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PROBLEM SET 6 
EXTRA CREDIT PROBLEM SET 

CAN BE HANDED IN THROUGH: Thursday, May 13, 2004 

RECOMMENDED READING: Steven Weinberg, The First Three Minutes, 
Chapter 6 through the end of the book. This reading is recommended whether 
or not you do the problem set. If you are pressured, however, feel free to save 
it for summer reading. 

EXTRA CREDIT: This problem set is not required, but can be turned in on the 
last day of classes or earlier, for up to three points of extra credit. The problem 
set includes 35 points of problems, which will be credited by muliplying your 
score by 3/35 and then increasing your final course grade by this amount. This 
extra credit assignment is an alternative to the extra credit paper that has 
already been announced. You need not do either, but you cannot get credit for 
more than one. 

I want to assure everyone that this extra credit work is being offered solely to 
satisfy the desires of those students who are hoping to raise their grades. If 
you are not interested in this, you can be assured that your grade will not be 
lowered. My policy is to first compute the grades without extra credit, and to 
assign letter grades that seem right in this context. I add in the extra credit 
only after these assignments have been made. 

PROBLEM 1: GRAND UNIFIED THEORIES AND MAGNETIC 
MONOPOLE PRODUCTION (8 points) 

When grand unified theories are combined with standard (i.e., non-inflationary) 
cosmology, one is led to the conclusion that far too many magnetic monopoles are 
produced. This conclusion is based on an estimate of nM /nγ , the ratio of the 
number density of magnetic monopoles to the number density of photons. The 
estimated value of nM /nγ is proportional to a power of the critical temperature 
Tc of the grand unified theory phase transition. State the power, and explain why. 
You may assume that the annihilation of monopoles after the grand unified phase 
transition is unimportant. 
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PROBLEM 2: EXPONENTIAL EXPANSION OF THE INFLATION
ARY UNIVERSE (7 points) 

Recall that the evolution of a Robertson-Walker universe is described by the 
equation 

Ṙ
�2 

8π kc2 

R 
=

3 
Gρ − 

R2 
. 

Suppose that the mass density ρ is given by the constant mass density ρf of the 
false vacuum. For the case k = 0, the solution is given simply by 

χtR(t) =  const  e , 

where � 
8π 

χ = Gρf3 

and const is an arbitrary constant. Find the solution to this equation for an arbi-
trary value of k. Be sure to consider both possibilities for the sign of k. You  may  
find the following integrals useful: 

dx √ = sinh−1 x 
21 +  x

dx √ = sin−1 x .  
1 − x2 

dx √ = cosh−1 x .  
x2 − 1 

Show that for large times one has 

χtR(t) ∝ e 

for all choices of k. 

PROBLEM 3: A ZERO MASS DENSITY UNIVERSE— GENERAL 
RELATIVITY DESCRIPTION (10 points) 

In this problem and the next we will explore the connections between special 
relativity and the standard cosmological model which we have been discussing. 
Although we have not studied general relativity in detail, the description of the 
cosmological model that we have been using is precisely that of general relativity. 
In the limit of zero mass density the effects of gravity will become negligible, and 
the formulas must then be compatible with the special relativity which we discussed 
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at the beginning of the course. The goal of these two problems is to see exactly 
how this happens. 

These two problems will emphasize the notion that a coordinate system is noth-
ing more than an arbitrary system of designating points in spacetime. A physical 
object might therefore look very different in two different coordinate systems, but 
the answer to any well-defined physical question must turn out the same regardless 
of which coordinate system is used in the calculation. 

From the general relativity point of view, the model universe is described by 
the Robertson-Walker spacetime metric: 

dr2 � � 
ds2 = −c 2dt2 + R2(t) + r 2 dθ2 + sin2 θdφ2 .ST 1 − kr2 

I have included the subscript “ST” to remind us that this formula gives the full 
spacetime metric, as opposed to the purely spatial metric which we discussed earlier. 
This formula describes the analogue of the “invariant interval” of special relativity, 
measured between the spacetime points (t, r, θ, φ) and  (t + dt, r + dr, θ + dθ, φ + dφ). 

The evolution of the model universe is governed by the general relation 

Ṙ
�2 

8π kc2 

R 
=

3 
Gρ − 

R2 
, 

except in this case the mass density term is to be set equal to zero. 

(a) Since the mass density is zero, it is certainly less than the critical mass density, 
so the universe is open. We can then choose k = −1. Derive an explicit 
expression for the scale factor R(t). 

(b) Suppose that a light pulse is emitted by a comoving source at time te, and  is  
received by a comoving observer at time to. Find the Doppler shift ratio z. 

(c) Consider a light pulse that leaves the origin at time te . In an infinitesimal time 
interval dt the pulse will travel a physical distance ds = cdt. Since the pulse is 
traveling in the radial direction (i.e., with dθ = dφ = 0), one has 

dr 
cdt = R(t) √ . 

1 − kr2 

Note that this is a slight generalization of Eq. (3.8), which applies for the case 
of a Euclidean geometry (k = 0). Derive a formula for the trajectory r(t) of  
the light pulse. You may find the following integral useful: 

dr √ = sinh−1 r .  
1 +  r2 

(d) Use these results to express the redshift z in terms of the coordinate r of the 
observer. If you have done it right, your answer will be independent of te . (In  
the special relativity description that will follow, it will be obvious why the 
redshift must be independent of te. Can you see the reason now?) 
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PROBLEM 4: A ZERO MASS DENSITY UNIVERSE— SPECIAL 
RELATIVITY DESCRIPTION 

In this problem we will describe the same model universe as in the previous 
problem, but we will use the standard formulation of special relativity. We will 
therefore use an inertial coordinate system, rather than the comoving system of the 
previous problem. Please note, however, that in the usual case in which gravity is 
significant, there is no inertial coordinate system. Only when gravity is absent does 
such a coordinate system exist. 

To distinguish the two systems, we will use primes to denote the inertial co-
ordinates: (t′, x , y , z′ ). Since the problem is spherically symmetric, we will also 
introduce “polar inertial coordinates” (r′ , θ′, φ′) which are related to the Cartesian 
inertial coordinates by the usual relations: 

x = r ′ sin θ′ cos φ′ 

y = r ′ sin θ′ sin φ′ 

z = r cos θ′ . 

In terms of these polar inertial coordinates, the invariant spacetime interval of 
special relativity can be written as 

′ 2ds2 = −c 2dt′2 + dr′ 2 + r dθ′ 2 + sin2 θ′ dφ′2 .ST 

For purposes of discussion we will introduce a set of comoving observers which 
travel along with the matter in the universe, following the Hubble expansion pattern. 
(Although the matter has a negligible mass density, I will assume that enough of it 
exists to define a velocity at any point in space.) These trajectories must all meet 
at some spacetime point corresponding to the instant of the big bang, and we will 
take that spacetime point to be the origin of the coordinate system. Since there 
are no forces acting in this model universe, the comoving observers travel on lines 
of constant velocity (all emanating from the origin). The model universe is then 
confined to the future light-cone of the origin. 

(a) The cosmic time variable t used in the previous problem can be defined as the 
time measured on the clocks of the comoving observers, starting at the instant 
of the big bang. Using this definition and your knowledge of special relativity, 
find the value of the cosmic time t for given values of the inertial coordinates— 
i.e., find t(t′, r′ ). [Hint: first find the velocity of a comoving observer who 
starts at the origin and reaches the spacetime point (t′, r′ , θ′ , φ′). Note that 
the rotational symmetry makes θ′ and φ′ irrelevant, so one can examine motion 
along a single axis.] 
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(b) Let us assume that angular coordinates have the same meaning in the two 
coordinate systems, so that θ = θ′ and φ = φ′ . We will verify in part (d) 
below that this assumption is correct. Using this assumption, find the value 
of the comoving radial coordinate r in terms of the inertial coordinates— i.e., 
find r(t′ , r′ ). [Hint: consider an infinitesimal line segment which extends in 
the θ-direction, with constant values of t, r, and  φ. Use the fact that this line 
segment must have the same physical length, regardless of which coordinate 
system is used to describe it.] Draw a graph of the t′-r plane, and sketch in 
lines of constant t and lines of constant r. 

(c) Show that the radial coordinate r of the comoving system is related to the 
magnitude of the velocity in the inertial system by 

v/c 
r = � . 

1 − v2/c2 

Suppose that a light pulse is emitted at the spatial origin (r = 0,  t′ = 
anything) and is received by another comoving observer who is traveling at 
speed v. With what redshift z is the pulse received? Express z as a function 
of r, and compare your answer to part (d) of the previous problem. 

(d) In this part we will show that the metric of the comoving coordinate system 
can be derived from the metric of special relativity, a fact which completely 
establishes the consistency of the two descriptions. To do this, first write out 
the equations of transformation in the form: 

t′ =? 

r ′ =? 

θ′ =? 

φ′ =? , 

where the question marks denote expressions in t, r, θ, and  φ. Now consider 
an infinitesimal spacetime line segment described in the comoving system by 
its two endpoints: (t, r, θ, φ) and  (t + dt, r + dr, θ + dθ, φ + dφ). Calculating 
to first order in the infinitesimal quantities, find the separation between the 
coordinates of the two endpoints in the inertial coordinate system— i.e., find 
dt′ , dr′ , dθ′ , and  dφ′ . Now insert these expressions into the special relativity 
expression for the invariant interval ds2 ,  and  if  you  have made no mistakes  ST 

you will recover the Robertson-Walker metric used in the previous problem. 
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DISCUSSION OF THE ZERO MASS DENSITY UNIVERSE: 

The two problems above demonstrate how the general relativistic description 
of cosmology can reduce to special relativity when gravity is unimportant, but it 
provides a misleading picture of the big-bang singularity which I would like to clear 
up. 

First, let me point out that the mass density of the universe increases as one 
looks backward in time. If the mass density parameter Ω ≡ ρ/ρc for our universe 
has a value of 0.2, at the low end of the empirically allowed range, then the universe 
today can be approximately modeled by the zero mass density universe. However, 
provided that Ω is greater than zero today, the zero mass density model cannot be 
taken as a valid model for the early history of the universe. 

In the zero mass density model, the big-bang “singularity” is a single spacetime 
point which is in fact not singular at all. In the comoving description the scale factor 
R(t) equals zero at this time, but in the inertial system one sees that the spacetime 
metric is really just the usual smooth metric of special relativity, expressed in a 
peculiar set of coordinates. In this model it is unnatural to think of t = 0 as really 
defining the beginning of anything, since the the future light-cone of the origin 
connects smoothly to the rest of the spacetime. 

In the standard model of the universe with a nonzero mass density, the behavior 
of the singularity is very different. First of all, it really is singular— one can 
mathematically prove that there is no coordinate system in which the singularity 
disappears. Thus, the spacetime cannot be joined smoothly onto anything that may 
have happened earlier. 

The differences between the singularities in the two models can also be seen by 
looking at the horizon distance. We learned in Lecture Notes 5 that light can travel 
only a finite distance from the time of the big bang to some arbitrary time t, and  
that this “horizon distance” is given by 

� t c 
�p(t) =  R(t) 

R(t′ ) 
dt′ . 

0 

For the scale factor of the zero mass density universe as found in the problem, one 
can see that this distance is infinite for any t— for the zero mass density model 
there is no horizon. For a radiation-dominated model, however, there is a finite 
horizon distance given by 2ct. 

Finally, in the zero mass density model the big bang occurs at a single point 
in spacetime, but for a nonzero mass density model it seems better to think of 
the big bang as occurring everywhere at once. In terms of the Robertson-Walker 
coordinates, the singularity occurs at t = 0, for all values of r, θ, and  φ. There  
is a subtle issue, however, because with R(t = 0) = 0, all of these points have 
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zero distance from each other. Mathematically the locus t = 0 in a nonzero mass 
density model is too singular to even be considered part of the space, which consists 
of all values of t > 0. Thus, the question of whether the singularity is a single 
point is not well defined. For any t > 0 the issue is of course clear— the space 
is homogeneous and infinite (for the case of the open universe). If one wishes to 
ignore the mathematical subtleties and call the singularity at t = 0 a single point, 
then one certainly must remember that the singularity makes it a very unusual 
point. Objects emanating from this “point” can achieve an infinite separation in 
an arbitrarily short length of time. 

Total points for Problem Set 6: 35. 


