

For the conventional UO2 assembly only 3 compositions had to be taken namely

the homogenized can, follower & watergap, the central instrumentation cell &

the UO2 unit cells. In the PU-recycle Assembly 5 compositions were necessary
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the region at the watergap, instrumentation cell, the UO2-region with GMND

X-sections of the UO 2/H 20 interface (see Table 1 -1 ), the UO2-region with

GMND X-sections of the UO2/MIX interface (Table13- ) & the mixed oxide

region with GMND X-sect ions of the MIX/UO2 interface (Table -.- 2, ).

In the 2 U02 regions only the thermal GMND diffusionconstant changes, & the

separation of the region corresponding to H20-spectralcoupling was arbitrarily

taken to be 2 fuel cells from the H20 interface.

Fig. MC - 16 sho s th results of comparison of the total powerdistribution

(thermal + epi & fast)$nventional UO2 assembly; in the form of percent under-

prediction of the power, calculated using the standard procedure (unperturbed

X-sect ions) - relative to the calculation of the power using the Spatial X-section

Synthesis SXS),Icompared to the percent underprediction of the power (relative

to SXS) using the GMND method.

It is thus noticed that relative to the SXS method, the GMND method greatly

improves the calculation of the powerpeaking near the watergap.

The max. underprediction using the standard method is 4.3 "A, in the peak rod &

2.1 % using the GMND; whereas the average absolute % deviation of the whole

assemblyportion drops from 0.8 % using the standard, to 0.2 % using the GMND

method.

Fig. '[- I6 shows the results of the comparison of the total powerdistribution

(thermal + Epi & fast) calculations for the Plutonium Recycle Assembly-portion,

using the same format as above.
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FIG, IV-15 : COMPARISON STANDARD POWERCALCULATION & GMND METHOD, RELATIVE

TO THE SXS METHOD IN A CONVENTIONAL UO, YANKEE ASSEMBLY PORTION,

Standard Avg. l'V = 0.8 %; Max.b+ 4.3 % Location 1-1, Min = 0.3 %
GMND Avg. ( 0.2 %; Max.'S+ 2.1 % Location 1-.1, Min = 0.0

S4.3 'A UNDERPRED. IN TOTAL POWER,USING STANDARD METHOD RELATIVE TO
2.1 THE SXS METHOD

UNDERPRED. IN TOTAL POWERUSING GMND METHODREL.TO SXS METHOD.
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Here in particular, it is thus observed that the GMND method greatly improves the

calculation of powerpeaking near a watergap and also near the U02/ Mixed Oxide

interface. The maximum overprediction of 6 % with the standard method-at the

location D-5, at the UO2-MIX interface in the U02 rod, reduces to 2.2.% with the

GMND method, in another position D-6 , this overprediction drops from 3.0 % to

0,9 %. The maximum underpredictions are also greatly improved from 4.3 % at

location A-1, with the standard method to 1.8 % with the GMND, & also in the

mixed oxide the underprediction of 3 % at the interface using the standard method

reduces to+O.9 % & 0.2 % at locations D-6 & E-5 . Only 2 particular locations

seem to be worse, however they are not the peak powerlocations (see Fig,jV-16

shown in the next chapter). On the average the errors using the GMND method,

are reduced considerably from 1.50 % to 0.9%.

CONCLUSION,

The GMND method applied to the 20 powerdistribution calculation with 2 groups

of neutrons, greatly improves & eliminates the underprediction of the power-

peaking that exists in both UO2 & PU-recycle assemblies when the standard unper-

turbed unit-cell macroscopic data are used.

Although the comparisions were done to the( to us considered most accurate)
not

SXS method, (since more accurate calculations areYavailable) the evaluation is

useful in the sence that no other e.g. transport effects are present which could

mask: some of the effects. Since there is a very good.agreement, between the

SXS & GMND method, both being entirely different, both methods are thusconsidered

to be a substantial improvement.

The GMND method is however much more practicle since nothing else than the

results from the unit cell calculations have been used, whereas the SXS method

requires other rather elaborous THERMOS calculations.
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FIG, IV-16 : COMPARISON STANDARD POWERCALCULATION & GMND METHOD, RELATIVE

TO THE SXS-METHOD IN A PLUTONIUM-RECYCLE ASSEMBLY .PORTION,

Standard Avg. I| Assembly : 1.50 %
$ U2 = 1.55%, FMIX =1.40

GMND Avg. ) 0.9 %
- UO2 = 0.70%, SMIX =1.20

Max.b-6.0% Location D-5
Min.S+4.3% Locat ion A-1

Max.S-2.9% Location E-6
Min.S+1.8% Location A-1

+4.3 % UNDERPREDICTION OF TOTAL POWER USING STANDARD METHOD,9BLfVE
+1.8

%UNDERPREDICTION OF TOTAL POWER.USING GMND,RELATIVE TO SXS
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The GMND method requires furthermore much less preparation. A PDQ-5

powerdistribution calculation as the one above would require about 1 1/2 day

of preparation with the standard method; maybe 2 hours more with the GMND

method, and about a working week with the SXS method.

4-4 COMPARISON OF OUR STANDARD & GMND METHOD WITH EXPERIMENT & OTHER

CALCULATIONS.

4-a) Introduction.

As a further check on the accuracy of the chosen standard method,

for the analysis of conventional & proposed PU-recycle assemblies for the

Yankee reactor - namely the LASER code with 2 groups (I thermal & 1 epi + fast)

as well as further evaluation of our GMND method; a PDQ-5 powerdistribution

calculation was made on, what was thought to be a representative experiment.

In the experiment the powerdistribution was measured in a 19 X 19 rod

water-reflected configuration, consisting of a mixed oxide island of 11 X 11

rods embedded in UO2 rod region, surrounded by water.
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Although the w/o of PUO 2 (2 w/o) as well as the 8 atom % PU 240, in the

mixed oxide fuel, is rather low, (our fuel has 4 w/o PUO 2 & 19 % PU 240) and the

configuration is essentially a small high buckled core (in contrast to our

assembly calculations, which are done assuming an infinite reactor consisting

of such unit assemblies) it was the best experiment with the most detailed

published results available to us.

4-b) DESCRIPTION OF THE BATELLE PRCF EXPERIMENT,

Under auspices of the Plutonium Utilization Program experiments

were conducted at the (Batelle)-Pacific Northwest Laboratoreies, to obtain

experimental information on the neutronic characteristics of plutonium and

uraniumenriched fuels in prototype loading schemes.

The main neutronic parameters investigated were the determination of local

power peaking factors and the worth of reactor control systems.

The results of these experiments and the comparison of calculational methods

used in their analysis-are reported in Reference .21 . The experiments

included single region UO2 and PU 02 - UO2 lattice criticals & powerdistribu-

tion measurements in varying degrees of non uniformities such as waterholes,

waterslabs, watercrosses etc.

Since those more conventional applications have been extensively analysed

( 30 , 37 ) no calculations were performed by us on these experiments.

Also included in the experiments were multiregion measurements of typical

fuel elements (mixed oxide or UO2) surrounded by UO2 or PU 02 ~ UO2 loadings.
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One particular experiment, (see further) has been chosen, because it

represented the most closely our assemblies.

The powerdistribution measurements were deduced from fissionproduct gamma

activity at the fuel midplane, and the different fuel types (UO2 & mixed oxide)

were intercalibrated by caloric measurements. The fuel rods were rQtated

circumferentially during thecounting periods in order to average the fuel

rod activity. The excess reactivity of the investigated loading was determined

by measurement of the critical moderatorlevel.

A description of the Plutonium Recycle Critical Facility (PRCF) used in the

experiment can be found in Ref. 21

The critical loading configuration, that was used in our study is pictured

ai Fig. 12 -11#

The fuel rods were 36 inches long and placed on a square pitch of 0.75 inches.

A detailed description of the UO2 rods & PU 0 - UO2 rods are pictured on

Figs. JE -18 , and 1-IS.

-c) DESCRIPTION OF THE CALCULATION PROCEEDURE.

The calculation of the macroscopic X-sections of the unperturbed

U02 & Mix Oxide unit cells was done with LASER (cut off 1.855 eV).

Since the MUFT calculation is rather sensitive to the buckling calculation

-2
(the core is small .) a total core buckling value of 0.00934 cm was used

in both unit cells. A temperature of 250 C was used in the calculations.

For the PDQ-5 calculation of the loading of Fig. ~- 1 , a 2 X 2 mesh per

unit cell was used in the core region ( the same mesh chosen by Batelle

after several trials), and 2 neutron-groups were used (1 thermal).

An axial buckling-of 0.00089 cm-2 was used in this 2D calculation, which
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FUEL SPECIFICATIONS: U02 - 2.35% 235

FUEL RODS

I. ROD Dli-iEsiiiS

0.500" DIA

*FUEL: 0.44" DIA CLAD: 0.500" OD X 0.030" WALL

2. CLADDING: 6061 ALUMINUM TUBING SEAL WELDED WITH A LOWER END
PLUG OF 5052-H32 ALUMINUM AND A TOP PLUG OF 1100
ALUMINUM.

3. TOTAL WEIGHT OF LOADED FUEL RODS: 917 GM (AVERAGE).

FUEL LOADING

1. FUEL MIXTURE VIBRATIONALLY COMPACTED.
2. 825 GM OF U02 POWDER/ROD. 726 GM OF U/ROD, 17.1 GM OF 235 U/ROD.
3. ENRICHMENT - 2.35 ± 0.03% 2 35U.
4. FUEL DENSITY - 9.20 GM/CM 3 (84% THEORETICAL DENSITY)

FIG iV-18
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FUEL SPECIFICATIONS: U02 - 2 WT% Pu02

FUEL RODS

1. ROD DIMENSIONS

FUEL: 0.505" DIA CLAD: 0.565" OD X 0.030" WALL

01;
.--.- - - 0 -0U0 POWDER

".: 4 0.275"

FIGURE iv-19

2. CLADDING: ZIRCALOY-2 TUBING WITH PLUGS SEAL WELDED AT BOTH ENDS.
3. TOTAL WEIGHT OF LOADED FUEL RODS: 1340 GMS (AVERAGE)

FUEL LOADINGS

1. Pu02 MIXED IN NATURAL U02 AND VIBRATIONALLY COMPACTED.
2. 1128 GMS OF U02 -Pu02 MIX/ROD.
3. Pu0 2 IS 2 WT% OF TOTAL MIXTURE.
4. Pu02 - 22.56 GMS/ROD.
5. Pu - 19.85 GMS/ROD (AVERAGE).
6. NATURAL U.
7. FUEL DENSITY - 9.54 GM/CC ("87% THEORETICAL DENSITY).
8. U02 POWDER AT THE END OF FUEL COLUMN.
9. THE ISOTOPIC DISTRIBUTION OF PLUTONIUM IN THE TWO TYPES OF RODS

REFERRED TO AS 8% AND 24% IS GIVEN BELOW:

1. 8% (NOMINAL) 240 Pu
ATOM PERCENT

91.615 23 9Pu

7.654 240Pu

0.701 24 1Pu

0.031 24 2Pu

2. 24% (NOMINAL) 2 4 0 Pu
ATOM PERCENT

71.762. 23 9Pu

23.503 240Pu

4.08 241p

0.656 242Pu
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corresponds to the full axially reflected core as given in Reference 21

The mesh sparing of 1/2 pitch = 0,9525 cm was extended for 3 lattice units

in the reflector, after which the meshspacing was increased, such that the

remainder of the 20 cm reflector contained 6 meshes.

There was no boron in the moderator.

The diffusionconstant in the water was obtained from a THERMOS calculation.

4-d) RESULTS OF THE CALCULATIONS.

Table - 3 compares the LASER (1.855 eV) code calculations

for the UO2 - 2.35 w/o U235 fuel, and the 2 w/o PU 0 -nat UO2 (8 at % PU 240)

fuel, to other code calculations using .625 or .683 eV cut-offs. The cut

off at .625 eV is used in the LEOPARD code, whereas the .683 eV cut-off is

used in the Battelle analysis, using codes as RIBOT, HTH, THERMOS-BATELLE-HRG,

which are described in Reference 21

In the case of the UO2 fuel the LASER & LEOPARD codes give values of keff

which are about.3 % lower than the values calculated by Batelle analysts.

For the mixed oxide fuel the laser code agrees very well with the RIBOT code,

whereas the standard LEOPARD as well as the modified LEOPARD by H.Spierling

at MIT (*) gave keff values which are about 3.5 to 4.5 % lower than the codes

used by Batelle analysts.

Fig;-I9 shows the plan view of the calpulated loading configuration.

The numbering scheme has no specific significance, but was used by Batelle analysts

& are retained here.

* The Spierling-LEOPARD code includes, modifications such as :

the ENDF/B X-Sections, & inclusion of higher isotopes but does not include

a better PU 240 resonance treatment.
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calculated

Table IV~. -if shows the comparison between experiment andvowerdistribution

using the standard (1.855 eV) LASER proceedure, the GMND method applied with

LASER, and the Spierling-LEOPARD code (in all methods only 2 groups of neutrons

were used). The calculated powerdistributions were normalised to the rod

location number 13, in the same way as in reference L1 .

The calculated powerdistributions were also compared to the best result obtained

at Batelle, using the RIBOT code with 4 groups of neutrons.

The experimental Rod Power is in arbitrary units, and is in this Table the

average measured power at 3 symetrypoints in the lattice. The max. variation

of the measurements between the symetrypoints defined as 100 7
is indicated in the colum of the experimental rod power as Es*

They are thus an indication of the range of variations that may be expected in

a practicle loading, were e.g. not every fuel rod is identical. The deviation

i in % in the colums of the calculated poerdistributions, are defined as

PC. l x)O were Pc is the calculated poerdistribution and P is the

experimental powerdistribution, avgd. over symmetrical points.

The group average 1, is defined as the sum of all the absolute values of

in % devided by the number of values.

At this point it is worthwhile to notice that at Batelle & other organizations

the group average % deviation & is defined as the root of the avg. sum of

the mean square deviations, If this definition is used the errors are

smaller & seemingly better results are obtained.

In Table 0-, it is thus observed that the standard LASER code method gives

the best results of all, especially in the mixed oxide region, compared to

the experimental results. The agreement is really surprisingly good,

especially if we compare the max. deviations that exist between a symmetry

point & the average experimental power to the deviations of the calculated
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power & the experimental power. The errors even at the peak locations

7 & 9 are completely within the experimental nonuniformity errors.

The GMND method is seen to give the most conservative results (4.8 % more power

at the MIX/UO2 interface positions vs. the standard calculation), but the

conservatism is confined near the UO 2/MIX interface & further away the agreement

is again good. The best available LEOPARD code (LEOPARD-Spierling) gives large

deviations in the mixed oxide region, it overpredicts quite heavily the power

aA the interface & underpredicts it heavily at the center of the mixed oxide

region. This behaviour has been found to be intrinsic to the available

LEOPARD codes and the errors increase with the amount of PU 240 in the mixed

oxide fuel. (see later).

Finally the standard RIBOT method with 4 groups of neutrons, which gave the

best results at Batelle for this loading, is seen to overpredict the power-

distribution in the mixed oxide region uniformly. It is also observed that

the average % error is the largest of all cases. (*)

The keff values are observed to be quite close in all cases. However caution

must be applied to the value of these agreements, since it has been frequently

observed (see later) that powerdistributions can vary quite a bit and unit cell

k & keff values can vary largely and still give a keff of a core configu-

ration to be in seemingly good agreeement.

4-e) CONCLUSION ABOUT OUR METHODS IN COMPARISON WITH EXPERIMENT,

From the calculations it has been observed that the chosen standard

method using the LASER code with a cut-off at 1.855 eV and 2 groups of neutrons,

gives surprisingly good results for the calculation of the powerdistribution in

PU-recycle lattices.

(*) After completion of the work in Ref 21, the methods have been revised,

and better results were obtained.
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TABLE IV-I COMPARISON OF CODE CALCULATIONS FOR UO. - 2.35 w/o U235 FUEL
2

AND 2.0 w/o PUO - nat UO FUEL (8 a/o PU 240) FUEL,joP02 2-

UO2 - 2.35 w/o U235 FUEL.

k
W0

(1.855 eV)

(0.625 eV)

(0.683 eV)

1.319

1.330

1.303

1.300

1.301

k
ef f

(B 2=0.00934cm 2

0.966

0.971

0.997

0.992

1.005

r(cm2)

35.1

36.1

36.4

32.1

31.8

2.0 w/o PUO 2 -nat UO2 FUEL (8a/o PU 240).

k 

2(B2 =0.00934 cm2

(1) LASER & LEOPARD(ARGONNE) use the Sher 1965 PU239 thermal
( 7) 2200 = 2.116)

(2) LEONARD-Westcott PU239 representation ( ?7 2200 = 2.11)
(3) Schmidt-Westcott PU239 thermal representation (-1 2200

representation

2.079)

CODE

LASER

LEOPARD

RIBOT

HTH

TH/B-HRG

C ODE t(cm2 )

(1.855 eV) LASER (1) 1.364 0.9976 37.2

LEOPARD(ARGONNE) (2) 1.399 0.965 46.5

LEOPARD(SPIERLING) 1.381 0.951 46.6

RIBOT 1.364 0.999. 37.4

HTG-L.W. (2) 1.355 0.990 35.0

HTG-S.W. (3) 1.352 1.002 35.0

TH/B-HRG 1,333 1,010 32.5



TABLE IV.-a COMPARISON OF EXPERIMENTAL & CALCULATED POWERDISTRIBUTION OF AN lX1I 2 w/o PUO 2-nat UO2

(8 a/o PU 240) ELEMENT IN UO2 - 2.35 w/o U 235.

ROD LOCATION EXPERIMENTAL ROD STANDARD LASER GMND METHOD LASER LEOPARD ( ) STANDARD RIBOT
POWER (1.855 eV 2 GROUPS) (1.855 eV) (SPIERLING) 4 GROUPS (0.683 eVl

0.625 eV. 2 GROUPS (BATELLE)

ES % MIT &%MIT MIT ___ _ _ __

3 1.209 + 1.5 1.191 - 1.5 1.202 - 0.6 1.170 - 3.2 1.248 + 3.2

8 1.194 + 2.4 1.195 + 0.1 1.195 + 0.1 1.163 - 2.6 1.239 + 3.8

5 1.146 - 1.1 1.138 - 0.7 1.152 + 0.5 1.123 - 2.0 1.183 + 3.2

6 1.114 + 1.1 1.125 + 1.0 1.140 + 2.3 1.116 + 0.2 1.159 + 4.0

7 1.201 + 2.2 1.209 + 0.6 1.265 + 5.3 1.241 + 3.3 1.267 + 5.5

9 1.128 + 3.6 1.170 + 3.7 1.235 + 9.5 1.209 + 7.2 1.201 + 6.5

GROUP AVERAGE | 2.0 1.3% + 3.0 + 3.1 + 4.4

11 0.832 - 1.0 0.828 - 0.5 0.808 - 2.9 0.831 - 0.1 0.837 + 0.6

12 0.890 - 0.6 0.874 - 1.8 0.873 - 1.9 0.891 + 0.1 0.887 - 0.3

13 0.840 - 0..6 0.840 * 0 0.840 * 0 0.840 * 0 0.840 * 0

14 0.804 + 0.4 0.813 - 1.1 0.807 + 0.4 0.797 - 0.9 0.806 + 0..

16 0.726 + 0.8 0.739 + 1.8 0.730 + 0.5 0.740 + 0.5 0.729 + 0.4

GROUP AVERAGE 6I - .7 1.3 % 1.4 0.4M0A
AVERAGE 1d FOR ALL RODS 1J. 1.3 %Z, 2.4_ __, __ 2.0. 2
ke f 1.0033 1.0035 1.0026 1.0044 1.0028

*rod used for normalisat ion.
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The results are considerably better than with any other code as the Table .IE-d

clearly demonstrates. Although it has been found that for conventional

applications, the standard LEOPARD code is as accurate as LASER, (see also

chapter 5) & because of its low cost (1/4 to 1/5 of LASER or LOCALUX) should

be used for conventional applications, it has been noticed that the best

available LEOPARD code (Spierling) (which for this purpose essentially differs

from the standard LEOPARD through the inclusion of the ENDF/B X-sections) is

inadequate for the calculation of the powerdistribution in PU-recycle applications.

It has been identified that the inadequate treatment of the 1.0 eV PU 240 giant re-

sonance in the LEOPARD code is responsible for the large deviations, which

evidently increase with the w/o of the PUO2 and the a/o of PU 240. Therefore

although the LEOPARD code gives results which are seemingly better than the

standard RIBOT in this case, it should break down completely for the practicle

applications were the w/o of PU 02 is about 4 w/o & the a/o of 240 PU is about

19 %. Assuming that the errors are due to the PU 240 treatment we may anticipate

that relative to LASER the standard LEOPARD will deviate on the average by

9 %.An the mixed oxide.

The developed GMND method, here applied with the LASER code, gives as expected

the conservatism due to spectraleffects at the MIX/UO2 boundary. An increpe

in rod power of about 4.7 % in the mixed oxide rod and a decrease of 2.4 % in

the UO2 rod at the boundary are the results of including the spectraleffects.

Although compared to experiment, those values seem toohigh & are too conser-

vative, specific caution must be exercised. First, the experiment consist s of

a small core, in which the thermal & epi + fast fluxes change largely.

Therefore the assumptions in the methods & the errors in the experiment vs.
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calculation will be larger than in an actual powerreactor, & other effects may mask

the spectraleffects completely.

Second, it has been found in conventional loadings, that ( 30 ) all methods,

introduced to calculate powerpeaking more realistically thus including spectral-

effects, & applied to small loadings overpredict the power at the peak locations.

In short the GMND method, invented to predict powerpeaking, including spectral-

effects, shouldbe used in practice since it is known that the spectraleffects

exist, & it is probably only fortunately that a standard method neglecting the

effects, gives better results for high buckling loadings, which are known to

be the most troublesome. in practice it seems thus advisable to use the

GMND-X sections for the calculation of the local powerpeakingfactor in a

unit-assembly, but to use the standard X-sections for whole core calculations

& overall core radial powerpeaking*. In this way too much conservatism is

avoided, and at the same time the spectraleffects are included in a realistic

way for the safe evaluation of the hot 0annelfactors in the reactorcore.

N N
* Overall core nuclear hot channelfactor FN = F. F F

R
where F Z axial hot channelfactor, F : radial hot channelfactor excluding

nN
local powerpeaking effects such as watergaps, MIX/UO2 spectral interface effects

and F LOCAL : local hot channelfactor as determined with a detailed unit

assembly calculation.
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IV - 5 OVERALL CONCLUSIONS ABOUT THE DEVELOPED METHODS,

Two methods have been developed for the calculation of local power-

peakingfactors in conventional and plutoniumrecycle assemblies.

The Spectral Cross-section Synthesis methods (SXS) and the Generalised Mixed

Number Density (GMND) method, which are both applicable with codes as e.g.

LASER & LOCALUX, are both very different in concept. The much simplier & prac-

ticle GMND method was found to be in very good agreement with the SXS method.

Both methods give considerable improvement in the calculation of local power-

peaking in both conventional & PU-recycle assemblies. The methods have been

evaluated on THERMOS calculations in a one dimensional model, and have been

intercompared with the standard method on 2 D assembly models. Comparison

with experiment on a high buckling loading, showed that the GMND method intro-

duces the safer desired conservatism. The method should be applied in preference

however, to the calculation of local powerpeaking in the assemblies, whereas

the standard method should be preferred for whole core calculations.

The comparison with experiment showed furthermore a very good agreement with the

adopted standard LASER-code 2-group scheme with a thermal cut-off at 1.855 eV.

The results of the powercalculations were much better than any other reported

calculations made with a 2 group-LEOPARD (cut off 0.625 eV) and the Standard

4 group RIBOT (cut-off 0.683 eV) schemes.
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CHAPTERV THE CALCULAION OFTHE LCAL POWERPEAKING FACTORS & POWERDISTRIBUTION

IN CONVENTIONAL AND PLUTONIUMRECYCLE ASSEMBLIES FOR THE YANKEE REACTOR

AT BOL AND DURING LIFETIME.

y-1 INTRODUCTION,

In the previous chapters the GMND method has been developed for the calcu-

lation of the powerpeaking factors in conventional and PU-recycle assemblies,

using the LASER or LOCALUX unit cell codes to generate the X-sections.

In this chapter the local powerpeaking factors and powerdistributions have been

calculated for the conventional UO2 and PU-recycle assemblies, using the GMND &

standard methods with X-sections from LASER & the MND & standard methods with

X-sections from LEOPARD.

A burnupstudy on a simplified 2 dimensional assemblymodel has been made, us'ing

the GMND method and the LASER code for the X-sections during burnup.

All diffusiontheory calculations were done with PDQ-5; at BOL the differences in

energy released from fission in the UO2 & mixed oxide fuels were taken into

account. It amounts to a roughly 3 % increase in power in the mixed oxide

region.

V- .~ THE INFLUENCE OF THE-DESIGN DETAILS OF THE ASSEMBLIES ON THE CALCULATION

OF THE LOCAL POWERPEAKING AND POWERDISTRIBUTION.

.2-) THE INFLUENCE OF THE GEOMETRICAL MODELS.

The mechanical design of the assemblies have been described in Chapter I,

section 2-2 and are displayed on the figures X & f 56

It Is thus noticed that two different assemblies type A & B exist; with a

different geometry. Figure J.-1 shows an exagerated drawing of a type B

assembl y.
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The boundary of e.g. a type B

assembly should be choosenFhere the fluxgradient i is zero, assuming that

the reactor consits of an infinite array of such unit assemblies. According

to this model the boundary would follow a rather peculiar contour arround the

assembly as shown on Fig. V-1.

A rather close boundary that follows the pysical V=0 in the most important

zirc followers-watergap regions is also pictured on Fig.I -6.

Using this geometrical boundary the composition-overlay of the assembly is

pictured on Fig. V-2.

The composition 1 consists of unitcells of U02 in a conventional assembly.

The compositions 2, 3, 4 are homogenized regions of the SS.can, the watergap

& the followers. Since different volumefactions of water & other material

exist at those different locations, the compositions are taken different & the

X-sections are thus different.

Compositions 5 & 7 are homogenized regions of the solid zinc-rod cell with

associated can, and respectively the homogenized instrumentation channel.

The composition 6 consist of homogenized regions of U02-unitcells, the can &

watergap between the cans.

in total here are thus 7 compositions in the assembly according to this model 1.

Since the composition 6, contains also fuel: this model is somewhat difficult

to work with, therefore a second model was used in all the calculations

(except for the evaluation of the change - SS can, zirc can )where composition 6 was

taken to be the same as 1. In this 2nd. model the can & watergap between the

cans away from the followers are thus neglected.

Another model which is commonly used, in order to avoid the complication of

variable mesh-sparing & rescaling of the poweredit in the fuel region with the

thickness t; is to expand the outer assembly region to one with a thickness t

equal to the pitch. Although this 3rd. model is the simpliest to prepare,
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anid the simpliest for using the output, it deviates too much from the physical

model since now the extrawatergap & follower regions are also expanded, with

an obvious result that the powerpeakingfactor is increased to an unusual high

value.

It must be remarked that the accuracy of the geometrical model that is desired

depends a lot on the type of calculation one wants to perform, In an appli-

catiowhere two assemblies are compared, it does not matter too much what model

is used, as long as the comparison is consitent. In applicationg'here only

a more accurate calculation is desired, e.g. with a 2 X 2 medhknit cell, which

has to be compared to a e.g. I X 1 mesh/unit cell also used in a complete core

calculation, it doesn't matter too much what kind of model is used to obtain

the local powerpeakingfactor "corrections". In a rather small core as the Yankee,

where a detailed (e.g. rod by rod) calculation can be performed, e.g. on a rod by

rod basis in the peak assembly, the local powerpeaking Correctionfactors are

not sensitive to the model used; and the most simple model 3 can be applied.

If the core is large, or if only preliminary results are desired, the local

powerpeakingfactor as determined with a unit-assemblycalculation is very useful,

since the whole core calculation can be performed with less accuracy, neglecting

the details of the watergaps, followers, & or peculiar lay-out of the mixed

oxide rods. For such applications the 2nd, model seems more appropriate,

since it is close to the physical model, and will thus give more realistic

nuclear "local powerpeaking factors ".

Therefore in our study the second model has been used mostly.

In order to obtain the error introduced in the 2nd, model (relative to the first)

in which the watergap between the cans & the can was neglected away from the

followers, two calculations were made fora conventional assembly with the

PDQ-5 code, taking 2 X 2 meshes per unit cell, and regular X-sections obtained
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from LASER for the unit cells from LOCALUX for the extra materials.

The results of the comparison showed that the powerdistribotion in the UO2 '

near the cans away from the follaer (using the simplified model) was under-

predicted by 1.8 % at the first row and about 0.8 V at the' srcond. The simple

model overpredicted the powerpeaking-factor at position A-1 by a 0.9 y & in

much of the assembly by about 0.7 %.

Since the errors at the most important positions are conservative & wore less

than 1 %, the simplier 2nd model in which the cans were neglected away from

the followers, was used in most of the calculations in this study except for

the calculations on the influence of the design of the assembly car on the power-

peaking.

2-2) THE INFLUENCE OF THE DESIGN OF THE ASSEMBLY CAN ON THE POWERPEAKING

& POWERDISTRIBUTION IN A CONVENTIONAL YANKEE ASSEMBLY.

In the present design of the Yankee-assemblies, a stainless steel 35 mils

(0.035 inches) can is employed, and is perforated with holes away from

the followers. To examine the influence of the stainless-steel can versus a

zircalloy can and the influence of perforating holes everywhere in the can,

two calculations were made, one with a zircalloy can of the same dimensions,

one with a half closed SS can and one with a completely perforeted SS.can

with 50 % holes. Regular LASER X-sections & 2 groups were used in the

calculations, 2 X 2 meshes per unit cell were taken except near the cruciform

followers & watergap were 3 X 3 meshes were taken. A 180 0 rotational

symmetry at the midplane was used with model 1.

The results of the calculations are shown on the Figs. V-3 and V-4.

Fig. V-3 shows the % increase in the powerdistribution when the SS. can is

completely perforated with 50 % holes, in order to improve fluid mixing.
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FIG V-3 % INCREASE IN POWER DUE TO 50% INCREASE OF HOLES IN THE
SS - CAN
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Fig. V-4 shows the % increase in powerdistribution when a 35 mils, (unperforated

at the followerpositions) zircalloy can is used instead of stainless-steel.

Although the calculations were performed with the 1st. model, with a 1800

rotational symmetry arround the midplane, only the most important assembly

positions are shown.

The results thus show that perforating the can at the follower positions would

increase the local peakingfactor by about + 3 %, which is due to the extra-

account of water, but would decrease A k by about 12 milli-k . Replacement

of the SS. can by a zircalloy can, would increase the local powerpeaking by as

much as + 6.5 %. The A k would however be reduced by 16 milli-k.

It is thus observed that the stainless steel can with a higher mechanical

strength than zircalloy 4, but low neutroneconomy, reduces the powerpeaking by

as much as 6.5 %. Therefore. although the SS-fuel-cladding has been replaced

by the zircalloy 4 cladding on the fuel rods, replacement of the SS-can by a

ziroalloy can is undesirable.
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.3 :THE POWERDISTRIBUTION AND POWERPEAKING IN THE CONVENTIONAL AND

PLUTONIUM-RECYCLE ASSEMBLY AT BEGINNING OF LIFE (BOL).

3_ CALCULATIONS FOR THE CONVENTIONAL U00 - ASSEMBLY,

The powerdistribution in the conventional UO2 assembly (4.0 w/O U235 fuel)

has been calculated with PDQ-5, using the 2nd. model and a 180 0 rotational

symmetry. 2 X 2 meshes per unit cell were used except in the extraregions and

adjacendO 2 cells were 3 X 3 meshes were used. A buckling of
-2

040071 cm , corresponding to the full core buckling & a boronconcentration

of 1400 ppm was assumed in the calculations.

First two calculations were made, in order to evaluate the need for the more

expensive LASER code with a cut-off at 1.855 eV versus the less expensive

LEOPARD code with a cut-off at 0.625 eV.

The regular 2 gvoup lASER & LEOPARD X-sections were used in these calculations.

Fig. V-5 shows the result of the calculated powerdistribution in the assembly

using the regular LEOPARD & LASER code 2 group X-sections.

It is thus noticed that the agreement in the powerdistribution and k in a

conventional UO2-assembly is very good. For conventional applications the

four to five times less expensive LEOPARD code with a cut-off at 0.625 eV &

using 2 groups can thus be used with good confidence.

Fig. V-6, shows the powerfraction due to thermal neutrons in the mos important

portion of the UO2 assembly. About 25 % of the total power is thus due to

fast & epithermal neutrons and 75 % to thermal neutrons. Note that the fractional

power due to thermal neutrons is larger in LASER than in LEOPARD, which is
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evidently due to the thermal cut-off of 1.855 eV versus 0.625 eV.

The fast & epithermal flux was noticed to be very flat over the whole assembly.

Fig. V-7, shows the powerdistribution in the most important UO2 assemblyportion

as calculated with the MND X-sections from LEOPARD for the whole assembly.

The local powerpeakingfactor is 1.189 in the corner of the UO2 assembly at

the cruciform watergap.

Theuseof the MNDX-sections to take the spectralsofteningeffects in account,

increase the powerpeak by about 3.2 %.

From the results of the previous chapter, on a 1/4 assembly, the use of the

GMND X-sections with LASER would have increased the local powerpeakingfactor

at lo-cation A-1, by about 2.3 %, whereas the SXS method would have increased this

factor by about 4.3 %.

In Table V-1 a comparison is made of the local powerpeakingfactors (at location

A-1) for the conventional assembly, as calculated with different methods.

The LASER, spatial X-section synthesis method gives the highestvalue, but is

very close to the LEOPARD MND value (since the regular LASER peaking was

somewhat lower).

For conventional applications the use of the LEOPARD-MND method, would be

recommended for the practicle and inexpensive calculation of the powerpeaking

& powerdistributions.

3-2) CALCULATIONS FOR THE PLUTONIUM-RECYCLE ASSEMBLY,

Similar powerdistributioncalculations have been made for the proposed

plutoniumrecycle assembly, consisting of 68 mixed oxide rods (4 w/o PUO 2-nat UO2'

19 % nominal PU 240 a/o) loaded in the middle of the assembly, & surrounded by

168 U02 rods (4 w/o U235). The loading & fuel rod descriptions were described

in Chapter I, section 1-3
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FIG. V-6 FRACTION OF- TOTAL POWER DUE TO THERMAL NEUTRONS IN A PORTION OF

THE CONVENTIONAL UO ASSEMBLY.
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FIG. V-7 POWERDISTRIBUTION CONVENTIONAL UO ASSEMBLY PORTION USING LEOPARD MNO,

..189 1.145 1.124 1.111 1.106 1.103 1.102 1.099
+3.' +2.1 +1.9 +1.8 +1.9 +2.0 +2.1 +2 1

\093 1.068 1.058 1.052 1.049 1.048 1.047
+0. K +0.6 +0.6 +0.7 +0.7 +0.9 +0.9

-1.042 1.031 1.026 1.024 1.021 1.022
4.2 -+0.2 +0.3 +0.3 +0.5 +0.5

\017 1.013 1.004 1.009 1.009
+0 +0.3 +0.4 +0.5 +0.5

0 998 1.001 1.001 1.002
+0.2 +0.4 +0.5 +0.6

.002 1.003 1.003
5 +0.6 +0.7

003 1.010
+ .7 +1.0

I

Max. Powerpeak 1.189 Location A-1.

1.189 NORMALISED ROD POWER
+3.2 % INCREASE RELATIVE TO STANDARD CALCULATION.

.1



173.

TABLE V-1 COMPARISON BOL-LOCAL POWERPEAKING FACTORS IN A CONVENTIONAL UOG.2

UNIT ASSEMBLY, USING DIFFERENT METHODS,

LOCAL POWER-PEAKING FACTOR Y. INCREASE VS.
REGULAR X-SECTION'S.

I 4

LASER (REG)

LEOPARD (RE.)

LASER (GMND)

LEOPARD (MND)

LASER (SXS)

AVG. OF SPECTRAL
CORRECTED METHODS

MAX.(LASER SXS)

1.142

1.151

1. 168

1.189

1, 191

1.183

1.191

+ 2.3 %

+ 3.2 V

+ 4.3 %

3.3 Y

METHOD
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The PDQ-5 code wasused to calculate the powerdistribution in a similar way as for

the conventional assembly. A mesh of 2 X 2 per unit cell was osed, except at the

boundaries near the watergaps & at the UO,-MIX interface, wher.. 3 X 3 meshes

were taken. Two groups of neutrons were used,

Fig. V-8 shows the total powerdistribution as calculated with reqular LEOPARD

X-sections, whereas the first numbers on Fig. V-9 show the povcrdistribution as

calculated with the regular LASER X-sections.

It is thus cbserved that the differences between the calculated powerdistrib,-

tion with LASER & LEOPARD are very substantial. Errors at the peaL. locations

of 13.9 to 9.4 % are found. On the avg. there is a 5.10 Z error in the U02

region & 6.9 % in the MIX.oxide region.

In contrast to the verification with experiment ir, chapter IV, the errors are

not confined to the mix-oxide region alone. This comes because the total

power in the assembly is normalised to 1.0, whereas in the experimental mock up

Batelle analysts normalized their esults to a high power UO2 rod, such that the

errors in the UO2 were minimized in that scheme. The errors are thus seen to

be particular at the most important locations : around the watergaps & mixed

oxide region, but also in the center mixed oxide region the powerdistribution

using LEOPARD varies wildely.

It is particularly interesting to note that whereas the k in the Mixed Oxide

region using LEOPARD was found to be about 1.106 & with LASER 1.35, the overall

k _, of the assemblies is very close, It seems thus very dangerous to evaluate

the accuracy of a X-Sectiongenerating code on the overall kff of a core.

Since it was more orless felt that the influence of the cut-off for the

PU-240 resonance was responsible for the breakdown of the standard LEOPARD code,

the PU 240 was removed in the LASER & LEOPARD unit cell codes & k , 's were

compared.
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Table V-2 shows the results of the comparison of the LEOPARD & LASER unit

cell results for the three fuels. Noticeble is that the LEOPARD code gives

good agreement except for the mixed oxide fuel with 19 a/o nominal PU 240

concentration. Therefore we may conclude that thewerydetailed resonance

description of PU240 at 1.0 eV, In the thermal region of the LASER code,

and the crude description and complete neglecting of PU240 self-shielding

In the fast & epithermal group MUFT calculation in the Standard LEOPARD code,

are responsible for the large discrepancies in k & powerdistribution.

The influence of the PU240 on k Is thus extremely important for mixed oxide

fuels, and should be described accurately.

Fig. V-13, shows the fraction of the power, due to thermal neutrons in a

portion of the PU-recycle assembly as determined with the PDQ-5 code, using

regular LASER X-sections. The fast & epithermal flux over the whole assembly

was 79.9. whereas the thermal flux wasl0.27. The fast & epithermal

fluxes in the UO2 region was on the average 79.2 , and in the MIX OXIDE

region 80.7. The thermal fluxes were respectively 11.5 in the U02 an 7.14

in the mixed oxide region *. It is thus observed that the powerfractions

also change discontinuously from the UO2 to the Mixed Oxide region, and that

the power due to thermal neutrons is more important in the UO2 fuel than in

the mixed oxide fuel. However at peaking locations, the- importance of the

thermal neutrons for the power increases.

The powerdistribution in the PU-recycle assembly has also been calculated

with the thermal GMND X-sections obtained from our recipe & the LASER code.

For simplicity only one UO2 region was considered and the GMND X-Sections

for the U02-MIX interface were used. The results are also shown on Fig.V- 9

and are thus easely compared to the results with the regular LASER X-sections.

The fluxed are normal ised such that the total power in the assembly = 1.0



TABLE V-2 COMPARISON LASER AND LEOPARD UNIT CELL CALCULATIONS,

(B = 0.00071 cm- 2) (1400 ppm B,19.8 % B-10)
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In comparison with the results obtained in chapterlV, it is thus noticed

that the increase in the powerpeakingfactor is nearly the same in both U02
MIX OXIDE regions. A slight fainting of the effect at the watergap away from

the intersection may be n6ticed.

Table V-3 shows the comparison at th beginning of life of the local power-

peakingfactors in the proposed plutonium recycle assembly, using different

methods and the results obtained In this chapter & chapter IV. The results

obtained with the LEOPARD code have also been included, although the local

powerpeakingfactors are not recommended in view of the results obtained in

this chapter and the verification with experiment. It is thus observed

that there are two powerpeakingfactors, one in the mixed oxide & one in the

UO2 and that they are nearly equal. The local powerpeakingfactor in the

Mix-Oxide seems a little bit higher than in the UO2 '

From Table V-3 it is thus also noticed that the spectraleffects at the watergap

and mixed oxide have an influence of about 4 % on the local powerpeakingfactor.

The influence of the detailed PU240 resonance is on the order of 14 % to 10 %,

this is thus a major factor of concern for calculations with codes such as

LEOPARD with a cut-off smaller than the 1.0 eV resonance of PU 240.

In order to evaluate the influence of the weight percent of PUO 2 in the mixed

oxide rods, two more calculations were made. Using the -basic proposed PU-

recycle assembly design of 68 Mixed Oxide rods in the assembly of 236 rods,

the % increase in the Local powerpeakingfactors was calculated for 3.5 & 4.5 w/o

PUO 2 relative to the standard 4.0 w/o case. Since the number of Mixed Oxide

rods is inversily proportional to the w/o of PUO 2, another run was made using

4.5 w/o In which only 56 mixed oxide rods were used in a layout pictured on

F ig. V-lQ.

The effects of changing the w/o of PUO 2 in the mixed oxide rods, as well as the
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effect of the change of the number of mixed oxide rods for a 4.5 w/o PU 02

loading from 68 to 56 rods, shown in Table V-4 and on Fig, V-1l

The values of the peaking-factors include a spectrumcorrectionfactor relative

to the base case of 4.0 w/o, which was from the calculations noticed to

change by 1.6 % per 1 w/o of PUO 2 '

From Table V-4 & Fig. V-Tlit is thus seen that

1) the local powerpeakingfactors are only slightly higher in a PU-recycle

assembly than in a conventional assembly. But the kO is substantially lower.

2) the local powerpeakingfactor in the PU-recycle assembly increases with

increasing weight percent of PUO 2 used in the mixed oxide rods. The changes

are only of the order of -3 to + 4.4 % when going from 4.0 % PUO 2 to 3.5 w/o

& 4.5 w/o respectively.

3) the local powerpeakingfactor seems not very sensitive to the geometrical

lay-out & number of mixed oxide rods; a reduction of the rods from 68 to 56 only

meduces the peakfactor by 0.4 %. On the other hand the k _of the assembly is

increased by 44 m'illik with decreased number of Mixed Oxide rods.

4) From Fig. V-10, showing the location of the powerpeaks, it is thus seem that there

are only 2 powerpeaks in the conventional assembly, whereas there are 10 power-

peaks in a PU-recycle assembly. According to a statistical model of Judge &

Bowl ( 39 ), it should be expected that there are more- chances to get an

overpowersituation in a PU-recycle assembly than with a conventional assembly.
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TABLE V-3 COMPARISON BOL-LOCAL -POWERPEAKNG FACTORS IN THE PROPOSED

PLUTONIUMRECYCLE ASSEMBLY, USING DIFFERENT METHODS,

LOCAT 10MS A-1 AND F-4

METHOD.,

1)- LASER (REG)

2)- LASER(GMND).
(1 UO2 region)

3)- LASER(GMND)
(2 UO2regions)

4)- LASER (SXS)

5)- LEOPARD (REG)*

LOCAL POWERPEAKING

FACTOR IN UO2

fe INCREASE
VS. REGULAR
LASER

I t

1.150

1.182

1.179

1.20

1.310

+ 2.8 %

+ 2.5 %

+ 4.3 %

+13.9 %

LOCAL POWERPEAKING

IN MIXED-OXIDE

% INCREASE

VS. REGULAR
LASER

1.164

1.210

1.209

1.199

1.273

+ 4.0 jo

+ 3.9 %

+ 3.0 'X

+ 9. 4 %

The recommended values are underlined, reflecting some conservatism.

* The powerpeaking with the standard LEOPARD is not recommended (see text and

Table V-2, & experimental results , Chapter IV)
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Table V-4 COMPARISON OF THE LOCAL POWERPEAKINGFACTORS FOR DIFFERENT DESIGNS.

CASE : POWERPEAKINGFACTORS IN UNIT ASSEMBLY.

- CONVENTIONAL
-PU-RECYCLE (68 RODS)

3.5 w/o PU02

4.0

4.5

PU-RECYCLE (56 RODS)
4.5 w/o PU02

In U0 2

1.191 (1)

1 . 198

1.200

1.205

1.195

(1)

(1)

(1)

(1)

in MIX-OXIDE

1.168

1.210

1.278

1.273

(2)

(3)

(4)

(4)

k (LASER X-SECT.
,0

1.2062

1.1781

1.1799

1.1831

1.1875

Includes

Includes

Includes

Includes

the conservative spectralcorrectionfactor of 4.3 % (Table V-2)

the conservative spectral C.F. of 3.2 %.

the conservative spectral C.F. of 4.0 % see Table V-3

the conservative spectral C.F. of 4.8 % *

* The Spectrumcorrectionfactors at the peak Mix-oxide locations (at the

UO2/MIX interface) were found from the calculations to change by an

additional 1.6 % per 1 w/o of PUO 2 relative to the base case of 4 w/o of PUO2*

(1)

(2)

(3)

(4)
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V-4. THE VARIATION OF LOCAL POWERPEAKING FACTORSPOWERDISTRIBUTION AND k06

IN A CONVENTIONAL & PLUTONIUMRECYCLE ASSEMBLY DURING LIFETIME,

4-1) INTRODUCTION

In the previous section the powerdistributions & local powerpeaking-

factors of the assemblies were calculated at beginning of life. Although

in general the powerdistribution flattens out with burnup, such that the

overall powerpeakingfactor for a reactor core decreases with burnup, the

detailed situation of the local powerpeaking is much more complex and more or

less unpredictable. Furthermore the new designs for plutoniuumrecycle appli-r

cations are entirely different, and peculiar effects could be attributed to the

different behaviour of k versus burnup of conventional & mixed oxide fuel.

It had e.g. been speculated that because the mixed oxide fuel starts with a

large difference in k between the UO2 & mixed oxide fuel (which gradually

diminishes and possibly even changes of sign), it could be possible that the

local powerpeaking factor in the mixed oxide fuel increases with burnup.

Because of these questions, as well as the question on how the spectral-coupling

correction factors change with burnup, a simplified burnupstudy has been made

on both the conventional & plutoniumrecycle assembly in order to evaluate the

change in powerdistribution, local powerpeakingfactors & spectral-effects in

both conventional & PU-recycle assemblies.

4-2) DESCRIPTION OF THE USED METHOD TO CALCULATE THE POWERDISTRIBUTION VS.

BURNUP.

The accurate method that is used for the calculation of the fluxes,

powerdistribution an keff of a reactorcore or other fuel layout, consits of

making unitcell-burnup calculations with codes as LEOPARD & LASER.
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The input of such codes consit of e.g. the dimensions of fuel rod, clad and

moderatorI the temperatures, the overall core buckling (for. the MUFT calcu-

lations), the materials & their initial atom-numberdensities (in units 10 24

For burnupapplications an average thermalreactorpower, the time step, fuel

loading & other data e.g. on the fissionproducts are needed.

The codes calculate all the spectralaveraged microscopic cross-sections &other

data at beginning of life, and the fast & thermal fluxes corresponding to the

input average reactorpowers.

In the burnup-options, the codes calculate then, usually assuming that the

fluxes remain constant during the time-step, the new concentrations of all

burned & built-up materials from the burnupequations such as e.g. for the

burnup of U238 & buildup of PU239

CtN I

,and a new spectrumcalculation is made which gives the new cross-sections &

macroscopic data (such as k. & keff) after this timestep A t or burnupstep.A B.

This is repeated until the final specified burnup has been reached.

In this way spectralcorrected microscopic cross-sections, macroscopic & isotopic

inventories are obtainedof an average fuel cell versus burnup or time t.

The standard proceedure to calculate the reactor characteristics versus burnup, is,

after having obtained all the microscopic X-sect ions versus time, to make diffu-

siontheory calculations in 3 dimensional reactormodel using e.g. the PDQ-5 or 7-

HARMONY code package. The PDQ-5 or 7 code solves the diffusion equation: at each

avg. specified burnupstep, gives the group-fluxes to HARMONY which solves again
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the burnup-equations using an elaborate input deck of microscopic X-sections

versus time as obtained with e.g. LEOPARD or LASER, and obtains at each flux-

point the macroscopic reactordata which are fed in PDQ-5 for the subsequent

flux & powerdistributioncalculation.

Although with the PDQ-HARMONY package all calculations are automatically done

with the computor without human interventions, the set up is quite elaborate,

and requires about 3 to 4 months of preparation.

Furthermore the calculations are about 4 times more costly than regular diffu-

slontheory calculations.

To avoid these drawbacks at the stage where no final design charecteristics are

known, the following relatively inexpensive method has been used.

The geometrical Model,

Instead of isolating one assembly, we will isolate one quarter of an assembly

containing the cruciform follower & watergap. The use of this geometry permits

a description with 16 X 16 meshes (2 X 2 meshes/ unit cell), instead of 42 X 21

meshes needed to describe the whole assembly with a 1800 rotational symmetry.

A savings of half the computorcost and half the input preparationtime is there-

with possible. This model was found to underpredict the powerdistribution, in

a conventional assembly by maximum 3.6 % compared to a whole assembly description,

and by maximum 1 % in a PU-recycle assembly.

The effect on the k (excluding the extra regions - other than fuel) was less
00

then I milli-k for the conventional assembly and PU-recycle assembly.

The burnupcalculations.

Since the Standard LEOPARD code had been found to be in error, the more expensive

LASER code had to be used for the burnup unit cell calculations of both the UO2

(4 w/o U 235) and MOX fuel (4.0 w/o PUO 2 (19 w/o PU 240)-nat uo2).

Burnupsteps of 2400 MWD/MT (U+PU)were used up to 24,000 MWD/MT.
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The input was identical to the input for a normal unit cell calculation except

for the following additions necessary for burnup applications in the LASER code.

In the LASER code, fission products are separated into Xe-135, Sm-149 and all

fissionproducts lumped into one pseudo fission product. The cross-sections for

the lumped fission products are defined such that one fissionproduct is produced

per fission event. These pseudo fissionproduct cross-sections, in the form of

polynominal equations are required as an input to the LASER code. Results of

CINDER calculations by Celnik et al ( 39 ) have been correlated by Rim ( 40 )

to derive the following equations

For UO2 FUEL :

1-3 - .

-, = 116. 1 -x B + ~550 x1o B - 1.- X10 B

4-. os E15ed

. = 3.7. + 1.65xlO B - .19 GL-6 X +-33 0 410
~epL.

fn I. 5e.V E 4S05o eV

Sr- haTt 53o5.V4 E 1 i0M V

FOR THE 4 w/o PUO 2 - UO2 (nat) FUEL,

iSo.6 -7.36Jxlo B +..03zx10 1 -2.26xlO B
0, ~~V

Ocr-r 34.93 - 9.9/ x 10 B .5B + +2. I8 x10

}aC 1-8L$E $-53o

fm 6'3 oS $E~ tIoeV
d. PAST
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where B is the burnup in MWD/MTM* aoth is the 2200 m/sec value of a 1/v

cross-section in (b/fission) and a" Cpi Is the epithermal cross-section
a

(taken constant with energy) in (b/fission).

To account for the non-uniform buildup of PU-239, LASER requires as isiput a

spatial distribution of the U-238 resonance capture rate. Fig. V-12 shows

this distribution in a fresh UO2 fuel obtained from a Monte Carlo calculation

( 4 ). The volume averaged values in each region (5 regions in the usual

LASER mesh) obtained from Fig. V-12 are given on Table V-5.

Table V-5.

Spatial Distribution of U-238 Resonance Capture Rate.

Region (fractional radius), U-238 absorption per neutron,

0 - 1/9 0.0135

1/9 - 3/9 00140

3/9 - 5/9 0.0150

5/9 - 7/9 0.0180

7/9 - 1 0.0299

The cross-section data used in the LASER calculations are mostly those used

in the standard PWR designs at WAPD ( 4 2 ).
are

Thermal U.235 and PU-239 cross-sectionsYnirmalized to the 2200 m/sec parameters

of Sher et a] ( 43 ), and thermal PU-241 data were normalised to the 2200 m/sec

parameters of Westcott et al ( ,y ). These parameters are listed in Table V-6.
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TABLE v-6.

2200 m/sec Parameters for Fissile Nuclides.

cross-section U-235 PU-239 PU-241

0', (barns) 578 742 1,013

QT (barns) 679 1,015 1,376a

2,442 2,898 2,978

The 2-Dimensional Burnup Calculation method,

Instead of feeding microscopic X-sections versus time, obtained from the LASER

program into the HARMONY code. the 'macroscopic X-sectiondata of 2 groups have

been fed into the PDQ-5 code in each of the 59 fuel cells. The PDQ-5~ code

was thus set up to contain 35 different compositions, making use of the diagonal

symmetry.

The method used consited of essentially the following steps

1) From a beginning of life calculation the powerdistribution was obtained in

the 1/4 of the conventional and PU-recycle assembly.

2) Assuming that during a certain assembly-average burnupstep AB, the power-

distribution remains constant, a two dimensional burnupmap is obtained since the

burnup distribution is proportional to the normalized powerdistribution,

according to

A /(Cx.)

where B = burnup, in MWD/MlM

P' = powerdensity in kw per cm ,

P = density of the fuel in kg/cm3

A(M) = avg. atomweight of metal in oxide fuel.

t = time in days.
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Therefore for each step 4 t or each average assembly burnupstep A B ass,

ABx) ) ( 5-3)

Ae

and at each time t

Thus, knowing the burnupincrement distribution or according to (f-9) the

powerdistribution, the 2 dimensional burnupdistribution is obtained from

equation 6-10.

3)From the 2D burnupmap B (x,yt) at time t or avg. assembly burnup B, the

macroscopic two group, thermal GMND X-Sections at each unit cell X, Y, are

obtained from the macroscopic X-sections and the 1/V & I/V grad versus burnup from

LASER.

Stirling's interpolation formulia

= 4 0L*It1-I &.*I X -X 4.~ L%~ X

(where y is the macroscopic X-section Z at burnup B = X, X. -Xi =X -X =

AX = A B = 2400 MWD/MTM)

andy. & x. are the macroscopic X-sections and burnup B. at the burnuppoint

i in LASER ).

has been programmed for a Wang desk calculator, to obtain accurate macroscopic

X-sections at each location X, Y, by quadratic interpolation in 3 LASER date.
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Limitations of the method,

Strictly speaking the used procedure is only accurate if the ratios of the

fast & epithermal flux to the thermal flux in the UO2 & MIX OXIDE unit cells,

are the same as the ratios in the 2 D PDQ-5 diffusiontheory calculation; and

if all the microscopic X-sections are flux-independent.

With regard to the first restriction it was found that the ratios of the fast

& epithermal flux to the thermal flux in the UO2 unitcell & in the MIX OXI0E

cell were respectively : 14.5 an 6.70; whereas in the PDQ-5 calculation they

were on the average 11.3 and 6.9. The maximum deviation in the pointwise

X, Y burnup will thus be of the order of 5 % in the UO2 and 3 % in

the MIX OXIDE, or less since some compensation can be expected.

With regard to the second restriction the Xe-cross-section is flux dependent

according to the equation at equilibrium :

z- (b) = 4 x (v-00li)h
40. E 4 + 4 CL)(V-11)

where & YX are the effective yields from fission of Iodine 135 & Xe 135,

& 0 = 0.756 X 1013 cm 2 se

Since 0T is of the order of 2.9 X 1013 in U02 & 1.6 X 10 3 in the MIX OXIDE,

the Xe concentration is on the average, insesitive to the fluxvariations.

The SM-149 equilibrium macroscpic X-section is given by :

(V-12)

& is thus independent of the flux.

The f issionproduct microscopic X-section C' FP accumulate at a rate of CFP

per f issioneventy( section is thus given by :

VP a. W
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FIG, V-13 :FRACTION OF TOTAL POWER DUE TO THERMAL NEUTRONS IN A PORTION OF

THE PLUTONIUM RECYCLE ASSEMBLY.

793 0.786 0.781 0.776 0.772 0.769 0.766 0.764

0\776 0.769 0.762 0.756 0.751 0.747 0.744

0.759 0.749 0.738 0.726 0.718 0.715

0 733 0.711 0.750 0.738 0.734

O. 42 0.718 0.706 0.703

699 0.690 0.688

O 687 0.687

Avg. .740

Avg. UO2 : .750

Avg. MIX : .715

0.793 POWERFRACTION DUE TO THERMAL NEUTRONS (LASER)
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and is thus proportional to the burnup; which is accounted for by the model.

It is thus observed that for the calculation of unit assemblies during lifetime,

the assumptions for the validity of the method are very well satisfied.

Only the LASER burnup data, & the PDQ-5 code are thus needed for the calculation

of the assemblies during burnup. The drawback evidently is that for each

assembly average burnupstep, the 2D burnupmap has to be calculated from Eq.V 10,

and the macroscopic 2-groupdata have to be calculated for each of the 34 different

unit cells. With the aid of a small deskcalculatorprogram, the complete set-up

of one burnupstepproblem for one assembly with PDQ-5 took about 3 to 4 hours.

4-). RESULTS FOR THE BURNUP OF ISOLATED FUEL RODS.

4-3)1. Uraniumoxide fuel,

Fig. V-14 shows the thermal neutronspectrum in a fresh UO2 fuel cell

& Fig. V-15 shows the thermal neutron spectra in the cell burned to 24000 MWD/MTM*

Comparison of both spectra reveals that the flux-depressions at the 0.296 eV

resonance of PU239 and the 1.06 eV resonance of PU 240 are very pronounced,

therefore the self-shielding effects of these resonances become important in

irradiated UO2fuels at highburnups & In plutonium recycle fuels, as has been

noticed earlier.

Fig. V-16 shows the isotopic fractional absorptionrates as'a function of burnup,

This figure represents a neutronbalance in the cell excluding leakage. It is

seen that about 1.5 % of the absorptions occur in the zircalloy cladding, about

about 3 % in the hydrogen of the moderator and about 1 % in the oxygen of the

fuel and moderator, and about 94.5 % in the fuel region. The fractional

absorptions in the cladding & moderator decrease with burnup.

It is important to note that the U238 & U235 absorptionrate ratios, initially
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responsible for 94.5 % of the absorptions in the cell, are still very

important at 24000 MWD/MTM, at which they contribute for about 67 Oe of the

absorptions, the rest being taken by mainly the PU239 buildup (about 16%).

The contribution of the fissionproducts to the absorptionrate increases nearly

linearly with burnup from 0 to about 4.2 % at 24000 tWD/MTH'

Fig. V-17, shows the fuel region-averaged isotopic concentrations in an irra-

diated UO2 fuel. The U238 concentration, per initial U238 atom, which is not

shown on the figure changed from an initial 1.0 to 0.9820 at 24000 MWD/MTM'

The figure shows that this fuel will produce about 7.5 grams of PU Issile

(6.5 grams PU-239 an 1.0 grams of PU241) per kg of initial uranium afer burnup

of 24000 MWD/MTM*

Fig. V-8I shows the plutoniumisotopic composition as a function of burnup.

At 24000 MWD/MTM the isotocpic compositions are : 70 % PU239, 16.9 % PU240,

11,2 % PU 241 an 1.8 % PU242. The radial distribution of PU-239 concentrations

was noticed to follow the spatial distribution of U238 resonance captures and

has a peak at the fuel surface.

The k, and keff of the UO2 unit cell (B2 = 0.00071 cm-2) are shown on Fig.V-1

The uraniumoxide fuel in an infinite reactor will thus have a k infinity of 1.00

at about 33.600 MWD/MTU, whereas the same fuel in a batch loaded Yankee reactor

only reaches a burnup of 24000 MWD/MTM*

Fig. V-20, shows the variation of the most important macroscopic X-sections versus

burnup. It is thus noticed that whereas the absorption X-section increases

with burnup & the fast & epithermal fission X-sections decrease, the thermal

fission Zf2 & especially the r f2 are reaching a maximum at about 5000 &

14000 MWD/MTM respect ivel y.
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FIG V-20 Variation of the macroscopic X-sections vs.burnup
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4-3)-2. Plutonium Recycle Fuel and Comparison with UO2 fuel.

Fig. V-iS shows the ka, and keff of the MIX-OXIDE unit cell versus

burnup. It is thus immediately noticed that the kco and keff of the MIX-OXIDE

fuel is appreciably lower at BOL, but approaches the values of UO2 at very high

burnups (:e 33000 MWD/MTM).

In an infinite reactor the MIX OXIDE fuel reaches a burnup of about 31000 MWD/MTM'

which is only 2000 MWD/MTM lower than the burnup of the UO2 fuel (33000 MWD/MTM).

In a batch MIX-OXIDE fueled Yankee reactor (B2 = 0.00071 cm 2) however the

MIX-OXIDE only reaches a burnup of 18200 MWD/MTM The operating time of an

all mixed oxide fueled Yankee Reactor at the nominal power of 175 MWe will thus

be about 60 % the operating time of a Yankee Reactor fueled with UO2 '

This severe reduction is mainly due to the absorptions in the PU240, which

countsfor 12 % of all absorptions in the MIX-OXIDE cell.

Figs. V-1I and V-12 show the thermal neutron spectra in fresh & depleted

MIX-OXIDE fuel. It is noticed, as before that the flux depressions at the

PU-239 and PU240 resonances is very severe & much more pronounced than in a

high burned UO2 cell, but the spectrum becomes softer with increasing burnup.

The spectrum in theMIX OXIDE fuel is also much harder than in the UO2 fuel cell

with the same lattice geometry.

The harder spectrum in a plutonium recycle fuel cell is not favorable because

the value of Q( (capture to fission ratio) in PU239 is maximum at 0.3 eV and

decreases sharply with increasing neutron-energy.

Therefore the optimum moderation is expected for higher water to fuel ratios

than with conventional UO2 fuel. From the comparison with current designs,

( 1.- ), it Is thus seen that the Yankee Reactor in particular is very

unfavorable for plutoniumrecycle applications, since it has one of the lowest

moderator/fuel ratios that exist, and is furthermore one of the smalle* commercial

reactorcores in operation.
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Fig. V-23 shows the isotopic fractional absorptionrates in the plutoniumrecycle

fuel cell. The large thermal absorption cross-sections reduce the fractional

absorptions in most other Isotopes & hardens the spectrum, as compared to the

UO2 cell. In the MIX-OXIDE cell e.g. the fractional absorptionrates of the

hydrogen S zircalloy clad are reduced to 1.2 %, as are the fissionproducts,

& increase with burnup. The same Is however also true for control materials (8-10,

Cd, Ag etc). Therefore in all MIX-OXIDE fueled reactor the worth of the control

materials is reduced, compared to a conventional U02 fueled reactor,

It is also noticed that the fractional absorption of the PU-isotopes remains

much higher than even in (up to 24000 MWD/MT )depleted U02 fuel. We may therefore

expeCt, as will be shown, that the spectral differences S spectraleffects- at

UO2/MIX interfaces remain, even at high burnup.

Fig. V-24 shows the fuel region averaged isotopic concentrations in function of

burnup. There are little changes in the concentrations of PU240 & PU Z41 throughout

the lifetime.

Fig. V-25 shows the PU isotopic compositions. At 24000 MWD/ the PU isotopicDITM

compositions have changed from about 67 % PU239, 18.4 % PU240, 11.8 PU 241 &

2.7 % PU 242, to 54 % PU239, 23.5 % PU240, 16.5 Y. PU241, 6 % PO 242,at 2I.000 MWD/MT.

Fig. V-26 finally shows the variations of the macroscopic X-sections versus

burnup; noticle is in contrast to the U02 fuel that the thermal Z, decreases

with burnup, such as the T 2 values.

4-3)3. The spectraleffects in the isolated fuel cells and at 02 /P2 0 and

i0 2/MIX.OX. interfaces versus burnup.

According to the GMND method that we have developed in Chapter IV,

the spectraleffects at H 20/FUEL or FUEL/FUEL interfaces can be obtained From

unit cell calculations alone.
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In particular it is noticed that the % increase or decrease in the power, in the

first cells at the interface due to the spectraleffect, at the fuel-fuel interface,

is proportional to the 1/V GRAD.orinversely proportional to the velocity of the

gradientspectrum across the interface. (See Eqs. 4-45 and 9- A' ).

From the knowledge of the fluxes & the isolated cell velocities from LASER the

average velocity of the gradientspectrum or the reciprocal has been obtained

from: c

in function of the burnup, (which was on the average assumed to be equal in

both UO2 & MIX.OXIDE fuel).

The reciprocal of the average UO2 cell & MIX.OXIDE cell thermal neutron velocities

has been plotted on Fig. V-27, as well as the reciprocal of the average thermal

gradientspectrum velocities at the UO 2/H 20 and UO 2/MIX.OXIDE, interfaces.

It is thus noticed that the spectrum in a UO2 fuel cell, only slighltly hardens

with burnup, whereas the spectrum in a MIX.OXIDE cell hardens slightly up to

5000 MWD/MTM, but softens a little bit at higher burnups.

Both UO2 and mixed oxide fuel cells practicaly retain their own spectrum versus

burnup, and do not approach each other even at higher burnups over 30,000 MWD/MTM'

With respect to the gradientspectra, it is noticed that the average thermal

neutronvelocity of the fluxgradient at the H20 / UO2 interface increases with

bournup, which is evidently due to hardening of the spectrum from the buildup of PU.

At the UO2/ MIX.OXIDE interface the gradientspectrum remains virtually unchanged.

From these results, it may thus be noticed that the spectral-effects at interfaces

change only slightly with burnup. Therefore spectraleffects at fresh U02fuel -

burned UO2 fuel interfaces are negligable, but spectraleffects at UO /H 0 interfaces
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and UO2 MIX.OXIDE interfaces will retain their importance, even at high

burnups of 33000 MWD/MT.

The reason may be found in the fractional absorptionrates of the fuel isotopes,

which for UO2 remains rather low for the PU-isotopes & rather high for U238 and

U235 even at high burnups. Compared to the UO2 fuel the fractional absorption-

rate of the PU-isotopes remains much higher & the associated spectrum remains

much harder, in the MIX.OXIDE fuel.

4,4) ROD BY ROD BURNUP OF THE CONVENTIONAL & PU-RECYCLE ASSEMBLY,

4-4)1. RESULTS FOR THE CONVENTIONAL UO 2-ASSEMBLY,

Using the method outlined above a rod by rod burnupstudy of the

conventional assembly has been made using the PDQ-5 code, & the GMND X-sections.

The results of the first burnupstep of 4800 MWD/MTM are shown on the Figs. 2a& 2.9.

Fig. 28 pictures the rod by rod burnupdistribution for the average assembly

burnup of 4800 MWD/ MTM The peak burnup is 5400 & the minimum burnup is

4600 MWD/MTM'

Using this burnup map, the macroscopic X-sections were calculated, applying

Stirling's interpolationformula between LASER results at 2400, 4800 & 6200 MWD/
MTM'

and were inputted in the 34 different rod positions in the PDQ-5 calculation.

Fig. 29 shows the powerdistribution in a portion of the UO2-assembly at the avg.

assembly-burnup of 48oo MWD/MT compared to the power at BOL, as well as the %

increase in power relative to beginning life.

The % changes were obtained from 1/4 assemblymodel, whereas the powerdistribution

itself was obtained by applying the % changes on the whole assemblycalculation

of sectionsg'31-2 . Note that no boron was used for the burnupcalculations.

Fig. V-30 sho'vs the powerdistribution & the changes relative to BOL for an

average assembly-burnup of 19200 MWD/MTM'
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FIG. V-28 BURNUP MAP ROD BY ROD UO ASSEMBLY AVG. BU : 4800 MWD/T
______2_ 2i A

'400 5250 5150 5100 5050 5050 5050 5050
+12\5% +9.4 +7.3 +6.3 +5.2 +5.2 +5.2 +5.2

$00 4900 4800 4800 4800 4800 4800
-2 +2.1 .0 .0 .0 .0 .0

47 o 4700 4700 4700 4700 4700
-1.2.1 -2.1 -2.1 -2.1 --2.1

450 4650 4600 4600 4600
-3.1 -4.2 -4.2 -4.2

4600 4600 4600
- .2 -4.2 -4.2 -4.2

4&00 4600 4600
-4.2 -4.2 -4.2

4600 4600
-4 -> 2j±

N
Avg. Assv.Burnup = 4800 MWD/MTM
Avg. UO2  Burnup = 4800 Avg. Mix. Oxide Burnup.

Peak BU : 5400
Min. BU : 4600

5400 BURNUP MWD/MTM
+12.5 ACCUMULATED % BURNUPDIFF/S = B - B 100 (A B=4800)

STEP -

.A B



215.

FIG. V-29 : POWERDISTRIBUTION IN UO ASSEMBLY AT AVG. ASSEMBLY BURNUP OF 4800 MND/
2 
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FIG. V-30 : POWERDISTRIBUTION IN THE U02 ASSEMBLY AT AN AVG.BURNUP OF

OF 19200 MWD/MTH.
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FIG. V-31 : ROD BY ROD BURNUPDISTRIBUTION AVG. ASSEMBLY BURNUP 28800 MWD/MTM

ASSEMBLY PORTION.
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FIG. V-32 : POWERDISTRIBUTION IN THE UO2 ASSEMBLY AT AN AVG, BURNUP OF

28800 MWD/MTM.
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FIG. V-33 : K-INFINITY MAP U0, ASSEMBLY AT AVG. ASSEMBLY BU : 28800 MWD/MTM.
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Fig. V-31 shows the rod by rod burnup distribution for an average assembly

burnup of 28800 MWD/MTM; whereas Fig. V-3t pictures the powerdistribution &

changes relative to BOL. In the k the extra-regions other than fuel were
00

excluded.

Fig. V-33 shows the values of k ineach unit cell for an avg. burnup of 28800
00

MWD/MTM as obtained with PDQ-5.

From the results it is thus seen, in contrast to what expected, that the local

powerpeakingfactor increases with burnup to a certain maximum increase of about

1 % after which it decreases again. The reason may probably be found in the

build-up of PU 239, which increases X a2 which levels off at higher burnups,

but also increases Y2f 2 to a maximum value (Fig.V-10). On the whole the

powerdistribution in a UO2-assembly changes by about 0.2 7., nearly no flattening

is observed.

From Fig. 3, it is thus observed that the local powerdistribution in the

assembly does not follow the k,, , but rather a complex relationship between

macroscopic parameters where Xf & Vf2 a2 are playing important

roles.

It qas also observed that the k of the assembly (excluding extra regions other

than fuel) follows very closely the k., of a unit cell, which is not surprising

because of the nearly linear behaviour of k , versus burnup. The avg. k,, of

an assembly & the inventories are insensitive to the local powerdistributions &

the unit cell values can be used with very good confidence.

Fig. V-4Q curves I & 3 show the variations of k & k versus burnup of the
ao eff

conventional assembly. The k__ curve is without extra materials, (SS can,

zicc follower, instrumentation cell, H2 0 gap), whereas the kff curve includes

these extra materials.
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From comparison with Fig. 19 , it is thus noticed that the Batch loaded

Yaikee reactor fueled with UO2 assemblies reaches a burnup of 19,050 MWD/MTM

(compared to 24,000 MWD/MTM without the extra materials). The extra-materials

account for roughly 51 mk at 4800 MWD/MT and 39 milli- k at 19,200 MWD/mT.

The influence is thus substantial.

4-4)2. RESULTS FOR THE PU-RECYCLE ASSEMBLY & COMPARISON WITH THE UO2 ASSEMBLY.

Figs. V-3Ljto 33 show the powerdistribution in the PU-recycle assembly,

using the conventional 4 w/o U235 U02 fuel & the base case mixed oxide fuel

(4.0 w/o PU 02-U02 (nat); 19 a/o PU240), at different avg. assembly burnups.

(BOL,4800, 9600, 19200 and 28800 MWD/MTM)'

It is thus noticed that :

1) There is a shift in peakpowerposition versus burnup from the peak in the

MIX OXIDE region (locatiton D-6) to the peak in the UO2 region at lacation A-1.

2) There is a sizeble change in the peakpower versus burnup, especially in the

mixed oxide region.

3) There is a considerable powerflattening, especially in the mixed oxide, but

also in the UO2 at the boundary of the MIX/UO2
4) Although there is a flattening in the peak UO2 location, the flattening is

not so substantially in the MIX.OXIDE. This peak further decreases with

burnup, reaches a min. at about 9600 MWD/MTM after which it increases, but

decreases definitively after 19200 MWD/MTM'

In the mix.oxide peak, there is a definite monotonuous decrease in peakpower

versus burnup.

5) The mix.oxide accumulates approximately 3.5 % more burnup than the U02'

6) From Fig. V-4'0 it is noticed that the k of the PU-recycle assembly (excluding
o

extra materials, reaches a burnup of about 33,000 MWD/M at the same point
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as the conventional assembly. A batch fueled Yankee reactor with PU-recycle

assemblies, only reaches about 15400 MWD/MTM (extra materials included).

Comparison of the Conventional & PU-recycle unit-assemblies,

1) Comparing the variation of k _ andk ef with burnup of a batch fueled

Yankee Reactor with conventional & plutonium-recycle assemblies, it is

noticed that whereas the conventional & PU-recycle infinite reactors both

reach end of life at about 33.000 MWD/MTM, the batch fueled Yankee reactor

reaches 19050 MWD/MTM with conventional assemblies, whereas the same reactor

fueled with plutoniumrecycle assemblies with the proposed design only attains

15400 MWD/MTM. The cycletime of the batch reactor with the proposed recycle

assemblies is thus about 81 % of the cycletime of a conventional reactor.

From inexpensive CELL-code ( 3 ) calculations it has been estimated that

the burnup of mixed oxide fuel increases with about 4000 MWD/MT per wei-,,ght

percent of PUO A fuel of about 4.5 to 5.0 w/o PUO 2 (or 3.5 to 4.0 % PU

fissile) in the mixed oxide would therefore be necessary in order to achieve
batch

the sameVTifetime as with conventional UO2 (4.0 w/o U235)fuel/assemblies.

An as we have seen in section 3 this would increase the localpowerpeaking-

factor in the plutoniumrecycle assembl ies,

2) Whereas the unit assembly powerdistribution in conventional assemblies remains

nearly unchanged with burnup, the powerdistribution in a plutoniumrecycle assembly

flattens considerably with burnup,

3) The local powerpeakingfactor at beginning of life is about 2 % higher in a

PU-recycle assembly of the proposed design; and is located in the mixed oxide

region.

4) Whereas the local powerpeakingfactor in a conventional assembly increass by
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about 1 % with burnup, the local powerpeakingfactor in a plutoniumrecycle

assembly decreases by about2 % (Fig. V-41)

There is furthermore a shift in the location of the powerpeak from the

mixed oxide to the UO2 region (Fig. V-41).

4-4)1. COMPARISON WITH WESTINGHOUSE RESULTS FOR LARGE PWR'S.

For the purpose of comparison of our results for the Yankee-reacter

& Westinghouse results for large PWR'S the Figs. V- 42and V-43 from reference

are shown.

The layout of the PU-recycle assembly consiting of 5 different mixed oxide

fuels (3.2 - 3.5 - 3.8 - 4.2 and 4.6 w/o PU 02) in order to flatten the power

was pictured on Fig.

From these results it is thus observed that

1) in Yankee assemblies the local powerpeakingfactor is 1.191 for the UO2

assembly & 1.210 for the plutoniumrecycle assembly. In the W-design, the

local powerpeakingfactor in the UO2 assemblies is 1.101, and is 1.093 in

the PU-recycle assembly. Therefore in Yankee assemblies there seems to be

no need for several PU-enrichments to flatten the power.

2) In the W -design there is also a shift in the peakrod positions versus

burnup; and a sizable change in power (10 %) with burnup in the uraniumfuel-

rods at the boundary between fuel regions.

3) The pluton4um region accumulates more burnup than the uraniumregion in both

designs.
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FIG.V-34 POWERDISTRIBUTION IN THE PLUTONIUM RECYCLE ASSEMBLY AT 4800 MWD/ IHT
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FIG. V-35 : POWERDISTR-IBUTION IN THE PLUTONIUMRECYCLE ASSEMBLY AT 9600 MWDIMTM AVG.
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Fig. V-36 POWERDISTRIBUTION IN THE PLUTONIUMRECYCLE ASSEMBLY AT 19200

MWD/MTM AVG.
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FIG. V-37 : POWERDISTRIBUTION IN THE PU-RECYCLE ASSEMBLY AT 28800 MWD/MTM
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ef = 0.9408 (including extra)
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Avg. UO2 Power = 0.989 Avg. Mix Oxide -Pcwer = 1.026

1.164 NORMALIZED ROD POWER AT 28800 MWD/MTM
-3.2 % INCREASE ROD POWER AT 28800 MWD/MTM (relative to BOL)
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FIG. V-38 BURNUPDISTRIBUTION IN THE PU-RECYCLE ASSEMBLY AVG. BURNUP.
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Avg. UO2 Burnup = 28.7 Avg. Mix Oxide Burnup = 28.90
Max. U02 BU : 32.90
Min UO BU : 25.20
Max. Mix BU : 32.65
Mm. Mix BU 23
knass x 24 , k UO 1.02100, k Mix = 1.00185

32.90 BURNUP IN 1000 MWD/MTM.
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FIG. V-39 K-INFINITY MAP FOR THE PU-RECYCLE ASSEMBLY AT 28800,MWD/MTM,
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PLUTONIUM I/4 ASSEMBLY
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Figure V-42, Unit Assembly Power Distribution at the
Beginning-of-ILife for a Discrete Assembly Concept
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U02 AVG. POWER 0.949 Pu02 AVG. POWER = 1.051

805 . 051 I 051
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Figure V-43. Unit Assembly Power Distributions at the
End-of-Life for a Discrete Assemly Concept



CHAPTER Vt : THE CALCULATION OF POWERGRADIENTS AND POWERNISTRIBITION INSIDE

THE PEAK RODS OF CONVENTIONAL & PU-RECYCLE-ASSEMBLIES,

VI - 1 : INTRODUCTION,

Steep powergradients have been noticed In the plutoniumrecycle assembly.

;t is therefore useful to calculate these gradients inside the rods in both

PU-recycle and conventional assemblies during normal operation and at beginnin5

of life.

Powergradients & non-uniform powerdistributions are important for the mechanical

design of fuel assemblies & fuel elements. Due to the non uniform cladding &

fuel temperatures a permanent bending moment will exist on the fuel pins, wHich

causes them to bow. Also for the thermal & hydraulic analysis, these gradients

are important since they create circumferential hot spots in the cladding and

produce a non uniform heat flux.

A succesful attempt has been made to calculate the non uniform powerdistribution

(including spectraleffects) in a simple manner.and to correlate the obtaineiX, Y

powerdistribution inside a pin with a formula of the type

P ge =0 . + ese +(- )

This expression is more convenient for the type of cylindrical geometry & greatly

simplifies the thermal calculations performed in Chapter VII-.

VI - 2 : DESCRIPTION OF THE CALCULATIONMETHOD.

The accurate calculation of the powerdistribution inside the fuel pins

in a cluster of rods is very complex.

An accurate calculation would require the solution of 2 dimensional transport-

equations with many thermalgroups, an SN order of 16 and about 4900 meshpoints.

Although such calculations, in a simplified way, have been made occasionaly on
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small7 or 9 rod clusters for pressure tube light water moderated reactors,

( qs 46 ), they are not practicle, as the authors in

refs. q5' point out. The basic difficulty is the need for 2 dimensional

transport-t.heory codes since the spectrumeffects can be acccunted for by

superposition of THERMOS results on the 2D transporttheory calculation ( Yf6 ).

For such pressure tube clusters, were the coolant is air, only transporttheory

calculations have been reported. In the case of PWR or BWR assemblies, cooled

and moderated by water, transport-theory may be replaced by diffusfontheory, as

shown further. By making a fixed source, I thernal group calculation on the

most interesting portions of the assemblies, the powerdistribution calculation

in the fuel pins with the PDQ-5 code can be made inexpensively and straightforward.

The method that was developed for the calculation of the powerdistribution inside

the fuel pins in the assemblies, consits of the following steps :

1) From a THERMOS-cylindrical unit cell calculation, the region averaged thermal

macroscopic cross-sections for the fuel & homogenized clad & water are

obtained.

At the same time a basic spatial spectralcorrectionfactor, defined as

is also calculated from THERMOS. It has been found (see section 3) that this

spectral correctionfactor cen be expressed by a simple formula

Therefore only 2 points are necessary to calculate at 4,) C 'om :

A {,o)



2) Using the thermal macroscopic parameters a 2 dimensional X-Y PDQ-5 fine

mesh (50 X 50 or 70 X 70) fixed source calculation is made, and the power-

distribution P.Th (X,Y) in each fuel pin i of a cluster of 9 or 49 rods is

obtained. A unit cell of 10 X 10 = 100 meshpoints with 8 X 8 -12 = 52

meshpoints in the fuel has been used in this study.

3) From a .THERMOS-tL model calculation spatial spectrumcorrectionfactorsA(X)

are obtained in the peak slabs at the H 20 gap or MIX/UO2 interface.

These factors are calculated from

were f P(X/L) Is the macroscopic fission section in the peak rod at the

normalised distances X/ , and Z f U(X/L) is the same factor but in an

uncerturbed cell.

Ithasbeen assumed that this spectrumcorrectionfactor S can be expressed by

a simple formula :

q, S4 (6~~

were e= is the angle, from the symmetryline to the point involved at distance

t from the center of the fuel pin.
R Th

4) The obtained powerdistribution from thermal neutrons P. (X, Y) in the peak

gradient pin is then correlated to a general formula suggested by Palmedo ( )

which was found to describe the powerdistribution reasonably well even in our

assemblies.
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5) The total- powerdistribution inside the. pin i, including the flat fast &

epithermal power and all the thermal spectraleffects, is finally obtained

from superposition of all effects according to the equation (6-4)

+4(I- 0 (6-4

Eq. 6-4 can be simplified by the observation thet the b and d factors

are small therefore

r(-)e) ~ ++(I )

AV4

were = normalised distance (R=radius of the fuel pin)
R

f.= fraction of the total average pin power coming from thermal neutrons at

location i (as determined from previous unit-cell homogenized 2 group PDQ

calculations)

L = angle from the symmetryl ine to the point involved

Ni = normal isationfactor
.2 1Z R

such that

0 0 it;

from (6-5) the normalisationfactor is thus also given by (after performing

the double integration)

1, - / (-yp(6-s)

(Since ' f . is usually small N. is close to unity).
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VI-3 EVALUATION OF THE METHOD BY COMPARISON WITH THERMOS,

The method described above, has been evaluated by comparison with the

more rigorous THERMOS-35 thermal group integral transporttheory program.

The figures VI-1, A, B and C.show the results of the calculations.

Fig. VI-1,A pictures the powerdistribution in a cylindrical fuel element as

calculated by THERMOS on a cylindrical unit cell (heavy line). The dotted

line shows the uncorrected powerdistribution as calculated with PDQ-5.

It is noticed that the uncorrected powerdistribution is heavily in error.

After applying the spectralcorrectionfactors (Eq. 6-1), the powerdistribution

as calculated with our method is in excellent agreement with the THERMOS

calculation. A PDQ-5 calculation of an X-Y unitcell also gives excellent

results, as the * points indicate.

After these encouraging results a more difficult arrangement of 4 slabs

(2 UO2 slabs and 2 mixed oxide slabs) at the U02/MIX. interface have been

calculated with THERMOS & our method.

Fig. VI-1,B shows the normalised powerdistribution in the peak MIX.OXIDE slab

as calculated with THERMOS and our method. (after applying the SX spectralcor-

rectionfactors) and Fig. VI-1,C shows the same results for the UO2 slab at the

interface. It is noticed that in this case the agreement is not as good,

but the errors are still within the + 3 % error claiimed for experimental

accuracy ( I ). The agreement between our method & THERMOS on a

gradient-factor defined as the ratio of the peak power at surface to the minimum

power at the surface is about 1 %.

Noticible is that the gradient in the UO2 slab is small & opposite to what

expected. Therefore in all our further calculations, spectrumcorrection-

factors S for the UO2 pin next to the Mixed oxide have been neglected, since

they make the results worse.
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In summary it may be concluded that the basics of the Simple method are adequate

for the calculation of the powerdistribution inside the pins. The accuracy of

the method is nearly as good as the accuracy of 3 % claimed for the experimental

determination of the power inside the rods using a fuel activationtechnique.

vi -4) RESULTS FOR THE CONVENTIONAL & PU-RECYCLE ASSEMBLIES,

4)-A SPECTRUM CALCULATION RESULTS,

Four THERMOS calculations were made to determine the spectrum correc-

tionfactors S at the H2 O/UO2 interface, U02/MIX interface and the unperturbed

spectralcorrectionfactors S (r) in cylindrical UO2 and mixed oxide unit cells.

The geometry for the H2 OO2 interface calculation consisted of a 1 dimensional

slab model of the zirc follower, watergap, can and 3 fuel slabs of U02, inbedded

in H 20. Four slabs (2 slabs UO2 & 2 slabs MIX.OXIDE) were taken for the UO 2/MIX

interface calculation.

Fig. VI-2 shows the spectralcorrectionfactors S in the peak slabs at the

H2 0/UO and MIX/UO interfaces, at various normalized positions in the peak slabs.2 2 2

As seen there is a linear variation of the S factor versus normalized distance

given by :

(it is only by chance that the correctionfactors are the same in both cases).

The linear variation is more or less expected, Since it had been observed

that the spectraleffects decay exponentially away from the interface, in the

small peak slab the exponential with a decay constant of about 2 unit cells,

is nearly linear.

Because a .real fuel pin is cylindrical a reasonable assumption for the variation

of the spectruncorrectionfactor S in the peak UO2 pin at the H20/U0 2 anithe
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peak MIX.OXIDE pin at the U02 /MIX is ;

were the e angle is taken from the symmetry line in the direction of the peak

to the line from the center of the pin to the point at a normalized distance

r f rom the center.
R
Note that eq. (6-8) is consistent wit eq.(6-7) for t3 =00 and 6 =1800 and

the slabresults of Fig. VI,2.

Fig. VI-3 pictures the variation of the' spectralcorrectionfactors S(r) in the

unperturbed UO2 and Mixed oxide cylindrical fuel elements, as calculated with

THERMOS on a cylindrical unit-cell model.

The ln S(r) has been plotted in fuction of (r/R) 2, and it is noticed that there

is a perfect linear relationship. The S (r) factor may thus be expressed by

4( q -. ( ta ( (6-9)

From the results the factors were found to be

(VO*) . (6-10)

(Mix )FVz 0. 167(-1

It Is thus also noticed that the spectrum varies much stronger in a mixed oxide

fuel pin than in a uraniumoxide fuel pin.

4)-_ UNCORRECTED X-Y POWERDISTRIBUTIONRESULTS.

Description of the model,

Using the thermal macroscopic cross-sections obtained from the THERMOS

unit cell calculations, two dimensional X-Y powerdistributioncalculations were

made with the PDQ-5 code on portions of the conventional and PU-recycle assembly.
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Large savings in computortime (about a factor of 30) was realised by using 1

thermal group and a flat fixed source in water. Since the powergradients

inside the rods are smaller than the overall gradients from rod to rod and

damp out about three fuel pins from the H 20/UO2 or MIX/UO2 interface, only

portions of the assembly were considered. A cluster of 9 UO2 rods at the

cruciform watergap, and a cluster of 36 UO2 and mixed oxide rods were there-

fore calculated, with the geometrical lay-out pictured on Figs.VI-4 and VI-5.

As seen on the figures, a unit cell had been described by 12 X 12 144

meshpoints, and the cylindrical fuel rod by an X-Y model of 8 X8 - 30L4 = 52

meshpoints. The total size of the problem was51 X 51 = 2601 meshpoints for the

9 rod cluster in the corner of the assemblies and 70 X 70 = 4900 meshpoints for

the 36 rod cluster in the center of a plutoniumrecycle assembly. The UO2 rods

were of the usual 4.0 w/o U235 type & the Mixed oxide rods were of the proposed

4.0 w/o PU 02 - nat UO2 (19 a/o PU 240) type. The total CPU time for such a

large size problem was only + 1 min. for the 9 rod cluster & + 2 min.

for the 36 rod cluster. The rather small CPU time & low cost (about 20 $ per

run) is mainly due to the selection of the 1 thermalgroup & fixed source model,

which is adequate for our purpose since the epithermal & fast fluxes inside the

fuelrods (& even over the whole clusters) are very flat. It is estimated that

about 10 to 20 outer iterations would have been necessary to calculate a 2-group,

keff calculation of the same size. The estimated computorcost would have been

about 2 X 15 X 20 = 600 $ instead of 20 $ as with our model. A transport-theory

calculation of about the same size and S-12 approximation to reduce streaming

2effects would cost about (12) = 144 times more, The numbers speak for them-

selves.
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FIG VI-6 GEOMETRICAL AND COMPOSITION LAY OUT OF THE 36 002 & MIXED OXIDE ROD CLUSTER
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Results :

Fig. VI-6 shows the 2 dimensional map of a gradient-factor G.F., defined as the

ma.ower at the surface of the fuel rod to the minimum power at the fuel rod,

as determined from the uncorrected PDQ-5 results.

It is noticed that the uncorrected gradients in the UO2 cluster at the cruci-

form watergap are much less than the gradients in the peak mixed oxide pins in

the 36 rod cluster. It is also important to notice that the gradients in all

the mixed oxide pins at the boundary of the interface are about the same, but

is maximum for mixed oxide pin number 2.

Also shown on the figures is the direction from the min, to maximum circum-

ferential powervalues. They are thus the directions in which the fuel pins

will bow.

For comparison reasons, the gradientfactors have also been multiplied with the

P
spectrum correctionfactor S . It is thus noticed that the spectralcoupling

effects are responsible for about 80 % of the gradients in the peak UO2 rods

at the watergaps and for about only 25 % in the peak mixed oxide rods.

It is also observed that gradient-effects will be about 150 % worse in aPU-recycle

assembly compared to a conventional assembly & the peak gradients are found in

the peak mixed oxide pins.

The Figures VI- 7and 8 are showing the uncorrected X-Y powerdistribution in the

uranium oxide pins 1 and 3 of the 9 rod cluster at the cruciform watergap of a

conventional or PU-recycle assembly. They are obtained directly from PDQ-5

after normalisation of the average pin powerdensity to unity. The powerdistri-

bution does not include the unperturbed spectralcorrectionfactor S(r) and the

perturbed factor S (r,6 ), and gives only the power from thermal neutrons.

The asymptotic UO2 pin 9 was found to follow an exp. - law;
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and the factor was found to be 0,016 (6-12).

The figures 9 to 11 picture the uncorrected X-Y powerdistribution in the

mixed oxide pins number 1, 2 and 3. The pins 2 & 3 are having a symmetryline

at 45 0 and 900 respectively, in which directtion the fuel pins will bow.

The peak mixed oxide pin number 1, does not have a siymmetry, as seen from

Fig, 9. The gradients may be thought of as coming from a 00 and 900 line

with different strength. Since the 900 line gives somewhat larger gradient

the vector result of bow-driving forces will be around the 50 to 600line.

Note that all the peak mixed oxide pins have about the same gradient-factor &

about the same skewed distribution. Therefore instead of analysing the peak

pin number 1, we will analyse the pin number 2. In view of its symmetry &

the fact that easy formulas exist makes the problem of one order of magnitude

simplier. The asymptotic mixed oxide pin was also observed to follow a law

esp. '( - Etand the factor was found to be = 0.0524 (6 13)

The X-Y PDQ calculations are'aotpracticle to work with, therefore it was tried

to correlate the uncorrected X-Y results in the regular peak UO2 and mixed

oxide pins with a formula of the type:

It wasfound that the uncorrected powerdistribution in the peak UO2 pin could

be expressed by the formula (6-14)

" ({)9 .(o.90i4 + o.0oo cot e)"ro oo)4( ~

and the uncorrected powerdistribution in the regular peak mixed oxide pin

(number 2) by the formula (6-15)
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The deviations between the powerdistribution as calculated with this correlation

& the PDQ X-Y results were maximum o.3 % for the UO2 pin and 0.1 % for the

mixed oxide pin. These conservative fits were obtained from correlation of the

circumferential powerdistribution at the edge (r = R) with the formula a + b , cost

and the correlation of the unperturbed variation exp. ' (r)2
R

Note that the circumferential powerdensity in the mixed oxide pin varies 10 X more

than in a uraniumoxide pin; and that the dip in the powerdensity is much more

pronounced also.

The total powerdistribut ion in the peak regularUO2 and mi~xed oxide pins.

By superposition of all the results it is now possible to obtain simple 2

dimensional r,9 expressions for the total power, including the assumed flat

fast & epithermal parts and all the spectraleffects.

Combining the equations & values 6-8, 6-9, 6-10 and 6-14, we get for the total

powerdistribution in the peak UO2 pin

P~ RE a)911+oo5~o

From Fig. V- 6 showing the fractioitof power due to thermal neutrons in the

peak UO2cell, f is found to be 0.8.

After simplification of (6-16) & normal isation such that the average powerdensity

from thermal neutrons is 0.8 we get

.I (%G :0.0X .9 40.99\y 4 O.04T L'OSG eig 0.040{

or P toal .(r ,&G) =(0.777 + 0.0353 LcosO9 ) exp 0.060( - o.2 (6- 18)
Co 2 R (9 61 a (6),unte

Combining the values and eqs. (6-8), (6-9), (6-11) and (6-15), using the fraction
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of power due to thermal neutrons in the peak mixed oxide rod f = 0.75

(Fig. V- 13 ) & after simplification in the same way as above we get for the

regular peak mixed oxide pin :

bo (;) .: 0.76 x 0.3 1 ,6 0.'0 4 0.i if 7 CO *e4 D.1194
mix R

OL4 o.6 ( -ocv-91eAi o4 J

trII Lve) -.:o.67I + o 7. CVsS] eg o.t.2(g) + .. 25 (/--2o)

The figures VI-12 and 13, show the normalised total corrected 2 dimensional

powerdistributions inside the regular peak UO2 and mixed oxide pins; compared

to the total powerdistributions in an unperturbed fuel rod. For clarity

the powerdistributions of the peak UO2 & regular peak MIX.OX. at the 0-1800

plane & the unperturbed 900 plane are also shown in one dimension on the

Figure VI-14.

5) CONCLUSIONS.

A simple method has been developed for the calculation of the powerdistri-

bution inside the peak UO2 pin at the corner of a conventional and PU-recycle

assembly, and inside the peak regular mixed oxide pin,

The two dimensional total normalited powerdistributions can be expressed by

the formulas

T@ *) = (o.777 + o.o3" . cse eIo(O-06(5)) 4- 0--1
U Ot R

for the peak UO2 pin

and by

for) .-: 07u + 0.0 '73 Ceak0 m xe.d o

for the regular peak mixed oxide rod.
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where (9 = the angle from the direction of the center to the hot powerspot

(9 = O ) to the direction of the center to the point at a normalised distance

r/R (9= 90 ).

(R= fuel rod radius = 0.3975 cm in our case.)

The real peak mixed oxide rod does not follow this simple law since there is Mo

symmetry in the powerdistribution. This rod is very difficult to analyse due

to the large uncertainties in the spectralcorrectionfactor and the need for

elaborate codes such as HEATING, for the thermal analysis of this pin. It

has however been observed that the gradientfactor, defined as the ratio of the

max.power at the surface of the pin to the min.power, of the peak rod is the

same as the gradientfactor of the symmetric rod next to it, for which the

formula applies. Therefore the assumption of the formula (6-19) applied to

the real peak rod, should not lead to large errors,

In general it has been found that powergradients in the plutoniunrecycle assembly

are much larger an the mixed oxide pins at the UO 2/MIX interface than in the UO2

rod in the corner of the conventional & PU-recycle assembly.

Particular attention has thus to be paid to these effects for plutoniumrecycle

applications, as well in graded as discreet assemblies.

It must be noted that the calculations were perforned at beginningof life and

for normal operation. With burnup, it may be expected that the peak UO2 pin

will behave more as a mixed oxide pin due to the build-up of plutonium. The

gradienteffect at the watergap will be affected somewhat but not too much.

In abnormal situations, such as e.g. with the insertion of the cruciform control

rods, large gradiensts in the cor ner UO2 pin will exist f the same magnitude

as in the mixed oxide pins. Although for the mechanical design, this evaluation

is important, the gradient UO2pin will not be at the hot spot, and is therefore

of less importance unless the bowing of the rod is so large that the rods nearly

touch the can.
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CHAPTER VII :.THERMAL HYDRAULIC EVALUATION OF CONVENTIONAL AND PU-RECYCLE

ASSEMBLIES.

VII-1) INTRODUCTION : THERMAL HYDRAULIC CHARACTERISTICS.

The nuclear design aspects of the assemblies and the core are important

for the determination of powerdistributions, powerpeakingfactors and fuel

management characteristics. The thermal-hydraulic evaluation has its primary

objective to assure that the core can meet normal steady state and transient

performance requirements without exceeding design limits. Complete thermal-

hydraulic analysis in steady state & transient is quite complex, and elaborate

computer programs are presently being used by manufacturers and utilities.

These codes are however slowly coming in the public domain and many special

proprietary design informations (e.g. on spacers & experiments) are still

hard to come by.

Because computerprograms such as THINC 1I ( 48 ), or COBRA & FLASH for some

of the thermal-hydraulic analysis &fortransientanalysis were not available,

the thermal hydraulic evaluation has been performed by comparison of PU-recycle

assemblies to existing data for conventional assemblies, and a conservative

approach was taken to evaluate the in core performance of the peak mixed oxide

pin relative to the peak corner UO2 pin in the PU-recycle assemblies.

Special emphasis has been put on the calculation of a more refined engineering

heat flux hot channelfactor taking the nuclear non-uniformpowerdistributions

in account, which weredetermined in the previous chapter.

A summary of the thermal hydraulic parameters is given in Table VII-1 as

determined at the YAEC. ( 43 ) for the analysis of core 10.

Estimated values for a peak mixed oxide pin, with similar nuclear heat

fluxpeakingfactors as the peak UO2 rod are also included.

1i -2) HOT CHANNEL FACTORS.

Hot channel factors are divided in two basic groups :nuclear & engineering
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hot channel factors.Nuclear hot channel factors can vary from core to core

design; and the predicted values are less than the design peaking factors

which are set to assure that the core design limits in steady state &

transient operation are not exceeded. The engineering factors usually do not

vary much, unless mechanically new assemblies are designed

New concepts such as plutonium recycle in which the mixed oxide pin may be the

peak pin has an effect, however for the peak U02 pin in the corner, the same

engineering factors can probably be used with good confidence.

The total hotchannelfactors are the ratios of the maximum values in the core

to the core average values, and are thus divided into the nuclear and engineering

components but may on their turn be divided in subfactors which account for

specific hot spot effects. E.g. most of the work has been centered on the

determination of a method for the calculation of nuclear local powerpeaking-

factors, which on its turn can be divided in a nuclear spectral-effect HCF.

Two basic quantities are of fundamental interest & principly used in reactor

design and performance evaluation:

The total heat flux hotchannelfactor, which is the ratio of the mamixmum heat

flux at a certain outer cladding spot in the reactor to the average core value;

and the total enthalpy rise hotchannelfactor, which is the ratio of the enthalpy

rise in the hot coolant.channel to the core average enthalpy rise.

A further classification of engineering hot channelfactors is a deterministic &

statistical HCF. The deterministic HCF. accounts for all physical effects

that exist in the peapin which are not random in nature. The statistical

factors take into account random effects which can cause hot spots, and are

treated in a statistical manner, based on usually a large number of data.

The nuclear heat flux factor is the ratio of the maximum heat flux in a fuel rod,

to the core average heat flux. The nuclear enthalpy rise factor is the ratio

of the axial distance averaged heat flux in a channel enclosed by four or less

fuel rods, to the core average heat flux. Only the average of the radial
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nuclear hot channelfactors of the rods adjacent to the channel has to be

taken. All nuclear hot channelfactors are based on nominal dimensions and

nominal pellet and enrichment specifications.

Engineering factors account for the physical differences between the hot

channel and a nominal channel, other than those differences due to nuclear

effects. Thus the circumferential heat flux in the peak rod, at the outside

of the fuel pellet could be classified as a nuclear hot channelfactor, whereas

the heat flux HCF leaving the cladding surface could be classified as an

engineering factor. This convention has however not been used for practicle

reasons.

2)_1 Nuclear Factors.

The nuclear heat flux factor relates the peak heat flux in the core to

the core average heat flux. The nuclear heat flux factor is primarely used

for three important calculations : the maximum cladding temperatures, the

departure of nuclear boiling ratios (DNBR) , and the fuelcenterline temperature.

It should therefore be noted that this core average heat flux is reduced by a

fraction (normally 2.7% in PWR's) from that obtained from total core power and

total heat-transfer area to account for the fact that some heat is released

directly in the coolant and reactor internals. (gamma heating & neutron slowing

down).

For the calculation of the fuel centerline temperature, a flat power inside the

rods is usually assumed. As determined in this study, the linear powerrating

should besides of the appropriate engineering & nuclear heat flux hotchannel-

factors, also be multiplied with a reducing engineering hot channelfactor due to

non-uniform heat generation. This factor is especially important for mixed

oxide rod since the heat generation is much more non-uniform, No circumferen-

tial nuclear heat flux HCF should be used for this application.
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Design values of 3.11 and 2.74 for the nuclear heat flux HCF were established

by the YAEC for the stainless steel clad fuel and zircalloy clad fuel.

Design values of 2.06 and 1.88 were established for the enthalpyrise factor.

These design factors were established on the basis of the results of a loss-of-flow

accident analysis ( 49 ).

2)-2 Engineering Heat Flux Factor,

The effect on local heat flux of deviations of nominal design dimen-

sions and specifications is accounted for by the engineering heat flux factor.

Design variables that contribute to this factor are fuel density, fuel enrich-

ment, pellet diameter and clad outside diameter. Manufacturing data associated

with these variables were analysed statistically to obtain the engineering heat

flux factor. Values of 1.03 and 1.04 were obtained for the stainless steel &

zircalloy fuels respectively.

A deterministic circumferential heat flux peaking factor has been introduced in

our study to account for the local variations of the heat flux arround the pellet

& cladding due to non-uniform powergradients in the peak pins.

The conduction of the cladding attenuates these circumferential variations such

that the heat fluxvariations leaving the cladding surface is less than the

variations from the pellet.

An engineeringfactor for the heat flux at the pelletsurface was found to be

1.024 for the UO2 & 1.064 for the mixed oxide zircalloy pins. Due to attenuation

in the cladding the outerciadding heat flux was found to be 1,012 for the

zircalloy UO2 rods and 1.038 for the future zircalloy mixed oxide rods.

The total engineering Heat flux hot channel factor thus becomes 1.052 & 1.080

for the zirc UO2 and mixed oxide rod respectively.



264.

TABLE 7-1 : Core 10 Thermal-HydraulIc Parameters at Full Power (from Ref 49

General Characteristics

Stainless Steel

)

Zircalloy

Total Heat Output, MWt
Total Heat Output, BTU/hr
Fraction of Heat Generated in Fuel
Pressure - Nominal, psig
Pressure - Minimum Steady State, psig
Pressure - Maximum Steady State, psig
Nominal Coolant Inlet Temperature, F
Design Inlet Temperature, 0F
Nominal Vessel Outlet Temperature, F
Nominal Core Bulk Outlet Temperature, 0 F
Total Coolant Flow Rate, lb/hr
Heat Transfer Flow Rate, lb/hr
Nominal Channel Hydraulic Diame er, in.
Average Mass Velocity, lb/hr-ft'
Average Coolant Velocity in Core, ft/sec
Core Pressure Drop, psi
Vessel pressure Drop, psi 2
Average Heat Flux, BTU/hr-ft 2
Assembly Heat Transfer Area, ft 2 o
Average F i Im Coef f i c ient , BTU/hr- f t - 0F
Aveeage Film Temperature Difference, F
Average Linear Rod Power, kw/ft
Spec if ic Power , kw/kgU
Power Density, kw/liter
Average Core Enthalpy Rise, BTU/lb

.327 62.67 X 10
15.5

129,000
203

6670
19.3
3.36
28.1
89.3

600 6
2048 X 10

.973
2000
1925
2075

510
514
552
556 6

40.6 X 106
36.4 X 10

17
35

56.3

.399
2.37 X 106

13.8

153,000
171

5820
26.3
4.28
28.3
90.1

Design Heat Flux Factors

Nuclear Heat Flux Factor
Engineering Heat Flux Factor
Total Heat Flux Factor

Design Enthalpy Rise Factors

Nuclear Enthalpy Rise Factor
Engineering Enthalpy Rise Factor
Total Enthalpy Rise Factor

Stainless Steel

3.11
1.03
3.20

Stainless Steel

2,06
1.26
2,60

Zircal loy

2.74
1.04
2.85

Zircal oy

1.88
1.19
2.24



Table 7-1 Continued : Hot Channel and Hot Spot Parameters & Qomparison.

Design Core X predicted

Stainless Zircalloy Stainless Zircalloy

Maximum Heat Flux, BTU/hr-ft 2  412,800 436,000 309,600 335,000

Maximum linear Rod Power, kw/ft 10.8 12.2 8.07 9.38

Maximum UO2 temperature (OF) 3100 3400 2350 2700

Maximum clad Surface Temp.( F) 647 647 642 642

(Jens-Lottes)

(Thom et al)

Hot Channel Outlet Temperature( F)

Hot Channel Outlet Enthalpy, BTU/lb

Maximum W-2 DNB ratio

Minimum W-3 DNB ratio

645

624

65o

2.11

3.62

611

630

2.05

2.80

605

622

2093

594

606

2.87

Estimation for a pluto-
nium recycle assembly -
peak MIX *,

345,000

9,38

2630

642

645

584

593

3.00

* Estimated as if a conventional zircalloy clad peak assembly is replaced by a plutoniumrecycle assembly -

only the values for the peak mixed oxide rod are given. The values for the peak UO2 are assumed to be

the same as for a conventional assembly.

J
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2;.Stat is t ical-En thal py R ise-Fac tor .

The statistical enthalpyrise factor accounts for the effects of

deviations in fuel fabrication from nominal dimensions or specifications on

the enthalpyrise in the hot channel.

Tolerence deviations (averaged over the length of the four or one fuel rod

that enclose the hot channel)for fuel density, enrichment, pellet diameter,

clad outside diameter, and rod pitch and bowing are taken by this factor.

Manufacturing data associated with these variables was analysed statistically

to obtain the statistical enthalpyrisefactor. Values of 1.20 and 1.10 were

obtained for the stainless steel and zircalloy fuels respectively.

Because of the powergradients inside the rods it seems that the bowingeffects

should be treated deterministically. Since larger circumferential heat flux

variations were noticed in the peak mixed oxide rod, one should be inclined to

accept a higher bowing factor. It has however been found that the coolant

varies in an opposite way, such that the overall circumferential cladding

temperature is rather flat. Therefore it seems not necessary to include a

higher bowing effect in the mixed oxide rods, the more that these rods are in

the middle of the assembly and one channel is surrounded by 4 rods, compared

to a peak corner UO2 rod which will bow toward the can and produces a higher

effect.

2):4. Lower Plenum Flow Distribution Factor.

This subfactor was determined at YAEC by comparing an experimentally

measured inlet flowdistribution in a 1/12 model ( 50 ).

It was concluded that the maximum increase in the enthalpy rise of the hottest

assembly was less than 5 %. Therefore a value of 1.05 was chosen for the

lower plenum factor.
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2)-5. Flow Mixing Factor,

The enthalpy-rise in a hot channel is decreased. in part by mixing of the

coolant in the hot channel with coolant in the surrounding channels.

Flow mixing between adjacent channels occurs because of random flow fluctuations

in turbulent flow superimposed on the axiai velocity of the fluid. This lateral

eddy diffusion (perpendicular to the dominant flow direction) results in heat

transport from cold coolant to the warm cooland and vice versa. There is no

net transfer of fluid from one location to another, but there is a net transport

of heat. The eddy transport can be increased by increasing the turbulence in

the subchannels. One possibility comes from the spacers which are claimed to

have very beneficial effects.

For the stainless steel assemblies, the flow mixing in a rod bundle has been

tested by Westinghouse ( 51 ). A conservative value of 0.95 was found.

For the zircalloy clad assemblies, calculations made to determine the enthalpy

rise in 25 parallel channels ( 49 ). The heat balance equations for

the fluid were applied to each channel. To determine the hot channel mixing

factor, two cases were considered - one with no mixing and one with mixing

based on data obtained by Rowe ( 52 ). The ratio of the hot channel enthalpy-

rise with mixing to the hot channel enthalpyrise without mixing ((3 0) was

found to be 0.94.

Because of the somewhat larger Reynolds number in the center of the bundle, it

may be anticipated that the mixing factor for the hot mixed oxide channel will

not be less than for the peak UO2 channel. Therefore the same mixing hot

channelfactor should also apply for the peak mixed oxide channel.

2)-6.. The Flow-Redistribution Factor.

The flow-redistribution is very important for the evaluation of the

engineering enthalpyrise hotchannel factor. Its calculation, such as the
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mixing factor is complicated because of the need for rather elaborous codes

solving the mass-balance, energy & fluid momentum equations in a large number

of channels simultaneously.

This complex interaction is however very beneficial. Attemps to use more

simple methods failed and yielded much larger flow redistributionfactors as the

ones calculated with thermal hydraulic analysis codes and conservative assumptions.

2 - 7) COOLANT FLOW IN THE YANKEE REACTOR,

A layout of the Yankee Reactor was given on Fig. 1-2 . Coolant

enters the reactor through four nozzles located 900 apart at the same elevation

near the top of the vessel.

In the reactorvessel the coolant is distributed as follows : 1 % of the total

coolant flow entering through the vessel inlet nozzles is bypassed up through

holes in the guide tube hold-down plate & support plate to cool the reactor

vessel head. The remaining 99 % of the coolant cools the core baffle and

thermal shield as it flows down. In the core, 90 % of the total design

coolant flow is conservatovely estimated to be available for heat transfer

purposes. The rest of the coolant flows through passages around the control

rods and adjacent to the core baffle.

From pressure drop and coolant flowrate data from previous cores, and from

data of zircalloy clad fuel assemblies and the main coolant pump delivery

characteristic curve the YAEC calculated total coolant flowrate is 40.6 X 106 lb/hr,

while the calculated heat transfer flowrate is 36.4 X 106 lb/hr.

Pressure Drop & Cooland Velocity.

At the total flowrate of 40.6 X 106 lb/hr the total pressure drop across the

reactor from inlet to outlet nozzles was calculated by YAEC to be 35 psi.



269.

The calculated pressure drop across the core, including the support plates, is

17 psi. The average coolant velocity along the fuel rods is 15.5 and 13.8 fps

for the stainless steel and zircalloy clad fuel respectively.

The total pressure drop across a core or a reactor vessel is often expressed as

WV. c.Q~e Pve., KCSSL IO

V = average velocity inside the core C.

= average density in the core

= convers ionf actor.

The K values for the SS-clad assembly Yankee Reactor are

K core = 15, Kvessel = 34'

Three Loop Operation.

Three loop operation characteristics were also calculated by YAEC for core 10.

Results of loss-of-flow accident analysis ( 49 ) indicate that nominal 3-loop

power should be limited to 75 % of the fuel power. The total 3 loop coolant

.-lowrate is 78 % of the four loop flow rate. The maximum temperatures, heat

fluxes and other datawere for this mode found to be more conservative in

these conditions than 4-loop operation.

V l-2) THE THERMAL-HYDRAULIC MODEL.

2-1. THE FLOWDISTRIBUTION IN THE ASSEMBLIES.

The basic parameters needed for the thermal evaluation of the assemblies

and the core, is the flow distribution in the coolant subchannels of the assembly.

(Fig. ViI-1). Because of the different heat flux going into the channels, the

physical properties of the coolant are also affected by tIe nuclear calculations,

thus the power generated by each rod. The fact that the subchannels are not

separated from neigbours such that flow diversion or redistributions will exist

between channels as the pressures try to equalize, and the presence of turbulent
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FIG VIIl-1 DIFFERENT COOLANT CHANNELS IN THE ZIRC CLAD ASSEMBLIES
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cross-flow mixing which exchanges only the heat between channels, makes the

analysis complicated. The general equations for the solution of the thermal-

hydraulic behaviour of the different coolant channels in the assembly according

to the"pressure gradient model" are given by ( 18 )

Calling i the channel of interest, e.g. the hot channel, the equations that

govern the thermal-hydraulic behaviour of the coolant in channel i are given by

Continuity :
N

12,,3-- N (7-1)

o>

44<o

Axial Momentum:

+.2C.S

~~L~ Ar (U~j +7L 1 wIi'JD)

N , L Z 2 j >
Lo CVJA~d 7~

Where i refers to the channel of interest an

j = 1 *N are the adjacent channels surrounding i.

mi mass velocity (lb/hr ft2)
Ai

X = axial distance : (ft)

dx.

dx = -z
Energy-balance

+
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W . = diversion cross-flow mass velocity per unit axial length (lb/hrft3)
or W turbulent cross-flow

p = pressure (psi)

A i = flow area (ft )

h. = enthalpy (BTU/lbm)

v' = equivalent specific volume (ft3 /lb) in single phase flow = v = p
( p density)

ge = conversionfactor = 4.17 X 108 lbm/lbf hr2

D. = hydraulic diameter

f = Darcy-Weisbach frictionfactor

(f=0184 )
0.2

Re

0. = 2 phase flow friction multiplier = 1.0 for simple phase flow.

ft fD = turbulent & diversion parameters.

C.. = loss funtion
IJ

u = momentumvelocity =mv'

A

q'. = linear heat rate in the channel i.

The equations describe completely the flow & enthalpy in channel i, taking

coupling due to mixing & flow diversion between other channels into account,

as well as the interaction of the fluid properties with the heat generated in

the channel & the enthalpy & pressure at each axial distance X. The equations

are solved with computer programs such as the COBRA series ( 18 , 19 ).

The various computorcodes that exist for the solution of the thermal-hydraulic

equations of a large number of channels simultaneously differ primarely in the

nenner in which diversion cross-flow is treated and the mathematicel procedure

used to solve the set of non-linear equations. In COBRA, the

diversion cross-flow is determined by the pressure gradient (p -p ) between the

adjacent channels.
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The Westinghouse THINC 1I code ( 48 ) however assumes that no significant

pressure drops exist between subchannels. The cross-flows are then determined

as those required to provide a laterally uniform pressure at each axial

position, subject to an inlet flowdistribution.

The fact that the different subchannels are not isolated has a large effect on

the flowistribution hot channel factor.

With the assumptions that the pressure drop across each isolated channel as

pictured in Table7-1& on Fig, 7-1 Is the same, & that the sum of the flowrates

in the subchannels equals the average assembly flowrate, the flowdistribution

factor may be written as :

FE D

where A = average cross-section for the flow of the average channel

Ai = cross-section of the hot channel.

Dav = average hydraulic diam.

D. = hydraulic diameter of the hot channel.

The flowredistribution obtained with such an isolated channel was found to be 1.38.

Conpared to a typical value of 1.05 obtained with thermal hydraulic codes.

The need for thermal hydraulic codes is thus remarkably. -

Since the mixed oxide peak rod is located in the middle of the assembly, one

may expect that the flowdistributionfactor is relatively unimportant & a value of

1.00 can probably be used.
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2)-2. THE EFFECT OF NON UNIFORM HEAT GENERATION IN THE PEAK UO AND

MIXED OXIDE PINS, AND ASSOCIATED HOT-CHANNELFACTORS.

21-2A) THEORETICAL CONSIDERATIONS.

Assuming a uniform coolant temperature & het-transfercoefficient

around the pin, and a non-uniform heat generation in the pin described by

en equation of the form :

9 11Al' (7-6)
I AV A

With the consideration that theffactor is only of the order of magnitude of

0.15, and that the exponential term may be expanded, eq (7- 6) can be simplified

to

A 2 A(S ~2 1 + o e+A4 (.519 (7-7)

Nysing (Ref. 53 ) has developed simple formulas, for the heat flux,

cladding temperatures & fuel temperature vararions of fuel elements by solving

the equations (7- 8 ) & (7-9 )

+D 0~ 2 (7-8)

for the fuel and,

VT 7~ 4 . 1 r

for the cladding.

After solving the eqs. (7-8) - (7- 9) with (7-f7 & applying the boundary

conditions, Nysing obtains for the fuel temperature at each point : r, 0

I~ =- AL .- Nu, ( Tg CCos ig +

Los + t cc 7-t o)



and for the temperature at each point r & in the cladding :

T=T + AT - N%-x AT t. .
b 4Au 0Au- to

+ m 4T k Nuk
dA I +Nutg _k

+ Nu. S1
I - Nwk R

The temperature at the inner cladding surface becomes :

T;, T6 +AT4 -.Nu, ATA + + i AT NL k(N +

IN

and at the outer cladding surface

T 0 = . T + .2 ATT,, r 4.,
i +Nu4. +

%41

For the heat fluxes at the fuel surface Nysing obtains in a dimensionless form :

F15 (~)
ii

II
-14 YCos 9

and for the heat flux at the outer cladding surface

E
F E 9I_. I 4. ,y

where

CA, =ATO0 O.JP

with D given by

K (L I . .U.s

(- R -

N A3T+N-

E I N +1

with b given by

i3 &

(7-12)
/12 NV

N U44

___ __ __ __ __ __ __ __ -

) ( T% R . OkUr3 g + t N L I
~ ( I + ( ,/4 %0) 4g-)

*

I - NU,6
(-7-11)

(7- i4)

k, W.Lk
w.sG (7-16)

+1 (7-I6)

( 7-17)

(7-0)

- V -%

1 4 Nt& + k2^ ( Nw -I

I Nz %.5 + - N t, kv -+j +t
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The following notations have been used

k = ratio of inner to outer clad radius (Ri/Ro)

q". local radial heat flux at fuel surface on interior of cladding

(W/m2 or BTU/hr ft2)

q''av = averaged "

q" 0= local radial heat flux at outer cladding surface.

q"nav = averaged o

q'" = local heat generation in fuel (W/m3 or BTU/hr ft3)

q" av = average "

r = radial distance of fuel rod center (m or ft)

R = radius or fuel pellet (m or ft)

R. = inner cladding radius (m or ft)

R = outer
0

T = temperature in fuel or cladding (0C or OF)

Tb = bulk coolant temperature (0C or OF)

TR = temperature at fuel surface (0C or OF)

T. = temperature at inner cladding surface (0C or 0F)

TO = " at outer cladding surface.

Toav = average temperature et outer cladding suface.

A Tav = "average " difference between outer cladding surface temperature and

bulk coolant Temperature given by : q OAJ* at 9i.
eod 42ow

= local heat transfercoefficient at outer cladding surface (W/M2 oC or
0

BTU/hr ft 2 0F)

=oav average " " "

ou= heat transfer coefficient at guter cladding surface in the case of aou

uniformi heat-transfer coefficient distribution.
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Q = local gap heat transfercoefficient (W/m 2 0C)

o(gav = average II i

a('gu = gap heat transfercoefficient for uniform contact resistance (W/M 20C)

> = thermal conductivity of fuel (W/m0C or BTU/hr 'F)

A cl= thermal conductivity of cladding

= angle (radians)

Nu = dimensionless heat transfer number representing av R/ X or
g gay f

a- R/ gu f

Nuh = dimensionless heat transfer number representing oav Ro/ A or

' Ro/c
ou k c1'

in the case that radial cracks appear in the fuel-,fuel periferal conduction

(assuming no radiation-heat transfer) cannot take place and m becomes

m*= 2 A3 + 2 A (7- Z )*
3 5

-2,B) RESULTS OF NUMERICAL CALCULATIONS OF THE EFFECTS OF NON-UNIFORM

HEAT GENERATION,

Using the in-rod powercorrelation for the peak U02 & peak mixed

oxide pins, developed in chapter 6, the A factors were found to be :

peak UO, pin: peak Mixed oxide pin:

Al 0.9769 0,92076

A 0.04662 0.14716
2

A 0.0353 0.08504

A 0.00212 0.0187

The m factors of the heat flux hotchannelfactors were calculated, assuming
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1) 9 conduction in the fuel

2) assuming no19 conduction in the fuel (radial cracks).

3) assuming no conduction in the fuel X 0.

The effect of the gapconductance or Nu factor was also investigated by taking

&W = 0, of = 1400 and of = 700 BTU/hr ft2 oF .
9 9 9

The results of the calculations for the circumferential heat flux hot channel-

factors are shown in Table 7-2 picturing the maximum HCF at the hot spot C 0,

for various situations, and on Fig. 7-2 picturing the HCF, in function of the

angle & around the pin, in the recommended cases.

From these results it is observed that the variation of the heat flux around

the pin due to a non uniform heat generation is about 3 times more important

in the mixed oxide pin than in the UO2 pin. The maximum values are obtained

In the assumption that there are radial cracks in the fuel and no possible

conduction in the fuel, and a perfect contact clad-fuel (Nu or 0/ =00 )
9 9

It is observed that the attenuation due to 0 -conduction in the cladding is

about 50 % for the U02 and 59 % for the mixed oxide fuel. The effect of the

fuel condictivity Af is rather small, the maximum effect is obtained for

zero conduction in the fuel.

The influence of the gapconductivity is much stronger. The better the heat

transfer cladding-fuel, the larger the hotchannelfactor becomes. An attenuation

of about 87 % is due to this effect.

A conservative HCF value of 1.024 for the innercladding surface heat flux and

1.012 for the outer surface heat flux should be used for the peal UO2 pin,

and a value of 1.064 an 1.038 for the peak mixed oxide pin.
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Teble 7-2,HYDRAULIC DIAMETERS AND FLWAREAS FOR THE DIFFERENT CHANNEL TYPES.

CHANNEL TYPE

Corner A(1/4)

periferal B (1/2)

internal C (1)

Average Assembly (Type B)

FLOW AREA (in 2

0.03402

0.06241

0.11405

28,094

HYDRAULIC DIAMETER(in)

0.1749

0.2395

0.3972

0.370

nov
Table 7-3 Maximum HCF F " (6 =0) for the heat flux at outer-And inner

'4

cladding surface, in the peak UO2 and peak mixed oxide pins for

various situations of non-uniform heat generation.

CASE PEAK UO2  PEAK MIXED OXIDE.

nu nu nu nu
F i (0=0) F q1 (0 =0) F qII (9 =0) F a (e=0)

1)with radial cracks 1.024 1.012 1.064 1.038
noSconduction in
fuel ,Nug =00.A440

2) AX =0 Nu =oo 1.018 1.009 1.049 1.029f 9

3) f / 0Nug=0o 1.018 1.009 1.047 1.028

4) ./ 0,Nu 6.76 1.015 1.008 1.042 1.025

5) 0,Nu 3.88 1.014 1.007 1.038 1.022

RATIO (F "..)/F -1) 0. 49 0.59

RATIO 1(Fq 2.7qj. M)
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2)-2ClTHE EFFECT _OF THE NON-UNIFORM POWERGENERAION INSIDE THE 02ND

MIXED OXIDE PINS ON THE FUEL CENTERLINE TEMPERATURE

Although Nysing has developed formulas for the calculation of the

temperature field inside the fuel, with non-uniform powergeneration they are

very unpracticle to work with. Furthermore it has been found that the influence

of the "skewed" powergradient was negligible and of the order 10F. The infuence

of the e ' type variation of the power inside the pin was found to be much

more important. Therefore a more simple & more accurate formula has been

developed for the calculation of the maximum centerline temperatures, taking

the e J variation into account, and the change of the fuel conductivity X f

with temperature.

The heat balance equation at the hot spot of the fuel pin can be written in a more

generalized form as :

F.~\F 1 =7 L-U)

9 111(t): = III
Vr'i R,

O=

Integrating the equation (7-22) with (7-23) gives

-6

or with "' tr R (linear heat rate).

J N~r~~ F~ N 9A(T) rl . F. r. N _

Ts-

__ 1, A - = ;, , ZWMMMW = 24

(7 -13 )

(1.14)
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If a flat power inside the fuel pin is assumed

the average volumetric heat rate would be

R R

II A ,+A r' CL-/ i lt~ , P +1

Because of the normalisation A + 2
2

= 1.0

Therefore due to the parabolic variation of the heatrate inside the pin, the linear

heat rate q'av has to be reduced by a factor

FU = PR1 1i- (A.,24

With this defined hotchannelfactor which takes i-nto account that the powerdis-

tributlon is not flat, the equation (7-24) can be written as

TtIA x nV

) T F N F t- I qkr (7 -16)

Where the constantSA,, A2 can be obtained from a LASER calculation on a regular

unit cell.

Using the values found in our case these hotchannelfactors were found to be

for the UO2 mixed oxide pin (Table 7-4).

Table 7-4 ; Linear heat rate HCF, for the UO2 & mixed oxide pins, which have to

be applied on the limits for fuel centerline temperature at BOL.

F n'u UO2)
En.u.
F , (MIXED OXIDE) F nu UO

F nu. (MIX).
qI

0.963 1.026.0.988
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It is thus observed that due to more pronounced variation of the power inside

a mixed oxide pin about 3 % more power can be allowed in the mixed oxide pin,

relative to the UO2 pin, to get fuel centerline melting at beginning of life.

2)L THE NUCE R ENTJALPY RISE HQTCHANNELFACTOR OF THE PEAK UO2 PIN

COMPARED TO THE PEAK MIXED OXIDE PIN.

Since the nuclear enthalpyrise HCF is related to the peak coolant

channel; its value may differ from the total nuclear radial powerpeakingfactor

in the peak pin. For the peak UO2 channel which is located isolated in the

corner, the radial nuclear powerpeaking factor is also the nuclear enthelpy

HCF. For the peak mixed oxide pin, the situation is completely different.

Assuming that the radial nuclear HCF (no local peaking) for the peak mixed

oxide pin in the core is about the same as for its adjacent neighbours, the

ratio of the nuclear enthalpy riseHCF associated with the hottest coolant

channel, surrounded by four rods, to the nuclear total radial HCF.(including

local peaking) can be obtained from the unit assemblycalculations pictured on

the Figures 5- 7 &5-9 .

Conservative values of 1.000 and 0.91 were obtained for the ratios of the nuclear

enthalpyrise HCF & the nuclear radial (total) HCF for the UO2 pin & mixed oxide

pin respectively. It is thus noticed that the fact that -the peak mixed oxide

rods are surrounded by low power UO2 & other mixed oxide rods is very beneficial.

Fig. 7-3 shows the ratios in different channels around the peak UO2 pin &

peak mixed oxide pin. It is also noticed that the hot coolant mixed oxide

channel at the peak pin is located towards the mixed oxide region.

The periferal variations of the bulk coolant temperatures around the peak mixed

oxide pin are opposite to the periferal variations of the heat flux. It has

been calculated that if no mixing occurs these opposite combined effects result

in a virtually constant cladding temperature around the pin.
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FIG VII-3 RATIOS OF THE NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR
TO THE NUCLEAR PEAK FACTOR IN THE PEAK ROD, (PEAK UO2 AND PEAK

MIXED OXIDE )
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2-_: MAXIMUM TEMPERATURES,

MAXIMUM CLADDING TEMPERATURES,

The maximum cladding temperatures can be calculated from

T Mw*4 + SE N
TLA + Aowi (i c F + A'T F f z.,I~

where TMAX = average outlet coolant temperaturerise
cav

= q' H/ - Mav
av rp

Tfav = average filmdroptemp.rise = q" av/ Kav

(q" = average heat flux)
av

& the plan of max. cladding Temperature

rt Zr 0 4 .Aj CO 1 EE
tg - rn = ** * O F

(usually Zm = 1/3 from top).

where Dco = outer c4adding diameter.

A more conservative & realistic approach is to assume some local boiling at the

place of maximum heat flux(center). In this case the maximum cladding surface

temperature is given by the Jens-Lottes equation : 54 )

-Ts + 6 oL.9 e ~ ?/5, ) ~7 -V)
106

where TW = wall temperature (OF)

Tsat = saturation temperature (OF) of the coolant at pressure

P (psia)

q"1 = local heat flux BTU/hr ft2

The correlation appears to hold for all geometries and both local and bulk

boiling. The correlation of Jens and Lottes appears to have been preferred

by most workers in the f ield.
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More recently, there has been concern that the temperature differences predicted

by the Jens-Lottes correlation are too low at high pressures. Thom et al ( 55 )

concluded that their extensive data for pressures from 750 to 2000 psia were

best correlated by :

(T - TSat) = 72 q" )0.5 exp(- P 7
W Sat / 1260
10

The temperature differences predicted by this correlation tend to be higher,

than those obtained from the Jens-Lottes equation.

During the loss-of-Coolant Accident Analysis, in which a hypothetical double

ended rupture of the main coolant pipe is postulated, the core goes through

several regimes such as; subcooled blowdown, saturated blowdown, and a dry

.period ( 56 ). The heat transfercorrelations that are used during the boiling

& dry period crisis are given in refs. 56 and 49

It is important to notice that the heat transfercoefficient, except for the

subcooled water with local boiling regime is dependent on the heat flux, flow

rate and quality of the steam.

Since for equal factors, the circumferential engineering heat flux factor in

the mixed oxide is larger than for the U02, the cladding temperatures on the

mixed oxide are higher if the heat transfer coefficient is independent of the

flow rate & enthalpy-rise effects (quality).

In most cases however the heat-transfer coefficient also depends strongly on

the quality & flowrate which, in view of the lower nuclear entha-lpyrise hot-

channelfactor for the peak mixed oxide & the maybe somewhat lower flowredis-

tribution factor, will be higher for the mixed oxide, thereby reducing the

cladding temperatures.

Without more detailed analysis, also by taking powergeneration after shutdown

in the UO2 fuel & mixed oxide fuel in account (including fission product decay
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heat and heat from heavy isotope decay), it is however impossible to predict

which peak will be the most limiting in a loss-of-coolant accident.

Because of the beneficial location of the mixed oxide rod one should be linclined

to allow a much higher design limit for that pin.

However after shutdown, the fissionproduct A and g ray release of the mixed

oxide rod is different than for the UO2 rod.

Furthermore detailed nuclear assembly calculations in which the nuclear

calculations are strongly coupled with the thermal-hydraulics, will be necessary

to evaluate the design limits of a peak mixed oxide rod versus a U02 rod.

The normal core values may be much lower than the design limits however.

The inside cladding temperature can be calculated from

where q' = linear heat rate, KW/ft.

kc = thermal conductivity of the clad, 9.5 BTU/hr ft- F for zircalloy

at 680 "F

t = cladding thickness (inches)

D = clad mean diameter (inches).

The pellet surface temperature is calculated from T = T ci + 9 1/Hgap

q" = heat flux at the pellet surface BTU/hr ft2 oF

Hgap = fuel gap conductance ,BTU/hr ft2 oF

H can be calculated from the Ross and Stoute Equation as modified by Rich

( 57 )

H gap = 1000 + 2954 E

where E = interference clad strain (%)
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__D =D DD- ~L£. ~' (7-3 1)

100 .

where D = fuel pellet outside diameter (hot)

D I = clad inside diameter (hot)

D = clad mean diameter (hot)

The fuel centerline temperature can be calculated from the equation (7-26 )

in which the thermal conductivity formula from Lyons may be used where :
1 13

A = + 4.788 x 10~ T3 (Watts/ o )
3.384+ + 0.02615 T cm C

& T is in 0 K.

The conductivity Integral f (T) dT is then given by

Ti+ 0.00~778 TNtAx -3 9
++ . '7O (ir - Tff f, , , MAX7.t

TS ... 9oT F 9

(q' in Watt/cm) 4M

Or directly from q', Ts and Fig. 7-4 , showing the thermal conductivity

integral of UO2 versus temperature (in 0F, q' in KW/ft ) based on Westinghouse

conductivity data. ( 58 ).

2)-5 DEPARTURE FROM NUCLEATE BOILING,

The margin to departure from nucleate boiling (DNB,in which a fuel

rod is blanketted by low conductivity vapor), is very important for the evaluation

of the probability for clad failure during a nucleate boiling crisis. The DNBR

is defined as the ratio of the heat flux required to produce departure from

nucleate boi-ling at specific local coolant conditions to the actual local heat

flux. The DNBR is minimum in the .peak coolant channel at the peak pin & reaches

a complete minimum somewhere along half of the core length or close to the max,
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heat flux. At this complete minimum the departure of nucleate boiling for the core

is evaluated & called the MDNBR (minimum departure from nucleate boiling rat io)

The MDNBR is dependent on

- the coolant inlet conditions

- the powerlevel

- the nuclear powerdistribution

- the analytical methods used to predict local coolant flow & coolant conditions

(enthalpy, quality)

- the correlation used to predict DNB heat flux.

Tong ( 59 ) has emphasized the need for the evaluation of assembly-flow &

peak channel enthalpy conditions, used with single channel DNB correlations.

The knowledge of these flowconditions & enthalpy in the hot channel, at each axial

position & the knowledge of the design heat flux shapeaxially is needed in the

first place to evaluate the MNBR. The approach in design is to select core

operating conditions and models in such way that there is very small probability

that the actual hot channel conditions are worse than the calculated conditions

used as an input to the DNB correlation.

Based on large amounts of experimental data Westinghouse has developed DNB heat

flux correlations applicable in several situations.

The W-2, DNB heat flux correlation for the subcooled region, & obtained from uniform

f lux data is given by

( & is used when the subcooled qual ity is lower than - 15 %, (at which W-3 corre-

lation is inapplicable).

-00093!=
O= (o 3 i - O-O.39Lf61)( 3.o + 0I- o A Ts ub)(0.36'+ 1.25e )

D NscLt N H ]3
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q'DNB = DNB heat flux, BTU/hr ft
2

G = coolant mass velocity (lb/hr -ft 2

LT Sub= Subcooling 0F.

L = heated channel length, ft

D4 c = equivalent channel diameter (ft)

HSAT = specific enthalpy of the saturated liquid BTU/lb.

H In inlet enthalpy (BTU/lb

H f9  = latent heat of vaporization BTU/lb.

/O = density of the saturated liquid lb/ft3

Pv = density of the saturated vapor lb/ft 3.

The DNB heat flux is interpreted either as the local DNB flux with the corres-

ponding enthalpy, or as the average DNB flux up to a point, with the enthalpy

at that point (exit usually). The most conservative interpretation is used.

The formula correlates the existing uniform flux data within 20 %, at a

probability of 95 %. A DNBR of 1.25 means that there is 95 % of probability

that DNB will not occur.

In the quality region, the older W-2 correclation h1s

H DNB= H + 0,529 (H - H. ) + (0.825 + 2.36 exp204 De)
DB in Sat in

Hfg exp (-1.5 G ) - 0.41 Hfg exp (-0.0048 L)
90 6 9De10Q

-1.12 Hf9  Pv + 0.548 H ( 7-33 )

This equation correlates about 1000 data points within 25 % for a pressure range

from 800 to 2750 psia at a probability level of 95 %. The data scattering is

reduced to 20 % for 2000 psia, i.e.a DNBR of 1.25 for the full range and 1.20

for 2000 psia means that there is 95 % probability that DNB will not occur.

The new improved W-3 correclation, (appendix A ) is used if the data are

within the range of applicability (-15 to + 15 % quality).
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It should be noted that in the regular W-3 correlations A-1 & A.-2, the actual

hot channel geometric condition (corner of the assembly) falls outside the

range of heated to wetted perimeter ratio. This hot channel has unheated walls,

& the conservative correlation A-3 developed for a single channel with unheated

walls should be used. Since the R.H.S. factor in equation A-3, with X =00 and

Dh = 0.399 in reduces to 0.81, the DNB flux using the W-3 correlation with unheated

walls reduces the usual DNB heat flux by about 80 %. Since the W-3 correlation

(with non uniform heat flux) was used, a more conservative MDNBR design limit

would be 2.24 instead of 2.80. The core DNBR however should also been evaluated

with this procedure. It is however noticed that the W-2 correlation is still

the most conservative even if the cold wall W-3 correlation is used.

The effect of the non-uniform heat flux can be accounted for by the W-3, formula

A-2 & Its F factor. This factor is low in the subcooled region & the critical

heat flux determines mostly the boiling crisis. For larger qualities the F

factor is larger and the average heat flux or enthalpy rise mostly determines

the boiling crisis.

The effect of the axial powerpeaks in the fuel rods at the top & bottom reflector

has also been investigated since it was noticed from 2 dimensional r, Z calculations

of a Pu-recycle assembly that the axial powerpeaking at the reflector was much

larger in the mixed oxide. The top & bottompowerpeakfactor (with all rods out)

defined as the actual powerpeak at top & bottom to the extrapolated chopped cosine

value was 1.92 for the U02 fuel and 2.46 for the mixed oxide fuel (the extrapol.

length H to active core length ratio was 1.079). It was found that the DNB

ratios at these high quality locations were not worse than the MNBR that occured

near the max.heat flux, half away In the core.

The extra axial powerpeaking in the mixed oxide fuel, does not seem to be limiting

& the local heat flux seems much more important than the enthalpy even for a
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large range of exit qualities.

In certain transient situations where theexit quality is higher, the MDNBR

for the mixed oxide pin could occur at 2 locations, at the exit of the

channel and at the usual location between the exit and the maximum heat flux.

VII-3 SUMMARY OF CALCULATED HOT CHANNEL FACTORS FOR THE UNITY CONVENTIONAL

AND PU-RECYCLE ASSEMBLIES,

A summary of the calculated hot channel factors for the unit assemblies

are given on Table VII-5. The engineering heat flux factor, the statistical

enthalpy rise factor and the flow mixing factor, determined at YAEC for a

conventional assembly, were assumed to be identical for Pu-recycle applica-

tions. The flowredistribution factor of 1.05 was also assumed for the

peak UO2 pin and 1.00 for the mixed oxide pin.
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TABLE VII-5 SUMMARY HOT CHANNEL FACTORS OF THE UNIT ASSEMBLIES.

CONVENTIONAL
U02 ASSEMBLY
4w/oU23 5-U02

PLUTONIUM RECYCLE ASSEMELY.
PEAK UO2
4 w/oU235-U02

PEAK MIX.OXIDE

4 o u02
nat UO 2

Heat Flux Factors,

Nuclear Heat Flux

Engineering Heat Flux

Circumferential Heat Flux
Factor.

Total Heat Flux Factor
(unit-assembly) (3)

Enthalpy rise Factors,

Statistical Enthalpy Rise

Flow Mixing Factor

Flow Redistribution

Total Engineering

Nuclear Enthalpy Rise

Total Enthalpy Rise (4)

Factor (unit assembly)

1.19

1.04 (1)

1.01

1.25

1.10 (1)

0.94 (1)

1.0U (1)(2)

1.09

1.30

(1) From Yankee - thermal hydraulic ca1claptionn - core 10.

(2) core 10 value is 1.10, (both rtainless and Zirc assemblies are present,

the zirc assemblies have a higher flow resistance, 1.05 estimated.

(3) without radial and axial power peaking factors.

(4) without radial power peaking factor and lower plenum factor of about 1.05.

1.20

1.04

1.01

1.26

1.21

1. OL

1.04

1.31

1.10

U. 94

1.05

1.09

1.20

1.31

0.94

1.00

1.03

1.10

1.13
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Table vII-6 ESTIMATED PLUTON. RECYCLE CORE HOT CHANNEL FACTORRATIOS F 2/FM

Heat Flux Factor ratios FU02/Fmix

Nuclear 1.00

Engineering 1.00

Circumferential 0.97

Total 0.97

Enthalpyrise Ratio's,

Statistical 1.00

Lower plenumfactor 1.00

flow mixing factor 1.00

Flow redistribution 1.05

Total engineering 1.05

Nuclear enthalyrise 1.09

Total enthalpyrise 1.14

RATIOS ESTIMATED MDNBR,

MDNBR 1.05

RATIOS FUEL & TEMPERATURES.

fuel & temperature ratio 1.026
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V-4 CONCLUSION.

In this Chapter an analysis was made of the circumferential heat flux

variations in a peak UO2 and mixed oxide pin. An engineering hotchannelfactor

for the circumferential outer clad heat flux was calculated to be 1.012 and 1.038

for the UO2 & mixed oxide respectively. Due to the more non-uniform powergene-

ration in the mixed oxide fuel, the linear powerrrating in the peak mixed oxide

fuel, to obtain the same maximum fuel centerline temperature as a peak U02 pin,

can be increased by 2.6 %. Estimations of other hotchannelfectors, based on

extrapolations of more detailed calculations performed at YAEC, have been made,

which indicate that the ratio of the total heat flux HCF of the peak U02 pin to

the peak mixed oxide pin is 0.96 and for the total enthalpyrise HCF ratio 1.14.

The estimated conservative ratio of the MDNBR is about 1.05, conservatively,

which indicate that at least 5 % more power could be allowed in the mixed oxide

rods to get the same probability of cladding failure in a nucleate boiling crisis.

More refined calculations using steady state & transient thermal-hydraulic

computerprograms will be necessary to establish how much more power could be

allowed in a peak mixed oxide pin, relative to a peak UO2 pin in a conventional

assembly.

This will however require knowledge of the complete nuclear analysis of the

plutonium recycle core, the knowledge of decay heat from fi-ssionproducts

(which will probably be higher in mixed oxide fuel) and a coupling of thermal

hydraulic accident conditions in the plutonium recycle assembly with detailed

nuclear unit assembly calculations.
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Appendix A W-3 DNB HEAT FLUX CORRELATIONS.

1) W-3 UNIFORM FLUX DNB CORRELATION FOR SINGLE CHANNEL WITH ALL

WALLS HEATED

q" DNB,EU = (2.022 -0.0004302 p) + (0.1722 - 0.0000984 p)

106 * exp (18.177 - 0.004129 p) x]

* (.1484 -1.596 X + 0.1729 X X ) G/106

+ 1.037 * 1.157 - 0.869 X ] *

f0.2664 + 0.8357 exp (-3.151 D)3 *

[0.8258 + 0.000784 (Hsat - H in) (EQ.A-1)

The heat flux q' is given in BTU/hr ft2, and the units and ranges of the parameters

of the data used in developing this correlation are :

1000 g p S 2300 psia

106 $ G 5.0 X 106 lb/(hr ft2

0.2 D <0.7

- 0. 15 X Xloc 1 + 0.-15

H. > 400 BTU/lbi n -O

10 L S 144 in

0.88< Heated perimeter < 1.0

wetted perimeter

2) W-3 Non-uniform Flux DNB correlation for Single Channel with all Walls Heated.

q DNB,N = DNBEU /F (q''DNBN.= DNB heat flux for non uniformly heated channel)

IO

0

ID ~4 4 1
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3) W-3 Uniform Flux DNB Correlation for Single Channel with Unheated Walls.

DNB with unheated wall = (1.36 + 0.12 e 9)

DNB, using D to replace De in

eq. (A-1)
- 1.92 Dh

(1.2 - 1.6 e

D = equivalent hydraulic diam.

)(1.33 -0.237e

Dh = equivalent diameter based on only the heated parimeter (in).

The probability that the DNB heat flux has been exceeded for several

the DNB ratio, isshown below ( 49 ) and on Fig. 7-5 - ( 56

Probability Distribution

DNB RATIO

2.5

2.0

1.75

1.50

1.30

(DNB limits)

Probability that DNB heat flux has beem exceeded.

0.0000085

0.00018

0.001

0.01

0.05

5.66 x
)

(A- 3)

values of

)
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