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Abstract
Empirical autotuning is increasingly being used in many do-
mains to achieve optimized performance in a variety of dif-
ferent execution environments. A daunting challenge faced
by such autotuners is input sensitivity, where the best auto-
tuned configuration may vary with different input sets.

In this paper, we propose a two level solution that: first,
clusters to find input sets that are similar in input feature
space; then, uses an evolutionary autotuner to build an opti-
mized program for each of these clusters; and, finally, builds
an adaptive overhead aware classifier which assigns each in-
put to a specific input optimized program. Our approach ad-
dresses the complex trade-off between using expensive fea-
tures, to accurately characterize an input, and cheaper fea-
tures, which can be computed with less overhead. Experi-
mental results show that by adapting to different inputs one
can obtain up to a 3x speedup over using a single configura-
tion for all inputs.

1. Introduction
The developers of languages and tools have invested a great
deal of collective effort into extending the lifetime of soft-
ware. To a large degree, this effort has succeeded. Mil-
lions of lines of code written decades ago are still being
used in new programs. A typical example of this can be
found in the C++ Standard Template Library (STL) routine
std::stable sort, distributed with the current version of
GCC and whose implementation dates back to at least the
2001 SGI release of the STL. This legacy code contains a
hard coded optimization, a cutoff constant of 15 between
merge and insertion sort, that was designed for machines of
the time, having 1/100th the memory of modern machines.
Our tests have shown that higher cutoffs (60 to 150) perform
much better on current architectures. While this paradigm of
write once and run it everywhere is great for productivity, a
major sacrifice of these efforts is performance. Write once
use everywhere often becomes write once slow everywhere.
We need programs with performance portability, where pro-

grams can re-optimize themselves to achieve the best perfor-
mance on widely different execution targets.

One of the most promising techniques to achieve perfor-
mance portability is program autotuning. Rather than hard-
coding optimizations, that only work for a single microar-
chitecture, or using fragile heuristics, program autotuning
exposes a search space of program optimizations that can
be explored automatically. Autotuning is used to search this
optimization space to find the best configuration to use for
each platform.

A fundamental problem faced by programs and libraries
is input sensitivity. For a large class of problems, the best op-
timization to use depends on the input data being processed.
For example, sorting an almost-sorted list can be done most
efficiently with a different algorithm than one optimized for
sorting random data. This problem is worse in autotuning
systems, because there is a danger that the auotuner will cre-
ate an algorithm specifically optimized for the inputs it is
provided during training. Some existing solutions search for
the preferable optimization on every training input, and then
apply statistical learning algorithms to these data to build a
predictive model, which maps input features to the best con-
figurations [14, 20, 22, 27, 30].

But such solutions are not applicable to an important class
of autotuning, namely algorithmic autotuning. The goal of
algorithmic autotuning is to determine the best ways to con-
figure an algorithm or assemble multiple algorithms together
for solving a class of problems effectively. Its special chal-
lenges for addressing input sensitivity come from its four
primary properties.

First, algorithmic autotuning is often sensitive to many in-
put features that are domain-specific and require deep, pos-
sibly expensive, analysis to extract. For example, our singu-
lar value decomposition benchmark is sensitive to the num-
ber of eigenvalues in the input matrix. This is not reflected
in a generic feature such as input size. A complete solution
to this problem must address the fundamental trade-off be-
tween extracting a series of more expensive input features
in order to be able to select a better algorithm and the cost
of extracting such features overwhelming any performance
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gains achieved by the better algorithm. Prior work has not
addressed this problem in a systematic way.

Second, algorithmic autotuning often features a large ir-
regular configuration space. In the benchmarks we consider,
the autotuner uses algorithmic choices embedded in the pro-
gram to construct polyalgorithms which process a single in-
put through a hybrid of many different individual techniques.
This results in enormous search spaces, ranging from 10312

to 101016 possible configurations of a program. For such
complex search spaces, techniques based statistical models
break down because relations between input features and op-
timal configurations are not continuous. Even for a single
input, modeling based techniques have been shown to be in-
effective for these search space [3].

Finally, the case of algorithmic autotuning we consider
features multiple optimization objectives. Many algorithms
produce outputs of different quality, and the algorithmic au-
totuner is required to produce configurations that will meet
a target quality of service level. For example, our Pois-
son’s equation solver benchmark must produce an output
that matches the output of a direct solver to seven digits
of precision with at least 90% confidence. Meeting such a
requirement is especially difficult, because the difficulty of
meeting accuracy requirements can vary with each inputs.
For a class of inputs, a very fast poly-algorithm may suffice
to achieve seven digits of accuracy, while for different inputs
that same solver may not meet the accuracy target. Prior so-
lutions of input-adaptive autotuning have not carefully con-
sidered such a complexity.

This work presents a general means of automatically de-
termining what algorithmic optimizations to use for each
specific inputs, using selected subset of input features that
must be extracted inputs. This work demonstrates that this
problem can be solved through a simple self-refining ap-
proach.

At the center of this approach is a simple idea: In most
cases, inputs to a program have some kind of affinity, mean-
ing that many inputs share the same best configuration. So
instead of finding the best configuration for every training
input—which is impractical in many cases, we only need to
find one best configuration for each affine class of training
inputs. The difficulty is in how to find out such classes with-
out requiring the best configuration on each input.

Our self-refining approach resolves the difficulty by let-
ting the classes refine themselves in two levels. In the first
level, it uses raw input features to cluster training inputs
into some primitive classes. It then finds one configuration
that fits the centroid of each class. We call these landmark
configurations. In the second level, it refines the primitive
classes by taking the performance of all training inputs on
these landmark configurations as the clue—the rationale is
that if two inputs are actually affine, they are likely to favor
the same configuration. Based on the refined input classes, it
can then use supervised statistical learning to distill the input

feature sets and build up an input classifier, which makes an
algorithmic choice that is sensitive to input variation while
managing the input space and search space complexity.

This self-refining design leverages the observation that
running a program is usually much faster than finding out
the best configuration on an input (which requires a tech-
nique like autotuning). That observation makes it possible to
avoid finding the best configuration for every input by fur-
nishing evidence of how example inputs and different land-
mark configurations affect program performance. The de-
sign reconciles the stress between accuracy and performance
by introducing a programmer-centric scheme and a coherent
treatment to the dual objectives at both levels of learning. It
seamlessly integrates consideration of the feature extraction
overhead into the construction of input classifiers. In addi-
tion, we propose a new language keyword that allows the
programmer to specify arbitrary domain-specific input fea-
tures with variable sampling levels.

1.1 Contributions
This paper makes the following contributions:

• Our system is, to the best our knowledge, the first to
simultaneously address the interdependent problems of
variable accuracy algorithms and input sensitivity.
• Our novel self-refining approach solves the problem

of input sensitivity for much larger algorithmic search
spaces than would be tractable using prior techniques.
• We offer a principled understanding of the influence of

program inputs on algorithmic autotuning, and the rela-
tions among the spaces of inputs, algorithmic configura-
tions, performance, and accuracy. We identify a key dis-
parity between input properties, configuration, and exe-
cution behavior which makes it impractical to produce
a direct mapping from input properties to configurations
and motivates our two level approach.
• We show through an experimentally tested model that for

many types of search spaces there are rapidly diminishing
returns to adding more and more input adaption to a
program. A little bit of input adaptation goes a long way,
while a large amount is often unnecessary.
• Experimental results show that by dynamically selecting

between different optimized configurations for each input
one can obtain up to a 3x speedup over using a single
configuration for all inputs.

2. Language and Usage
This work is an extension to the PetaBricks language, com-
piler, and autotuner [3]. This section will briefly describe
some of the key features of PetaBricks, and then discuss our
extensions to it to support the input sensitive autotuning of
algorithms.
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1 f u n c t i o n S o r t
2 to o u t [ n ]
3 from i n [ n ]
4 i n p u t f e a t u r e S o r t e d n e s s , D u p l i c a t i o n
5 {
6 e i t h e r {
7 I n s e r t i o n S o r t ( out , i n ) ;
8 } or {
9 Q u i c k S o r t ( out , i n ) ;

10 } or {
11 MergeSor t ( out , i n ) ;
12 } or {
13 R a d i x S o r t ( out , i n ) ;
14 } or {
15 B i t o n i c S o r t ( out , i n ) ;
16 }
17 }
18
19 f u n c t i o n S o r t e d n e s s
20 from i n [ n ]
21 to s o r t e d n e s s
22 tunab le double l e v e l ( 0 . 0 , 1 . 0 )
23 {
24 i n t s o r t e d c o u n t = 0 ;
25 i n t c o u n t = 0 ;
26 i n t s t e p = ( i n t ) ( l e v e l ∗n ) ;
27 f o r ( i n t i =0 ; i + s t e p <n ; i += s t e p ) {
28 i f ( i n [ i ] <= i n [ i + s t e p ] ) {
29 / / i n c r e m e n t f o r c o r r e c t l y o r d e r e d
30 / / p a i r s o f e l e m e n t s
31 s o r t e d c o u n t += 1 ;
32 }
33 c o u n t += 1 ;
34 }
35 i f ( c o u n t > 0)
36 s o r t e d n e s s = s o r t e d c o u n t / ( double ) c o u n t ;
37 e l s e
38 s o r t e d n e s s = 0 . 0 ;
39 }
40
41 f u n c t i o n D u p l i c a t i o n
42 from i n [ n ]
43 to d u p l i c a t i o n
44 . . .

Figure 1. PetaBricks pseudocode for Sort with input fea-
tures

Figure 1 shows a fragment of the PetaBricks Sort bench-
mark extended for input sensitivity. We will use this as a
running example throughout this section.

2.1 Algorithmic Choice
The most distinctive feature of the PetaBricks language is
algorithmic choice. Using algorithmic choice, a programmer
can define a space of possible polyalgorithms rather than just
a single algorithm from a set. There are a number of ways to
specify algorithmic choices, but the most simple is the ei-
ther...or statement shown at lines 6 through 16 of Figure 1.
The semantics are that when the ether...or statement is ex-
ecuted, exactly one of the sub blocks will be executed, and
the choice of which sub block to execute is left up to the
autotuner.

The either...or primitive implies a space of possible
polyalgorithms. In our example, many of the sorting routines
(QuickSort, MergeSort, and RadixSort) will recursively call
Sort again, thus, the either...or statement will be executed
many times dynamically when sorting a single list. The au-
totuner uses evolutionary search to construct polyalgorithms
which make one decision at some calls to the either...or state-
ment, then different decisions in the recursive calls [4].

These polyalgorithms are realized through selectors (some-
times called decision trees) which efficiently select which al-
gorithm to use at each recursive invocation of the either...or
statement. As an example, a selector could create a polyal-
gorthm that first uses MergeSort to decompose a problem
into lists of less than 1420 elements, then uses QuickSort to
decompose those lists into lists of less than 600 elements,
and finally these lists are sorted with InsertionSort.

2.2 Input Features
In this work, we have extended the PetaBricks language
to support input sensitivity by adding the keyword in-
put feature, shown on lines 4 and 5 of Figure 1. The in-
put feature keyword specifies a programmer-defined func-
tion, a feature extractor, that will measure some domain
specific property of the input to the function. A feature ex-
tractor must have no side effects, take the same inputs as the
function, and output a single scalar value. The autotuner will
call this function as necessary.

Feature extractors may have tunable parameters which
control their behavior. For example, the level tunable on
line 23 of Figure 1, is a value that controls the sampling rate
of the sortedness feature extractor. Higher values will result
in a faster, but less accurate measure of sortedness. Tunable
is a general language keyword that specifies a variable to be
set by the autotuner and two values indicating the allowable
range of the tunable (in this example between 0.0 and 1.0).

Section 3 describes how input features are used by the
auotuner.
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2.3 Variable Accuracy
One of the key features of the PetaBricks programming lan-
guage is support for variable accuracy algorithms, which can
trade output accuracy for computational performance (and
vice versa) depending on the needs of the programmer. Ap-
proximating ideal program outputs is a common technique
used for solving computationally difficult problems, adher-
ing to processing or timing constraints, or optimizing perfor-
mance in situations where perfect precision is not necessary.
Algorithmic methods for producing variable accuracy out-
puts include approximation algorithms, iterative methods,
data resampling, and other heuristics.

At a high level, PetaBricks extends the idea of algorithmic
choice to include choices between different accuracies. The
programmer specifies a programmer defined accuracy met-
ric, to measure the quality of the output and set an accuracy
target. The autotuner must then consider a two dimensional
objective space, where its first objective is to meet the accu-
racy target (with a given level of confidence) and the second
objective is to maximize performance. A detailed descrip-
tion of the variable accuracy features of PetaBricks is given
in [5].

2.4 Usage
Figure 2 describes the usage of our system for input sen-
sitive algorithm design. At the first level, there is input
aware learning which takes the user’s program (containing
algorithmic choices), the feature extractors specified by the
input feature language keyword and input exemplars as
input. Input aware learning is described in Section 3. The
output of the learning is an input classifier and a set of input
optimized programs, each of which has been optimized for
specific class of inputs.

When an arbitrary input is encountered in deployment,
the classifier created by learning is used to select an input
optimized program which is expected to perform the best on
this input. The classifier will use some (possibly variable)
subset of the feature extractors available to it to probe the
input. Finally, the selected input optimized program will
process the input and return the output to the user.

3. Input Aware Learning
To help motivate our self-refining approach, we will first
explore existing solutions and their issues. The section will
continue to explain the design and implementation of our
technique.

3.1 Existing Solutions and Their Issues
A straightforward way to construct an input classifier is via
input-based clustering. First, construct feature vectors for
every example input set with the input feature extraction
procedures encoded by the programmer. Then, cluster ex-
amples based on the feature vectors. Next, find a good algo-
rithmic configuration for each cluster’s centroid. For a new

input, the classifier first invokes the feature extraction proce-
dures to compute its feature vector, based on which, it finds
out what input cluster the new input belongs, and then runs
the configuration of that cluster on that new input. This de-
sign has been used for addressing input sensitivity in pro-
gram specialization and others [30]. However, applying it to
algorithmic autotuning raises three issues.

First, it fails to acknowledge that two input sets that
are similar may not have correspondingly similar configura-
tions. As well, while there may be more than one configura-
tion that suits an input set, but some will perform well on an
input set similar to it, while others will not. In other words,
there is no direct correspondence between similar input fea-
tures, similar configurations and/or similar algorithm perfor-
mance (measured in execution speed and accuracy). Instead
the relationships among input properties, configurations and
program behavior are non-linear and complex. We call this
phenomena a mapping disparity. It implies that by assigning
configurations based on the differences in input features, the
simple design is likely to assign an inferior configuration for
new input.

The second issue with the simple design is that it does not
consider the overhead in feature extraction on the new input.
Due to the complexity in algorithmic choice, some features
may take a substantial time to extract. As the feature extrac-
tion occurs on the critical path of the program execution, the
simple design may end up with a significant slowdown for
the introduced extra work.

The third issue is that even if the configuration found by
the simple classifier happens to provide the highest perfor-
mance on that new input, its calculation accuracy may not
meet the requirement. It is unclear how the simple design
can handle accuracy-performance conflicts, a special com-
plexity in algorithmic autotuning.

3.2 Self-Refining Approach
Our self-refining approach is divided into two levels. The
first level is shown in Figure 3. In its first step it clusters and
groups the input space into a finite number of input classes
and then uses the autotuner to identify a optimized algorith-
mic configuration for each cluster’s centroid. We call these
autotuned configurations landmarks. Next, it executes every
training input using every landmark configuration. This is
order of magnitude faster than autotuning for every training
input. These results will be used at the next level.

The second level is shown in Figure 4. It refines the primi-
tive classes by interpreting the mapping evidence previously
collected on the inputs and their performance on a small set
of landmark configurations. It builds a large number of clas-
sifiers each different by which input features it references
and/or different by the algorithm used to derive the classifier.
It then computes an objective score, incorporating both fea-
ture extraction costs and predicted algorithm execution time,
for every classifier and selects the best one as the production
classifier.
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Figure 2. Usage of the system both at training time and deployment time. At deployment time the input classifier selects the
input optimized program to handle each input. Input Aware Learning is described in Section 3.

Together, these two levels create an approach that is able
to achieve large speedups on benchmarks sensitivity to input
variation. The next two subsections will provide details on
the design of each of these levels.

3.3 Level 1
The main objective of Level one is to identify a set of config-
urations for each class of inputs. We call these configurations
“landmarks”.

Specifically, there are four steps in this level of learning.

• Step 1: Feature Extraction We assemble a feature vec-
tor for each training input using the values computed by
the input feature procedures of the program. For each
property, by using a tunable parameter such as level in
the input feature procedure in the program, we have col-
lected values at z different costs which are what we call
features.
• Step 2: Input Clustering We first normalize the input

feature vectors to avoid biases imposed by the different
value scales in different dimensions. We then group the
inputs into a number of clusters (one hundred in our
experiments) by running a standard clustering algorithm
(e.g., K-means) on the feature vectors. For each cluster,
we compute its centroid. Note that the programmer is
only required to provide a input feature functions.
• Step 3: Landmark Creation We autotune the program

using the PetaBricks evolutionary autotuner multiple
times, once for each input cluster, using its centroid
as the presumed inputs. While the default evolutionary
search in autotuner generates random inputs at each step
of search, we use a flag which indicates it should use
the centroid instead. We call each configuration for each
cluster’s centroid as input data to the program, a land-
mark. The stochasticity of the autotuner means we may
get different configurations albeit perhaps equal perform-
ing ones each time.

• Step 4: Performance Measurement We run each land-
mark configuration on every training input and record
both the execution time and accuracy (if applicable) as
its performance information.

We note that there is an alternative way to accomplish
Steps 1 through 3 and identify landmarks. We could find the
best configuration for each training input, group these con-
figurations based on their similarity, and use the centroids of
the groups as landmark configurations. This unfortunately is
infeasible because it is too time consuming to autotune (a
process than can take many hours) for every training input
example. Additionally, for the problem instances explored in
this paper, modeling is not as effective as empirical search,
and search, evolutionary in the case of PetaBricks, involves
the composition and evaluation of hundreds of thousands
configurations, taking hours or even days to finish [3]. This
also has the problem we mention previously: similar config-
urations do not have matching algorithm performance. For
these reasons, we cluster in the space of inputs’, determine
an inputs centroid for each cluster and then autotune the cen-
troid to get a landmark. This process will cost some extra
time depending the number of landmarks we want to obtain,
but it is a one time only cost to programmer.

3.4 Level 2
The main objective of Level two is to refine the primitive
classes produced by level 1. The design of this step stems
from the observations that finding the best configuration for
every input takes much longer time than directly running the
problem. Besides, two inputs tend to perform well on the
same configuration if they are affine. Based on these obser-
vations, level 2 rearrange the classes by taking the perfor-
mance of all training inputs and these landmark configura-
tions. And by learning the input features of the training in-
puts and their assignments to the configurations, a best adap-
tive overhead aware classifier would be identified.
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There are two main challenges to get the best classifier:
first is to determine which input features are good predictors
of a high performing classifier. If this was directly known,
these features could be used to learn one classifier which
would directly be used in production. Because it is not, the
first sub-goal is to generate a candidate set of classifiers each
with a unique set of features and all using the data that pro-
vides evidence of the relationship between inputs, configu-
rations and algorithm performance. The other is setting up
cost function for classifier learning and computing an objec-
tive score for every classifier to identify the best candidate
classifier for production, where both should be able to rec-
oncile the stress between performance and accuracy.

3.4.1 Data Conditioning Before Classifier Learning
We use machine learning to generate our classifiers. Per ma-
chine learning, we make each set of example inputs, their
features, feature extraction costs, execution times and ac-
curacy scores for each landmark configuration, a row of a
dataset. We append to each row a label which represents its
new assignment. Such labels will be deployed to derive clas-
sifier together with other inputs later.

More formally, we create a datatable of 4-tuples where
each 4-tuple is< F,T,A,E >, where F is aM -dimensional
feature vector for this input, T and A are vectors of length
1 × K1 where ith entry represents the execution time and

accuracy achieved for this input when ith landmark configu-
ration is applied, and E is a M -dimensional vector giving us
the values for time taken for extraction of the features. We
first generate labels L ∈ {1, 2, 3, . . . ,K1} for each input.
Label li represents the best configuration for the ith input,
decided by its runtime performance on all landmark config-
ures. Depending on the number of optimization objectives,
we have different labeling schemes. For problems where
only minimizing the execution time is an objective (for ex-
ample sorting) the label for ith input is simply arg minj T

j
i .

While for problems where both accuracy and execution time
are objectives, we first choose a threshold for the accuracy
and then select the subset of configurations that meet the
accuracy threshold and among them pick the one that has
the minimum execution time. For the case, in which none of
the configs achieve desired accuracy threshold, we pick the
configuration that gives the maximum accuracy.

3.4.2 Setting up the cost matrix
Before we show the various classifiers we derive, we want
to first demonstrate a preeminent component, cost matrix,
for classifier learning. Because we have 100 landmark con-
figurations, we have a 100-class problem. For such extreme-
class classification problem, it is paramount that we set up
a cost matrix. The cost matrix Cij represents the cost in-
curred by misclassifying a feature vector that is labeled i
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as class j. The classifier learning algorithms uses the cost
matrix to evaluate the classifier. To construct the cost ma-
trix for this problem we followed this procedure. For ev-
ery input, labeled i, we calculate the performance differ-
ence between the i landmark and the jth landmark. We as-
sign a cost that is inverse of average performance difference
for all inputs that are labeled i. This corresponds to Cp

i,j .
For those benchmarks that have accuracy as a requirement,
we also include a accuracy penalty matrix Ca

i,j , which is
the ratio of inputs for which accuracy constraint is not met
by jth configuration. We construct the final cost matrix as
Cij = β · Ca

i,j · maxt(C
p
i,t) + Cp

i,j . The cost is a combina-
tion of accuracy penalty and performance penalty where the
former is a leading factor, while the latter acts as a tuning
factor. We tried different settings for β ranging from 0.001
to 1, to get the best performance. We found 0.5 to be the best
and use that.

We then divide our inputs into two sets, one set is used
for training the classifier, the other for testing. We next pass
the training set portion of the dataset to different classifi-
cation methods which either reference different features or
compute a classifier in a different way. Formally a method
derives classifier C referencing a feature set fc ⊂ F to pre-
dict the label, i.e., C(Fi)→ Li.

3.4.3 Classifier Learning
We now describe the classifiers we derive and the methods
we use to derive them.

Max-apriori classifier: This classifier evaluates the empiri-
cal priors for each configuration label by looking at the train-
ing data. It chooses the configuration with the maximum
prior (maximum number of inputs in the training data had
this label) as the configuration for the entire test data. There
is no training involved in this other than counting the exem-
plars of each label in the training data. As long as the inputs
follow the same distribution in the test data as in the train-
ing data there is minimal mismatch between its performance
on training and testing. It should be noted that this classifier
does not have to extract any features of the input data.

Advantages: No training complexity, no cost incurred for
extraction of features.

Disadvantages: Potentially highly inaccurate, vulnerable
to error in estimates of prior.

Exhaustive Feature Subsets Classifiers: Even though we
have M features in the machine learning dataset, we only
have M

z input properties. The bottom level feature takes
minimal time to extract and only looks at the partial input,
while the top level takes significant amount of time as it
looks at the entire input. However, features extracted for the
same input could be highly correlated. Hence, as a logical
progression, we select a subset of features size of which
ranges between 1 . . . M

z where each entry is for a property.
For each property we allow only one of its level to be part
of the subset, and also allow it to be absent altogether. So

for 4 properties with z = 3 levels we can generate 44

unique subsets. For each of these 256 subsets we then build a
decision tree classifier [26] yielding a total of 256 classifiers.

The feature extraction time associated with each classifier
is dependent on the subset of features used by the classifier,
ie. for an input i, it is the summation

∑
j E

j
i . The decision

tree algorithm references the label and features and tries
minimize its label prediction error. It does not reference
the feature extraction times, execution times or accuracy
information. These will be referenced in accomplishing the
second sub-goal of classifier selection.

Because we wanted to avoid any “learning to the data”,
we divided the data set into 10 folds and trained 10 times on
different sets of nine folds while holding out the 10th fold
for testing (“10 fold cross validation”). Of the 10 classifiers
we obtained for each feature set, we chose the one that on
average performed better.

Advantages: Feature selection could simply lead to
higher accuracy and allow us to save feature extraction time.

Disadvantages: More training time, not scalable should
the number of properties increase.

All features Classifier: This classifier is one of the 256
Exhaustive Feature Subsets classifiers which we call out
because it uses all the M/z features at their highest level.

Advantages: Can lead to higher accuracy classification.
Disadvantages: More training time, higher feature ex-

traction time, no feature selection.

Incremental Feature Examination classifier: Finally, we
designed a classifier which works on an input in a sequential
fashion. First, for every feature fm ∈ R, we divide it into
multiple decision regions {dm

1 . . . dm
j } where j ≥ K1. We

then model the probability distributions under each class
for each feature under each decision region Pm,j,k(fm =
dm

j |Li = k). Given a pre-specified order of features it
classifies in the following manner when deployed:

Step 1: Calculate the feature: Evaluate themth feature for
the input and apply the thresholds to identify the decision
region it belongs to.

Step 2: Calculate posterior probabilities: The posterior
for a configuration (class label) k, given all the features
{1 . . .m} acquired so far and let d1

1 . . . d
i
j be the decision

regions they belong to, is given by:

P (Li = k|f1...m) =
ΠmPm,j,k(fm = dm

j |Li = k)P (L = k)∑
k ΠmPm,j,k(fm = dm

j
|Li = k)P (L = k)

(1)

Step 3: Compare and decide: We pre-specify a threshold
on the posterior ∆ and we declare the configuration (class
label) as k if its posterior P (Li = k|f1...m) > ∆. If none
of the posteriors are greater than this threshold, we return
to step 1 to acquire more features.

In this method, we incrementally acquire features for a input
point i based on judgement as to whether there is enough
evidence (assessed via posteriors) for them to indicate one
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configuration. This results in a variable feature extraction
time for different inputs thus providing potential further re-
ductions in feature extraction time at the time the production
classifier is applied to new inputs. For all the classifiers pre-
ceding this one, we extracted the same number of features
for all the inputs.

This method can be applied after the previous method has
found the best subset to further save on feature extraction
time.

To train this classifier, we need to find the optimal de-
cision regions for each feature and the threshold on poste-
rior ∆ such that the performance measurements mentioned
above are minimized. This could be done via a simple con-
tinuous parameter search algorithm. Usually, more decision
regions per feature help increase the performance and in
some cases search over orders could help. This is the only
classifier in our system where we introduce the domain spe-
cific cost function into the inner loop of training of a classi-
fier.

Advantages: Reduced feature extraction time, scalable as
the number of attributes increase.

Disadvantages: One possible drawback for this classifier
is that it requires a storage of i×j×k number of probabilities
in a look up table. Training time.

3.4.4 Candidate Selection of Production Classifier
After we generate a set of classifiers based on different in-
puts or methods, we next need to select one as the production
classifier. We start by applying every classifier on the test set
and measuring the performance (execution time and accu-
racy, if required) of the algorithm when executing with its
predicted configuration. We can compare this performance
to that of the rest configuration. There are three objectives
for the production classifier: 1) minimize execution time; 2)
meet accuracy requirements ; and, 3) minimize the feature
extraction time.

Let βi be the minimum execution time for the input i
by all the representative polyalgorithms. Let Ψ(i, Li) be
the execution time of i when its class label is Li, given by
classifierC and gi =

∑
j Tj , j ∈ fc be the feature extraction

time associated with this classification.
Given a classifier we measure its efficacy for our problem

as follows:

For time only:The cost incurred (represented by ri) for
classifying a data point to configuration ci will be ri =
Ψ(i, ci) + gi. The cost function (represented by R) for
all the data will be the average of all their costs, that is,
R =

∑
i(ri)/N , where N is the total number of data

lists. We refer to R as performance cost in the following
description.

For time and accuracy: Let H be the accuracy threshold,
that is, only when the accuracy of the computation (e.g.,

binpacking) result at a data list exceeds H , the result is
useful. The value of H can be prefixed by programmer.
Suppose the fraction of data lists whose computation
results are inaccurate (ie. accuracy is less than H) is s
when classifier C is applied to our data set. We set a
target on the s. If a classifier does not meet this target,
it is considered invalid (or incurring a huge cost). If a
classifier meets this target then the cost of this classifier
is calculated as defined above.

3.5 Discussion of the Self-Refining Approach
This two level learning has several important properties.

First, it uses a two level design to systematically address
mapping disparity. Its first phase takes advantage of the
properties of inputs to identify landmark configurations. It
then furnishes evidence of how example inputs and different
landmarks affect program performance (execution time and
accuracy). Its second phase uses this evidence to (indirectly)
learn a production classifier. By classifying based upon best
landmark configuration it avoids misusing similarity of in-
puts. The means by which it evaluates each candidate classi-
fier (trained to identify the best landmark) to determine the
production classifier takes into account the performance of
the configurations both in terms of execution time and accu-
racy.

Second, this two level learning reconciles the stress be-
tween accuracy and performance by introducing a programmer-
centric scheme and a coherent treatment to the dual objec-
tives at both levels of learning. The scheme allows program-
mers to provide two thresholds. One is an accuracy thresh-
old, which determines whether the computation result is
considered as accurate; the other is a satisfaction threshold,
which determines whether the statistical accuracy guarantee
(e.g., the calculation is accurate in 95% time) offered by a
configuration meets the programmer’s needs. The scheme is
consistently followed by both levels of learning.

Third, it seamlessly integrates consideration of the fea-
ture extraction overhead into the construction of input clas-
sifiers. Expensive feature extractions may provide more ac-
curate feature values but cost more time than cheap ones do.
The key question is to select the feature extractions that can
strike a good tradeoff between the usefulness of the features
and the overhead. Our two level learning framework contains
two approaches to finding the sweet point. One uses exhaus-
tive feature selection, the other uses adaptive feature selec-
tion. Both strive to maximize the performance while main-
taining the accuracy target.

Fourth, our learning framework maintains an open de-
sign, allowing easy integration of other types of classifiers.
Any other classification algorithm could be integrated into
our system without loss of generality. Plus it takes advantage
of the PetaBricks autotuner to intelligently search through
the vast configuration space.
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4. Evaluation
To measure the efficacy of our system we tested it on a suite
of 6 parallel PetaBricks benchmarks [5]. Of these bench-
marks 1 requires fixed accuracy and 5 require variable accu-
racy. Each of these benchmarks was modified to add feature
extractors for their inputs and a richer set of input generators
to exercise these features. Each feature extractor was set to 3
different sampling levels providing more accurate measure-
ments at increasing costs. Tests were conducted on a 32-core
(8 × 4-sockets) Xeon X7550 system running GNU/Linux
(Debian 6.0.6).

We use two primary baselines to provide both a lower
bound of performance without input adaptation and an up-
per bound of the limits of input adaption. Neither baseline
includes (or requires) any feature extraction costs.

• Static oracle uses a single configuration for all inputs.
This configuration is selected by trying each input opti-
mized program configuration and picking the one with
the best performance. The static oracle is the perfor-
mance that would be obtained by not using our system
and instead using an autotuner without input adaptation.
In practice the static oracle may be better than some of-
fline autotuners, because such autotuners may train on
non-representative sets of inputs.
• Dynamic oracle uses the best configuration for each in-

put. It is the lower bound of the best possible performance
that can be obtained by our input classifier. It is equiva-
lent to a classifier that always picks the best optimized
program and requires no features to do so. We allow the
dynamic oracle to miss the accuracy target on up to 10%
of the inputs, to match the selection criteria of the input
classifier.

4.1 Benchmarks
We use the following 6 benchmarks to evaluate our results.

Sort The sort benchmark sorts a list of doubles using either
InsertionSort, QuickSort, MergeSort, or BitonicSort. The
merge sort has a variable number of ways and has choices
to construct a parallel merge sort polyalgorithm. Sort is the
only non-variable accuracy benchmark shown. Input vari-
ability comes from different algorithms having fast and slow
inputs, for example QuickSort has pathological input cases
and InsertionSort is good on mostly-sorted lists. For input
features we use standard deviation, duplication, sortedness,
and the performance of a test sort on a subsequence of the
list.

Sort1 results are sorting real-world inputs taken from the
Central Contractor Registration (CCR) FOIA Extract, which
lists all government contractors available under FOIA from
data.gov. Sort2 results are sorting synthetic inputs generated
from a collection of input generators meant to span the space
of features.

Clustering The clustering benchmark assigns points in 2D
coordinate space to clusters. It uses a variant of the kmeans
algorithm with choices of either random, prefix, or center-
plus initial conditions. The number of clusters (k) and the
number of iterations of the kmeans algorithm are both set
by the autotuner. The accuracy metric compares the sum of
distances squared to cluster centers to a canonical clustering
algorithm. Clustering uses input the features: radius, centers,
density, and range.

Clustering1 results are clustering real-world inputs taken
from the Poker Hand Data Set from UCI machine learning
repository. Clustering2 results are clustering synthetic inputs
generated from a collection of input generators meant to
span the space of features.

Bin Packing Bin packing is a classic NP-hard problem
where the goal of the algorithm is to find an assignment
of items to unit sized bins such that the number of bins
used is minimized, no bin is above capacity, and all items
are assigned to a bin. The bin packing benchmark con-
tains choices for 13 individual approximation algorithms:
AlmostWorstFit, AlmostWorstFitDecreasing, BestFit, Best-
FitDecreasing, FirstFit, FirstFitDecreasing, LastFit, LastFit-
Decreasing, ModifiedFirstFitDecreasing, NextFit, NextFit-
Decreasing, WorstFit, and WorstFitDecreasing. Bin packing
contains 4 input feature extractors: average, standard devia-
tion, value range, and sortedness.

Singular Value Decomposition The SVD benchmark at-
tempts to approximate a matrix using less space through Sin-
gular Value Decomposition (SVD). For any m× n real ma-
trix A with m ≥ n, the SVD of A is A = UΣV T . The
columns ui of the matrix U , the columns vi of V , and the
diagonal values σi of Σ (singular values) form the best rank-
k approximation of A, given by Ak =

∑k
i=1 σiuiv

T
i . Only

the first k columns of U and V and the first k singular values
σi need to be stored to reconstruct the matrix approximately.
The choices for the benchmark include varying the number
of eigenvalues used and changing the techniques used to find
these eigenvalues. The accuracy metric used is the ratio be-
tween the RMS error of the initial guess (the zero matrix) to
the RMS error of the output compared with the input matrix
A, converted to log-scale. For input features we used range,
the standard deviation of the input, and a count of zeros in
the input.

Poisson 2D The 2D Poisson’s equation is an elliptic par-
tial differential equation that describes heat transfer, electro-
statics, fluid dynamics, and various other engineering disci-
plines. The choices in this benchmark are multigrid, where
cycle shapes are determined by the autotuner, and a num-
ber of iterative and direct solvers. As an accuracy metric, we
used the ratio between the root mean squared (RMS) error of
the initial guess fed into the algorithm and the RMS error of
the guess afterwards. For input features we used the residual
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Benchmark
Name

Dynamic
Oracle

Classifier
(w/o feature
extraction)

Classifier
(w/ feature
extraction)

sort1 5.104× 2.946× 2.905×
sort2 6.622× 3.054× 3.016×
clustering1 3.696× 2.378× 2.370×
clustering2 1.674× 1.446× 1.180×
binpacking 1.094× 1.093× 1.081×
svd 1.164× 1.108× 1.105×
poisson2d 1.121× 1.086× 1.086×
helmholtz3d 1.111× 1.046× 1.044×

Figure 5. Mean speedup over the static oracle of the gen-
erated input classifier (with and without feature extraction
costs included) and the dynamic oracle, using 100 landmark
configurations. Static oracle uses the best single configura-
tion for all inputs, and is the best performance achievable
without using input adaption. Dynamic oracle uses the best
configuration for each input, and is the upper bound speedup
one would get with a “perfect” input classifier.

measure of the input, the standard deviation of the input, and
a count of zeros in the input.

Helmholtz 3D The variable coefficient 3D Helmholtz
equation is a partial differential equation that describes phys-
ical systems that vary through time and space. Examples of
its use are in the modeling of vibration, combustion, wave
propagation, and climate simulation. The choices in this
benchmark are multigrid, where cycle shapes are determined
by the autotuner, and a number of iterative and direct solvers.
As an accuracy metric, we used the ratio between the root
mean squared (RMS) error of the initial guess fed into the
algorithm and the RMS error of the guess afterwards. For
input features we used the residual measure of the input, the
standard deviation of the input, and a count of zeros in the
input.

4.2 Experimental Results
Figure 5 shows the overall performance of our system on
an isolated testing data set. Overall results range 1.046x
speedup for helmholtz3d, to 3.054x speedup for sorting.
Both of these results are close to the dynamic oracle per-
formance of 1.111x and 6.622x for these same two bench-
marks. Different speedups across benchmarks are caused by
the diversity and distribution of supplied inputs, as well as
program’s differing sensitivity to input variations. Applica-
tions whose performance vary more across inputs have more
room for speedup by adapting to specific inputs. This is con-
firmed by the performance of the dynamic oracle, which is
the upper bound of speedup from adapting to different in-
puts with our technique. Generally, the less expensive fea-
tures (in terms of feature extraction time) were sufficient to
meet the best performance. Additionally, we note that most

of the features we extracted had orders of magnitude smaller
extraction time when compared to the execution time.

In the sort benchmark, we also tried both real world
inputs (sort1) and inputs from our own generator (sort2).
For real world input, the best classifier used the sorted list
and sortedness features at its intermediate sampling level
and the duplication and deviation at the cheapest level.
2.946x speedup was achieved compared to a dynamic or-
acle speedup of 5.104x. For inputs from our own generator,
the best classifier used the sorted list and sortedness fea-
tures at its intermediate sampling level, achieving our largest
speedup of 3.054x compared to a dynamic oracle of 6.622x.

In the clustering benchmark, we tried real world inputs
and those from our own generator. For real world input, the
best classifier used the density feature at its cheapest level,
and algorithms selected by the classifier causes a 2.378x
shorter execution time (compared to the dynamic oracle
speedup of 3.696x), For our own generator, the best clas-
sifier used the centers feature at its cheapest sampling level,
achieving a 1.446x speedup compared to a dynamic oracle
of 1.674x. However, centers feature is the most expensive
feature relative to execution time, which lowers the effective
speedup to just 1.180x.

In the binpacking benchmark, the best classifier used the
deviation and sortedness features at the intermediate level.
The classifier is selecting algorithms that cause a 1.093x
faster execution time (close to the dynamic oracle speedup
of 1.094x).

In the svd benchmark, the best classifier used only ze-
ros input feature at the intermediate level and achieved
1.108x speedup compared to a dynamic oracle of 1.164x.
It is known that svd is sensitive to the number of eigenval-
ues, but this feature is expensive to measure. The features
we included are cheaper and tend to reflect that factor indi-
rectly. For instance, it is likely, although not necessarily, that
a matrix with many 0s has fewer eigenvalues than a matrix
with only a few 0s.

In the poisson2d benchmark, the best classifier employed
the input features zeros at the intermediate level, achieving a
1.086x speedup compared to a dynamic oracle of 1.121x.

In the helmholtz3d benchmark, the best classifier used
the residue, zeros and deviation input features at the inter-
mediate level and the range feature at the cheapest level.
This benchmark showed a 1.046x speedup, compared to a
dynamic oracle speedup of 1.111x.

4.3 Input Generation and Distribution
For sort1 and clustering1 we used real world input data
taken from production systems. The performance for this
real world data can be compared to sort2, clustering2, and
other benchmarks where we used synthetic input generators
designed to span the feature space. For sort, real world in-
puts provides similar mean speedup to synthetic inputs. For
clustering, real world inputs saw much larger speedups than
synthetic inputs. Interestingly, the classifier for synthetic in-
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Figure 6. Distribution of speedups over static oracle for each individual input. For each problem, some individual inputs get
much larger speedups than the mean.
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Figure 8. Measured speedup over static oracle as the number of landmark configurations changes, using 1000 random subsets
of the 100 landmarks used in other results. Error bars show median, first quartiles, third quartiles, min, and max.

puts in clustering needs to use a much more expensive set
of input features because the classes of inputs are harder to
distinguish.

To have a better idea of the origin of different speedup,
not only among benchmarks, but also for the same bench-
mark, but different input sources. We further investigate the
distribution of speedups for individual inputs to each pro-
gram, sorted such that the largest speedup is on the right,
showed in Figure 6. What is interesting here is the speedups
are not uniform. For each benchmark there exist small sets
of inputs with very large speedups, in some cases up to 90x.

This shows that way inputs are chosen can have a large ef-
fect on mean speedup observed. If one had a real world in-
put distribution that favored these types of inputs the over-
all speedup of this technique would be much larger. In other
words, the relative benefits of using of input adaptation tech-
niques can vary drastically depending on your input data dis-
tribution.
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Figure 7. Model predicted speedup compared to sampling
all input points as the number of landmarks are increated. Y-
axis units are omitted because the problem-specific scaling
term in the model is unknown.

4.4 Theoretical Model Showing Diminishing Returns
with More Landmark Configurations

In addition to the evaluation of our classifier performance
it is important to evaluate if our methodology of clustering
and using 100 landmark configurations is sufficient. To help
gain insight into this question we created a theoretical model
where we consider the input search space of a program
where some finite number of optimal program configurations
dominate different subsets of the input space. For each of
these dominate configurations, we define the values pi and
si, where pi is fraction of the inputs in the search space
where this configuration dominates and si is the speedup on
these configurations obtained by training a configuration for
any of the inputs where this configuration dominates. The
model assumes that no speedup is obtained if one of these
points is not sampled. We also assume that all inputs have
equal cost before the speedups are applied, to avoid the need
for weighting terms.

If we assume the k landmark configurations are sampled
uniform randomly (which is likely a worse technique than
our actual clustering) the total expected loss in speedup, L,
compared to a perfect method that sampled all points would

be:
L =

∑
i

(1− pi)kpisi

Where (1 − pi)k represents the chance of “missing” the
region of the search space where configuration i is optimal
and pisi represents the cost of missing that region of the
search space in terms of speedup.

Figure 7(a) shows the value of this function for a sin-
gle region as pi changes. One can see that on the extremes
pi = 0 and pi = 1 there is no loss in speedup, because either
the region is so small a speedup in that region does not mat-
ter or the region is so large that random sampling is likely to
find it. For each number of configs, there exists a worst-case
region size where the expected loss in speedup is maximized.
We can find this worst-case region size by solving for pi in
dL
dpi

= 0 which results in a worst-case pi = 1
k+1 . Using this

worst-case region size, Figure 7(b) shows the diminishing
returns predicted by our model as more landmark configura-
tions are sampled. Figure 8 validates this theoretical model
by running each benchmark with varying numbers of land-
mark configurations. This experiment takes random subsets
of the 100 landmarks used in other results and measures that
speedup over the static oracle. Real benchmarks show a sim-
ilar trend of diminishing returns with more landmarks that is
predicted by our model. We believe that this is strong evi-
dence that using a fixed number of landmark configurations
(e.g., 10 to 30 for the benchmarks we tested) suffices in prac-
tice, however correct number of landmarks needed may vary
between benchmarks.

5. Related Work
A number of studies have considered program inputs in li-
brary constructions [9, 12, 19, 24, 29, 35]. They concentrate
on some specific library functions (e.g., FFT, sorting) while
the algorithmic choices in these studies are limited. Tian
and others have proposed an input-centric framework [30]
for dynamic program optimizations and showed the bene-
fits in enhancing Just-In-Time compilation. Jung and others
have considered inputs when selecting the appropriate data
structures to use [20]. Several recent studies have explored
the influence of program inputs on GPU program optimiza-
tions [22, 27].

This current study is unique in focusing on input sensitiv-
ity to complex algorithmic autotuning, which features vast
algorithmic configuration spaces, sensitivity to deep input
features, variable accuracy, and complex relations between
inputs and configurations. These special challenges prompt
the development of the novel solutions described in this pa-
per.

A number of offline empirical autotuning frameworks
have been developed for building efficient, portable libraries
in specific domains. ATLAS [34] utilizes empirical autotun-
ing to produce a cache-contained matrix multiply, which is
then used in larger matrix computations in BLAS and LA-
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PACK. FFTW [13] uses empirical autotuning to combine
solvers for FFTs. Other autotuning systems include SPAR-
SITY [18] for sparse matrix computations, SPIRAL [25] for
digital signal processing, and OSKI [33] for sparse matrix
kernels.

The area of iterative compilation contains many projects
that use different machine learning techniques to optimize
lower level compiler optimizations [1, 2, 14, 23]. These
projects change both the order that compiler passes are ap-
plied and the types of passes that are applied. PetaBricks [3]
offers a language support to better leverage the power of au-
totuning for complex algorithmic choices. However, none of
these projects have systematically explored the influence of
program inputs beyond data size or dimension.

In the dynamic autotuning space, there have been a num-
ber of systems developed [7, 8, 10, 16, 17, 21, 28] that
focus on creating applications that can monitor and auto-
matically tune themselves to optimize a particular objective.
Many of these systems employ a control systems based auto-
tuner that operates on a linear model of the application being
tuned. For example, PowerDial [17] converts static configu-
ration parameters that already exist in a program into dy-
namic knobs that can be tuned at runtime, with the goal of
trading QoS guarantees for meeting performance and power
usage goals. The system uses an offline learning stage to
construct a linear model of the choice configuration space
which can be subsequently tuned using a linear control sys-
tem. The system employs the heartbeat framework [15] to
provide feedback to the control system. A similar technique
is employed in [16], where a simpler heuristic-based con-
troller dynamically adjusts the degree of loop perforation
performed on a target application to trade QoS for perfor-
mance. The principle theme of these studies is to react to
dynamic changes in the system behavior rather than proac-
tively adapt algorithm configurations based on the character-
istics of program inputs.

Additionally, there has been a large amount of work [6,
11, 31, 32] in the dynamic optimization space, where in-
formation available at runtime is used combined with static
compilation techniques to generate higher performing code.
Such dynamic optimizations differ from dynamic autotuning
because each of the optimizations is hand crafted in a way
that makes it likely lead to an improvement of performance
when applied. Conversely, autotuning searches the space of
many available program variations without a priori knowl-
edge of which configurations will perform better.

6. Conclusions
We have shown a self-refining solution to the problem of
input sensitivity in autotuning that, first, clusters to find in-
put sets that are similar in the multi-dimensional property
space and uses an evolutionary autotuner to build an opti-
mized program each of these clusters, and then builds an
adaptive overhead aware classifier which assigns each in-

put to a specific input optimized program. This provides a
general means of automatically determining what algorith-
mic optimization to use when different optimization strate-
gies suit different inputs. Though this work, we are able to
extract principles for understanding the performance and ac-
curacy space of a program across a variety of inputs, and
achieve speedups of up to 3x.

While at first input sensitivity seems to be excessively
complicated issue where one must deal with large optimiza-
tion spaces and complex input spaces, we show that input
sensitivity can be handled with simple extensions to an exist-
ing autotuning system. We also showed that there are funda-
mental diminishing returns as more and more input adapta-
tion is added to a system and that a little bit of input adaption
can go a long way.
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