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MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Physics Department


Physics 8.286: The Early Universe April 6, 2004 
Prof. Alan Guth 

REVIEW PROBLEMS FOR QUIZ 2 
QUIZ DATE: Tuesday, April 13, 2004 

COVERAGE: Lecture Notes 6; Problem Set 3; Ryden, Chapters 4 and 5. One 
of the problems on the quiz will be taken verbatim (or at least al­
most verbatim) from either the homework assignments, or from the 
starred problems from this set of Review Problems. The starred prob-
lems are the ones that I recommend that you review most carefully: Problems 
1, 2, 4, 8, 10, and 11. There are no reading questions, since Ryden has not 
previously been used in this course. However, you should be prepared both to 
work problems and to answer short-answer questions related to the material in 
Ryden’s Chapters 4 and 5. The problems at the end of these chapters look like 
a good review. 

PURPOSE: These review problems are not to be handed in, but are being made 
available to help you study. They come mainly from quizzes in previous years. 
In some cases the number of points assigned to the problem on the quiz is listed 
— in all such cases it is based on 100 points for the full quiz. 

In addition to this set of problems, you will find on the   
the actual quizzes that were given in 1994, 1996, 1998, 2000, and 2002. The 
relevant problems from those quizzes have mostly been incorporated into these 
review problems, but you still may be interested in looking at the quizzes, just 
to see how much material has been included in each quiz. The coverage of the 
upcoming quiz will not necessarily match the coverage of any of the quizzes 
from previous years. 

 

INFORMATION TO BE GIVEN ON QUIZ: 

Each quiz in this course will have a section of “useful information” at the 
beginning. For the second quiz, this useful information will be the following: 

DOPPLER SHIFT: 

z = v/u (nonrelativistic, source moving) 

v/u 
z = (nonrelativistic, observer moving) 

1 − v/u 

1 +  β 
z = − 1 (special relativity, with β = v/c)

1 − β 

study materials section
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COSMOLOGICAL REDSHIFT: 

λobserved R(tobserved)1 +  z ≡ = 
λemitted R(temitted ) 

COSMOLOGICAL EVOLUTION: 

Ṙ
)2 

8π kc2 

= Gρ − 
R 3 R2 

¨ 4π 3p
R = − G ρ + R

3 c2 

EVOLUTION OF A FLAT (Ω ≡ ρ/ρc = 1)  UNIVERSE:  

R(t) ∝ t2/3 (matter-dominated) 

R(t) ∝ t1/2 (radiation-dominated) 

EVOLUTION OF A MATTER-DOMINATED

UNIVERSE:


Ṙ
)2 

8π kc2 

= Gρ − 
R 3 R2 

¨ 4π 
R = − GρR 

3 

R3(ti )
ρ(t) =  

R3(t) 
ρ(ti ) 

Closed (Ω > 1): ct = α(θ − sin θ) , 
R √ = α(1 − cos θ) , 
k 

4π GρR3 

where α ≡ 
3 k3/2c2 

Open (Ω < 1): ct = α (sinh θ − θ) 
R √ = α (cosh θ − 1) ,
κ 

4π GρR3 

where α ≡ 
3 κ3/2c2 

, 

κ ≡ −k .  
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ROBERTSON-WALKER METRIC: 

dr2 ( ) 
ds2 = −c 2 dτ 2 = −c 2 dt2 + R2(t) + r 2 dθ2 + sin2 θ dφ2

1 − kr2 

SCHWARZSCHILD METRIC: 

2GM 
) 

2GM 
)−1 

ds2 = −c 2dτ 2 = − 1 − c 2dt2 + 1 − dr2 
2 2rc rc

+ r 2dθ2 + r 2 sin2 θ dφ2 , 

GEODESIC EQUATION: 

d dxj 1 dxk dx� 

gij = 
2
(∂i gk�)

ds ds ds ds 

d dxν 1 dxλ dxσ 

or: gµν = 
2
(∂µ gλσ )

dτ dτ dτ dτ 

∗ PROBLEM 1: TRACING LIGHT RAYS IN A CLOSED, MATTER-
DOMINATED UNIVERSE (30 points) 

The following problem was Problem 3, Quiz 2, 1998. 

The spacetime metric for a homogeneous, isotropic, closed universe is given by 
the Robertson-Walker formula: 

dr2 ( ) 
ds2 = −c 2 dτ 2 = −c 2 dt2 + R2(t) + r 2 dθ2 + sin2 θ dφ2 ,

1 − r2 

where I have taken k = 1. To discuss motion in the radial direction, it is more 
convenient to work with an alternative radial coordinate ψ, related to r by 

r = sin  ψ .  

Then 
dr √ = dψ , 
1 − r2 

so the metric simplifies to 

ds2 = −c 2 dτ 2 = −c 2 dt2 + R2(t) dψ2 + sin2 ψ dθ2 + sin2 θ dφ2 . 
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(a)	 (7 points) A light pulse travels on a null trajectory, which means that dτ = 0  
for each segment of the trajectory. Consider a light pulse that moves along 
a radial line, so θ = φ = constant. Find an expression for dψ/dt in terms of 
quantities that appear in the metric. 

(b)	 (8 points) Write an expression for the physical horizon distance  phys at time 
t. You should leave your answer in the form of a definite integral. 

The form of R(t) depends on the content of the universe. If the universe is matter-
dominated (i.e., dominated by nonrelativistic matter), then R(t) is described by 
the parametric equations 

ct = α(θ − sin θ) , 

R = α(1 − cos θ) , 

where 
4π GρR3 

α ≡ .
23 c

These equations are identical to those on the front of the exam, except that I have 
chosen k = 1.  

(c)	 (10 points) Consider a radial light-ray moving through a matter-dominated 
closed universe, as described by the equations above. Find an expression for 
dψ/dθ, where  θ is the parameter used to describe the evolution. 

(d)	 (5 points) Suppose that a photon leaves the origin of the coordinate system 
(ψ = 0)  at  t = 0. How long will it take for the photon to return to its starting 
place? Express your answer as a fraction of the full lifetime of the universe, 
from big bang to big crunch. 

∗ PROBLEM 2: LENGTHS AND AREAS IN A TWO-DIMENSIONAL 
METRIC (25 points) 

The following problem was Problem 3, Quiz 2, 1994: 

Suppose a two dimensional space, described in polar coordinates (r, θ), has a 
metric given by 

ds2 = (1  +  ar)2 dr2 + r 2(1 + br)2 dθ2 , 

where a and b are positive constants. Consider the path in this space which is 
formed by starting at the origin, moving along the θ = 0 line to r = r0, then  
moving at fixed r to θ = π/2, and then moving back to the origin at fixed θ. The  
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path is shown below: 

a) (10 points) Find the total length of this path. 

b) (15 points) Find the area enclosed by this path. 

PROBLEM 3: GEOMETRY IN A CLOSED UNIVERSE (25 points) 

The following problem was Problem 4, Quiz 2, 1988: 

Consider a universe described by the Robertson–Walker metric on the first page 
of the quiz, with k = 1. The questions below all pertain to some fixed time t, so  
the scale factor can be written simply as R, dropping its explicit t-dependence. 

A small rod has one end at the point (r = a, θ = 0, φ = 0) and the other end 
at the point (r = a, θ = ∆θ, φ = 0). Assume that ∆θ � 1. 
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(a) Find the physical distance  p from the origin (r = 0) to the first end (a, 0, 0) 
of the rod. You may find one of the following integrals useful: 

dr √ = sin−1 r 
1 − r2 

dr 1 1 +  r 
= 

1 − r2 2
ln 

1 − r
. 

(b) Find the physical length sp of the rod. Express your answer in terms of the 
scale factor R, and  the  coordinates  a and ∆θ. 

(c) Note that ∆θ is the angle subtended by the rod, as seen from the origin. Write 
an expression for this angle in terms of the physical distance  p, the physical 
length sp, and the scale factor R. 

∗ PROBLEM 4: THE GENERAL SPHERICALLY SYMMETRIC 
METRIC (20 points) 

The following problem was Problem 3, Quiz 2, 1986: 

The metric for a given space depends of course on the coordinate system which 
is used to describe it. It can be shown that for any three dimensional space which 
is spherically symmetric about a particular point, coordinates can be found so that 
the metric has the form 

ds2 = dr2 + ρ2(r) dθ2 + sin2 θ dφ2

for some function ρ(r). The coordinates θ and φ have their usual ranges: θ varies 
between 0 and π, and  φ varies from 0 to 2π, where  φ = 0  and  φ = 2π are identified. 
Given this metric, consider the sphere whose outer boundary is defined by r = r0. 

(a) Find the physical radius a of the sphere. (By “radius”, I mean the physical 
length of a radial line which extends from the center to the boundary of the 
sphere.) 

(b) Find the physical area of the surface of the sphere. 

(c) Find an explicit expression for the volume of the sphere.	 Be sure to include 
the limits of integration for any integrals which occur in your answer. 

(d) Suppose a new radial coordinate σ is introduced, where σ is related to r by 

σ = r 2 . 

Express the metric in terms of this new variable. 
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PROBLEM 5: VOLUMES IN A ROBERTSON-WALKER UNIVERSE 
(20 points) 

The following problem was Problem 1, Quiz 3, 1990: 

The metric for a Robertson-Walker universe is given by 

dr2 ( ) 
ds2 = R2(t) + r 2 dθ2 + sin2 θ dφ2 .

1 − kr2 

Calculate the volume V (rmax ) of the sphere described by 

r ≤ rmax . 

You should carry out any angular integrations that may be necessary, but you may 
leave your answer in the form of a radial integral which is not carried out. Be sure, 
however, to clearly indicate the limits of integration. 

PROBLEM 6: THE SCHWARZSCHILD METRIC (25 points) 

The follow problem was Problem 4, Quiz 3, 1992: 

The space outside a spherically symmetric mass M is described by the Schwarz-
schild metric, given at the front of the exam. Two observers, designated A and B, 
are located along the same radial line, with values of the coordinate r given by rA 

and rB , respectively, with rA < rB . You should assume that both observers lie 
outside the Schwarzschild horizon. 

a)	 (5 points) Write down the expression for the Schwarzschild horizon radius RSch, 
expressed in terms of M and fundamental constants. 

b)	 (5 points) What is the proper distance between A and B? It  is  okay  to  leave  
the answer to this part in the form of an integral that you do not evaluate— 
but be sure to clearly indicate the limits of integration. 

c)	 (5 points) Observer A has a clock that emits an evenly spaced sequence of ticks, 
with proper time separation ∆τA. What will be the coordinate time separation 
∆tA between these ticks? 

d)	 (5 points) At each tick of A’s clock, a light pulse is transmitted. Observer B 
receives these pulses, and measures the time separation on his own clock. What 
is the time interval ∆τB measured by B. 

e)	 (5 points) Suppose that the object creating the gravitational field is a static 
black hole, so the Schwarzschild metric is valid for all r. Now suppose that one 
considers the case in which observer A lies on the Schwarzschild horizon, so 
rA ≡ RSch. Is the proper distance between A and B finite for this case? Does 
the time interval of the pulses received by B, ∆τB , diverge in this case? 
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PROBLEM 7: GEODESICS (20 points) 

The following problem was Problem 4, Quiz 2, 1986: 

Ordinary Euclidean two-dimensional space can be described in polar coordi-
nates by the metric 

ds2 = dr2 + r 2 dθ2 . 

(a) Suppose that r(λ) and  θ(λ) describe a geodesic in this space, where the para-
meter λ is the arc length measured along the curve. Use the general formula 
on the front of the exam to obtain explicit differential equations which r(λ) 
and θ(λ) must  obey.  

(b) Now introduce the usual Cartesian coordinates, defined by 

x = r cos θ ,  

y = r sin θ .  

Use your answer to (a) to show that the line y = 1 is a geodesic curve. 

∗ PROBLEM 8: METRIC OF A STATIC GRAVITATIONAL FIELD 
(30 points) 

The following problem was Problem 2, Quiz 3, 1990: 

In this problem we will consider the metric 

3 ] ( 
dxi 

)2 
ds2 = − 

[ 
c 2 + 2φ((x) dt2 + ,ST 

i=1 

which describes a static gravitational field. Here i runs from 1 to 3, with the 
identifications x1 ≡ x, x2 ≡ y, and  x3 ≡ z. The function φ((x) depends only on the 

1spatial variables (x ≡ (x , x2, x3), and not on the time coordinate t. 

(a) Suppose that a radio transmitter, located at (xe , emits a series of evenly spaced 
pulses. The pulses are separated by a proper time interval ∆Te, as  measured  
by a clock at the same location. What is the coordinate time interval ∆te 

between the emission of the pulses? (I.e., ∆te is the difference between the 
time coordinate t at the emission of one pulse and the time coordinate t at the 
emission of the next pulse.) 

(b) The pulses are received by an observer at (xr , who measures the time of arrival 
of each pulse. What is the coordinate time interval ∆tr between the reception 
of successive pulses? 
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(c) The observer uses his own clocks to measure the proper time interval ∆Tr 

between the reception of successive pulses. Find this time interval, and also 
the redshift z, defined by 

∆Tr1 +  z =
∆Te 

. 

First compute an exact expression for z, and then expand the answer to lowest 
order in φ((x) to obtain a weak-field approximation. (This weak-field approxi-
mation is in fact highly accurate in all terrestrial and solar system applications.) 

(d) A freely falling particle travels on a spacetime geodesic xµ (τ ), where τ is the 
proper time. (I.e., τ is the time that would be measured by a clock moving 
with the particle.) The trajectory is described by the geodesic equation 

d dxν 1 dxλ dxσ 

gµν = 
2
(∂µ gλσ ) ,

dτ dτ dτ dτ 

where the Greek indices (µ, ν, λ, σ, etc.) run from 0 to 3, and are summed over 
when repeated. Calculate an explicit expression for 

id2x

dτ 2 
, 

valid for i = 1, 2, or 3. (It is acceptable to leave quantities such as dt/dτ or 
dxi /dτ in the answer.) 

PROBLEM 9: GEODESICS ON THE SURFACE OF A SPHERE 

In this problem we will test the geodesic equation by computing the geodesic 
curves on the surface of a sphere. We will describe the sphere as in Lecture Notes 
6, with metric given by 

2 
( 

ds2 = a dθ2 + sin2 θ dφ2 . 

(a) Clearly one geodesic on the sphere is the equator, which can be parametrized 
by θ = π/2 and φ = ψ, where  ψ is a parameter which runs from 0 to 2π. 
Show that if the equator is rotated by an angle α about the x-axis, then the 
equations become: 

cos θ = sin  ψ sin α 

tan φ = tan  ψ cos α .  

(b) Using the generic form of the geodesic equation on the front of the exam, derive 
the differential equation which describes geodesics in this space. 

(c) Show that the expressions in (a) satisfy the differential equation for the geo-
desic. Hint: The algebra on this can be messy, but I found things were reason-
ably simple if I wrote the derivatives in the following way: 

dθ cos ψ sin α dφ cos α 
, = 

dψ 
= − √ 

1 − sin2 ψ sin2 α dψ 1 − sin2 ψ sin2 α
. 
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∗ PROBLEM 10: GEODESICS IN A CLOSED UNIVERSE 

The following problem was Problem 3, Quiz 3, 2000, where it was worth 40 points 
plus 5 points extra credit. 

Consider the case of closed Robertson-Walker universe. Taking k = 1, the  
spacetime metric can be written in the form 

dr2 ( ) 
ds2 = −c 2 dτ 2 = −c 2 dt2 + R2(t) + r 2 dθ2 + sin2 θ dφ2 .

1 − r2 

We will assume that this metric is given, and that R(t) has been specified. While 
galaxies are approximately stationary in the comoving coordinate system described 
by this metric, we can still consider an object that moves in this system. In particu-
lar, in this problem we will consider an object that is moving in the radial direction 
(r-direction), under the influence of no forces other than gravity. Hence the object 
will travel on a geodesic. 

(a)	 (7 points) Express dτ /dt in terms of dr/dt. 

(b)	 (3 points) Express dt/dτ in terms of dr/dt. 

(c)	 (10 points) If the object travels on a trajectory given by the function rp(t) 
between some time t1 and some later time t2, write an integral which gives the 
total amount of time that a clock attached to the object would record for this 
journey. 

(d)	 (10 points) During a time interval dt, the object will move a coordinate distance 

dr 
dr = dt . 

dt 

Let d  denote the physical distance that the object moves during this time. By 
“physical distance,” I mean the distance that would be measured by a comoving 
observer (an observer stationary with respect to the coordinate system) who is 
located at the same point. The quantity d /dt can be regarded as the physical 
speed vphys of the object, since it is the speed that would be measured by a 
comoving observer. Write an expression for vphys as a function of dr/dt and r. 

(e)	 (10 points) Using the formulas at the front of the exam, derive the geodesic 
equation of motion for the coordinate r of the object. Specifically, you should 
derive an equation of the form 

[ ] ( )2 ( )2 ( )2 ( )2
d dr dt dr dθ dφ 

A = B + C + D + E ,
dτ dτ dτ dτ dτ dτ 

where A, B, C , D, and  E are functions of the coordinates, some of which might 
be zero. 
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(f)	 (5 points EXTRA CREDIT) On Problem 4 of Problem Set 3 we learned that 
in a flat Robertson-Walker metric, the relativistically defined momentum of a 
particle, 

mvphys 
p = √ ,

2 
phys 1 − 
v

2c

falls off as 1/R(t). Use the geodesic equation derived in part (e) to show that 
the same is true in a closed universe. 

∗ PROBLEM 11: A TWO-DIMENSIONAL CURVED SPACE (40 
points) 

The following problem was Problem 3, Quiz 2, 2002. 

Consider a two-dimensional curved space described by 
polar coordinates u and θ, where  0  ≤ u ≤ a and 0 ≤ θ ≤ 2π, 
and θ = 2π is as usual identified with θ = 0. The metric is 
given by 

2a du
ds 2 = + u dθ2 .

4u(a − u) 

A diagram of the space is shown at the right, but you should 
of course keep in mind that the diagram does not accurately 
reflect the distances defined by the metric. 

(a)	 (6 points) Find the radius R of the space, defined as 
the length of a radial (i.e., θ = constant) line. You 
may express your answer as a definite integral, which 
you need not evaluate. Be sure, however, to specify the 
limits of integration. 

(b)	 (6 points) Find the circumference S of the space, de-
fined as the length of the boundary of the space at 
u = a. 
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(c)	 (7 points) Consider an annular region as shown, con-
sisting of all points with a u-coordinate in the range 
u0 ≤ u ≤ u0 + du. Find the physical area dA of this 
region, to first order in du. 

(d)	 (3 points) Using your answer to part (c), write an expression for the total area 
of the space. 

(e)	 (10 points) Consider a geodesic curve in this space, described by the functions 
u(s) and  θ(s), where the parameter s is chosen to be the arc length along the 
curve. Find the geodesic equation for u(s), which should have the form 

d 
[ 

du 
] 

ds
F (u, θ)

ds 
= . . .  ,  

where F (u, θ) is a function that you will find. (Note that by writing F as a 
function of u and θ, we  are  saying  that  it  could depend on either or both of 
them, but we are not saying that it necessarily depends on them.) You need 
not simplify the left-hand side of the equation. 

(f)	 (8 points) Similarly, find the geodesic equation for θ(s), which should have the 
form	 [ ]


d dθ

ds

G(u, θ)
ds 

= . . .  ,  

where G(u, θ) is a function that you will find. Again, you need not simplify the 
left-hand side of the equation. 
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SOLUTIONS


PROBLEM 1: TRACING LIGHT RAYS IN A CLOSED, MATTER-
DOMINATED UNIVERSE 

(a) Since θ = φ = constant, dθ = dφ = 0, and for light rays one always has dτ = 0.  
The line element therefore reduces to 

0 =  −c 2 dt2 + R2(t)dψ2 . 

Rearranging gives ( )2
dψ c2 

= 
dt R2(t) 

, 

which implies that 

dψ c 
dt 

= ± 
R(t) 

. 

The plus sign describes outward radial motion, while the minus sign describes 
inward motion. 

(b) The maximum value of the ψ coordinate that can be reached by time t is found 
by integrating its rate of change: 

t c 
ψhor = dt′ . 

R(t′ )0 

The physical horizon distance is the proper length of the shortest line drawn at 
the time t from the origin to ψ = ψhor , which according to the metric is given 
by 

∫ t∫ ψ=ψhor 
∫ ψhor c 

 phys(t) =  ds = R(t) dψ = R(t) 
R(t′ ) 

dt′ . 
ψ=0 0 0 

(c) From part (a), 
dψ c 

= 
dt R(t) 

. 

By differentiating the equation ct = α(θ − sin θ) stated in the problem, one 
finds 

dt α 
= (1 − cos θ) . 

dθ c 
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Then 
dψ 

= 
dψ dt 

= 
α(1 − cos θ) 

dθ dt dθ R(t) 
. 

Then using R = α(1 − cos θ), as stated in the problem, one has the very simple 
result 

dψ 
= 1  . 

dθ 

(d) This part is very simple if one knows that ψ must change by 2π before the 
photon returns to its starting point. Since dψ/dθ = 1, this means that θ must 
also change by 2π. From  R = α(1 − cos θ), one can see that R returns to zero 
at θ = 2π, so this is exactly the lifetime of the universe. So, 

Time for photon to return 
= 1  .

Lifetime of universe 

If it is not clear why ψ must change by 2π for the photon to return to 
its starting point, then recall the construction of the closed universe that was 
used in Lecture Notes 6. The closed universe is described as the 3-dimensional 
surface of a sphere in a four-dimensional Euclidean space with coordinates 
(x, y, z, w): 

2 2 x 2 + y 2 + z 2 + w = a , 

where a is the radius of the sphere. The Robertson-Walker coordinate system 
is constructed on the 3-dimensional surface of the sphere, taking the point 
(0, 0, 0, 1) as the center of the coordinate system. If we define the w-direction 
as “north,” then the point (0, 0, 0, 1) can be called the north pole. Each point 
(x, y, z, w) on the surface of the sphere is assigned a coordinate ψ, defined to be 
the angle between the positive w axis and the vector (x, y, z, w). Thus ψ = 0  
at the north pole, and ψ = π for the antipodal point, (0, 0, 0, −1), which can be 
called the south pole. In making the round trip the photon must travel from 
the north pole to the south pole and back, for a total range of 2π. 

Discussion: Some students answered that the photon would return in the life-
time of the universe, but reached this conclusion without considering the details 
of the motion. The argument was simply that, at the big crunch when the scale 
factor returns to zero, all distances would return to zero, including the distance 
between the photon and its starting place. This statement is correct, but it does 
not quite answer the question. First, the statement in no way rules out the pos-
sibility that the photon might return to its starting point before the big crunch. 
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Second, if we use the delicate but well-motivated definitions that general rel-
ativists use, it is not necessarily true that the photon returns to its starting 
point at the big crunch. To be concrete, let me consider a radiation-dominated 
closed universe—a hypothetical universe for which the only “matter” present 
consists of massless particles such as photons or neutrinos. In that case (you 
can check my calculations) a photon that leaves the north pole at t = 0  just  
reaches the south pole at the big crunch. It might seem that reaching the south 
pole at the big crunch is not any different from completing the round trip back 
to the north pole, since the distance between the north pole and the south pole 
is zero at t = tCrunch, the time of the big crunch. However, suppose we adopt 
the principle that the instant of the initial singularity and the instant of the 
final crunch are both too singular to be considered part of the spacetime. We 
will allow ourselves to mathematically consider times ranging from t = ε to 
t = tCrunch − ε, where  ε is arbitrarily small, but we will not try to describe 
what happens exactly at t = 0  or  t = tCrunch. Thus, we now consider a photon 
that starts its journey at t = ε, and we follow it until t = tCrunch − ε. For  the  
case of the matter-dominated closed universe, such a photon would traverse 
a fraction of the full circle that would be almost 1, and would approach 1 as 
ε → 0. By contrast, for the radiation-dominated closed universe, the photon 
would traverse a fraction of the full circle that is almost 1/2, and it would 
approach 1/2 as ε → 0. Thus, from this point of view the two cases look very 
different. In the radiation-dominated case, one would say that the photon has 
come only half-way back to its starting point. 

PROBLEM 2: LENGTHS AND AREAS IN A TWO-DIMEN-
SIONAL METRIC 

a) Along the first segment dθ = 0,  so  ds2 = (1  +  ar)2 dr2, or  ds = (1  +  ar) dr. 
Integrating, the length of the first segment is found to be 

r0 1 2S1 = (1 + ar) dr = r0 + 2 
ar0 . 

0 

Along the second segment dr = 0,  so  ds = r(1 + br) dθ, where  r = r0. So  the  
length of the second segment is ∫ π/2 π 

S2 = r0(1 + br0) dθ = r0(1 + br0) .20 

Finally, the third segment is identical to the first, so S3 = S1. The total length 
is then ( )

1 2 π 
S = 2S1 + S2 = 2  r0 + 2 

ar0 + r0(1 + br0)2 

( π ) 1 2= 2 +
2 

r0 + 
2
(2a + πb)r0 . 



∫ 
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b) To find the area, it is best to divide the region into concentric strips as shown: 

Note that the strip has a coordinate width of dr, but the distance across the 
width of the strip is determined by the metric to be 

dh = (1  +  ar) dr . 

The length of the strip is calculated the same way as S2 in part (a): 

π 
s(r) =  r(1 + br) .

2 

The area is then 
dA = s(r) dh , 

so 
r0 

A = s(r) dh 
0

0 

r0 π 
= r(1 + br)(1 + ar) dr

2 
r0π 
[r + (a + b)r 2 + abr3 ] dr= 

2 0 

1 3
0 

1 
3
(a + b)r 

1π 4
0+ + abr=
 2

0r2 2 4 
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PROBLEM 3: GEOMETRY IN A CLOSED UNIVERSE 

(a) As one moves along a line from the origin to (a, 0, 0), there is no variation in θ 
or φ. So  dθ = dφ = 0,  and 


Rdr 

ds = √ . 

21 − r

So 

a Rdr  
 p = √ = R sin−1 a .  

1 − r2
0 

(b) In this case it is only θ that varies, so dr = dφ = 0.  So  

ds = Rr dθ , 

so 

sp = Ra ∆θ .  

(c) From part (a), one has 
a = sin( p/R) . 

Inserting this expression into the answer to (b), and then solving for ∆θ, one  
has 

∆θ = 
sp 

R sin( p/R) 
. 

Note that as R → ∞, this approaches the Euclidean result, ∆θ = sp/ p. 

PROBLEM 4: THE GENERAL SPHERICALLY SYMMETRIC MET-
RIC 

(a) The metric is given by 

ds2 = dr2 + ρ2(r) dθ2 + sin2 θ dφ2 . 

The radius a is defined as the physical length of a radial line which extends 
from the center to the boundary of the sphere. The length of a path is just the 
integral of ds, so  

a = ds . 
radial path from 
origin to r0 



∫ 
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The radial path is at a constant value of θ and φ, so  dθ = dφ = 0,  and  then  
ds = dr. So  

r0 

a = dr = r0 . 
0 

(b) On the surface r = r0, so  dr ≡ 0. Then 

ds2 = ρ2(r0) dθ2 + sin2 θ dφ2 . 

To find the area element, consider first a path obtained by varying only θ. 
Then ds = ρ(r0) dθ. Similarly, a path obtained by varying only φ has length 
ds = ρ(r0) sin  θ dφ. Furthermore, these two paths are perpendicular to each 
other, a fact that is incorporated into the metric by the absence of a dr dθ 
term. Thus, the area of a small rectangle constructed from these two paths is 
given by the product of their lengths, so 

dA = ρ2(r0) sin  θ dθ dφ  .  

The area is then obtained by integrating over the range of the coordinate 
variables: ∫ π∫ 2π 

A = ρ2(r0) dφ sin θ dθ  
0 0 ( ∣π ) 

= ρ2(r0)(2π) − cos θ∣ 
0 

=⇒ A = 4πρ2(r0) . 

As a check, notice that if ρ(r) =  r, then the metric becomes the metric of 
Euclidean space, in spherical polar coordinates. In this case the answer above 
becomes the well-known formula for the area of a Euclidean sphere, 4πr2 . 

(c) As in Problem 2 of Problem Set 3 (2000), we can imagine breaking up the 
volume into spherical shells of infinitesimal thickness, with a given shell ex-
tending from r to r + dr. By the previous calculation, the area of such a shell is 
A(r) =  4πρ2(r). (In the previous part we considered only the case r = r0, but 
the same argument applies for any value of r.) The thickness of the shell is just 
the path length ds of a radial path corresponding to the coordinate interval dr. 
For radial paths the metric reduces to ds2 = dr2, so the thickness of the shell 
is ds = dr. The volume of the shell is then 

dV = 4πρ2(r) dr . 



∫ 
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The total volume is then obtained by integration: 

r0 

V = 4π ρ2(r) dr . 
0 

Checking the answer for the Euclidean case, ρ(r) =  r, one sees that it gives 
3V = (4π/3)r0 , as expected. 

(d) If r is replaced by a new coordinate σ ≡ r2, then the infinitesimal variations of 
the two coordinates are related by 

dσ √ 
= 2r = 2  σ ,

dr 

so 
dσ2 

dr2 = 
4σ

. 

√
The function ρ(r) can then be written as ρ( σ ), so 

dσ2 √ [ 
ds2 = + ρ2( σ ) dθ2 + sin2 θ dφ2

] 
.

4σ 

PROBLEM 5: VOLUMES IN A ROBERTSON-WALKER UNIVERSE 

The product of differential length elements corresponding to infinitesimal 
changes in the coordinates r, θ and φ equals the differential volume element dV . 
Therefore 

dr 
dV = R(t) √ × R(t)rdθ × R(t)r sin θdφ 

1 − kr2 

The total volume is then ∫ ∫ rmax 
∫ π ∫ 2π r2 sin θ 

V = dV = R3(t) dr dθ dφ √ 
0 0 0 1 − kr2 

We can do the angular integrations immediately: 

rmax r2dr 
V = 4πR3(t) √ . 

0 1 − kr2 



√ 
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[Pedagogical Note: If you don’t see through the solutions above, then note that the 
volume of the sphere can be determined by integration, after first breaking the 
volume into infinitesimal cells. A generic cell is shown in the diagram below: 

The cell includes the volume lying between r and r + dr, between θ and θ + dθ, 
and between φ and φ + dφ. In the limit as dr, dθ, and  dφ all approach zero, 
the cell approaches a rectangular solid with sides of length: 

dr 
ds1 = R(t) √ 

1 − kr2 

ds2 = R(t)r dθ  

ds3 = R(t)r sin θ dθ  .  

Here each ds is calculated by using the metric to find ds2, in each case allowing 
only one of the quantities dr, dθ, or  dφ to be nonzero. The infinitesimal volume 
element is then dV = ds1ds2ds3, resulting in the answer above. The derivation 
relies on the orthogonality of the dr, dθ, and  dφ directions; the orthogonality 
is implied by the metric, which otherwise would contain cross terms such as 
dr dθ.] 

[Extension: The integral can in fact be carried out, using the substitution √ 
k r  = sin  ψ (if k >  0) 

√ −k r  = sinh  ψ (if k >  0). 
The answer is   (√ )     sin−1 k rmax 1 − kr2  max   2πR3(t) 

k3/2 
−  (if k >  0)  k


V =
 [√ (√ )]   1 − kr2 sinh−1 −k rmax  max −  2πR3(t) (if k <  0) .]  (−k) (−k)3/2 
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PROBLEM 6: THE SCHWARZSCHILD METRIC 

a) The Schwarzschild horizon is the value of r for which the metric becomes sin-
gular. Since the metric contains the factor 

2GM
1 − 

rc2 
, 

it becomes singular at 

2GM 
RSch = 

2 
. 

c

b) The separation between A and B is purely in the radial direction, so the proper 
length of a segment along the path joining them is given by 

2GM 
)−1 

ds2 = 1 − dr2 , 
rc2 

so 
dr 

ds = √ . 
1 − 2GM 

2rc

The proper  distance from  A to B is obtained by adding the proper lengths of 
all the segments along the path, so 

rB dr 
sAB = √ . 

1 − 2GMrA 2rc

EXTENSION: The integration can be carried out explicitly. First use the 
expression for the Schwarzschild radius to rewrite the expression for sAB as ∫ √ rB r dr  

sAB = √ . 
rA 

r − RSch 

Then introduce the hyperbolic trigonometric substitution 

r = RSch cosh2 u .  

One then has 
r − RSch = RSch sinh u 



∫ 

( 

( ) √ √ 

√ √ 

√ √ 
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dr = 2RSch cosh u sinh u du  ,  

and the indefinite integral becomes ∫ √ ∫ 
r dr  √ = 2RSch cosh2 u du 


r − RSch


= RSch (1 + cosh 2u)du 

1 
) 

= RSch u + sinh 2u
2 

= RSch(u + sinh  u cosh u) 

= RSch sinh−1 r − 1 + r(r − RSch) . 
RSch 

Thus, [ ( ) ( )]  
rA 

sAB = RSch sinh−1 rB − 1 − sinh−1 − 1 
RSch RSch 

+ rB (rB − RSch) − rA (rA − RSch) . 

c) A tick of the clock and the following tick are two events that differ only in their 
time coordinates. Thus, the metric reduces to 

2GM −c 2dτ 2 = − 1 − c 2dt2 , 
rc2 

so √

2GM


dτ = 1 − dt . 
rc2 

The reading on the observer’s clock corresponds to the proper time interval dτ , 
so the corresponding interval of the coordinate t is given by 

∆τA∆tA = √ . 
1 − 2GM 

2rAc

d) Since the Schwarzschild metric does not change with time, each pulse leaving 
A will  take  the same length  of time to  reach  B. Thus, the pulses emitted by A 
will arrive at B with a time coordinate spacing 

∆τA∆tB = ∆tA = √ . 
1 − 2GM 

2rAc



√ 
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The clock at B, however, will read the proper time and not the coordinate 
time. Thus, 

2GM
∆τB = 1 − 

2 
∆tB 

rB c

1 − 2GM √ 2 
= √ rBc ∆τA . 

1 − 2GM 
2rAc

e) From parts (a) and (b), the proper distance between A and B can be rewritten 
as ∫ √ rB rdr 

sAB = √ . 
RSch r − RSch 

The potentially divergent part of the integral comes from the range of integra-
tion in the immediate vicinity of r = RSch, say  RSch < r  < RSch + ε. For  this  √ √ 
range the quantity r in the numerator can be approximated by RSch, so  
the contribution has the form 

RSch+ε dr 
RSch √ . 

RSch r − RSch 

Changing the integration variable to u ≡ r − RSch, the contribution can be 
easily evaluated: 

√ ∫ RSch+ε dr √ du √ 
RSch √ = RSch √ = 2  RSchε <  ∞ . 

0 uRSch r − RSch 

So, although the integrand is infinite at r = RSch, the integral is still finite. 

The proper distance between A and B does not diverge. 

Looking at the answer to part (d), however, one can see that when rA = RSch, 

The time interval ∆τB diverges. 



{ } 
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PROBLEM 7: GEODESICS 

The geodesic equation  for  a curve  xi(λ), where the parameter λ is the arc 
length along the curve, can be written as 

d dxj 1 dxk dx� 

gij = 
2
(∂igk�) . 

dλ dλ dλ dλ 

Here the indices j, k, and    are summed from 1 to the dimension of the space, so 
there is one equation for each value of i. 

(a) The metric is given by 

ds2 = gij dx
idxj = dr2 + r 2 dθ2 , 

so 
2 grr = 1, gθθ = r , grθ = gθr = 0  . 

First taking i = r, the nonvanishing terms in the geodesic equation become 

d dr 1 dθ dθ 
grr = 

2
(∂r gθθ ) ,

dλ dλ dλ dλ 

which can be written explicitly as 

d dr 1 ( 
∂r r 2

) dθ 
)2 

= 
dλ dλ 2 dλ 

, 

or 

d2r dθ 
)2 

= r . 
dλ2 dλ 

For i = θ, one has the simplification that gij is independent of θ for all (i, j). 
So 

d 2 dθ 
r = 0  . 

dλ dλ 

(b) The first step is to parameterize the curve, which means to imagine moving 
along the curve, and expressing the coordinates as a function of the distance 
traveled. (I am calling the locus y = 1 a curve rather than a line, since the 
techniques that are used here are usually applied to curves. Since a line is a 



√ √ 

( ( 

( ) 
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special case of a curve, there is nothing wrong with treating the line as a curve.) 
In Cartesian coordinates, the curve y = 1 can be parameterized as 

x(λ) =  λ ,  y(λ) =  1  . 

(The parameterization is not unique, because one can choose λ = 0 to represent 
any point along the curve.) Converting to the desired polar coordinates, 

r(λ) =  x2(λ) +  y2(λ) =  λ2 + 1  , 

θ(λ) =  tan−1 y(λ) = tan−1(1/λ) . 
x(λ)


Calculating the needed derivatives,*


dr λ 
= √ 

dλ λ2 + 1  

d2r 1 λ2 1 1 
= √ − = = 

r3dλ2 λ2 + 1  (λ2 + 1)3/2 (λ2 + 1)3/2 

dθ 1 1 1 
= − .

2dλ 
= − 

1 +  
( 

1 
)2 λ2 r

λ 

Then, substituting into the geodesic equation for i = r, 

1 
)2

d2r dθ 
)2 1 

dλ2 
= r 

dλ 
⇐⇒ 

r3 
= r − 

r2 
, 

which checks. Substituting into the geodesic equation for i = θ,
{ } 
d 
{ 

2 

( 
1 
)}


d 2 dθ 
r = 0  ⇐⇒ r − = 0  ,

dλ dλ dλ r2 

which also checks. 

* If you do not remember how to differentiate φ = tan−1(z), then you should 
know how to derive it. Write z = tan  φ = sin  φ/ cos φ, so  

cos φ sin2 φ 
dz = + dφ = (1  +  tan2 φ)dφ . 

cos φ cos2 φ 

Then 
dφ 1 1 

= = 
dz 1 + tan2 φ 1 +  z2 

. 
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PROBLEM 8: METRIC OF A STATIC GRAVITATIONAL FIELD 

i(a) ds2 
ST is the invariant separation between the event at (x , t) and  the  event  at  

i(xi + dxi, t  + dt). Here x and t are arbitrary coordinates that are connected 
to measurements only through the metric. ds2 

ST is defined to equal 
2−c 2dT 2 + d(r , 

where d(r and dT denote the space and time separation as it would be mea-
sured by a freely falling observer. Taking the transmitter as the freely falling 
observer* and taking the emission of two successive pulses as the two events, 
one has 

ds2 = −c 2(∆Te)2 .ST 

To connect with the metric, note that the successive emissions have a separation 
in the time coordinate of ∆te, and a separation of space coordinates dxi = 0.  
So 

ds2 = − 
[ 
c 2 + 2φ((xe) (∆te)2 ,ST 

and then

−c 2(∆Te)2 = −[c 2 + 2φ((
xe)](∆te)2 =⇒ 

∆Te∆te = √ . 
xe)1 +  2φ(�
2c

(b) Since the metric is independent of t, each pulse follows a trajectory identical 
to the previous pulse, but delayed in t. Thus each pulse requires the same time 
interval ∆t to travel from emitter to receiver, so the pulses arrive with the same 
t-separation as they have at emission: 

∆tr = ∆te . 

(c) This is similar to part (a), but in this case we consider the two events cor-
responding to the reception of two successive pulses. ds2 is related to the ST 
physical measurement ∆Tr by 

ds2 = −c 2(∆Tr)2 .ST 

* The transmitter is not really a freely falling observer, but is presumably held 
at rest in this coordinate system. Thus gravity is acting on the clock, and could in 
principle affect its speed. It is standard, however, to assume that such effects are 
negligible. That is, one assumes that the clock is ideal, meaning that it ticks at 
the same rate as a freely falling clock that is instantaneously moving with the same 
velocity. 
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It is connected to the coordinate separation ∆tr through the metric, where 
again we use the fact that the two events have zero separation in their space 
coordinates— i.e., dxi = 0.  So  

ds2 = −[c 2 + 2φ((xr)](∆tr)2 .ST 

Then

−c 2(∆Tr)2 = −[c 2 + 2φ((
xr )](∆te)2 =⇒ 

2φ((xr)∆Tr = 1 +  ∆te . 
c2 

We can cast this into a more useful form for the problem by using the solution 
for ∆te found in part (c). This gives 

  
xr)1 +  2φ(�
2 ∆Tr = √ c ∆Te . 
xe)1 +  2φ(�
2c

Substitute this result for ∆Tr directly into the definition for Z to obtain the 
exact expression for the redshift, 

xr )1 +  2φ(�
2 

1 +  Z = √ c
. 

xe)1 +  2φ(�
2c

√ 
Remember that 1 +  x ≈ 1+  1 x for small x. For weak fields, that is, for small 2
values of φ(( x). Expanding x), we can expand our result to lowest order in φ((

the numerator we have


xr) φ((2φ(( xr )1 +  ≈ 1 +  . 
c2 c2 

Similarly we find for 
1 φ((xe) √ ≈ 1 − . 

xe) c2 
1 +  2φ(�

2c

Putting these approximations into our exact expression for 1 + Z we obtain 

( 
xr ) 

)(  
xe) 

) 
φ(( φ(( φ(( xe)xr ) φ((

1 +  Z ≈ 1 +  1 − ≈ 1 +  − 
2 

,
2 2 2c c c c



( ) 

( 
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where we dropped terms in φ(( xr ). Finally, xe )φ((

φ(( xe )xr ) − φ((
Z ≈ .

2c

(d) For the metric at hand we know g00 = −[c2 +2φ((x)], gk0 = 0  and  gik = gki = 
δik .  It is  useful  to  notice  that only  g00 depends on (x and thus ∂i gkm = 0.  The  
geodesic equation corresponding to µ = i, where  i runs  from  1 to 3,  is  

d dxk 1 dxλ dxσ 

gik = 
2
(∂i gλσ ) =⇒ 

dτ dτ dτ dτ 

k 1d2x dx0 dx0 

δik = 
2
(∂i g00) . 

dτ 2 dτ dτ 

Using x0 ≡ t, δik y
k = yi and 

2 
∂i g00 = −∂i (c 2 + 2φ(( x)x)) = − 

c2 
∂i φ((

we find 

id2x dt 
)2 

= −∂i φ((x) . 
d2τ dτ 

[Pedagogical Note: You might prefer to use the notation x0 ≡ ct, which  is  also  a  
very common choice. In that case the metric is rewritten as 

x) 
] ( ( 

dxi 
)2 

ds2 = − 1 +  
2φ(

2 

(
dx0

)2 
+ 

3 

,ST c
i=1 

so one takes g00 = − 1 + (2φ((x)/c2) . In the end one finds the same answer 
as the boxed equation above. 

Note also that when φ is small and velocities are nonrelativistic, then 
dt/dτ ≈ 1. Thus one has d2xi /d2t ≈ −∂i φ(( x) can be identified with x), so φ((
the Newtonian gravitational potential. In the context of general relativity, 
Newtonian gravity is a distortion of the metric in the time-direction.] 
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PROBLEM 9: GEODESICS ON THE SURFACE OF A SPHERE 

(a) Rotations are easy to understand in Cartesian coordinates.	 The relationship 
between the polar and Cartesian coordinates is given by 

x = r sin θ cos φ 

y = r sin θ sin φ 

z = r cos θ .  

The equator is then described by θ = π/2, and  φ = ψ, where  ψ is a parameter 
running from 0 to 2π. Thus, the equator is described by the curve xi (ψ), where 

x 1 = x = r cos ψ 

x 2 = y = r sin ψ 

x 3 = z = 0  . 

Now introduce a primed coordinate system that is related to the original system 
by a rotation in the y-z plane by an angle α: 

x = x 

y = y ′ cos α− z ′ sin α 

z = z cos α+ y ′ sin α .  



′ ′ 
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The rotated equator, which we seek to describe, is just the standard equator 
in the primed coordinates: 

x = r cos ψ ,  y  = r sin ψ ,  z  ′ = 0  . 

Using the relation between the two coordinate systems given above, 

x = r cos ψ 

y = r sin ψ cos α 

z = r sin ψ sin α .  

Using again the relations between polar and Cartesian coordinates, 

z 
cos θ = = sin  ψ sin α 

r 

y
tan φ = = tan  ψ cos α .  

x 

(b) A segment of the equator corresponding to an interval dψ has length adψ, so  
the parameter ψ is proportional to the arc length. Expressed in terms of the 
metric, this relationship becomes 

dxi dxj 

ds2 = gij dψ2 = a 2dψ2 . 
dψ dψ 

Thus the quantity 
dxi dxj 

A ≡ gij 
dψ dψ 

is equal to a2, so the geodesic equation (6.36) reduces to the simpler form of 
Eq. (6.38). (Note that we are following the notation of Lecture Notes 6, except 
that the variable used to parametrize the path is called ψ, rather than λ or s. 
Although A is not equal to 1 as we assumed in Lecture Notes 6, it is easily seen 
that Eq. (6.38) follows from (6.36) provided only that A = constant.) Thus, 

d dxj 1 dxk dx� 

gij = 
2
(∂i gk�) . 

dψ dψ dψ dψ 

For this problem the metric has only two nonzero components: 

2 gθθ = a , gφφ = a 2 sin2 θ .  
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Taking i = θ in the geodesic equation, 

d dθ 1 dφ dφ 
gθθ =

2 
∂θ gφφ =⇒ 

dψ dψ dψ dψ 

d2θ dφ 
)2 

= sin  θ cos θ . 
dψ2 dψ 

Taking i = φ, 
d 

a 2 sin2 θ 
dφ 

= 0  =⇒ 
dψ dψ 

d 
sin2 θ 

dφ 
= 0  . 

dψ dψ 

(c) This part is mainly algebra. Taking the derivative of 

cos θ = sin  ψ sin α 

implies

− sin θ dθ  = cos  ψ sin α dψ  . 


√

Then, using the trigonometric identity sin θ = 1 − cos2 θ, one finds 

sin θ = 1 − sin2 ψ sin2 α , 


so

dθ cos ψ sin α 

= − √ .

dψ 1 − sin2 ψ sin2 α


Similarly


tan φ = tan  ψ cos α =⇒ sec2 φdφ  = sec2 ψ dψ  cos α .  

Then

sec2 φ = tan2 φ + 1  =  tan2 ψ cos2 α + 1 


1

= [sin2 ψ cos2 α + cos2 ψ]

cos2 ψ 

= sec2 ψ[sin2 ψ(1 − sin2 α) +  cos2 ψ] 

= sec2 ψ[1 − sin2 ψ sin2 α] , 



{ } 

[ 
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So 
dφ cos α 

= 
dψ 1 − sin2 ψ sin2 α

. 

To verify the geodesic equations of part (b), it is easiest to check the second 
one first: 

cos α
sin2 θ 

dφ 
= (1  − sin2 ψ sin2 α)

dψ 1 − sin2 ψ sin2 α


= cos  α , 


so clearly

d	 d

sin2 θ 
dφ 

= (cos α) =  0  . 
dψ dψ dψ 

To verify the first geodesic equation from part (b), first calculate the left-hand 
side, d2θ/dψ2, using our result for dθ/dψ: 

{ } ( ) 
d2θ d dθ d cos ψ sin α 

= = − √ . 
dψ2 dψ dψ dψ 1 − sin2 ψ sin2 α 

After some straightforward algebra, one finds


d2θ sin ψ sin α cos2 α

=	 . 

dψ2 
1 − sin2 ψ sin2 α 

]3/2 
The right-hand side of the first geodesic equation can be evaluated using the 
expression found above for dφ/dψ, giving 

( )2 √ 
dφ	 cos2 α

sin θ cos θ = 1 − sin2 ψ sin2 α sin ψ sin α [
dψ 1 − sin2 ψ sin2 α 

]2 
sin ψ sin α cos2 α 

=	 . 
1 − sin2 ψ sin2 α 

]3/2


So the left- and right-hand sides are equal.


PROBLEM 10: GEODESICS IN A CLOSED UNIVERSE 

(a)	 (7 points) For purely radial motion, dθ = dφ = 0, so the line element reduces 
do { } 

dr2 

−c 2 d 2 = −c 2 dt2 + R2(t) 
2 

.
1 − r
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Dividing by dt2 , 

(	 )2 
R2(t) 

( )2
d dr −c 2 
dt 

= −c 2 +
1 − r2 dt 

. 

Rearranging, 

R2(t) 
( )2

d dr 
= 

dt 
1 − 

c2(1 − r2) dt 
. 

(b)	 (3 points) 

dt 1	 1 
dd 

R2(t) dr 
)2 

dt 1 − 
c2(1 − r2) dt 

(c)	 (10 points) During any interval of clock time dt, the proper time that would 
be measured by a clock moving with the object is given by d , as  given  by  the  
metric. Using the answer from part (a), 

d R2(t) drp 
)2 

d = dt = 1 −	 dt . 
dt c2(1 − r2 

p ) dt 

Integrating to find the total proper time, 

t2 R2(t) drp 
)2 

= 1 −	 dt . 
c2(1 − r2 

p ) dtt1 

(d)	 (10 points) The physical distance d  that the object moves during a given time 
interval is related to the coordinate distance dr by the spatial part of the metric: 

dr2 

d 2 = ds2 = R2(t) =⇒ d  = √ 
R(t) 

dr . 
1 − r2	 1 − r2 

Thus 

d  R(t) dr 
vphys = = √ . 

dt 1 − r2 dt 



{ } 
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Discussion: A common mistake was to include −c2 dt2 in the expression for 
d 2 . To understand why this is not correct, we should think about how an 
observer would measure d , the distance to be used in calculating the velocity 
of a passing object. The observer would place a meter stick along the path of the 
object, and she would mark off the position of the object at the beginning and 
end of a time interval dtmeas. Then she would read the distance by subtracting 
the two readings on the meter stick. This subtraction is equal to the physical 
distance between the two marks, measured at the same time t. Thus,  when  
we compute the distance between the two marks, we set dt = 0. To compute 
the speed she would then divide the distance by dtmeas, which is nonzero. 

(e)	 (10 points) We start with the standard formula for a geodesic, as written on 
the front of the exam: 

d dxν 1 dxλ dxσ 

gµν = 
2
(∂µgλσ) . 

d d d d 

This formula is true for each possible value of µ, while the Einstein summation 
convention implies that the indices ν, λ, and  σ are summed. We are trying to 
derive the equation for r, so  we  set  µ = r. Since the metric is diagonal, the 
only contribution on the left-hand side will be ν = r. On the right-hand side, 
the diagonal nature of the metric implies that nonzero contributions arise only 
when λ = σ. The term will vanish unless dxλ /d is nonzero, so λ must be 
either r or t (i.e., there is no motion in the θ or φ directions). However, the 
right-hand side is proportional to 

∂gλσ 
. 

∂r 

Since gtt = −c2, the derivative with respect to r will vanish. Thus, the only 
nonzero contribution on the right-hand side arises from λ = σ = r. Using  

R2(t) 
grr = 1 − r2 

, 

the geodesic equation becomes 

d dr 1 dr dr 
grr = 

2
(∂r grr ) ,

d d d d 

or { } 
1 
[ ( )] 

d R2 dr	 R2 dr dr 
= ∂r 2 d

,
2 dd 1 − r 2 1 − r d 



{ }	 ( 

( 

{ } 
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or finally 

d R2 dr 
= R2 r dr 

)2 

d 1 − r2 d (1 − r2)2 d
. 

This matches the form shown in the question, with 

R2 

A =
1 − r2 

, and C = R2 r 
(1 − r2)2 

,


with B = D = E = 0. 


(f)	 (5 points EXTRA CREDIT) The algebra here can get messy, but it is not too 
bad if one does the calculation in an efficient way. One good way to start is to 
simplify the expression for p. Using the answer from (d), 

R(t) dr 
mvphys 

m √ 
1−r2 dt p = √ = √	 . 

2 

1 − 
vphys R2 dr 

)2 
c2 

1 − c2(1−r2) dt 

Using the answer from (b), this simplifies to


R(t) dr dt R(t) dr

p = m √ = m √ . 

1 − r2 dt d 1 − r2 d 

Multiply the geodesic equation by m, and then use the above result to rewrite 
it as { }	 ( )2

d √ 
Rp 

= mR2 r dr 
d 1 − r2 (1 − r2)2 d

.


Expanding the left-hand side,


1 d	 r dr 
LHS = 

d √ 
Rp 

= √ {Rp} + Rp
d 1 − r2 1 − r2 d d(1 − r2)3/2 

= √ 
1 d {Rp} + mR2 r 

( 
dr 

)2 

. 
2 d1 − r (1 − r2)2 d 

Inserting this expression back into left-hand side of the original equation, one 
sees that the second term cancels the expression on the right-hand side, leaving 

1 d √ {Rp} = 0  . 
1 − r2 d


√

Multiplying by 1 − r2 , one has the desired result: 

d	 1 {Rp} = 0  =⇒ p ∝ . 
d R(t) 



√ 
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PROBLEM 11: A TWO-DIMENSIONAL CURVED SPACE (40 points) 

(a) For θ = constant, the expression for the metric reduces 
to 

2a du
ds2 = =⇒

4u(a − u) 

1 a 
ds = du .

2 u(a − u) 

To find the length of the radial line shown,

one must integrate this expression from the value

of u at the center, which is 0, to the value of u at the outer edge, which is a.

So


a1 a 
R = du .

2 0 u(a − u) 

You were not expected to do it, but the integral can be carried out, giving √ 
R = (π/2) a. 

(b) For u = constant, the expression for the metric reduces 
to √ 

ds2 = u dθ2 =⇒ ds = u dθ .  

Since θ runs from 0 to 2π, and  u = a for the circumfer
-
ence of the space,


∫ 2π √ √ 
S = a dθ = 2π a .  

0 



[ √ 

√ 
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(c) To evaluate the answer to first order in du means to 
2neglect any terms that would be proportional to du


or higher powers. This means that we can treat the

annulus as if it were arbitrarily thin, in which case

we can imagine bending it into a rectangle without

changing its area. The area is then equal to the cir-

cumference times the width. Both the circumference

and the width must be calculated by using the metric:


dA = circumference × width 

√ 1 a 
] 

= [2π u0 ] × du
2 u0(a − u0) 

a 
= π du .

(a − u0) 

(d) We can find the total area by imagining that it is broken up into annuluses, 
where a single annulus starts at radial coordinate u and extends to u + du. 
As in part (a), this expression must be integrated from the value of u at the 
center, which is 0, to the value of u at the outer edge, which is a. 

a a 
A = π du .

(a − u)0 

You did not need to carry out this integration, but the answer would be A = 
2πa. 

(e) From the list at the front of the exam, the general formula for a geodesic is 
written as 

k dx�d 
[ 

dxj 1 ∂gk� dx
.

ds
gij ds 

=
2 ∂xi ds ds 

The metric components  gij are related to ds2 by 

2 jds = gij dx i dx , 
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where the Einstein summation convention (sum over repeated indices) is as-
sumed. In this case 

a 
g11 ≡ guu = 4u(a − u) 

g22 ≡ gθθ = u 

g12 = g21 = 0  , 

1where I have chosen x = u and x2 = θ. The equation with du/ds on the left-
hand side is found by looking at the geodesic equations for i = 1.  Of  course  j, 
k, and    must all be summed, but the only nonzero contributions arise when 
j = 1,  and  k and   are either both equal to 1 or both equal to 2: 

)2d 
[ 

du 
] 

1 ∂guu 
(
du 

)2 1 ∂gθθ 
(
dθ 

+
ds

guu ds 
=

2 ∂u ds 2 ∂u ds
. 

[ ] [ ( )]( [ ](
d a du 1 d a du 

)2 1 d dθ 
)2 

= + (u)
ds 4u(a − u) ds 2 du 4u(a − u) ds 2 du ds [ ]( ( )21 a a du 

)2 1 dθ 
= − +

2 4u(a − u)2 4u2(a − u) ds 2 ds 

( ( )21 a(2u − a) du 
)2 1 dθ 

= 
8 u2(a − u)2 ds 

+
2 ds

. 

(f) This part is solved by the same method, but it is simpler. Here we consider the 
geodesic equation with i = 2. The only term that contributes on the left-hand 
side is j = 2. On the right-hand side one finds nontrivial expressions when k 
and   are either both equal to 1 or both equal to 2. However, the terms on 
the right-hand side both involve the derivative of the metric with respect to 
x2 = θ, and these derivatives all vanish. So 

[ ] ( ( )2d dθ 1 ∂guu du 
)2 1 ∂gθθ dθ 

+
ds

gθθ ds 
=

2 ∂θ ds 2 ∂θ ds
, 

which reduces to 

d dθ 
u = 0  .

ds ds 


