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PROBLEM 1: EFFECT OF AN EXTRA NEUTRINO SPECIES (5 
points) 

According to the standard assumptions (which were used in the lecture notes), 
there are three species of massless neutrinos. In the temperature range of 1 MeV < 
kT < 100 MeV, the mass density of the universe is believed to have been dominated 
by the black-body radiation of photons, electron-positron pairs, and these neutrinos, 
all of which were in thermal equilibrium. 

(a) Under these assumptions, how long did it take (starting from the instant of the 
big bang) for the temperature to fall to the value such that kT = 1  MeV?  

(b) How much time would it have taken if there were one other species of massless 
neutrino, in addition to the three which we are currently assuming? 

(c) What would be the mass density of the universe when kT = 1 MeV under the 
standard assumptions, and what would it be if there were one other species of 
massless neutrino? 

PROBLEM 2: GAS PRESSURE AND ENERGY CONSERVATION (10 
points) 

In this problem we will pursue the implications of the conservation of energy. 
Consider first a gas contained in a chamber with a movable piston, as shown below: 

Let U denote the total energy of the gas, and let p denote the pressure. Suppose

that the piston is moved a distance dx to the right. (We suppose that the motion




� 

8.286 PROBLEM SET 4, SPRING 2004 p. 2 

is slow, so that the gas particles have time to respond and to maintain a uniform 
pressure throughout the volume.) The gas exerts a force pA on the piston, so the 
gas does work dW = pAdx as the piston is moved. Note that the volume increases 
by an amount dV = Adx, so  dW = pdV . The energy of the gas decreases by this 
amount, so 

dU = −pdV . (1) 

It turns out that this relation is valid whenever the volume of a gas is changed, 
regardless of the shape of the volume. 

Now consider a homogeneous, isotropic, expanding universe, described by a 
scale factor R(t). Let u denote the energy density of the gas that fills it. (Remember 
that u = ρc2, where  ρ is the mass density of the gas.) We will consider a fixed 
coordinate volume Vcoord, so the physical volume will vary as 

Vphys(t) =  R3(t)Vcoord . (2) 

The energy of the gas in this region is then given by 

U = Vphysu .  (3) 

(a) Using these relations, show that 
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and then that 

ρ̇ = −3 
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where the dot denotes differentiation with respect to t.


(b) The scale factor evolves according to the relation 

Ṙ
�2 

8π kc2 

R 
=

3 
Gρ − 

R2 
. (6) 

Using (5) and (6), show that 
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R = − G ρ + R .  (7) 
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This equation describes directly the deceleration of the cosmic expansion. Note 
that there are contributions from the mass density ρ, but also from the pressure 
p. 

(c) So far our equations have been valid for any sort of a gas, but let us now 
specialize to the case of black-body radiation. For this case we know that 
ρ = aT 4, where  a is a constant and T is the temperature. We also know that 
as the universe expands, RT remains constant. Using these facts and Eq. (5), 
find an expression for p in terms of ρ. 
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PROBLEM 3: ENTROPY AND THE BACKGROUND NEUTRINO 
TEMPERATURE (5 points) 

The formula for the entropy density of black-body radiation is given in Lecture 
Notes 7. The derivation of this formula has been left to the statistical mechanics 
course that you either have taken or hopefully will take. For our purposes, the 
important point is that the early universe remains very close to thermal equilibrium, 
and therefore entropy is conserved. The conservation of entropy applies even during 
periods when particles, such as electron-positron pairs, are “freezing out” of the 
thermal equilibrium mix. Since total entropy is conserved, the entropy density falls 
off as 1/R3(t). 

When the electron-positron pairs disappear from the thermal equilibrium mix-
ture as kT falls below mec

2 = 0.511 MeV, the weak interactions have such low cross 
sections that the neutrinos have essentially decoupled. To a good approximation, all 
of the energy and entropy released by the annihilation of electrons and positrons is 
added to the photon gas, and the neutrinos are unaffected. Use these facts to show 
that as electron-positron pair annihilation takes place, RTγ increases by a factor of 
(11/4)1/3, while RTν remains constant. It follows that after the disappearance of 
the electron-positron pairs, Tν /Tγ = (4/11)1/3 . As far as we know, nothing hap-
pens that significantly effects this ratio right up to the present day. So we expect 
today a background of thermal neutrinos which are slightly colder than the 2.7◦K 
background of photons. 

PROBLEM 4: FREEZE-OUT OF MUONS (10 points) 

A particle called the muon seems to be essentially identical to the electron, 
except that it is heavier— the mass/energy of a muon is 106 MeV, compared to 
0.511 MeV for the electron. The muon (µ− ) has the same charge as an electron, 
denoted by −e. There is also an antimuon (µ+), analogous to the positron, with 
charge +e. The muon and antimuon have the same spin as the electron. There is 
no known particle with a mass between that of an electron and that of a muon. 

(a) The black-body radiation formula, as given by Eq. (7.25) of the lecture notes, 
is written in terms of a normalization constant g. What is the value of g for 
the muons, taking µ+ and µ− together? 

(b) When kT is just above 106 MeV as the universe cools, what particles besides 
the muons are contained in the thermal radiation that fills the universe? What 
is the contribution to g from each of these particles? 

(c) As kT falls below 106 MeV, the muons disappear from the thermal equilibrium 
radiation. At these temperatures all of the other particles in the black-body 
radiation are interacting fast enough to maintain equilibrium, so the heat given 
off from the muons is shared among all the other particles. Letting R denote the 
Robertson-Walker scale factor, by what factor does the quantity RT increase 
when the muons disappear? 


