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Physics Department


Physics 8.286: The Early Universe March 9, 2004 
Prof. Alan Guth 

PROBLEM SET 3 

DUE DATE: Thursday, April 1, 2004 

READING ASSIGNMENT: Barbara Ryden, Introduction to Cosmology, 
Chapters 4 and 5. 

PROBLEM 1: A CIRCLE IN A NON-EUCLIDEAN GEOMETRY 

(5 points) 

Consider a universe described by the Robertson-Walker metric, Eq. (6.21), 
which describes an open, closed, or flat universe, depending on the value of k: 

dr2 � � 
ds2 = R2(t) + r 2 dθ2 + sin2 θdφ2 .

1 − kr2 

This problem will involve only the geometry of space at some fixed time, so we can 
ignore the dependence of R on t, and think of it as a constant. Consider a circle 
described by the equations 

z = 0  

2 x 2 + y 2 = r ,0 

or equivalently by the angular coordinates 

r = r0 

θ = π/2 . 

(a) Find the circumference S of this circle. Hint: break the circle into infinitesimal 
segments of angular size dφ, calculate the arc length of such a segment, and 
integrate. 
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(b) Find the radius ρ of this circle. Note that ρ is the length of a line which runs 
from the origin to the circle (r = r0), along a trajectory of θ = π/2 and φ = 
constant. Hint: Break the line into infinitesimal segments of coordinate length 
dr, calculate the length of such a segment, and integrate. Consider the case of 
open and closed universes separately, and take k = ±1. (If you don’t remember 
why we can take k = ±1, see the section called “Units” in Lecture Notes 4,). 
You will want the following integrals: 

dr √ = sin−1 r 
1 − r2 

and 
dr √ = sinh−1 r .  
1 +  r2 

(c) Express the circumference S in terms of the radius ρ. This result is independent 
of the coordinate system which was used for the calculation, since S and ρ 
are both measurable quantities. Since the space described by this metric is 
homogeneous and isotropic, the answer does not depend on where the circle is 
located or on how it is oriented. For the two cases of open and closed universes, 
state whether S is larger or smaller than the value it would have for a Euclidean 
circle of radius ρ. 

PROBLEM 2: VOLUME OF A CLOSED UNIVERSE (5 points) 

Calculate the total volume of a closed universe. It will be easiest to use the 
metric in the form of Eq. (6.12): 

2ds2 = a dψ2 + sin2 ψ dθ2 + sin2 θdφ2 . 

We will continue to use the convention that k = ±1, so in this case k = 1 and  a = R. 
Break the volume up into spherical shells of infinitesimal thickness, extending from 
ψ to ψ + dψ: 
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By comparing Eqs. (6.8) and (6.12), one can see that as long as ψ is held fixed, 
the metric for  varying  θ and φ is the same as that for a spherical surface of radius 
a sin ψ, and thus the area of the spherical surface is 4πa2 sin2 ψ. Multiply this area 
by the thickness of the shell (which you can read off from the metric), and then 
integrate over the full range of ψ. 

PROBLEM 3: CIRCULAR ORBITS IN A SCHWARZSCHILD MET­
RIC (10 points) 

The Schwarzschild metric, which describes the external gravitational field of 
any spherically symmetric distribution of mass, is given by 

2GM 
� 

2GM 
�−1 

c 2dτ 2 = −ds2 = 1 − c 2dt2 − 1 − dr2 − r 2dθ2 − r 2 sin2 θ dφ2 ,
2 2rc rc

where M is the total mass of the object, 0 ≤ θ ≤ π, 0  ≤ φ <  2π, and  φ = 
2π is identified with φ = 0. We will be concerned only with motion outside the 
Schwarzschild horizon RSch = 2GM/c2, so we  can  take  r >  RSch. (This restriction 
allows us to avoid the complications of understanding the effects of the singularity 
at r = RSch.) In this problem we will use the geodesic equation to calculate the 
behavior of circular orbits in this metric. We will assume a perfectly circular orbit 
in the x-y plane: the radial coordinate r is fixed, θ = 90◦, and  φ = ωt, for  some  
angular velocity ω. 

(a) Use the metric to find the proper time interval dτ for a segment of the path 
corresponding to a coordinate time interval dt. Note  that  dτ represents the 
time that would actually be measured by a clock moving with the orbiting 
body. Your result should show that 

dτ 2GM r2ω2 

= 1 − − . 
dt rc2 c2 

Note that for M = 0 this reduces to the special relativistic relation dτ /dt = 
1 − v2/c2, but the extra term proportional to M describes an effect that is 

new with general relativity— the gravitational field causes clocks to slow down, 
just as motion does. 

(b) Show that the geodesic equation of motion (Eq. (6.38)) for one of the coordi-
nates takes the form 

1 ∂gφφ 
� 
dφ 

�2 1 ∂gtt 
� 
dt 

�2 

0 =  + .
2 ∂r dτ 2 ∂r dτ 

(c) Show that the above equation implies � �2 � �2
dφ GM dt 

r = 
dτ r2 dτ 

, 
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which in turn implies that 

rω2 = 
GM 

. 
r2 

Thus, the relation between r and ω is exactly the same as in Newtonian me-
chanics. [Note, however, that this does not really mean that general relativity 
has no effect. First, ω has been defined by dφ/dt, where  t is a time coordinate 
which is not the same as the proper time τ that would be measured by a clock 
on the orbiting body. Second, r does not really have the same meaning as in 
the Newtonian calculation, since it is not the measured distance from the cen-
ter of motion. Measured distances, you will recall, are calculated by integrating 
the metric, as for example in Problem 1. Since the angular (dθ2 and dφ2) 
terms in the Schwarzschild metric are unaffected by the mass, however, it can 
be seen that the circumference of the circle is equal to 2πr, as in the Newtonian 
calculation.] 

PROBLEM 4: GEODESICS IN A FLAT UNIVERSE (10 points) 

According to general relativity, in the absence of any non-gravitational forces 
a particle will travel along a spacetime geodesic. In this sense, gravity is reduced 
to a distortion in spacetime. 

Consider the case of a flat (i.e., k = 0) Robertson–Walker metric, which has 
the simple form 

ds2 = −c 2dt2 + R2(t) dx2 + dy2 + dz2 .ST 

Since the spatial metric is flat, we have the option of writing it in terms of Cartesian 
rather than polar coordinates. Now consider a particle which moves along the x-
axis. (Note that the galaxies are on the average at rest in this system, but one can 
still discuss the trajectory of a particle which moves through the model universe.) 

(a) Use the geodesic equation to show that the coordinate velocity computed with 
respect to proper time (i.e., dx/dτ ) falls off as 1/R2(t). 

(b) Use the expression for the spacetime metric to relate dx/dt to dx/dτ . 

(c) The physical velocity of the particle relative to the galaxies that it is passing 
is given by 

dx 
v = R(t) . 

dt 
Show that the momentum of the particle, defined relativistically by 

mv 
p = � 

1 − v2/c2 

falls off as 1/R(t). (This implies, by the way, that if the particle were described 
pas a quantum mechanical wave with wavelength λ = h/|" |, then its wavelength 

would stretch with the expansion of the universe, in the same way that the 
wavelength of light is redshifted.) 
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PROBLEM 5: TRAJECTORIES AND DISTANCES IN AN OPEN 
UNIVERSE * (15 points) 

The spacetime metric for a homogeneous, isotropic, open universe is given by 
the Robertson-Walker formula: 

dr2 � � 
ds2 = −c 2 dτ 2 = −c 2 dt2 + R2(t) + r 2 dθ2 + sin2 θ dφ2 ,

1 +  r2 

where I have taken k = −1. To discuss motion in the radial direction, it is more 
convenient to work with an alternative radial coordinate ψ, related to r by 

r = sinh  ψ .  

Then 
dr √ = dψ , 
1 +  r2 

so the metric simplifies to 

ds2 = −c 2 dτ 2 = −c 2 dt2 + R2(t) dψ2 + sinh2 ψ dθ2 + sin2 θ dφ2 . 

The form of R(t) depends on the nature of the matter in the universe, but for this 
problem you should consider R(t) to be an arbitrary function. You should simplify 
your answers as far as it is possible without knowing the function R(t). 

a) Suppose that the Earth is at the origin of the coordinate system (ψ = 0),  and  
that at the present time, t0, we receive a light pulse from a distant galaxy G, 
located at ψ = ψG . Write down an equation which determines the time tG at 
which the light pulse left the galaxy. (You may assume that the light pulse 
travels on a “null” trajectory, which means that dτ = 0 for any  segment  of  
it. Since you don’t know R(t) you cannot solve this equation, so please do not 
try.) 

b) What is the redshift zG of the light from galaxy G? (Your answer may depend 
on tG, as  well  as  ψG or any property of the function R(t).) 

c) To estimate the number of galaxies that one expects to see in a given range 
of redshifts, it is necessary to know the volume of the region of space that 
corresponds to this range. Write an expression for the present value of the 
volume that corresponds to redshifts smaller than that of galaxy G. (You  may  

* Problem 5 of this problem set was taken from Quiz 2 of 1996, where it counted 
50 points out of 100. 
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leave your answer in the form of a definite integral, which may be expressed in 

terms of ψG , tG, zG , or the function R(t).) 

d) There are a number of different ways of defining distances in cosmology, and 

generally they are not equal to each other. One choice is called proper dis­

tance, which corresponds to the distance that one could in principle measure 

with rulers. The proper distance is defined as the total length of a network 

of rulers that are laid end to end from here to the distant galaxy. The rulers 
have different velocities, because each is at rest with respect to the matter in 

its own vicinity. They are arranged so that, at the present instant of time, each 

ruler just touches its neighbors on either side. Write down an expression for 
the proper distance #prop of galaxy G. 

e) Another common definition of distance is angular size distance, determined 

by measuring the apparent size of an object of known physical size. In a static, 
Euclidean space, a small sphere of diameter w at a distance # will subtend an 

angle ∆θ = w/#: 

Motivated by this relation, cosmologists define the angular size distance #ang 

of an object by 
w 

#ang ≡ 
∆θ

. 

What is the angular size distance #ang of galaxy G? 

f) A third common definition of distance is called luminosity distance, which  

is determined by measuring the apparent brightness of an object for which the 

actual total power output is known. In a static, Euclidean space, the energy flux 
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J received from a source of power P at a distance # is given by J = P/(4π#2): 

Cosmologists therefore define the luminosity distance by 

P 
#lum ≡ 

4πJ 
. 

Find the luminosity distance #lum of galaxy G. (Hint: the Robertson-Walker 
coordinates can be shifted so that the galaxy G is at the origin.) 

PROBLEM 6: THE KLEIN DESCRIPTION OF THE G-B-L GEOME­
TRY 

(This problem is not required, but can be done for 5 points extra credit.) 

I stated in Lecture Notes 6 that the space invented by Klein, described by the 
distance relation 

d(1, 2) 
� 

1 − x1x2 − y1y2cosh = � � ,
2 2 2a 1 − x1 − y2 1 − x2 − y1 2 

where 
2 x 2 + y < 1 , 

is a two-dimensional space of constant negative curvature. In other words, this 
is just a two-dimensional Robertson–Walker metric, as would be described by a 
two-dimensional version of Eq. (6.21), with k = −1: 

dr2 2ds2 = a + r 2dθ2 .
21 +  r
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The problem is to prove the equivalence. 

(a) As a first step, show that if x and y are replaced by the polar coordinates 
defined by


x = u cos θ


y = u sin θ ,  

then the distance equation can be rewritten as 

d(1, 2) 1 − u1u2 cos(θ1 − θ2)cosh = � � . 
2 2a 1 − u1 1 − u2 

(b) The next step is to derive the metric from the distance function above. Let 

u1 = u θ1 = θ ,  

u2 = u + du θ2 = θ + dθ , 

and

d(1, 2) =  ds .


Insert these expressions into the distance function, expand everything to second 
order in the infinitesimal quantities, and show that 

du2 u2dθ2 2ds2 = a + .
2(1 − u2)2 1 − u

(This part is rather messy, but you should be able to do it.) 

(c) Now find the relationship between r and u and show that the two metric func-
tions are identical. Hint: The coefficients of dθ2 must be the same in the two 
cases. Can you now see why Klein had to impose the condition x2 + y2 < 1? 

Total points for Problem Set 3: 45, plus up to 5 points extra credit. 


