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Physics 8.286: The Early Universe March 31, 1998
Prof. Alan Guth

REVIEW PROBLEMS FOR QUIZ 2

QUIZ DATE: Tuesday, April 7, 1998

COVERAGE: Lecture Notes 4, 5, and 6; Problem Sets 2 and 3; Weinberg, Chapters 4-5;
Silk, Chapters 1-5. One of the problems on the quiz will be taken verbatim
(or at least almost verbatim) from the homework assignments, from this
set of Review Problems, or from Quiz 1 or 2 of 1996. Quiz 1 of 1996 was
handed out earlier, but Problem 2 of that quiz would be a possible problem for the
upcoming quiz. Quiz 2 of 1996 will be handed out with these Review Problems.

PURPOSE: These review problems are not to be handed in, but are being made avail-
able to help you study. They are all problems that I would consider fair for the
upcoming quiz. I have included here all relevant problems from the 1994 quizzes,
and a number of problems from earlier years as well. The 1996 quiz is being handed
out separately. Whenever a number of points is mentioned in these problems, it is
based on 100 points for the full quiz.

INFORMATION TO BE GIVEN ON QUIZ:

The following material will be included on the quiz, so you need not memorize it.
You should, however, make sure that you understand what these formulas mean, and
how they can be applied.

EVOLUTION OF A MATTER-DOMINATED
UNIVERSE:

Flat (2 =p/p. =1): R(t) o« t2/3

Closed (02 > 1): ct = (6 —sinb) ,
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Open (2 < 1): ct = a(sinh 6 — 6)

R
— = afcoshf —1) ,

N
4r GpR®

where a = 3 w32

k=—k.

COSMOLOGICAL REDSHIFT:

1+ 7= Aobserved _ R(tobserved)

Aemitted R(temitted)

ROBERTSON-WALKER METRIC:
2

dr
2 _ p2 2 (102 1 oin2 2
ds“ =R (t){1 r2—|—r (d0 +sin” 0 d¢ )}

SCHWARZSCHILD METRIC:

2GM 2GM\ !
ds? = —c%dr? = — <1 — > c2di? + <1 — > dr?

re2 re2

+ r2d0? + r?sin® 0 d¢? |

GEODESIC EQUATION:

d dz’ 1 dz* dzt
{gijﬁ} = = (Oigke)

dx 2 A\ dx
A, ) 1 e det
or: dr Juv dr | 2 ugro dr dr

PROBLEM 1: THE DECELERATION PARAMETER (10 points)
The following problem was Problem 2, Quiz 2, 1992:

Many standard references in cosmology define a quantity called the deceleration
parameter g, which is a direct measure of the slowing down of the cosmic expansion.
The parameter is defined by

. R(t)
¢g=—R(t)—— .
R2(t)
Find the relationship between ¢ and 1 for a matter-dominated universe. [In case you
have forgotten, (1 1s defined by

Q=p/p.,

where p is the mass density and p. is the critical mass density (i.e., that mass den-
sity which puts the universe just on the border between eternal expansion and eventual
collapse).]
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PROBLEM 2: DID YOU DO THE READING? (20 points)

The following problem was Problem 1, Quiz 2, 1994. Only 4 of the 5 parts are shown,
because the last part involved material not included on this quiz.

The following questions are worth 5 points each. Where two items are requested, you

will receive 3 points for getting one right.

a)

Weinberg emphasizes that most of the detailed properties of the early universe are
determined by the assumption that it was in a state of thermal equilibrium. Ther-
mal equilibrium, however, cannot change a conserved quantity, so each conserved
quantity must be specified. Weinberg mentions three conserved quantities whose
densities must be specified in the recipe for the early universe. One is electric charge
(which is specified to be zero or negligibly small). What are the other two?

An important number in cosmology is the ratio of baryon number to the number of
photons. Is this ratio approximately 10=°, 10~2, 1, or 10%?

At three minutes after the big bang, when the processes of nucleosynthesis were
nearing completion, the energy density of the universe was dominated by two types
of particles from the following list: pions, protons, neutrons, photons, neutrinos,
electrons, positrons, muons, quarks, and kaons. What were these two types of par-
ticles?

Calculations of big bang nucleosynthesis were carried out as early as the 1940’s by
George Gamow and his collaborators Ralph Alpher and Robert Herman. They tried
unsuccessfully to explain the abundances of all species of nuclei in terms of synthe-
sis during the big bang. In contrast, scientists today believe that a) all elements
other than hydrogen were synthesized primarily in stars; b) all elements other than
hydrogen, helium, and perhaps lithium were synthesized primarily in stars; c) all
elements heavier than calcium were synthesized in stars, while those lighter than
calcium were synthesized mainly in the big bang; or d) all elements heavier than
iron were synthesized in stars, while those lighter than iron were synthesized mainly
in the big bang. Which choice is correct?

PROBLEM 3: LENGTHS AND AREAS IN A TWO-DIMEN-

SIONAL METRIC (25 points)

The following problem was Problem 3, Quiz 2, 1994:

Suppose a two dimensional space, described in polar coordinates (r,8), has a metric

given by

ds® = (14 ar)® dr® 4+ r2(1 + br)* d6* ,
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where a and b are positive constants. Consider the path in this space which is formed by
starting at the origin, moving along the # = 0 line to r = rg, then moving at fixed r to
6 = 7/2, and then moving back to the origin at fixed §. The path is shown below:

m
L
'''''''''''''''''' ™~
. e
.

y A
...
...
o )
...
_________ L

r=TrTo

a) (10 points) Find the total length of this path.
b) (15 points) Find the area enclosed by this path.

PROBLEM 4: SHORT ANSWERS (10 points)

The following questions were part of Problem 1, Quiz 3, 1994:

The following questions are each worth 5 points:

(a) The oldest rocks found on earth have been dated by radioactive elements, principally
the decay of U238 to Pb2°®. The age is estimated to be 2.1 billion years, 3.9 billion
years, 6.3 billion years, or 9.7 billion years?

(b) When astronomers try to measure the distribution of radio galaxies in space, they
find (A) that they appear to be uniformly distributed in space, (B) that there appear

to be more nearby than far away, or (C) that there appear to be more far away than
nearby?

PROBLEM 5: DID YOU DO THE READING? (22 points)

The following questions were part of Problem 1, Quiz 2, 1992:

a) (8 points) Penzias and Wilson discovered a diffuse background radiation in all di-
rections over the sky. What, roughly, is the temperature in Kelvin characterizing



8.286 QUIZ 2 REVIEW PROBLEMS, SPRING 1998 p-5

the spectrum of the background radiation? What is the origin of this radiation? In
the past, was the temperature of the microwave background higher or lower than
its present temperature? In the future, will the temperature of the microwave back-
ground be higher or lower than its present temperature?

(6 points) Today, the universe is primarily composed of nonrelativistic matter. Which
element has the largest primordial abundance by weight? Which element has the
second largest primordial abundance by weight? At about what time were the nuclei
of these elements synthesized?

(6 points) In the standard cosmological picture, what is the name given to the event
that is believed to have initiated the expansion of the universe? [Don’t look for

anything obscure— this one is a giveaway./ Is the expansion slowing down or speeding
up? Why?

(2 points) In addition to the microwave background, the standard model of the
early universe predicts a neutrino background. Is the temperature of the neutrino
background expected to be 10,000 °K, 4000 °K, 3 °K, or 2 °K.

PROBLEM 6: EVOLUTION OF AN OPEN, MATTER-DOMINATED UNI-

VERSE (30 points)

The following problem was Problem 3, Quiz 2, 1992:

The equations describing the evolution of an open, matter-dominated universe are

shown on the first page of this quiz. The following mathematical identities, which you
should know, may also prove useful:

a

b

o

)
)
)
d)

o)

6 _ ,—0 6 —6
sinh @ = c-° , coshf = ete
2 2
6 _ ¢ 6 6% 03
€ = +ﬁ+§+§+”"

(4 points) Find the Hubble “constant” H as a function of « and .
(4 points) Find the mass density p as a function of & and 6.
(4 points) Find the mass density parameter (1 as a function of & and 6.

(6 points) Find the physical value of the horizon distance, £, horizon, as a function of
o and 6.

(6 points) For very small values of ¢, it is possible to use the first nonzero term of a
power-series expansion to express # as a function of £, and then R as a function of .
Give the expression for R(t) in this approximation. The approximation will be valid
for t < t*. Estimate the value of t*.

(6 points) Even though these equations describe an open universe, one still finds that
() approaches one for very early times. For ¢ < ¢t* (where t* is defined in part (e)),
the quantity 1 — Q1 behaves as a power of t. Find the expression for 1 — 1 in this
approximation.
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PROBLEM 7: DID YOU DO THE READING?

The following short answer question was worth 4 points on Quiz 2 of 1990:

After the initial big bang the universe began to expand and cool. When the universe
became sufficiently cool electrons and protons began to settle into neutral hydrogen.
What name is often applied to this era? Did this take place around 1 second, 3
minutes, a few hundred thousand years, or a few million years after the big bang?

PROBLEM 8: TIME SCALES IN COSMOLOGY (20 points)

The following problem was Problem 2, Quiz 3, 1988:

In this problem you are asked to give the approximate times at which various im-
portant events in the history of the universe are believed to have taken place. The times
are measured from the instant of the big bang. To avoid ambiguities, you are asked to
choose the best answer from the following list:

1043 sec.
10~3% sec.
10712 sec.

1075 sec.

1 sec.

4 mins.

10,000 — 1,000,000 years.
2 billion years.
5 billion years.
10 billion years.
13 billion years.
20 billion years.

For this problem it will be sufficient to state an answer from memory, without explanation.
The events which must be placed are the following:

(a) the present time;

(b) the time at which the universe was half its present size (assuming a matter-
dominated flat model);

(c) the time at which the universe ceased to be radiation-dominated and began to
be matter-dominated.

Choosing from the same list of choices, state
(d) the lower limit on the Hubble time H; ';
(e) the upper limit on the Hubble time H .

Since cosmology is fraught with uncertainty, in some cases more than one answer will
be acceptable. You are asked, however, to give ONLY ONE of the acceptable answers.
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PROBLEM 9: GEOMETRY IN A CLOSED UNIVERSE (25 points)

The following problem was Problem 4, Quiz 2, 1988:

Consider a universe described by the Robertson—Walker metric on the first page of
the quiz, with £k = 1. The questions below all pertain to some fixed time £, so the scale
factor can be written simply as R, dropping its explicit ¢-dependence.

A small rod has one end at the point (r = a, § = 0, ¢ = 0) and the other end at the
point (r = a, 8§ = A6, ¢ = 0). Assume that Af < 1.

(a) Find the physical distance £, from the origin (r = 0) to the first end (a,0,0) of the
rod. You may find one of the following integrals useful:

—sin !r

=

/ dr 1 <1—|—r>
— — =_1In }
1—r2 2 1—1r

(b) Find the physical length s, of the rod. Express your answer in terms of the scale
factor R, and the coordinates a and A#.

(c) Note that Af is the angle subtended by the rod, as seen from the origin. Write an
expression for this angle in terms of the physical distance £, the physical length s,,
and the scale factor R.
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PROBLEM 10: THE GENERAL SPHERICALLY SYMMETRIC METRIC
(20 points)
The following problem was Problem 3, Quiz 2, 1986:

The metric for a given space depends of course on the coordinate system which
is used to describe it. It can be shown that for any three dimensional space which is
spherically symmetric about a particular point, coordinates can be found so that the
metric has the form

ds? = dr? + p*(r) [d6? + sin® 0 d¢?]

for some function p(r). The coordinates § and ¢ have their usual ranges: 8 varies between
0 and 7, and ¢ varies from 0 to 27, where ¢ = 0 and ¢ = 27 are identified. Given this
metric, consider the sphere whose outer boundary is defined by r = ro.

(a) Find the physical radius a of the sphere. (By “radius”, I mean the physical length
of a radial line which extends from the center to the boundary of the sphere.)

(b) Find the physical area of the surface of the sphere.

(¢) Find an explicit expression for the volume of the sphere. Be sure to include the
limits of integration for any integrals which occur in your answer.

(d) Suppose a new radial coordinate o is introduced, where o is related to r by
c=r
Express the metric in terms of this new variable.

PROBLEM 11: VOLUMES IN A ROBERTSON-WALKER UNIVERSE (20
points)

The following problem was Problem 1, Quiz 3, 1990:

The metric for a Robertson-Walker universe is given by

2
ds? = R%(t) { - f"krz + 7% (d6? + sin? 0d¢2)}

Calculate the volume V (rpmax) of the sphere described by
r < Tmax -
You should carry out any angular integrations that may be necessary, but you may leave

your answer in the form of a radial integral which is not carried out. Be sure, however,
to clearly indicate the limits of integration.
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PROBLEM 12: THE SCHWARZSCHILD METRIC (25 points)
The follow problem was Problem j, Quiz 3, 1992:

The space outside a spherically symmetric mass M is described by the Schwarzschild
metric, given at the front of the exam. Two observers, designated A and B, are located
along the same radial line, with values of the coordinate r given by r 4 and r g, respectively,
with r4 < rg. You should assume that both observers lie outside the Schwarzschild
horizon.

a) (5 points) Write down the expression for the Schwarzschild horizon radius Rgch,
expressed in terms of M and fundamental constants.

b) (5 points) What is the proper distance between A and B? It is okay to leave the
answer to this part in the form of an integral that you do not evaluate— but be sure
to clearly indicate the limits of integration.

¢) (5 points) Observer A has a clock that emits an evenly spaced sequence of ticks,
with proper time separation A74. What will be the coordinate time separation At 4
between these ticks?

d) (5 points) At each tick of A’s clock, a light pulse is transmitted. Observer B receives
these pulses, and measures the time separation on his own clock. What is the time
interval A7g measured by B.

e) (5 points) Suppose that the object creating the gravitational field is a static black
hole, so the Schwarzschild metric is valid for all r. Now suppose that one considers
the case in which observer A lies on the Schwarzschild horizon, so r4 = Rsch. Is the
proper distance between A and B finite for this case? Does the time interval of the
pulses received by B, Arpg, diverge in this case?

PROBLEM 13: DID YOU DO THE READING?

The first 8 parts of this question come from Quiz 2, 1988, and the 4th part comes from
Quiz 3, 1986:

(a) Which of the following cosmologists were proponents of the steady-state theory: Fred
Hoyle, Alexandre Friedmann, George Gamow, Herman Bondi, Georges Lemaitre,
Thomas Gold?

(b) The description of the early universe in Steven Weinberg’s The First Three Minutes
begins with a “frame” when T = 10'!°K. At this time, what particles are believed
to have dominated the mass density of the universe?

(c) Weinberg gives us the following description of the universe at 10°°K: “The universe
is now cool enough for tritium and helium three as well as ordinary helium nuclei
to hold together, but the * bottleneck’ is still at work: nuclei of
do not hold together long enough to allow appreciable numbers of heavier nuclei to
be built up.” Both blanks are filled with the same word. What is it?

(d) A theory of big bang nucleosynthesis was first worked out in the late 1940’s by
George Gamow, Ralph Alpher, and Robert Herman. This theory differed from the
currently accepted theory in at least four significant ways. Name one.
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PROBLEM 14: GEODESICS (20 points)

The following problem was Problem 4, Quiz 2, 1986:

Ordinary Euclidean two-dimensional space can be described in polar coordinates by
the metric
ds® = dr* +r?do* .

(a) Suppose that r(A) and 8(\) describe a geodesic in this space, where the parameter
A is the arc length measured along the curve. Use the general formula on the front
of the exam to obtain explicit differential equations which r(A) and () must obey.

(b) Now introduce the usual Cartesian coordinates, defined by

r=rcosb ,

y=rsinf .
Use your answer to (a) to show that the line y = 1 is a geodesic curve.

PROBLEM 15: METRIC OF A STATIC GRAVITATIONAL FIELD (30
points)

The following problem was Problem 2, Quiz 3, 1990:

In this problem we will consider the metric
3 .
dsip = — [c* +2¢(Z)] dt® + > (dz*)”
=1

which describes a static gravitational field. Here ¢ runs from 1 to 3, with the identifications

! = z, 22 = y, and z® = 2. The function ¢(Z) depends only on the spatial variables

Z = (21,22, 23), and not on the time coordinate t.

a) Suppose that a radio transmitter, located at Z., emits a series of evenly spaced
pulses. The pulses are separated by a proper time interval AT,, as measured by a
clock at the same location. What is the coordinate time interval A¢. between the
emission of the pulses? (Le., At. is the difference between the time coordinate ¢
at the emission of one pulse and the time coordinate ¢ at the emission of the next
pulse.)

(b) The pulses are received by an observer at Z,, who measures the time of arrival of
each pulse. What is the coordinate time interval Atf, between the reception of
successive pulses?
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(c)

The observer uses his own clocks to measure the proper time interval AT, between
the reception of successive pulses. Find this time interval, and also the redshift Z,

defined by
AT,

1+7 =
* AT,

First compute an exact expression for Z, and then expand the answer to lowest order
in ¢(Z) to obtain a weak-field approximation. (This weak-field approximation is in
fact highly accurate in all terrestrial and solar system applications.)

A freely falling particle travels on a spacetime geodesic z#(7), where 7 is the proper
time. (Le., 7 is the time that would be measured by a clock moving with the particle.)
The trajectory is described by the geodesic equation

4 A L de i
dr g’wdr 2 udro dr drt

where the Greek indices (u, v, A, 0, etc.) run from 0 to 3, and are summed over when
repeated. Calculate an explicit expression for

d?z’

dr? ’

valid for ¢ = 1,2, or 3. (It is acceptable to leave quantities such as dt/dr or dz*/dr
in the answer.)
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SOLUTIONS

PROBLEM 1: THE DECELERATION PARAMETER

From the front of the exam, we are reminded that

and

where a dot denotes a derivative with respect to time t. The critical mass density p. is
defined to be the mass density that corresponds to a flat (¢ = 0) universe, so from the

equation above it follows that
LN 2
R 8
— | =—Gp..

o3

47 3 1p 1
= —G = —— = -0.
< 3 p) <87erc> 2p. | 2

PROBLEM 2: DID YOU DO THE READING?

a) The other two conserved quantities are baryon number and lepton number.
(Weinberg also mentions that the electron lepton number and the muon lepton num-
ber appear to be separately conserved. Today we would have to add tau lepton
number to this list. These conservation laws are still consistent with all known ex-
periments, but there are theoretical reasons for doubting their exactness. We will
talk about this later in the course.)

b) It is approximately 107°.

¢) Photons and neutrinos. (Protons and neutrons do not become an appreciable part
of the mass density until about 100,000 years after the big bang.)

d) b: all elements other than hydrogen, helium, and perhaps lithium were synthesized
primarily in stars.
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PROBLEM 3: LENGTHS AND AREAS IN A TWO-DIMEN-
SIONAL METRIC

a) Along the first segment df = 0, so ds? = (1+ar)? dr?, or ds = (1+ar) dr. Integrating,
the length of the first segment is found to be

To 1
5’1:/ (1—|—ar)dr:ro—|—§ar8.
0

Along the second segment dr = 0, so ds = r(1 + br) df, where r = ro. So the length
of the second segment is

w/2
82 = / 7'0(1 + bro) df = gro(l + bro) .
0

Finally, the third segment is identical to the first, so S3 = S;. The total length is
then

1
S = 281 + 82 =2 <7‘0 + 56”'8) + gro(l + bro)

1
= (24—%) r0—|—§(2a—|—7rb)r8 .

b) To find the area, it is best to divide the region into concentric strips as shown:

 JES
2
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Note that the strip has a coordinate width of dr, but the distance across the width
of the strip is determined by the metric to be

dh = (1+ar)dr .

The length of the strip is calculated the same way as S; in part (a):
s(r) = gr(l + br) .

The area is then

dA = s(r) dh

SO
A=

I
/ —r(1+4br)(1 + ar) dr
0

s(r) dh
(14 br)

g/o [r + (a+ b)r2 + abr3] dr

m |1 1 1
=| 3 [Erg + g(a—i— b)rs + Zabré

PROBLEM 4: SHORT ANSWERS

a) This subject is discussed in The Big Bang, by Joseph Silk, on p. 70. The answer
is 3.9 billion years.

b) This subject is also discussed in the book by Joseph Silk, on p. 81. The answer is
(C): there appear to be more radio galaxies far away than nearby. It is believed that
this is an evolutionary effect. When we look far away we are seeing into the past,
since light travels at a finite velocity. Apparently radio galaxies were more intense
in the past, so we see a larger fraction of them.

PROBLEM 5: DID YOU DO THE READING?

a) The temperature of the cosmic background radiation today is ~ 3° K (actually most
recent observations find the temperature quite close to 2.726° K.)

The background radiation is a primordial relic of the hot radiation dominated era
in the early history of the universe. As the universe cooled it became transparent
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to radiation. The primordial photons decoupled from matter and the thermal dis-
tribution of these photons continued to cool as the universe expanded. (In practice
we accepted any answer to this question which referenced, however briefly, the hot
early universe, decoupling, etc..)

The temperature of the cosmic background radiation was higher in the past. It will
continue to cool as the universe expands. As some students noted, if the universe is
closed, the expansion will cease and the universe may then contract, heating back
up again as it does so.

b) H has the largest primordial abundance by weight while He has the second largest
abundance. The nuclei of these elements were synthesized within roughly the first
3 minutes (the time of nucleosynthesis). Some students referred to recombination,
at a time of roughly a hundred thousand years, as the time at which these elements
were synthesized. Although the atoms may have been ionized until recombination
when free electrons combined with the positively charged nuclei, it is the time of nu-
cleosynthesis when these elements were actually synthesized and not recombination.

¢) The Big Bang is the name given to the event which initiated the universe’s expansion.
The expansion is slowing at present due to the gravitational pull of the matter and
energy in the universe. |[However, in January and February of 1998, two groups
of astronomers observing Type 1A supernovas up to redshifts just short of z = 1
reported evidence that the expansion of the universe is now accelerating. If verified,
this would presumably mean that Einstein’s cosmological constant is not zero after
all, but has a positive value. One would still expect that the expansion slowed
dramatically during the early history of the universe, but then somewhere in the
middle of its history the expansion started to accelerate.]

d) The neutrino background is expected to be at a temperature of about 2° K. (Note:
Some students suggested that the temperature of the neutrino background is lower
than that of the photon background since the neutrinos decoupled earlier. Although
it is true that the neutrinos decoupled earlier, this alone does not imply the neutrino
background is cooler than the photon background. After the neutrinos decoupled,
they continued to cool at the same rate as the photons, until electrons and positrons
annihilated. Once electrons and positrons annihilated, energy released in these anni-
hilations was transferred to the photon background which was still coupled to matter,
thus increasing the photon temperature above the neutrino temperature.)

PROBLEM 6: EVOLUTION OF AN OPEN, MATTER-DOMINATED UNI-
VERSE

Note that parts (a), (b), and (c) of this problem are nearly identical to Problem Set
3, Problem 1 (1998). Nonetheless, many students seemed to have quite a bit of trouble
with this one. For that reason, I have attempted to make the solutions as pedagogical as
possible, even though they became quite long. You should not think, however, that you
were expected to write this much explanation on your exam.
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(a) The general formula for H is

_ 14dR

T Rdt’
but in this case there is the complication that R is given as a function of  rather
than ¢t. But 6 depends on ¢, so one must apply the chain rule:

d dR do
The standard formula for the Hubble constant can then be rewritten as
(6) = 1 dR do
R df dt’
On the front of the exam one finds the parametric equations for R and t:
¢t = o (sinh 8 — 6)
R
— = a(coshf —1) .

VE

Recall that the hyperbolic trigonometric functions are defined by

6 _—8
sinh @ = i,
2
6 —6
cosh @ = %,

and they are differentiated as

isinhﬂ = cosh @ ,

do
% coshf = sinh @ .
So, differentiating the parametric equations,
cfi—}; = aVksinh@ ,
Z—Z = %(coshﬂ -1).

Then
1

Trateono ) V9 | ey |

H(6) =

csinh 0
a(coshd —1)2
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(b) This problem can be attacked by at least three different methods. While you were
expected to use only one, we will show all three.

(i) The equation from the front of the exam,

_Arm GpR3
a= 3 k3/202°
can be solved for p to give
3 ar®/2c?
P=4n GR® -

Then substitute the parametric equation for R(6):

3 ar®/2¢? 1
P~ G a3k3/2(cosh § — 1)3
_ 3 c?
| 47 Ga2(coshd —1)3
(ii) Starting from
81 kc?
H? = —Gp— —
s 7 Rz
one can write )
81 ke
—Gp=H*+ — .
3 ° T Rz
Recalling that we described open universes by using Kk = —k, this can be rewritten
as \
81 Kc
—Gp=H?* - =— .
3 P R?

Replacing H by the answer in part (a) and R by its parametric equation, one finds

87rG e sinh? @ Kke?
3 P~ a?(coshf —1)*  a?k(coshd — 1)2
2
¢

_ .12 2
= aZ(cosh 8 — 1) [sinh® 6 — (cosh§ — 1)%] .

Now make use of the hypertrigonometric identity

cosh?@ —sinh?0 =1
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to simplify:
sinh? @ — (cosh@ — 1) = sinh® @ — cosh? § + 2cosh8 — 1 = 2(cosh 8 — 1) ,

SO

87rG _ 2c?
3 P~ a?(coshf —1)3 °

Dividing both sides of the equation by (87/3)G, one duplicates the previous result.

(iii) p can also be found from R = —(47/3)GpR. To evaluate R, again use the chain
rule. Starting with R,

_d_Rﬁ_a — inh o c __¢y/ksinhd
S dodt afcoshf —1)  coshf —1°
Then -
B dRdf _ d |cy/ksinhé c
"~ df dt  df |coshf —1] afcoshd —1)
B c2\/E coshd sinh? 0
~ afcosh® —1) [coshf —1 (coshd —1)2
2K . o
= a(cosh § — 177 [cosh 6(cosh § — 1) — sinh® §]
2K 2K
= 1 —coshf) = — :
a(cosh § — 1)3( cosh 6) a(coshd —1)2
So ,
. 47 c \/E 47
g 7 — a(cosh§ —1)2 3 pry/se(cos )
and

3 c?
47 Go2(cosh§ —1)3

P

The critical mass density satisfies the cosmological evolution equations for k£ = 0, so
81
H? = ?Gpc .

Then
p  8wGp

N v
p. 3H?
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Now replace H by the answer to part (a), and p by the answer to part (b):

q— 817G [ 3 c? a?(cosh — 1)4
3 |47 Ga%(coshf —1)3 ¢2sinh? ¢
coshf —1 coshf —1
pumng - 2 pumng 2 2
sinh“ 0 cosh“ 9 —1
B coshf —1 B 2
(cosh® +1)(coshf —1) | coshf+1

The answer can be written even more compactly, if one wishes, by using a further
hypertrigonometric identity:

_ 2 _ 1
~coshf+1  cosh? %0

1
= sech? =0 .
2
(d) The basic formula that determines the physical value of the horizon distance is given

by Eq. (5.7) of the lecture notes:

c

t
£, horizon (t) = R(t dt’ .
pporsentt) = B | 2

The complication here is that R is given as a function of 6, rather than . The
problem is handled, however, by a simple change of integration variables. One can
change the integral over t' to an integral over ¢’, provided that one replaces

!/
dt' — %da' = %(cosh ¢’ — 1)do’ .
c

One must also re-express the limits of integration in terms of 6. So

6 !
c dt
£, horizon(0) = R(0 —df’
pnorcon(0) = RO) [ 55
= av/k(cosh§ — 1) /0 © g(cosh 0’ —1)do’
B o o/k(coshd' —1) ¢ '
0
= afcosh§ — 1)/ d¢’ =| af(coshf—1).
0

(e) The key to this problem is the ability to use a power series expansion, and I have to
admit that I was very surprised to find that many of you seemed very inexperienced
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in this technique. It is a very useful method of approximation, however, so I strongly
urge all of you to learn it if you don’t know it already. In general, any sufficiently
smooth function f(z) can be expanded about the point zo by the series

1 ! 1 1) 2
f(z) = f(zo) + 1 (o) (z — 20) + 5 f*(20) (2 — 2o)

where the prime is used to denote a derivative. In particular, the exponential, sinh,
and cosh functions can be expanded about § = 0 by the formulas

o, 0, 0 O

€ = +ﬁ+§+§+”'
) 6 65 ¢°
2 04 06

For this problem, we expand the parametric equations for R(6) and (), keeping the
first nonvanishing term in the power series expansions:

3
t:f@mﬁ—m:3<0+”>

¢ ¢ \ 3!
H2
R = av/k(cosh § — 1) :a\/E<§—|—...>

The first expression can be solved for 8, giving

0 ~ <%>1/3 ,
o

which can be substituted into the second expression to give

2/3
R =~ %a\/E <60t> .

o

The power series expansions for the sinh and cosh are valid whenever the terms left
out are much smaller than the last term kept, which happens when 6 < 1. Given
the above relation between # and ¢, this condition is equivalent to

t<<a
6¢c
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Thus,

Since there is no precise meaning to the statement that an approximation is valid,
there is no precise value for t*. Some students placed criteria on the size of the
first omitted term in the series, and then derived a more precise value for t*. These
expressions for t* were always in the form of a dimensionless constant times a/c. This
approach is very good, but it was not required to get full credit for this problem.

From part (c), the expression for (1 is given by

B 2
~ coshf+1°

So,
l—Q—1— 2 _cosh0—1
N coshf +1 coshf+1°

Expanding numerator and denominator in power series,

Keeping only the leading terms,

SO

This result shows that the deviation of {1 from 1 is amplified with time. This fact
leads to a conundrum called the “flatness problem”, which will be discussed later in
the course.

A common mistake (very minor) was to keep extra terms, especially in the denom-
inator. Keeping extra terms allows a higher degree of accuracy, so there is nothing
wrong with it. However, one should always be sure to keep all terms of a given
order, since keeping only a subset of terms may or may not increase the accuracy.



8.286 QUIZ 2 REVIEW PROBLEM SOLUTIONS, SPRING 1998 p. 22

In this case, an extra term in the denominator can be rewritten as a term in the

numerator: .
& 1 62 1, 62
'0221 02210 1_Z+
2—|—ﬁ 1+T
1 1
— 02— —¢*+ ...
4 16 + ’

where I used the expansion

:1—x+x2—x3—|—x4+... .
1+z

Thus, the extra term in the denominator is equivalent to a term in the numerator
of order %, but other terms proportional to #* have been dropped. So, it is not
worthwhile to keep the 2nd term in the expansion of the denominator.

PROBLEM 7: DID YOU DO THE READING

The era when electrons and protons combined to form neutral hydrogen is known as
recombination. This happened roughly a few hundred thousand years after the big bang.

PROBLEM 8: TIME SCALES IN COSMOLOGY

(a) 13 billion years. [A shorter age is difficult to reconcile with the estimated age of
globular clusters, while a longer age is difficult to reconcile with my belief in a flat,
matter-dominated universe, which means that to = %Ho_l. 10 billion years and 20
billion years are also acceptable answers.|

(b) 5 billion years. [The scale factor in a matter-dominated flat model behaves as R(t) «

t2/3 so the universe was half its present size when it was (1/2)3/2 times its present
age. Taking the present age as 13 billion years, this gives 4.6 billion years.]

(c) 10,000 — 1,000,000 years.
(d) 10 billion years.

(e) 20 billion years.

PROBLEM 9: GEOMETRY IN A CLOSED UNIVERSE

(a) As one moves along a line from the origin to (a,0,0), there is no variation in  or ¢.

So df = d¢ = 0, and
ds =

V1—r2
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So

p /a Rdr Rain-1
= ——— = Rsin” " a.
P o V1—r2

(b) In this case it is only 8 that varies, so dr = d¢ = 0. So
ds = Rrdf ,

SO

sp = Ra Al .

(¢) From part (a), one has

a =sin(4,/R) .

Inserting this expression into the answer to (b), and then solving for Af, one has

s
A= — L |
Rsin(¢,/R)

Note that as R — oo, this approaches the Euclidean result, A8 = s,,/£,,.

PROBLEM 10: THE GENERAL SPHERICALLY SYMMETRIC METRIC
(a) The metric is given by
ds? = dr® + p*(r) [d0® +sin® 0 d¢?] .

The radius a is defined as the physical length of a radial line which extends from the
center to the boundary of the sphere. The length of a path is just the integral of ds,
SO

a= / ds .
radial path from

origin to rg

The radial path is at a constant value of § and ¢, so df = d¢ = 0, and then ds = dr.

So .
a:/ dr=| ro.
0

(b) On the surface r = rg, so dr =0. Then

ds? = p*(ro) [dO® + sin® 0 dp?] .
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To find the area element, consider first a path obtained by varying only §. Then ds =
p(ro) df. Similarly, a path obtained by varying only ¢ has length ds = p(ro) sin 8 d¢.
Furthermore, these two paths are perpendicular to each other, a fact that is incor-
porated into the metric by the absence of a dr df term. Thus, the area of a small
rectangle constructed from these two paths is given by the product of their lengths,
SO

dA = p*(ro)sin0 do do .

The area is then obtained by integrating over the range of the coordinate variables:

2T T
A:p2(ro)/ dqs/ sin 0 do
0 0
)

— A = 4mp*(ro) .

= p%(ro)(27) (— cos

As a check, notice that if p(r) = r, then the metric becomes the metric of Euclidean
space, in spherical polar coordinates. In this case the answer above becomes the
well-known formula for the area of a Euclidean sphere, 4772,

As in Problem 4 of Problem Set 3 (1998), we can imagine breaking up the volume
into spherical shells of infinitesimal thickness, with a given shell extending from r
to r + dr. By the previous calculation, the area of such a shell is A(r) = 4mp?(r).
(In the previous part we considered only the case r = rg, but the same argument
applies for any value of r.) The thickness of the shell is just the path length ds of a
radial path corresponding to the coordinate interval dr. For radial paths the metric
reduces to ds? = dr?, so the thickness of the shell is ds = dr. The volume of the
shell is then
dV = 4np*(r) dr .

The total volume is then obtained by integration:

vV :47r/ p*(r) dr .
0

Checking the answer for the Euclidean case, p(r) = r, one sees that it gives V =
(47/3)r3, as expected.

If r is replaced by a new coordinate ¢ = r2, then the infinitesimal variations of the
two coordinates are related by

d
9 =25,
dr
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SO

dr? = —/— .
40
The function p(r) can then be written as p(y/0 ), so

d
ds? = % + p* (Vo) [d8? + sin® 0 dg?] .

PROBLEM 11: VOLUMES IN A ROBERTSON-WALKER UNIVERSE

The product of differential length elements corresponding to infinitesimal changes in
the coordinates r,# and ¢ equals the differential volume element dV . Therefore

dr

V=R e

X R(t)rdd x R(t)rsinfd¢

The total volume is then

Tmax 2T
V= /dV Rt / /da/ dqﬁrsma
_ k7'2

We can do the angular integrations immediately:

"max r2dr

V =4nR3(¢ _
O]y Vicwe

[Pedagogical Note: If you don’t see through the solutions above, then note that the volume
of the sphere can be determined by integration, after first breaking the volume into
infinitesimal cells. A generic cell is shown in the diagram below:
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The cell includes the volume lying between r and r + dr, between # and 6 + df, and
between ¢ and ¢ + d¢. In the limit as dr, df, and d¢ all approach zero, the cell
approaches a rectangular solid with sides of length:

dr
N
ds2 = R(t)r df
dsz = R(t)rsin6dé .

dSl = R(t)

Here each ds is calculated by using the metric to find ds?, in each case allowing only
one of the quantities dr, df, or d¢ to be nonzero. The infinitesimal volume element
is then dV = dsidsadss, resulting in the answer above. The derivation relies on the
orthogonality of the dr, df, and d¢ directions; the orthogonality is implied by the
metric, which otherwise would contain cross terms such as dr d6.]

[Extension: The integral can in fact be carried out, using the substitution

Vkr =sing (if k> 0)
V—kr =sinhy (if k > 0).

The answer is

et (VE
sSin Tmax 1— k 2

21 R3(t) §c3 - ) - - Tmax (if k > 0)
VvV = i

orR3(1) | YL e Si“h_l(*/_—k’max)] (if k<0) |

(-4) (7

PROBLEM 12: THE SCHWARZSCHILD METRIC

a) The Schwarzschild horizon is the value of r for which the metric becomes singular.
Since the metric contains the factor

< 2GM>
1-—- 3 ,
re

it becomes singular at

2GM
2

RSch =
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b) The separation between A and B is purely in the radial direction, so the proper
length of a segment along the path joining them is given by

—1
ds? = <1 — 2GM> dr? |

re2

SO

dr

1 — 2GM
rc

ds =

The proper distance from A to B is obtained by adding the proper lengths of all the
segments along the path, so

"B dr
SAB:/ _— .
TA ‘/1_257;12\4

EXTENSION: The integration can be carried out explicitly. First use the expression
for the Schwarzschild radius to rewrite the expression for ssp as

"B \/rdr
SAB = r—————
ra VT_RSch

Then introduce the hyperbolic trigonometric substitution

r = Rgep cosh? u .

One then has

\/r — Rsen = \/Rsch sinh u
dr = 2Rgch cosh usinh u du

and the indefinite integral becomes

Vrdr / 2
———— — 2Rsn | cosh®udu
VT — RSch

= Rgch /(1 + cosh 2u)du

1
= Rsen <u + 2 sinh 2u>
= Rsch(u + sinhu coshu)

= Rsch sinh_l < % — 1) + v/ 7'(7' - RSch) .
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Thus,

- e .11 TA
= Rs. h! ——— —1 ) —sinh -1
SAB Sch [sm < Rsch > Sin < Rsch > :|

+ \/rB (rg — Rscn) — \/rA(rA — Rsen) -

¢) A tick of the clock and the following tick are two events that differ only in their time
coordinates. Thus, the metric reduces to

—c2dr? = — <1 — 2GJ2W> c2dt?

rc

SO
2GM

re2

dr =1/1— dt .

The reading on the observer’s clock corresponds to the proper time interval dr, so
the corresponding interval of the coordinate ¢ is given by

ATA

1 _ 2GM
rac2

Aty =

d) Since the Schwarzschild metric does not change with time, each pulse leaving A will
take the same length of time to reach B. Thus, the pulses emitted by A will arrive
at B with a time coordinate spacing

ATA

2GM
1 - 2
rac

Atp = Aty =

The clock at B, however, will read the proper time and not the coordinate time.
Thus,
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e) From parts (a) and (b), the proper distance between A and B can be rewritten as

"B \fdr
SAB =
Rsy VT — Rseh

The potentially divergent part of the integral comes from the range of integration
in the immediate vicinity of r = Rgcn, say Rsch < r < Rgcen + €. For this range the
quantity /r in the numerator can be approximated by +/Rsch, so the contribution

has the form
RSch +€

dr
V RSch
Rsen VI — Vr— Rsen

Changing the integration variable to v = r — Rgcn, the contribution can be easily
evaluated:
1?Sch‘i‘6

\/RSh/ — =2V Rgche < 0.
Rsen VT—RSCh ¢ ¢

So, although the integrand is infinite at r = Rgcn, the integral is still finite.

V RSch

The proper distance between A and B does not diverge.

Looking at the answer to part (d), however, one can see that when r4 = Rgch,

The time interval A7rp diverges.

PROBLEM 13: DID YOU DO THE READING?
(a) Fred Hoyle, Herman Bondi, and Thomas Gold.

(b) Mainly photons, et-e~ pairs, and neutrino-antineutrino pairs. There were trace
amounts of protons and neutrons, which need not even be mentioned.

(c) Deuterium.

(d) (1) They assumed that the universe began in a state of all neutrons, rather the
thermal equilibrium mix assumed in modern calculations.

(2) They took into account the conversion of neutrons to protons only by free decay
of the neutrons. They ignored the reactions

n+et «—— p+ U
ntvec—pte ,
which play a very important role in modern calculations.

(3) They attempted (unsuccessfully) to account for all of nucleosynthesis — they
did not realize that the nucleosynthesis of heavier elements takes place primarily
in the interior of stars.

(4) They used fewer than the presently accepted number of neutrinos.
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PROBLEM 14: GEODESICS

. 30

The geodesic equation for a curve xi()\), where the parameter A is the arc length
along the curve, can be written as

d { d:l;j} 1 dz* dzt

D99 a3 (ikd o o

Here the indices 7, k, and £ are summed from 1 to the dimension of the space, so there
is one equation for each value of 1.

(2)

The metric is given by
ds? = gijdz'dz? = dr® + r?do* |

SO
grrzla 900:7'2, gr0:g0r:0-

First taking + = r, the nonvanishing terms in the geodesic equation become

d [ dr _1(3 )ﬁﬁ
A V977 an [ T 299 gy an

which can be written explicitly as

d [dr| 1, 5 (do\*
a{a}—ﬂar”)(a) :

d*  [(do\?
a2 "\an)

or

For ¢ = 0, one has the simplification that g;; is independent of 4 for all (7, ). So

i 2@ =0
" a

The first step is to parameterize the curve, which means to imagine moving along
the curve, and expressing the coordinates as a function of the distance traveled. (I
am calling the locus y = 1 a curve rather than a line, since the techniques that are
used here are usually applied to curves. Since a line is a special case of a curve, there
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is nothing wrong with treating the line as a curve.) In Cartesian coordinates, the
curve y = 1 can be parameterized as

z(A) = A, y(A)=1.

(The parameterization is not unique, because one can choose A = 0 to represent any
point along the curve.) Converting to the desired polar coordinates,

() = Va2 ) + 2 () = VAT 41,

A
0(A) = tan™* % =tan"!(1/1) .
Calculating the needed derivatives,*

ar_ X

dx VX211

r 1 AZ B 1 1
dX2 22+ 1 (A2 +1)3/2 o (A2 +1)3/2 3
do 1 1 1

AN 4 /12232 g2
dA 1+ (%) A r
Then, substituting into the geodesic equation for ¢ = r,

d?r d02<:>1_ 1)’
axz " \dx s\ r2)

which checks. Substituting into the geodesic equation for 7 = 0,
A fpd| g d a1y
" axf "\ )T

* If you do not remember how to differentiate ¢ = tan—!(z), then you should know
how to derive it. Write z = tan ¢ = sin ¢/ cos ¢, so

.2
ds — <cosq§ sin” ¢

cos¢p cos? ¢

which also checks.

) dé = (1 + tan® ¢)d¢ .

Then
dp 1 1

dz 1—|—tan2q5: 1+ 227
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PROBLEM 15: METRIC OF A STATIC GRAVITATIONAL FIELD

(2)

dsiy is the invariant separation between the event at (z',t) and the event at
(z* + dz*,t + dt). Here z' and t are arbitrary coordinates that are connected to
measurements only through the metric. ds3y is defined to equal

—c2dT? + dF?

where dr and dT denote the space and time separation as it would be measured by
a freely falling observer. Taking the transmitter as the freely falling observer* and
taking the emission of two successive pulses as the two events, one has

dsip = —c*(AT.)* .

To connect with the metric, note that the successive emissions have a separation in
the time coordinate of At., and a separation of space coordinates dx* = 0. So

dsgr = — [¢* +28(2.)] (AL.)*

and then
—c*(AT.)? = —[c? + 24(Z.)](AL.)? =

AT,

c2

Since the metric is independent of ¢, each pulse follows a trajectory identical to the
previous pulse, but delayed in £. Thus each pulse requires the same time interval At
to travel from emitter to receiver, so the pulses arrive with the same t-separation as
they have at emission:

At, = At, .

This is similar to part (a), but in this case we consider the two events corresponding
to the reception of two successive pulses. ds3 is related to the physical measurement
AT, by

dsip = —c*(AT,)? .

* The transmitter is not really a freely falling observer, but is presumably held at rest
in this coordinate system. Thus gravity is acting on the clock, and could in principle
affect its speed. It is standard, however, to assume that such effects are negligible. That
is, one assumes that the clock is ideal, meaning that it ticks at the same rate as a freely

falling clock that is instantaneously moving with the same velocity.
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It is connected to the coordinate separation At, through the metric, where again we
use the fact that the two events have zero separation in their space coordinates—
i.e., dz' = 0. So

dskp = —[c? + 20(2,)|(AL)? .

Then
_(AT)? = — [ + 26(2,)](A8)?  —>
26(,
AT, = /14 226 5y,
C

We can cast this into a more useful form for the problem by using the solution for
At, found in part (c¢). This gives

14 28
AT, = [Y < | AT, .
1+ 222

Substitute this result for AT, directly into the definition for Z to obtain the exact
expression for the redshift,

Remember that v/1+ 2z ~ 1+ %:1: for small z. For weak fields, that is, for small
values of ¢(Z), we can expand our result to lowest order in ¢(Z). Expanding the
numerator we have

2 _’r _’r
- qﬁ(:)%Hqﬁ(fI;)'
c c
Similarly we find for
1L 9(E)
14 28(Z) ¢

Putting these approximations into our exact expression for 1 + Z we obtain

qs(zr)) (1 4@ ) IO EA

1—|—Zz<1—|——c2 oz oz oz

b

where we dropped terms in ¢(Z.)¢(Z,). Finally,
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(d) For the metric at hand we know goo = —[c% + 24(Z)|, gro = 0 and gix = gk = bik-
It is useful to notice that only goo depends on Z and thus 9d;gxm = 0. The geodesic
equation corresponding to u = ¢, where 2 runs from 1 to 3, is

L O W TP AN
dr 9ik dr | 2 t92a dr drt
d?z* 1 dz® dz°
bip—— = —(0; .
ka2 2( goo) dr dr

Using z° = ¢, 6;y* = y* and

Bigon = ~0i(c? + 20(#)) = ~ 0:6(2)

we find

d%zi [ dt\?
W = —31'@5(5’3) <E> .

0

[Pedagogical Note: You might prefer to use the notation z° = ct, which is also a very

common choice. In that case the metric is rewritten as

dsir = - {1 + M} (d2%)" + 23: ()"

c? ,
1=1

so one takes goo = — [1 + (2¢(Z)/c?)]. In the end one finds the same answer as the
boxed equation above.

Note also that when ¢ is small and velocities are nonrelativistic, then dt/dr =~ 1.
Thus one has d%z'/d*t ~ —8;6(Z), so ¢(Z) can be identified with the Newtonian
gravitational potential. In the context of general relativity, Newtonian gravity is a
distortion of the metric in the time-direction.]



