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by

Mark Rosen

Submitted to the Department of Electrical Engineering and Computer Science
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Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes the design and implementation of a text classification framework
for the Haystack project. As part of this framework, we have built a robust Java API
that supports a diverse set of classification algorithms. We have used this framework
to build two applications: Cesium, an auto-classification agent for Haystack that is
Haystack's first real autonomous agent, and PorkChop, a spam-filtering plugin for
Microsoft Outlook. In order to achieve suitable training and classification speeds,
we have augmented the Lucene search engine's document indexer to compute for-
ward indexes. Finally, unrelated to text classification, we describe the design and
implementation of Cholesterol, Haystack's highly optimized RDF store.

Thesis Supervisor: David R. Karger
Title: Associate Professor
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Chapter 1

Introduction

The goal of the Haystack project is to help users visualize and manage large amounts

of personal information. This thesis expands Haystack's information management

mechanisms to include automatic classification functionality. While Haystack stores

a large variety of information, and the algorithms implemented in this thesis can

be applied to any type of textual information, the focus of the research is on the

classification of e-mail messages.

The average corporate computer user receives over 39 e-mail messages a day [9],
with some "knowledge workers" receiving hundreds of e-mail messages a day. The

sheer volume of e-mails received by the average user means that even casual users of e-

mail have need of effective information management strategies. The nature of typical

e-mail communication means that classification is an effective e-mail organization

tool. A typical user may receive personal, work, and school e-mails via the same e-

mail account; grouping e-mails into these three categories is an effective way to help

this user manage their information. The goal of this thesis is to develop an automatic

classification system that learns from a user's existing e-mail categorizations and

automatically sorts new e-mails into these categories.

To accomplish this goal, I have developed a robust machine learning framework.

The framework consists of tools to parse documents and convert them into a format

suitable for the machine learning algorithms, pre-processors that clean the document

data, machine learning algorithms, and a methodology for evaluating the performance
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of classifiers. The machine learning algorithms, however, are the backbone of the

learning framework. Broadly speaking, a machine learning algorithm tries to build

a generalized model from its training data - such as a set of already categorized e-

mail messages - and then applies this model to test data - such as new, incoming

e-mail messages. Some of the learning algorithms in this thesis have been augmented

to handle so-called "fuzzy" categories. Fuzzy categories allow clients of the learning

framework to qualify their assertions about documents; not only can classifiers handle

typical assertions like, "I am certain that document d is in category c," classifiers can

now model uncertainty, such as "document d is probably not in categories a and b."

The learning framework is used to implement two applications: PorkChop, a

spam filtering plugin for Microsoft Outlook, and Cesium, a Haystack agent that

automatically categorizes arbitrary text data and is Haystack's first real autonomous

agent. Cesium makes use of the learning framework's fuzzy categorization capabilities.

1.1 Related Work

The scope of this thesis is fairly broad, ranging from the novel information manage-

ment techniques in Haystack, to state-of-the-art machine learning techniques, to spam

filtering and e-mail autoclassification tools. This related work section discusses the

Haystack project, which is the primary end user of of the learning framework devel-

oped in this thesis, and talks, in general, about the spam detection problem. Related

machine-learning algorithms are discussed in Chapter 4, where they are evaluated

in the context of the algorithms implemented in Haystack. This section provides a

broad overview of the spam detection problem; specific spam detection programs are

discussed in Chapter 6, where they are compared to PorkChop, a spam filter built

using the learning framework.

1.1.1 Haystack

Haystack is a powerful information management tool that facilitates management of a

diverse set of information. One of Haystack's key strengths is that it does not tie the
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user to any specific ontology; Haystack can not only handle a diverse set of data (i.e.

e-mail messages, appointments, tasks, etc.), but it can store and display the data in

user-defined formats. Haystack provides a uniformly accessible interface for different

types of information, regardless of the information's format or original source. For

example, it may be useful to incorporate the contents of e-mail attachments (in various

forms like PDF or Postscript) into the text classification machinery.

Haystack's ability to handle arbitrary ontologies and visualization schemes means

that augmenting Haystack's e-mail handling facilities to incorporate an e-mail catego-

rization agent required very few changes to the existing Haystack code. The automatic

classification agent simply monitors all incoming e-mail, and annotates each message

with one or more predicted categories. The user interface to configure the agent and

display its predictions was simple to build with Haystack's robust Slide UI framework.

The paper "Haystack: A Platform for Creating, Organizing, and Visualizing In-

formation using RDF" [8] provides an excellent overview 'of the motivation, structure,

and implementation of the Haystack project; consult that paper for a more thorough

overview of precursors to and the history of Haystack.

1.1.2 Spam Detection

Spam detection is a "killer application" for machine learning techniques. Some esti-

mates put the volume of Spam at over 30% of all e-mail messages transmitted daily

over the Internet. Not only is spam e-mail an unnecessary burden on e-mail servers,

it is a nuisance to users, and is potentially offensive. This section describes common

spain filtering techniques, current spam filtering tools, and argues that spam filters

backed by robust machine learning algorithms are vastly more effective than static

rules-based spain filters.

Most current spain detection tools work by comparing incoming e-mail messages

to a database of manually-compiled rules. Typical filtering methods include:

* Whitelists (approved non-spam e-mail addresses) and blacklists (known spam-

mer e-mail addresses, domains, and ISPs).
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" The presence of anomalous e-mail message headers (forged senders, etc.) and

e-mail message headers that indicate that a message was generated by a bulk

e-mail sending program.

" Searching the message for certain pre-defined words, phrases, or types of text

(such as sentences in ALL CAPS).

The advantage of these types of e-mail filters is that they don't require any training

- they can immediately start filtering spam e-mail, even if there is very little initial

data (i.e. the user has only received a few e-mail messages). However, rules based

filters have no ability to adapt to a specific user's e-mail. For example, a sex education

worker might receive a high number of important work-related e-mails that have

common spam keywords in them. The adaptive nature of machine learning algorithms

makes them more powerful than rules based filtering for a number of reasons:

" Machine-learning algorithms can adapt to an individual's e-mail. People who

maintain rules-based filters for spam detection often include personal informa-

tion - such as their home telephone number or zip code - in their personal

set of spam rules [7]; personal information (other than your e-mail address and

perhaps your first name) is highly unlikely to be present in spam e-mail, and

is thus an excellent discriminator. While rules-based filters must be manually

programmed with personal information, machine learning algorithms will auto-

matically learn good discriminants.

" The "spam score" of a message computed by a rules-based filter is somewhat

arbitrary. Most rules-based filters work by assigning each characteristic of an

e-mail a spam score; if the score for a specific e-mail message exceeds a set limit,

then the message is classified as spam. How many points should an e-mail get

for having the word "sex" in it? A machine learning algorithm's logic is based

on empirical observation of its training corpus, not a human's guess.

* Static rules-based spam filters cannot adapt to changing patterns in e-mails.

Spam detection tools reduce the profitability of spam to its senders; spammers
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will obviously try to look for ways around them. As rules-based filters have

become more widely deployed, some spammers have tried to evade simple word-

blocking spam filters by, for example, writing the word "porn" as "pOrn". Rules-

based filters must be updated to reflect changing trends in spam content, but

machine-learning algorithms can automatically adapt to changes in spam; they

might misclassify the first few messages, but as long as the user is diligent about

correcting the learner's mistakes, the new type of spam will quickly be caught.

In fact, a machine learning algorithm is likely to learn that the word "pOrn" is

an excellent discriminator between spam and legitimate e-mail - an ever better

discriminator than the word "porn".

Some spain researchers [6] predict that adaptive spam detection algorithms will

mean the death of spam. The only way spammers will be able to craft messages

that escape an adaptive spam filter is to make their messages indistinguishable from

your ordinary e-mail. Spam messages are mostly sales pitches, so unless your regular

e-mail is mostly sales pitches, it's unlikely that a majority of spain would get through

an adaptive spain filter. As text learning algorithms become better and better at

distinguishing spam sales pitches from the normal flow of e-mail, they predict that

the torrent of spam will slow to a trickle.

Static rules-based spam detection algorithms do have their place in a robust spam

solution; it's hard, for example, to get a machine learning algorithm to learn whether

an e-mail has a malformed header or not, but it's easy to write a rule to detect this.

Adaptive machine learning algorithms are powerful, but they aren't a panacea; the

best spam detection systems will most likely use static rules alongside state of the

art machine learning algorithms. The combination of the expressive power of static

rules and the adaptiveness of machine learning algorithms is sure to form the basis

of a very formidable spam detection solution.

1.2 Overview

This thesis is divided into six sections.
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Chapter 2 discusses the design considerations involved in building a text classifica-

tion system. One important aspect of any text classification system is its document

representation scheme; most machine learning algorithms cannot process raw text

documents, and a document representation scheme defines how a text document is

presented to the machine learning algorithms. The most common document represen-

tation is a "bag-of-words" or "word frequency vector," which is simply a histogram

of the words in a given document. These word frequency vectors are computed by

Lucene, which was customized to efficiently store this data and is described in Chapter

3. Once all documents have been translated into word frequency vectors, a number of

pre-processing algorithms may be run. These pre-processing algorithms help remove

noise and clean the word frequency vectors before they are input into the machine

learning algorithms.

The machine learning algorithms are the backbone of the learning framework,

and are described in Chapter 4. Broadly, each algorithm takes as input a set of word

frequency vectors already labeled with categories, builds a model from this training

data, and then applies that model to the test data. The goal of the model is to

label new documents like "similar" already-labeled documents. The learning frame-

work supports three different types of classifiers: binary classifiers, which determine

if a document is in a class, multi-class classifiers, which label a test document with

exactly one class out of a possible field of many classes, and multi-label classifiers,

which label a test document with any number of labels. The framework provides

binary classifiers and multi-label classifiers that can handle fuzzy data. Java inter-

faces are used extensively, and similar classifiers can be swapped in and out with no

significant code modifications. The various classifiers implemented in this thesis have

been benchmarked using standard test corpora, and the algorithms perform on par

with published implementations.

The learning framework was used to build two applications: Cesium, an auto-

classification agent for Haystack, and PorkChop, a spam-filtering plugin for Microsoft

Outlook. Cesium is discussed in Chapter 5, and PorkChop is discussed in 6.

Finally, the Cholesterol database is the backend RDF store for the Haystack
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project and is an integral part of Haystack. It is not directly related to the learning

framework, but I performed a significant amount of development work on Cholesterol.

Cholesterol is described in Chapter 7.
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Chapter 2

How to Build a Text Classification

System

This section describes how to build a text classification system. As the name implies,

the goal of a text classification system is to process a document and label that doc-

ument as a member of one or more groups. A text classifier takes as input a set of

training documents, each labeled as a member of one or more groups, and tries to

learn a model from this training data. The specifics vary by algorithm, but classifica-

tion models, in general, try to identify which features of the training documents can

be used to separate the training documents among their assigned classes. Some learn-

ing algorithms can also handle fuzzy training data, where documents can be labeled

as "probably" a member of a category, or "definitely" not a member of a category,

and this uncertainty about training labels influences the classification model. Once

a model has been built from the training data, the classifier analyzes test documents

and uses the model to assign these documents labels.

However, a fully functional text classification system requires much more than

machine learning algorithms. This chapter provides an overview of all of the con-

stituent parts of an text classification system, with the exception of the specifics of

the machine learning algorithms, which are discussed in Chapter 4. Machine learn-

ing algorithms can't process raw text; text documents must first be converted into a

computer-friendly document representation. Section 2.1 discusses common document
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ST ANDARD OIL SRD TO FORM FINANCIAL UNIT

Ij management
Standard Oil Co and BP North America plan to form a venture to manage 4 oil
the money market activities of both companies. BP North America is a -

subsidiary of British Petroleum Co Plc BP, which also owns a 55 pct

interest in Standard Oil.

The venture will be called BP/Standard Financial Tradinga and will under

be operated by Standard Oil under the oversight of a joint management H of

committee. venture

Figure 2-1: A word frequency vector

representations and how they shape the nature of the classification problem. Once a

text document has been converted into a computer-friendly representation, a number

of pre-processing algorithms can be run on the data. These pre-processing algorithms,

which are discussed in Section 2.2 "clean" the document representation by exploiting

properties of the English language to remove extraneous features, reduce noise, and

improve the ability of the classifier to generalize. Section 2.3 provides an overview of

the Java APIs provided by the Haystack Learning Framework to generate a computer-

friendly document representation from a text document and to pre-process a corpus

of documents.

Once the computer-friendly document representation has been cleaned via the

pre-processing algorithms, it is ready to be fed into the classifier. Chapter 4 provides

an in-depth discussion of the machine-learning algorithms implemented in this the-

sis; Section 2.4 discusses various high-level aspects of machine learning. Specifically,

Section 2.4 motivates the need for a fuzzy learning framework and addresses a num-

ber of practical issues one must take into consideration when designing a real-world

classifier.

Finally, Section 2.5 discusses various methodologies for evaluating the performance

of a classifier.

2.1 Document Representation

The simplest way to represent a text document is the "bag-of-words" or "word fre-

quency vector" representation. A word frequency vector is produced by tokenizing

a document using a tool like Lucene (Chapter 3), and building a histogram of the
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"Some people like to eat dogs" "Some dogs like to eat people"

1 some

1 people

1 like

1 to

1 eat

1 dogs

Figure 2-2: Two semantically different sentences generate the same word vector

Document 1 Document 2 Document 1 Document 2

5 standard 1 merger 1 standard 5 merger

3 management 5 HP 3 management 5 HP

I oil 3 Compaq - 3 oil 1 Compaq

I under 4 Fiorina 4 under 1 Fiorina

2 listen 1 Hewlett 1 listen 2 Hewlett

Figure 2-3: An illustration of Rennie and Rifkin's experiment [17]

number of occurrences of each word in the document. It is relatively easy to compute

a word frequency vector from a text document, and these word vectors are convenient

to work with. However, any information about phrases within the document is lost.

At first approximation, it seems obvious that grouping relevant word pairs in the

vector representation will be useful to the classifier - "machine learning" is more

useful than "machine" and "learning." However, it's important to group the right

word pairs; grouping the phrases "the dog" and "a dog" may actually decrease the

accuracy of the classifier (both phrases refer to the same concept - a "dog"). It

is computationally infeasible to generically determine which word pairs it would be

advantageous to group without any higher order, domain specific information.
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The Independence Assumption

Due to the intractability of determining which word pairs are relevant and which word

pairs are not relevant, most text classification systems impose a simplifying "inde-

pendence assumption", which states that each word in a document is independent of

all other words in the document. While it does seem logical that grouping word pairs

would be helpful to a classifier, a number of studies have borne out the independence

assumption. Rennie and Rifkin [18] found no improvement classifying two different

datasets with non-linear SVM kernels over linear SVM kernels, and Yang and Liu

[28] duplicated this result on the Reuters-21578 dataset. Furthermore, Rennie and

Rifkin have run experiments that show that randomly scrambling word frequencies

between documents yields a classifier with the same accuracy for a linear SVM (see

Figure 2-3) [17]. The independence assumption dramatically shapes the nature of

text classification algorithms.

2.1.1 CRM114 Phrase Expansion Algorithm

The CRM114 spam filter (discussed in Section 6) is a spam filtering tool with a novel

approach to feature generation. While the general logic when designing machine

learning systems is to use as few features as possible (to reduce computation time

and to prevent overtraining), the CRM114 spam filter generates as many features as

possible from the document text.

CRM114 moves a 5-word sliding window over the document, and generates ev-

ery possible combination of subphrases for that 5-word window (see Figure 2-4).

The author has no solid theoretical background for reversing common practice, but

CRM114's impressive accuracy using a Naive Bayes classifier lends some credence to

his design decisions. While his work is preliminary, unverified, and not solidly the-

oretically founded, it's worth examining; a tokenizer that implements CRM114-style

phrase expansion algorithm is discussed in Section 2.3.1.
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he Standard Oil Corporation announced that, effective today, it would...

oil oil corporation oil corporation announced

corporation oil announced
announced corporation announced

Figure 2-4: The CRM114 phrase expansion algorithm with a chunk size of 3 words

2.2 Feature Selection and Other Pre-Processing

Pre-processing algorithms use properties of English to clean a corpus before it is

presented to the machine learning algorithms. Four document cleaning techniques are

described in this section: stemming, stop word removal, Zipf's law, and IDF. Zipf's

law, stop word removal, and IDF are typically used in machine learning systems, and

usually improve classification accuracy by reducing noise and removing extraneous

data. There is a much less clear-cut case for stemming words.

A side benefit of most pre-processing techniques is that they reduce the computa-

tional complexity of the classification problem by removing words from the data set.

In other learning problems, it may be paramount to dramatically reduce the num-

ber of words - features - in the corpus, generally because 1) the learning algorithms

cannot scale to large numbers of features, and 2) the majority of the features have

absolutely no predictive value. However, there is no pressing need to perform feature

selection in text classification systems because:

" The learning algorithms are generally designed to scale to large numbers of fea-

tures. The machine learning algorithms discussed in Chapter 4 are well-suited

for text classification problems, where there may be tens-of-thousands of fea-

tures.

* There are no completely irrelevant features. Joachims [12] ranked the features in

the "acq" category of the Reuters dataset by their information gain - a common

metric for determining the value of a specific feature - divided the words into

six sections, and then trained six classifiers on the data. A classifier that is

trained on only the worst data (i.e. the words judged least relevant by the
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information gain metric) still performs significantly better than average. This

implies that it's good to have all of the features in the document; a good text

classifier should learn many features, and there are few completely irrelevant

features.

Most text classification systems still perform some form of pre-processing, but the

goal of the pre-processing is not to make the problem computationally tractable or to

eliminate irrelevant features; the pre-processing algorithms used in text classification

systems typically clean the data, reduce noise, and try to increase the ability of a

classifier to generalize.

The Haystack Learning Framework provides four different pre-processing methods.

2.2.1 Stop Word Removal

Stop word removal is an easy-to-implement pre-processing step that removes common

words that are known to contribute little to the semantic meaning of an English

document. Typical stop words include "the," "of," "is," etc. Lucene provides a

mechanism to remove stop words when tokenizing a document.

2.2.2 Zipf's law

Zipf's law says that the r-th most frequent word will occur, on average, 1 times the

frequency of the most frequent word in a corpus. This implies that most of the words

in the English language occur infrequently. Removing extremely rare words not only

reduces dimensionality, it also improves classifier accuracy; the logic is that rare words

might have excessive discriminatory value.

The default pre-processor in the Haystack Learning Framework removes any words

that occur only once or twice in the entire corpus.

2.2.3 Inverse Document Frequency

The inverse document frequency (IDF) algorithm is used to reduce the effect of com-

mon words on a classifier and increase the effect of uncommon words on the classifier.
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The rationale is that common words have little discriminatory value, while relatively

uncommon words are more effective in separating document classes. Once a word

frequency vector has been computed for every document in the corpus, the IDF al-

gorithm can be applied to each document. The IDF formula is as follows:

IDF(Wi) = log (D ) (2.1)
(DF(Wi)

IDj represents the total number of documents in the corpus, and DF(W) repre-

sents the number of documents word Wi is present in. It is intuitive from Equation

2.1 that the inverse document frequency of a word is low if it appears in many doc-

uments. The logic is that words that appear in a large percentage of documents are

of little value in discriminating between documents. While words that appear only

once or twice in the entire corpus are removed (in accordance with Zipf's law), the

inverse document frequency is highest when a word appears in fewer documents.

The IDF formula is applied to each document as follows:

dIDF = [Frequency(W1) * IDF(W), ... , Frequency(Wn) * IDF(Wn)] (2.2)

The weight of each word in a document (the number of times that word appears in

the document) is scaled by the IDF of that word in the entire corpus. Common words

like "is" and "the" may appear frequently in each document (i.e. their Frequency(W)

is large), but because they appear in many documents in the corpus, their IDF will

be low.

2.2.4 Stemming

Stemming normalizes semantically similar words by removing the suffixes of words -

i.e. "learning" becomes "learn" and "dogs" becomes "dog." Not only does stemming

reduce the dimensionality of the word vector, it increases the ability of the classifier

to generalize to different word forms. Lucene (Chapter 3) provides a Porter Word
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Stemmer [15], which can optionally be used by clients of the Haystack Learning

Framework to normalize word forms.

Stemming isn't a panacea - even the best stemming algorithms will make mistakes.

For example, "number" will be translated by a Porter Stemmer to "numb." The

decision to use a stemming algorithm to pre-process document data is a trade-off

between generalizeability and specificity. If you use a stemmer, then most word forms

will be correctly normalized and your classifier will theoretically generalize better

when faced with new documents. However, one can argue that by not stemming

words, one allows the classifier to capture more detail; for example, "played" implies

past-tense, and is distinct from "play," which could be used to represent either present

or future tense.

Most text classification systems use IDF, stop words, and Zipf's law to pre-process

corpus data; stemming is not nearly as universally applied as the other pre-processing

algorithms, as there is evidence that using a stemming algorithm can reduce classifi-

cation accuracy [20].

2.3 Tokenization and Pre-Processing API

Machine learning algorithms generally expect their input to come in the form of a

word frequency vector - a histogram of word frequencies in a document. However,

training and test documents are generally provided as flat text; they must be tokenized

and assembled into word frequency vectors before they can be fed into the machine

learning algorithms. Lucene provides robust tokenization tools, which are wrapped

by the learning framework's ITokenizer interface.

Pre-processing and tokenization are discussed together because two useful pre-

processing tools - stemming and stop word removal - are most easily done during

document tokenization. Section 2.3.1 discusses the Tokenization API, and Section

2.3.2 discusses the document pre-processing API.
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2.3.1 Tokenization API

The ITokenizer interface presents a generic interface to tokenization.

interface ITokenizer

String nexto;
void closeo;

}

Three different tokenizers are provided:

SimpleTokenizer

class SimpleTokenizer implements ITokenizer

{
SimpleTokenizer(Reader r);

}

The SimpleTokenizer performs only rudimentary lexical analysis - it converts all

words to lowercase.

AdvancedTokenizer

The AdvancedTokenizer tokenizer provides facilities for stop word removal and stem-

ming. The list of stop words to remove is supplied by Lucene, as is the Porter Stemmer

algorithm.

class AdvancedTokenizer implements ITokenizer

AdvancedTokenizer(Reader r /* bStopWords = true, bPorterStemmer = true */ );
AdvancedTokenizer(Reader r, boolean bStopWords, boolean bPorterStemmer);

P

PhraseExpandingTokenizer

The PhraseExpandingTokenizer implements the CRM114 phrase expansion algorithm

described in Section 2.1.1.

The PhraseExpandingTokenizer uses another tokenizer (such as a SimpleTokenizer

or an AdvancedTokenizer) to parse the incoming document. The chunk parameter
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class PhraseExpandingTokenizer implements ITokenizer

{
PhraseExpandingTokenizer(int chunk, ITokenizer it);

}

represents the size of the tokenizer's sliding window across the document text. For

each chunk-sized word group the sliding window is placed over, 2chunk - 1 phrases are

generated. The CRM114 phrase expansion algorithm is explained in Figure 2-4.

2.3.2 Document Cleaning API

Support for document cleaning, which consists of inverse document frequency (IDF)

and Zipf's law, is provided by the DocumentCleaner class.

class DocumentCleaner
f

DocumentCleaner(List listDocuments, WordToNumber wtn);
void cleanDocuments(/* bIDF = true, bZipfs = true */);

void cleanDocuments(bool bIDF, bool bZipfs);

}

2.4 Learning Algorithms

Machine learning algorithms are the centerpiece of any text classification system. The

specific machine learning algorithms implemented in the Haystack Learning Frame-

work are discussed in Chapter 4. This section motivates the need for a fuzzy learning

frameworks and discusses the practical issues one must take into consideration when

using a classifier in a real-world task.

2.4.1 Fuzzy Classification

Text classification corpora are typically organized in a very structured manner; doc-

uments that are members of a given class are assumed to be negative examples of

every other class. However, this assumption is generally not appropriate for real-world

classification tasks. For example, in Haystack, there are three classes of membership:
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definite positive examples, definite negative examples, and possible negative exam-

ples. The learning framework provides support for "fuzzy" algorithms that allow

users to qualify a set of class labels with a confidence value.

Documents no longer have to be presented as strictly positive or negative exam-

ples; a document can be "definitely in class c" but "probably not in classes a and

2.4.2 Practical Training Issues

Training a classifier is a computationally intensive task. Depending on the classi-

fier used, training takes anywhere from 0(n) to 0(n2), where n is the number of

documents in the training corpus. The space requirements for training can also be

considerable; at best, the space requirements are O(ICI), where JCJ is the number of

classes, and at worst they are 0(n).

Research text classification systems are only run once; a document corpus is split

into a training and a test set, a classifier is trained on the training set, and then run on

the test set. Real-world text classification systems, on the other hand, must be able to

deal with a continuous stream of new documents, and they must be able to learn from

any classification mistakes. Both Cesium (Chapter 5), an automatic classification

system for Haystack, and PorkChop (Chapter 6), a spam filter for Microsoft Outlook,

constantly receive new documents and e-mail messages, and allow the user to correct

any mis-classifications.

Due to their internal workings, most classifiers cannot be trained incrementally -

i.e. the classifier must retrain on all documents in the training set to learn from even

one additional document. Because of the considerable time and space requirements

to train a classifier, it's not practical to retrain the classifier after each new mes-

sage. There are a number of schemes to reduce the frequency with which a learning

algorithm has to train:

" Scheduling. Schedule the classifier to retrain every 2-3 hours.

* Queue length. If there are more than, say, 25 documents in a "to be trained"
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queue, then re-train the classifier.

e Train on errors. Train only when a classification error occurs.

The best training techniques may combine all three approaches. The goal is to

re-train the classifier frequently if the corpus is changing frequently or if the classifier

is inaccurate, and to reduce the training frequency in all other circumstances.

2.5 Evaluating Performance

The goal of this thesis is to develop a robust text classification system, not to break

new ground and develop a new learning algorithm. As such, the performance analysis

of the algorithms in this thesis is relatively unsophisticated. This section describes

the data sets and methodology used to analyze classifier performance; Section 4.4

discusses actual classifier performance.

Three data sets are used to evaluate performance:

" Reuters The Reuters data set is one of the most widely used data sets to

measure classifier performance. The data was collected by the Carnegie group

from the Reuters newswire in 1987, and was compiled by Lewis [13] into a corpus

of 21,450 articles that are classified into 135 topic categories. Each article can

have multiple category labels. 31% of all articles have no category labels (these

articles are not used), 57% of all articles are in exactly one category, and the

rest, 12%, have anywhere from one to twelve class labels. The distribution of

articles among the classes is very uneven.

" Personal Spam Corpus My personal spam corpus is derived from a collection

of personal e-mail and publicly available spam. It consists of 1,747 non-spam

e-mail messages and 1,613 spam e-mail messages, all from my personal Inbox.

" Twenty Newsgroups The Twenty Newsgroups data set is a collection 18,828

Usenet articles from twenty different newsgroups, with messages roughly evenly
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distributed across each category. The original Twenty Newsgroups data set con-

tained exactly 20,000 articles, but Rennie has removed 1169 duplicate (cross-

posted) articles. The classifier attempts to predict which newsgroup a message

belongs in. Because each message is a member of exactly one newsgroup, the

Twenty Newsgroups data set is ideal for testing multi-class classification algo-

rithms.

All tests are performed using the same basic methodology:

* All documents are pre-processed by removing stop words, removing any words

that occur only once or twice in the entire corpus, and using the Inverse Docu-

ment Frequency (IDF) algorithm.

" Documents are randomly assigned to training or test sets. There are roughly

equal numbers of documents in the training and test sets. The training and

test splits are random, but documents are consistently assigned to either the

training or test set across multiple runs of the classifier. Some corpora, such

as Reuters, have standard, pre-defined training and test data splits, but these

pre-defined splits are ignored.

The learning framework implements three types of classification algorithms, and

each is tested differently:

2.5.1 Binary Classifiers

A binary classifier determines whether a document is in a class. Binary classifiers are

tested using the Spam Corpus and selected categories of the Reuters corpus.

Joachims [10] suggests using the "acq" and "wheat" categories of the Reuters

dataset to test classifiers. The "acq" category is the second most popular category,

and contains articles that discuss corporate acquisitions. The "wheat" category, on

the other hand, has relatively few news articles and concerns a very specific topic. A

simple classifier that assigns a document to the "wheat" category by searching for the

word wheat is 99.7% accurate. The "acq" category has no such characteristic word
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or words; it represents a more abstract concept, and a successful classifier will have

to form a more complex model.

To evaluate the performance of a binary classifier, we collect the following data:

" The number of true positives. A true positive occurs when the classifier predicts

TRUE and the actual value is TRUE.

" The number of false positives. A false positive occurs when the classifier predicts

TRUE, but the actual value is FALSE.

" The number of false negatives. A false negative occurs when the classifier pre-

dicts FALSE, but the actual value is TRUE.

" The number of true negatives. A true negative occurs when the classifier predicts

FALSE and the actual value is FALSE.

We can represent this data in the following table:

Actual TRUE Actual FALSE

Classified Positive True Positive (TP) False Positive (FP)

Classified Negative False Negative(FN) True Negative (TN)

From this data, we can compute a number of statistics:

Statistic Equation

Correct predictions TP + TN

Incorrect predictions FN + FP

Sensitivity TP

Specificity FP+TN

The number of correct predictions is the most easily understood and commonly

referenced performance metric, and it generally gives a good picture of classifier per-

formance. However, if the test documents are unevenly distributed between classes,

then the sensitivity and specificity metrics are useful. For example, in the Reuters

test set, there are only 124 positive examples of documents in the "wheat" category
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out of a total number of 5,041 documents in the test set. A classifier that always pre-

dicts that a document is not in "wheat" will achieve a 99.97% classification accuracy,

but will have a specificity of 0.

2.5.2 Multi-class Classifiers

A multi-class classifier assigns a document exactly one class label. Multi-class classi-

fiers are tested exclusively using the Twenty Newsgroups corpus.

To evaluate the performance of a multi-class classifier, we simply record the num-

ber of correct predictions.

2.5.3 Multi-label Classifiers

Multi-label classifier are generally constructed by using n binary classifiers - one for

each category. The performance of a multi-label classifier is entirely dependent on

the performance of the underlying binary classifiers.
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Chapter 3

Forward Indexes and Lucene

3.1 Introduction

Lucene [16] is a fast, full-featured text search and indexing engine written in Java.

It uses disk-based indexes for high performance and low memory utilization, and

supports ranked searching, complex queries (such as boolean and phrase searches),

and fielded searching. Lucene is currently used to store an index of all text content

in Haystack, and to allow users to search that content.

A search engine like Lucene computes an inverted index - an index that is designed

to support efficient retrieval of all of the documents that contain a given search term.

An inverted index contains an entry for each word in the corpus; in this entry is a

Inverted Index

haystack Doc 1 3x, Doc 2 3x

ontology Doc 1 7x

pig Doc 4x, Doc 2 2x, Doc 3 6x

cholesterol Doc 1 2x, Doc 3 4x

farmer Doc 2 9x

cow Doc 2 4x

stress Doc 3 3x

cardiology Doc 3 Ix

Figure 3-1: An example of an inverted index
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list of all of the documents the given word appears in, and how many times the word

appears in each specific document. Figure 3-1 provides an example of an inverted

index. Inverted indices are typically used by search engines; when a search query is

executed, the search engine breaks the query into its constituent words, and uses the

inverted index to retrieve the documents that each word is present in. The frequency

information - how often each word appeared in a given document - is typically used to

implement relevance ranking; if a search word appears very frequently in a document,

then that document is judged to be more relevant than a document with fewer word

occurrences.

Lucene's inverted indexes are disk-based, which means that the vast majority of

the index is not loaded into memory and is instead stored on disk. Because Lucene

doesn't have to load the entire index into memory, Lucene can index an extremely

large amount of data. Lucene's index is designed to support incremental updating

- i.e. a single document can be efficiently incorporated into the index, rather than

re-indexing the entire corpus to include only one new document.

3.1.1 Forward Indexes

As discussed in Chapter 2, "word frequency vectors" - histograms of the words in the

document - are the foundation of most text classification algorithms. Text documents

must be translated into word frequency vectors before they can be used by the machine

learning system. Efficiently computing and storing these word frequency vectors is

central to the efficiency of a text classification system. A text classification system

must be able to efficiently retrieve the word frequency vector for a given document,

but Lucene's inverted indices store exactly the opposite information.

I have leveraged Lucene's existing indexing infrastructure to store the word fre-

quency vectors for each document. An index of word frequency vectors for documents

is called a "forward index" and is the logical opposite of Lucene's inverted indices.

When generating its inverted indexes, Lucene actually computes a forward index for

each document as an intermediate step; I have modified Lucene to store the once-

temporary forward index to disk.
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Forward Index

Document I Document 2 Document 3

3 haystack 9 farmer 3 stress

7 ontology 4 cow 6 pig

4 pig 2 pig 4 cholesterol

2 cholesterol 3 haystack 1 cardiology

Figure 3-2: An example of a forward index

3.2 The Modifications to Lucene

The standard Lucene distribution does not provide an efficient means of accessing

the attributes of a specific document. I have modified Lucene to support efficient

retrieval of a document's word frequency vector using a unique ID.

When a client adds a document to Lucene, he can specify one or more fields;

typical fields might include "author," "subject," or "text." To retrieve a document

via a unique ID, the unique ID must be specified in a document field. Specifically,

the user must place the document's unique ID in its own field, and this field - termed

the "primary field" in the rest of this chapter - is specially recognized by my Lucene

modifications. I have added accessors that make retrieving a document by its primary

field as easy as calling one method in Lucene's IndexReader class.

It's possible to retrieve a document by constructing a search object, restricting

the search space to the primary field, and then searching for a document's unique

ID. The desired document should be the first and only entry in the search results.

However, looking a document up by its unique ID is a common operation for any user

of the new forward indexes, and the aforementioned process involves quite a bit of

code. IndexReader's accessor methods wrap this complexity and make retrieving a

document by its unique ID a one-step operation.

Lucene's new index format is backwards-compatible with the old Lucene index

format - users of other versions of Lucene can access indexes created by the forward-
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index generating Lucene - and there is no performance impact on users of the modified

Lucene library who only create an inverted index. Existing Lucene code will compile

and run without modification if combined with the new Lucene library.

Like Lucene's inverted indexes, the forward indexes are disk-based and can be

incrementally updated.

3.2.1 API

Lucene's interfaces are little-changed from the standard distribution. Lucene in-

dexes are typically created via the IndexWriter class; I have created a new class,

ForwardIndexWriter, that is a subclass of IndexWriter. The only public difference

between ForwardIndexWriter and IndexWriter is the ForwardIndexWriter construc-

tor, which takes a "primary field" argument. The primary field contains a document's

unique ID; when documents are added to the forward index, they must store the doc-

ument's unique ID in the primary field.

class ForwardIndexWriter extends IndexWriter

ForwardIndexWriter(String primaryField, ... );

}

Figure 3-3: The ForwardIndexWriter class

IndexWriter iw = new ForwardIndexWriter("URI", ... );

Document d = new Documento;
d.add(Field.Keyword("URI", "<urn:chrPQygXbyyAlupt>"));

d.add(Field.Text("text", strDocumentText));

iw. addDocument (d);

iw.closeo;

Figure 3-4: Adding a document to a forward index. The name of the document's
primary field is "URI," and the contents of that field are the document's URI.

Documents can have multiple fields, and the data stored in each field is kept

separate from the data stored in other fields. Lucene's fields allow search engines to

implement relevance ranking algorithms; i.e. if a search term occurs in the subject of

a document, it can be judged more relevant than if the search term had only occurred

in the body of the document.
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I use Lucene's fields to uniquely identify documents. The "primary field" specified

in the ForwardIndexWriter constructor must be specified by each document, and must

contain that document's unique ID. It is added to each document during indexing

via the Document class's add method. When adding fields to a document, users can

add the field using Field.Text, which performs tokenization on the specified text,

or Field.Keyword, which does not perform any tokenization. Users must add the

primary field to the document using Field.Keyword; a runtime exception will occur

upon document retrieval if the document's unique ID contains more than one token.

Field.Text should be used for regular text fields.

Accessing a forward index is accomplished by using the updated IndexReader

class, which provides 0(1) retrieval and deletion of documents based on the pri-

mary field. IndexReaders can handle both old-style Lucene indexes (created with

IndexWriter), and new Lucene indexes (created with ForwardlndexWriter).

class IndexReader

{
Document document(Object uniqueID);

void delete(Object uniqueID);

// all other methods unchanged

}

Figure 3-5: The modified IndexReader class

The document method returns the Document object associated with the given

uniquelD in 0(1) time. The returned Document object provides access to the doc-

ument's word frequency vector. If the uniqueID is not found in the index, then

document returns null. The delete method functions similarly; if the given uniquelD

is present in the index, then it removes that document from the index.

If either the document or delete function is used on a regular Lucene index (i.e. an

inverted-only index), then they will throw a ForwardUnsupportedException. Forward

indices are completely backwards compatible with standard Lucene indexes; it is valid

to use an IndexReader to access a Lucene index created with the standard inverted

index-only IndexWriter, or the forward-index generating ForwardIndexWriter.

An accessor function, getFrequencyMap, has been added to the standard Lucene
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Document class:

class Document {
public FrequencyMap getFrequencyMapO;

// all other methods unchanged

}

Figure 3-6: The modified Document class

Document objects can be returned from a number of IndexReader methods. If the

IndexReader that returned the Document class is accessing a forward index, then the

getFrequencyMap function will return a FrequencyMap class, which provides easy

access to the word frequency vector for a given document (see Section 2.1 and Figure

2-1 for an explanation of word frequency vectors). Otherwise, if the IndexReader is

accessing an old-style Lucene index, then the getFrequencyMap function will return

null.
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Chapter 4

The Haystack Learning Framework

The Haystack Learning Framework module provides a robust text-learning framework

with implementations of binary classifiers, multi-class classifiers, and multi-label clas-

sifiers. The Learning Framework provides two binary classification algorithms, Reg-

ularized Least Squares Classification (RLSC) and Naive Bayes, four multi-class clas-

sification algorithms, Rocchio, Error Correcting Output Codes (ECOC), Multi-class

Naive Bayes, and One vs. All, and one multi-label classification algorithm, Simple

Multi-Label.

Three interfaces, IBinaryClassifier, IMultiClassClassifier, and IMultiLabelClassi-

fier, correspond to the three types of classifiers offered by the Learning Framework.

The liberal use of interfaces allows users to swap-in different learning algorithms with

little or no change to the client code.

4.1 Types of Classification Problems

The goal of a text classification algorithm is to assign a document a label based upon

its contents. There are several different types of classification problems.

* Binary Classification: the classifier labels each document as positive or negative.

Many powerful classifiers (Support Vector Machines, RLSC) are natively binary

classifiers.
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" Multi-class Classification: the classifier assigns exactly one of JC labels to a

document. Some algorithms are natively multi-class (i.e. Rocchio), while other

algorithms build upon binary classifiers.

" Multi-label Classification: the classifier assigns 0 to JCJ labels to the document.

This type of classification best meshes with Haystack's flexible categorization

scheme.

4.2 Binary Classification

A binary classifier takes as input a set of documents, where each document is labeled

either TRUE or FALSE. The binary classifier then trains on these documents. A new

test document is presented as input, and the classifier returns a TRUE or FALSE

label.

Haystack implements two binary classification algorithms: Regularized Least Squares

Classification and Naive Bayes.

4.2.1 API

Haystack provides a drop-in interface for binary classification via the IBinaryClassi-

fier interface. Two binary classification algorithms are provided: Regularized Least

Squares Classification and Naive Bayes. All binary classifiers implement the IBina-

ryClassifier interface (see figure 4-1).

interface IBinaryClassif ier

void addDocument(IDocumentFrequencyIndex dfi, boolean bClass);
void traino);
double classify(IDocumentFrequencyIndex dfi);

}

Figure 4-1: The IBinaryClassifier interface

* addDocument The addDocument method adds a document to the binary clas-

sifier. It takes two arguments: a word frequency vector representation of the

document to add, and a boolean that indicates the document's class.
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" train The train method trains the classifier. You cannot call addDocument after

calling train, and you cannot call classify before calling train.

" classify The classify method applies the learned classifier to a test document.

It takes one argument - a word frequency vector - and returns a floating point

number. All binary classifiers center their classifier's return values around 0.0.

If the floating point number returned by classify is greater than 0.0, then a

document is generally labeled TRUE; otherwise, a document is labeled FALSE.

The magnitude of the return value implies the classifier's degree of confidence

in its prediction.

However, the significance of the magnitude is dependent on the specific classifier.

A classifier like RLSC generally places negative documents close to -1, and

positive documents close to 1, while the values returned by Naive Bayes vary

depending on the internal classifier state. Users of the binary classifier are

free to interpret its return values however they like; by adjusting the decision

threshold from 0.0, one can decrease the number of false positives at the expense

of increasing false negatives, or vice versa.

Binary classifiers are given a loose specification for handling boundary conditions;

their answers in boundary cases may not make sense, but the classifier must return a

value (i.e. it must not crash). If Naive Bayes or RLSC is trained on a corpus where

all documents are in one class, then they will predict that every document is in that

class. If either binary classifier is trained on a corpus with no training documents,

then its classify method will return an ambiguous answer of 0.0.

Fuzzy Binary Classification

Machine learning problems are typically well defined - a document is either a positive

or negative example of a class - but real-world problems are rarely as clearly defined.

A document might be "probably true" or perhaps "definitely false," and traditional

binary classifiers do not model this distinction. The binary classification algorithms

in this section are tailored towards "fuzzy" classification problems. Every training
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document is accompanied by a confidence value that indicates the probability that

the training document's label is correct.

All fuzzy binary classifiers must implement IFuzzyBinaryClassifier.

interface IFuzzyBinaryClassifier
{

void addDocument(IDocumentFrequencyIndex dfi, boolean bClass, double dConfidence);
void trainO;
double classify(IDocumentFrequencyIndex dfi);

}

Figure 4-2: The IFuzzyBinaryClassifier interface

" addDocument The addDocument method adds a document to the binary clas-

sifier. It takes three arguments: a word frequency vector representation of the

document to add, a boolean that indicates the document's class, and a confi-

dence value. The confidence value is a floating point number from 0.0 to 1.0

that quantifies how confident the user is in the document's class label; a 1.0

confidence value implies absolute certainty, and values close to 0.0 imply a large

degree of uncertainty. Due to internal implementation details, documents with

very small confidence values - less than 0.0001 - are ignored.

" train The fuzzy train method functions identically to the traditional classify

method.

" classify The fuzzy classify method functions identically to the traditional classify

method.

The learning framework provides fuzzy implementations of both Naive Bayes and

RLSC.

4.2.2 Naive Bayes

Naive Bayes is a relatively simple text classification model that is often utilized in text

classification. Naive Bayesian classifiers run in linear time and achieve remarkable

performance; Naive Bayes is generally considered to be the best linear-time classifier
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available. Naive Bayes can be used both as a binary and a multi-class classifier,

but the mathematical formulations for both types of classifiers are the same and are

discussed in this section.

A Naive Bayes classifier is predicated upon the fact that all attributes of the

training examples are conditionally independent - i.e. all words are independent of

each other given the context of their class. This assumption is known as the "Naive

Bayes assumption," and while it is clearly false, Naive Bayes classifiers perform well

in most real-world tasks. Because of the Naive Bayes assumption, features can be

learned separately, which greatly simplifies learning, especially when there are a large

number of attributes.

The Haystack Learning Framework uses the multinomial event model. Other

models exist, and all models have been referred to in the literature as "Naive Bayes,"

which causes some confusion. McCallum and Nigam [14] give a good overview of the

difference between the competing event models, and show conclusively that multino-

mial Naive Bayes is superior to other formulations.

A multinomial Naive Bayes classifier classifies a test document T by computing

the probability that T is in each of the potential document classes. The probability

for each individual class is determined by computing the probability that the words

in the test document T would appear in a document of that class.

To train, a Naive Bayes classifier computes P(wtlcj) for each word in the corpus

vocabulary, V, where IVI represents the total size of the corpus vocabulary, IDcj I rep-

resents the total number of words in document class cj, and weight(wi, cj) represents

the frequency with which word wi occurs in cj:

1 +El weight(wj, cj)
P(wIcj) = + w t + (4.1)

A document is classified by computing

argmaxc P(cjjdt) (4.2)

where
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P (cjIdt) - P(cj )P(dtlcj) (43)
P(dt)

One then computes P(dtlcj) as follows:

P(dtlcj) = P(dtj)dtj! P(wc) (4.4)
wEdt weight(w, ci)

P(dt), P(ldtl), and Idtl! are constant across all document classes, so they can be

eliminated from the calculations. Equation 4.4 is actually computed as a sum of

logs to prevent a floating point precision underflow. P(wlcj) is less than one, and

Equation 4.4 computes P(wlcj) for every word in the document and multiplies them

all; multiplying several thousand small numbers is likely to result in a floating point

precision underflow. Computing the multiplication in Equation 4.4 as a sum of logs

preserves the relative values of probabilities and avoids the underflow.

The binary classifier version of Naive Bayes has only two classes - TRUE and

FALSE - while the multi-class version of Naive Bayes has an arbitrary number of

classes. The mathematical machinery is the same for both types of classifiers; the

classifier selects the document class with the highest P(cj Idt).

Fuzzy Naive Bayes

This section describes the modifications to Naive Bayes to enable it to process fuzzy

data. In this model, a training document has both a class label and a confidence

value. The confidence value ranges from 0.0 to 1.0, with larger confidence values

implying greater confidence in the accuracy of the class label.

Recall that to train, we compute P(wlcj) for every word and class combination

in the corpus. If we are given a vector, p, of the confidence values of each training

point, we modify P(wlcj) as follows:

P(wlc ) = 1 + Z =1 PZ * weight(wi, cj) (4.5)
IVI + DC|

In essence, we are duplicating the documents that we are the most confident in;
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the weights of a document with a confidence value of 1.0 are twice the weights of a

document with a confidence value of 0.5.

4.2.3 Regularized Least Squares Classification

Regularized Least Squares Classification is a new method described by Ryan Rifkin

in his PhD thesis [19]. It is by no means a new algorithm [3, 1], but Rifkin's thesis is

the most comprehensive exploration of the problem to date. RLSC provides similar

classification accuracy to Support Vector Machines, but requires less time to train.

The exact time required to train a RLSC classifier (or a SVM), is a complex topic

with many variables and is discussed further in Rifkin's thesis; we'll simply have to

take his word that RLSC can be trained faster than a SVM.

RLSC and SVM's belong to a general class of problems called Tikhonov regular-

ization problems. While a thorough discussion of the mathematics behind Tikhonov

regularization problems is beyond the scope of this thesis, the concept is simple. A

Tikhonov regularization problem tries to derive a function, f, that accurately predicts

an answer, y, given an input x. The accuracy of f is measured using a loss function,

V(yi, f(xi)), and one attempts to find the f that minimizes the total loss. We can

state this formally as follows:

min - V(yi, f (xi)) + A l If|I 1 (4.6)

In the case of text classification, yj represents the binary label of a training case xi,

and f is the decision function that we're trying to derive. The norm expression I f I'

and the A parameter quantify our willingness to trade off training set error for the

risk of overtraining. A Tikhonov regularization problem can be used to describe both

Regularized Least Squares Classification and Support Vector Machines; by using the

hinge loss function V(f(x, y)) = (1 - yf(x)))+, one can re-derive a Support Vector

Machine (Chapter 2 of Rifkin's thesis). Replacing the hinge loss function with the

square loss function, V(f(x, y)) = (y - f(x)) 2 , Rifkin arrives at his Regularized Least

Squares algorithm. Because the square loss function is differentiable everywhere, the
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mathematics for RLSC are much simpler than the mathematics for Support Vector

Machines. Substituting the square loss function in to Equation 4.6, the problem

becomes:

min - Z(y - f (i)) 2 + A 2fHj (4.7)
fG7- f i=1

The goal of our classifier is to arrive at a decision function, f, that classifies a

training set with minimum error. Using the Representer Theorem, which is described

in Rifkin's thesis and [22], one can show that the decision function, f*, must take the

form:

f*(x) = ZciK(x, xi) (4.8)
i=1

K represents a kernel matrix which is derived from the training data (its derivation

will be explained later). After we substitute Equation 4.8 into Equation 4.7 and

convert to matrix notation, we arrive at:

min (y - Kc)T(y - Kc) + AcTKc (4.9)
CER

Now that the decision function, f, has a well-defined form, the problem begins

to take shape. In the above equation, f represents the number of documents, K is a

kernel function that is derived from the training data in an as-yet-undefined manner,

and y represents the true values of the training examples. c is a f dimensional vector

of coefficients for the decision function; to properly train our classifier, we must try to

find the c that minimizes the training error. Because RLSC uses a square loss function,

which is differentiable everywhere, and the kernel matrix K positive definite, we can

minimize Equation 4.9 by differentiating it and setting the equation equal to zero.

After differentiation and simplification, we find that the optimal c vector can be found

by solving the following equation:

(K + A )c = y (4.10)
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In the above equation, I denotes an appropriately sized identity matrix, f is the

number of training documents, and A is a regularization parameter that quantifies

how willing we are to increase training set error but decrease the risk of overtraining.

A Tikhonov regularization problem requires an f x f kernel matrix K. However,

our training data is provided in an f x w matrix A that corresponds to the training

text (there are f rows, one for each document, and w columns, one for each unique

word). Because text classification is typically assumed to be a linear problem (see

Section 2.1), we can use a linear kernel K, which we compute simply by K = AAT.

Thus training our RLSC classifier becomes:

(AAT + AfJ)c = y (4.11)

Because (AAT + AfI) is positive definite and therefore invertible, a straightforward

way to solve this problem is to compute:

c = (AAT + AfI)-ly (4.12)

Unfortunately, solving this equation directly using a method like Gaussian elimi-

nation is intractable for large matrices. Methods like Conjugate Gradient (discussed

in Section 4.2.3) can solve this equation efficiently.

Once we have solved Equation 4.11 and discovered the appropriate c constants,

we have all parameters of our decision function, f. Recall from Equation 4.8 that

decision function, f, takes the following form:

f (x) = ZciK(x, xi) (4.13)
i=1

Because the kernel, K, is linear and K = AAT, we can simplify the above equation

to:

f (x) = (cA T )x (4.14)

To classify a new data point, x, we compute (cA') and multiply by x.
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Fuzzy RLSC

This section describes the necessary modifications to RLSC to enable it to handle

fuzzy data. In this model, a training document has both a class label and a confidence

value. The confidence value ranges from 0.0 to 1.0, with larger confidence values

implying greater confidence in the accuracy of the class label.

Equation 4.7 presents the RLSC minimization problem. Recall that the goal of

RLSC is to determine a function f that minimizes error, where the error is quantified

by summing (yi - f(xi))2 over a training corpus. Given an array of confidence values

p for each document, we can modify RLSC as follows:

I f
min - pi(yi - f (xi))2 + Aml If I1 (4.15)

The loss associated with a specific training document is multiplied by the confi-

dence value for that document, pi. If we minimize the above equation by differenti-

ating and simplifying, we arrive at:

(AAT + diag(p-1)XCI)c = y (4.16)

It is easy to see why the IFuzzyBinaryClassifier interface specifies that all doc-

uments with a confidence value of less than 0.0001 are ignored; dividing the right

side of the sum with a very small confidence value will result in a very large number,

which might cause in a floating point overflow.

Conjugate Gradient

The Conjugate Gradient method is an efficient means of computing the solution to

systems of linear equations of the form Ax = b. Conjugate Gradient is an iterative

algorithm; it begins with a candidate solution x', and iteratively refines the solution

until Ax' approaches b. The number of iterations required to converge on a specific

solution is variable and depends on A and b, though conjugate gradient generally

converges very quickly. Traditional algorithms like Gaussian elimination run in a

fixed amount of time, and operate directly on the matrix A.
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Iterative algorithms like conjugate gradient are well-suited for problems such as

text classification, which involve large, sparse matrices. In a typical text classification

problem, A has anywhere from several hundred to several thousand rows (one for each

training document), and tens of thousands of columns (one for each distinct word in

the corpus), though only several hundred of the columns in each row will be non-zero.

It is easy to compute Ax' if A is a sparse matrix. Gaussian elimination, on the other

hand, performs row operations, which are exceedingly slow on large, sparse matrices.

Jonathan Richard Shewchuk's paper "An Introduction to the Conjugate Gradi-

ent Method Without the Agonizing Pain" [23] is an excellent introduction to the

conjugate gradient method.

4.2.4 Alternative Binary Classification Algorithms

Support Vector Machines

Support Vector Machines are currently regarded as the most capable binary classifi-

cation algorithm available. Broadly speaking, a SVM attempts to find a hyperplane

that maximizes the margin between positive and negative training examples, while

simultaneously minimizing training set misclassifications. SVMs are universal learn-

ers; by plugging in the appropriate kernel function, SVMs can learn linear threshold

functions, polynomial classifiers, radial basic function networks, and three-layered

sigmoid neural networks [11].

While SVMs are powerful, they do require approximately O(n 2) time to train

(Joachims [11] estimates between 0(n 7 ) and O(n 2 -)). This makes them infeasible

for large datasets (i.e. a million data points). The quadratic running time of Support

Vector Machines is their major downfall, and there have been a number of attempts

to overcome this problem:

o Subsampling: Subsampling involves training on only a subset of the total train-

ing data. By removing data from the training set, one loses a lot of information

and classifier performance suffers [17].
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* Bundled SVM: A bundled SVM [24] reduces the number of training points

presented to a SVM learner by concatenating randomly chosen datapoints in the

same class. By tuning a s parameter that determines how many data points to

combine, one can achieve a tradeoff between accuracy and speed (between 0(n)

and the typical SVM 0(n2 )). The bundled SVM implementation described in

[24] achieves the current record for a ROC breakeven point on Reuters-21578,

though there is little theoretical justification for this result. Bundled SVMs

show a good deal of promise; even when the s parameter is tuned so the bundled

SVM runs in 0(n), the bundled SVM implementation still performs significantly

better than a benchmark Naive Bayes implementation.

Other Algorithms

* Neural Networks: A neural network is a type of classification algorithm pat-

terned off the physical neurons in brains. The network consists of groups of

nodes connected together in various patterns, with adaptive weights associated

with each connection. By varying the pattern of the nodes and adjusting the

function applied by the nodes, one can construct both linear and nonlinear

classifiers. Neural networks are generally slow to train, theoretically inelegant

(i.e. there are more direct ways to express a nonlinear classifier), and perform

relatively poorly [28].

" k-Nearest Neighbors: The k-Nearest Neighbor algorithm is simple in concept;

given a test document, the system finds the k-nearest neighbors to the document

according to a similarity measure (generally the same cosine metric used in the

Rocchio algorithm - see Equation 4.21). The neighbors are grouped according

to their category, and weighted according to their similarity scores. Training

a k-Nearest Neighbor classifier is simple (just record each document in the

training set), but given a m document training set and an n document test set,

classification takes 0(mn) time.
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4.3 Multi-class and Multi-Label Classification Al-

gorithms

There are three broad types of classification algorithms: binary classifiers, multi-label

classifiers, and multi-class classifiers. Binary classifiers have been discussed already

in Section 4.2. Multi-label classifiers can assign a document 0 to ICI document labels,

while multi-class classifiers assign a document exactly one label.

This section describes four multi-class algorithms - One vs. All, Error Correcting

Output Codes (ECOC), Naive Bayes, and Rocchio - and one multi-label algorithm -

Simple Multi-Label. One can group these algorithms into two categories:

" Naturally multi-label or multi-class classifiers.

" Composite classifiers that build upon binary classifiers and decompose the clas-

sification task into any number of binary problems.

Algorithms like Rocchio and Naive Bayes are naturally multi-class, though both

can be used as binary classification algorithms. A binary classifier version of Naive

Bayes is described in Section 4.2.2. While Rocchio can also be converted to a binary

classifier, Joachims [10] has shown conclusively that Naive Bayes performs better than

Rocchio; Rocchio was not converted to be a binary classifier.

The most sophisticated algorithms - Support Vector Machines and RLSC - are

natively binary classifiers. While there has been some research regarding adapting

SVM and RLSC to be natively multi-class, the best results have been achieved by

combining binary classifiers to form a multi-class classifier [19]. Algorithms like Simple

Multi-Label, One vs. All, and Error Correcting Output Codes construct multi-class

or multi-label classifiers from arbitrary binary classifiers.

The learning architecture provides five multi-class or multi-label classification al-

gorithms:

* Simple Multi-Label. The simple multi-label algorithm trains ICI different binary

classifiers. To classify a document, the algorithm iterates through the ICI binary

classifiers; those that return TRUE are labeled with that class.
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" Error Correcting Output Codes. Error Correcting Output Codes split the train-

ing data among 0(1 Cl) classifiers in a pattern that provides some error-correcting

properties.

" One vs. All. The One vs. All algorithm is a multi-class adaptation of the

Simple Multi-Label algorithm. It can be expressed via the matrix framework

used by ECOC classifiers.

" Naive Bayes. Naive Bayes is a popular and powerful linear-time inherently

multi-class classification algorithm.

" Rocchio. Rocchio is a natively multi-class algorithm that was implemented pri-

marily for debugging purposes. Naive Bayes is also linear-time and consistently

outperforms Rocchio.

4.3.1 API

Multi-Label Classification

The learning framework provides simple interfaces to multi-label and multi-class clas-

sification. A multi-label classifier must implement the IMultiLabelClassifier interface.

interface IMultiLabelClassifier

void addDocument(IDocumentFrequencyIndex dfi, Set classes);

void trainO;
Set classify(IDocumentFrequencyIndex dfi);

}

Figure 4-3: The IMultiLabelClassifier interface

The SimpleMultiLabelClassifier is currently the only multi-label classifier imple-

mented in the Haystack Learning Framework. The interface to multi-label classifiers

is fairly straightforward:

e addDocument The addDocument method is used to add a document to the

classifier. It takes two arguments: a word frequency vector that represents the

document, and a Set containing all of the document's labels. This classifier
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assumes that a document is a member of all labels specified in the classes pa-

rameter, and is not a member of all other classes in the corpus. If the document

to add has multiple labels, you should pass all of those labels in the second ar-

gument to addDocument. Calling addDocument multiple times with the same

document but with different class labels will add the document multiple times

and will produce incorrect behavior.

" train The train method trains the classifier. You cannot call addDocument after

calling train, and you cannot call classify before calling train.

" classify The classify method applies the learned classifier to a test document.

It takes one argument - a word frequency vector - and returns a Set that

represents the document's labels.

Fuzzy Multi-Label Classification

The traditional multi-label classifier assumes that the classification problem is well

defined, and makes very strong assumptions about the underlying categorization on-

tology. Specifically, it assumes that if a document is a member of a set of classes,

then it is not a member of every other class in the corpus. Realistically, this is often

not the case.

To accurately capture complex and poorly defined category structures, we intro-

duce the concept of "fuzzy membership." Documents might be "probably members of

classes a and b," but "definitely not members of classes c and d." We expand on the

existing multi-label classification interface by adding separate methods to separately

add positive and negative examples, and allow users to associate a confidence value

with each set of classes. The confidence value is a floating point number from 0.0 to

1.0 that quantifies how sure we are that a given document is or is not a member of a

set of classes. A confidence value of 1.0 represents the maximum amount of certainty,

and 0.0 represents the minimum amount of certainty. Practically, due to implemen-

tation details, documents with confidence values less than 0.0001 are ignored - their

confidence value is too low to affect the classifier model.
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All fuzzy multi-label classifiers must implement IFuzzyMultiLabelClassifier.

class FuzzyMultiLabelClassifyResult

f
public double value;

public Object cls;

}

interface IFuzzyMultiLabelClassifier

void addPositiveDocument(IDocumentFrequencyIndex dfi, Set classes, double dConfidence);
void addNegativeDocument(IDocumentFrequencyIndex dfi, Set classes, double dConfidence);
void traino;

Set classify(IDocumentFrequencyIndex dfi);

}

Figure 4-4: The IFuzzyMultiLabelClassifier interface

* addPositiveDocument The addPositiveDocument method is used to present a

document dfi as a positive example for the set of classes classes. The confidence

value indicates how certain the user is that dfi is in classes. One can call

addPositiveDocument or addNegativeDocument multiple times, but only for

orthogonal sets of classes; if a document is added to a class multiple times, the

classifier will most likely function incorrectly.

" addNegativeDocument The addNegativeDocument functions identically to ad-

dPositiveDocument, except that it adds the given document as a negative ex-

ample of classes.

" train The train method trains the classifier. You cannot call addDocument after

calling train, and you cannot call classify before calling train.

" classify The classify method applies the learned classifier to a test document.

It takes one argument - a word frequency vector - and returns a Set of Fuzzy-

MultiLabelClassifyResults. The classifier will return one FuzzyMultiLabelClas-

sifyResult for each unique document label in the classifier. The value attribute

of FuzzyMultiLabelClassifyResult implies how confident the classifier is in its

prediction. value is not constrained to a specific range, but the larger value is,

the more confident the classifier is that the test document is a member of class

cls.
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Multi-Class Classification

A multi-class classifiers labels a document with exactly one category. A multi-class

classifier must implement the IMultiClassClassifier interface.

interface IMultiClassClassifier

void addDocument(IDocumentFrequencyIndex dfi, Object cls);
void trainO;
Object classify(IDocumentFrequencyIndex dfi);

}

Figure 4-5: The IMultiClassClassifier interface

* addDocument The addDocument method takes two arguments: a word fre-

quency vector, and the document's class. addDocument may be called only

once for each document; if the same document is passed to addDocument twice,

the classifier may function improperly.

" train The train method functions identically to IMultiLabelClassifier.train.

" classify The classify method takes one argument - a word frequency vector -

and returns the predicted class of the test document.

There are currently four multi-class classifiers: Rocchio, Naive Bayes, One vs. All,

and Error Correcting Output Codes.

The Classifier Constructors

Implementors of IMultiClassClassifier or IMultiLabelClassifier differ only in their

constructors. Composite algorithms that build upon binary classifiers take an IB-

inaryClassFactory in their constructor, which the multi-class or multi-label classifier

uses to instantiate different binary classifiers.

For example:

RLSCBinaryClassifierFactory and NaiveBayesBinaryClassifierFactory implements

the IBinaryClassifierFactory interface. By using the power of Java's polymorphism,

we are able to provide a generic plug-in interface for binary classifiers. Different
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// Two composite classifiers
IMultiClassifier imc = new OneVsAllClassifier(new RLSCBinaryClassifierFactoryo);

IMultiLabelClassifier iml = new SimpleMultiLabelClassifier(new NaiveBayesBinaryClassifierFactoryo);

// A natively multi-class classifier

IMultiClassifier imc2 = new NaiveBayesMultiClassClassifiero;

Figure 4-6: Instantiations of various classifiers

binary classifiers can be swapped in and out of the same multi-class or multi-label

classifier. Composite multi-class or multi-label classifiers must be passed an argument

to a binary classifier factory, but natively multi-class algorithms like Naive Bayes can

be constructed without any arguments.

4.3.2 Simple Multi-label

The Simple Multi-Label classifier, as its name implies, is a fairly straightforward

algorithm. It is a composite algorithm that requires a plug-in binary classifier. A

multi-label classifier's training documents can be labeled with anywhere from 0 to

JCJ categories, and, likewise, the classify method of the Simple Multi-Label classifier

can label a test document with anywhere from 0 to JC| categories.

To do this, the classifier constructs JCI binary classifiers, one for each class. To

train a document d with class labels c, d is presented as a positive example to the set

of c classifiers, and as a negative example to the set of C - c classifiers. To classify a

document, one runs all JCJ binary classifiers. According to the convention established

by the binary classification interface (see Section 4.2.1), a document is labeled with

a class if the binary classifier for that class returns a value of more than 0.0.

While most organizational systems (i.e. filesystems, personal information man-

agers such as Outlook), only allow documents to be members of one class, Haystack

frees the user from this restrictive ontology. Multi-label classification, which allows

a document to be a member of an arbitrary number of classes, is best suited to

Haystack's loose notion of categories.
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Fuzzy Multi-label

The Fuzzy Multi-label classifier relaxes the strong assumptions made in the Simple

Multi-label classifier - namely that if a document is a positive example of a set of

categories, then it is a negative example of all other categories. It still constructs C

binary classifiers, but users can manually specify the set of classes that a document is

in or not in, and can associate these class labels with a confidence value that quantifies

how certain the user is in these class labels.

4.3.3 Code Matrix Approaches: ECOC and One vs. All

The One vs. All classifier and the Error Correcting Output Codes (ECOC) classifier

are subclasses of a generic matrix-based classifier which assigns documents to classi-

fiers based upon the pattern in a characteristic matrix. One vs. All and ECOC can

be expressed by running the general matrix multi-class classifier on different charac-

teristic matrices.

One vs. All

One vs. All is a very simplistic algorithm for performing multi-class classification,

but it is also one of the most effective multi-class classification algorithms. A One vs.

All classifier builds JCJ classifiers, one for each class. A document that is a member

of one class, c, is presented as a positive example to the classifier for c, and a negative

example for all other C - c classifiers.

Rifkin [19] provides a fairly convincing argument that One vs. All is an excellent

multi-class classification algorithm, eclipsed - and only slightly - by ECOC.

Error Correcting Output Codes

Error Correcting Output Codes are an approach to building composite multi-class

classifiers developed by Dietterich and Bakiri [2]. Like other composite multi-class

and multi-label classifiers, it reduces the classification problem to a set of F binary
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classifiers, where F is generally on the same order of magnitude as the number of

classes.

An ECOC classifier defines a {+1, -1}-valued code matrix, R, that determines

how the training data is split among the F binary classifiers. R is a JCJ x F matrix,

where the i-th row of R defines the code for class i, and the j-th column of R defines

how the training documents are split among classifier '. Rij therefore refers to a

document in class i and binary classifier j.

To train the classifier on a document d with class label i, one iterates through

all F classifiers (j E {0 ... F - 1}). If Rij = +1, then a document in class i will be

presented as a positive example to binary classifier j; similarly, if Rij = -1, then a

document in class i will be presented as a negative example to binary classifier j.

The structure of R determines the characteristics of the ECOC classifier. One vs.

All can be constructed by placing +1 on the diagonal of a JCl x JCJ matrix, and -1

elsewhere (Equation 4.17).

+1 -1 -1

RovA= -1 +1 -1 (4.17)

-1 -1 +1

Dietterich and Bakari fill their code matrix with BCH codes, which are constructed

to have error-correcting properties. Their thesis is that if the minimum Hamming dis-

tance between any two rows of R is m, then the resulting multi-class classifier will be

able to correct [mj1- errors [2]. Columns define how the training data is split among

the F classifiers; if two columns of the matrix R are identical (or the opposite of each

other), then they will make identical errors. Comparing Dietterich and Bakari's BCH

codes to the One vs. All matrix, we note that the One vs. All matrix has indepen-

dent columns, but its rows have no error correcting properties. Dietterich and Bakari

provide their BCH error correcting codes at http://www-2.cs.cmu.edu/~rayid/ecoc/.

To classify a document d', one computes {fo(d'), ... , fF-1(d')}, where fj(d') is the

result of running binary classifier j on a training document d'. Then, the document

class is determined by finding which row of R is most similar to the matrix row
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represented by {fo(d), ... , fF-1

F-1 I - sign(Rjjfj(x))
argminjec E2 (4.18)

j=0

This equation computes the Hamming distance between row i of the code matrix R

and the classifier output, {fo(d'), ... , fF-I(d')}, and selects the row with the minimum

Hamming distance.

From the existing literature [2, 19], it appears that Error Correcting Output Codes

provide slightly better performance than a One vs. All classifier. However, it should

be noted that the difference is generally small, and that the simplicity of implementing

a One vs. All classifier probably outweighs any slight gain in accuracy that could be

obtained by using an ECOC classifier.

4.3.4 Other Composite Multi-Class and Multi-Label Classi-

fiers

There are a number of other composite multi-label and multi-class classifiers, but

while One vs. All and ECOC train O(ICI) binary classifiers, many of the alternative

classifiers require training orders of magnitude more classifiers.

All vs. All, for example, trains 1c1(10-1) pairwise classifiers, each separating a pair2

of classes. It performs about as well as One vs. All [19], but at a huge cost.

4.3.5 Naive Bayes

Naive Bayes is a powerful, linear-time classifier described in Section 4.2.2. The math-

ematical machinery for both the binary classifier and multi-class classifier versions

of Naive Bayes are identical; the binary classifier version of Naive Bayes only com-

putes class probabilities for two classes, while the multi-class version operates on an

arbitrary number of classes.
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4.3.6 Rocchio

The Rocchio classifier [21] is one of the most widely used learning algorithms. While it

was originally designed for optimizing queries from relevance feedback, the algorithm

can be adapted to text categorization problems. The algorithm is fairly intuitive,

is easy to implement, and yields acceptable results on a broad range of classification

tasks. The Rocchio classifier was implemented mostly for debugging and development

purposes; Naive Bayes (Section 4.3.5) is also linear-time, and performs much better

on common classification tasks [10], so there is little reason for production systems

to use Rocchio.

Rocchio is natively a multi-class classification algorithm; classification is accom-

plished by computing the similarity of a test document and ICI vectors representing

each class. The test document is assigned the class that it is closest to. The positive

and negative examples for each class are weighted and then combined into one class

vector.

To train a Rocchio classifier, one must compute a word frequency vector, d, from a

training document. Rocchio is typically paired with IDF; the IDF algorithm (Section

2.2.3) is generally run on the training corpus, which produces an updated word fre-

quency vector, didf. Finally, each document vector may be normalized by the length

of the document so that the classifier is not biased towards longer documents:

dnorm =didf (4.19)

Training a Rocchio classifier is simple; the word frequency vectors of each docu-

ment are combined to form a word frequency vector that represents an entire class.

A class's characteristic vector is computed as follows:

1 1
Ci = OZ 1 dnorm - 0 1 1 dnorn (4.20)

3C |D- CA| dCD-Cd

C, represents the characteristic vector for class j. D is the set of all documents.

a and 0 are constants that specify the relative weights of positive and negative words

64



(i.e. how many negative words it takes to cancel out a positive word). As recom-

mended by [10] we use a = 16 and 7 = 4. To classify a new document, d', one

compares d' to all classifiers Cj using a similarity measure. The document is assigned

the class that it is most similar to. The similarity measure used is the cosine of the

angle between two vectors, which is easily computed as follows:

cos(d', Cj) = dl. * (4.21)
|ld'||* ||Cj||

To classify a document d', we compute

ICI
argmax 1 cos(d', C3 ) (4.22)

j=1

4.4 Classifier Performance

This section describes performance evaluations of the classifiers in the Haystack Learn-

ing Framework. The goal of this thesis is to develop a robust learning framework,

not to develop a new classifier and perform extensive benchmarking and analysis on

this classifier. As such, the performance metrics used to evaluate the classifiers are

relatively unsophisticated; we simply want to ensure that the classifiers are working

as advertised, and are not buggy.

Section 2.5 describes the methodology used to evaluate classifier performance.

This section contains the results of testing Haystack's classifiers using the previously

defined methodology.

RLSC Parameter Tuning

Rifkin's thesis [19] states that the RLSC algorithm is relatively unaffected by parame-

ter tuning, but I found that this to be far from the case. RLSC has a single parameter,

fA, that quantifies one's willingness to trade off error on the training set with the risk

of overtraining. When run with the fA parameter equal to 1, as recommended in

Rifkin's thesis, binary classification performance was dismal. Empirical testing with
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different values of fA showed that the best performance was achieved with a much

larger value of fA = 2000.

4.4.1 Binary Classifiers

Binary classifiers are tested using my Personal Spam Corpus and the "acq" and

"wheat" categories of the Reuters corpus.

Spam Corpus

The Spam Corpus contains 3,360 total messages, 1,613 of which are spam and 1,747

of which are not spam. There were 1,694 messages in the test set.

RLSC

Naive Bayes
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Actual TRUE Actual FALSE

Classified Positive 772 33

Classified Negative 49 840

Statistic Value

Correct predictions 95.1%

Incorrect predictions 4.8%

Sensitivity 0.940

Specificity 0.962

Actual TRUE Actual FALSE

Classified Positive 721 21

Classified Negative 100 852



Reuters "acq"

The Reuters corpus was split into training and test sets, with 5,082 news articles in

the test set, 1,103 of which are in the "acq" category.

Joachims [10] achieves accuracy rates of around 90% using Naive Bayes on the

Reuters "acq" category.

RLSC

Naive Bayes
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Statistic Value

Correct predictions 92.8%

Incorrect predictions 7.1%

Sensitivity 0.878

Specificity 0.975

Actual TRUE Actual FALSE

Classified Positive 883 94

Classified Negative 220 3885

Statistic Value

Correct predictions 93.8%

Incorrect predictions 6.2%

Sensitivity 0.800

Specificity 0.976

Actual TRUE Actual FALSE

Classified Positive 931 185

Classified Negative 172 3794



Reuters "wheat"

The Reuters corpus was split into training and test sets, with 5,082 news articles in

the test set, 125 of which are in the "acq" category.

Joachims [10] achieves accuracy rates of around 95% using Naive Bayes on the

Reuters "acq" category.

RLSC

Naive Bayes
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Statistic Value

Correct predictions 92.9%

Incorrect predictions 7.1%

Sensitivity 0.844

Specificity 0.953

Actual TRUE Actual FALSE

Classified Positive 84 10

Classified Negative 41 4947

Statistic Value

Correct predictions 98.9%

Incorrect predictions 1.1%

Sensitivity 0.672

Specificity 0.997

Actual TRUE Actual FALSE

Classified Positive 102 124

Classified Negative 23 4833



4.4.2 Multi-Class Classifiers

Multi-class classifiers are tested using the Twenty Newsgroups dataset. There are a

total of 18,826 newsgroup messages distributed roughly evenly across twenty news-

group categories. There are 9,410 messages in the test set.

Rocchio and Naive Bayes are natively multi-class classifiers, while the One vs. All

and ECOC classifiers are composite classifiers that build upon binary classifiers. We

test One vs. All and ECOC with both Naive Bayes and RLSC as the underlying

binary classifier.

The ECOC classifiers use the code matrices provided by Dietterich and Bakari at

http://www-2.cs.cmu.edu/~rayid/ecoc/. The 63-classifier, 20-category BCH matrix

was used to perform the Twenty Newsgroups classification task.

Classifier % Correct Previous Results

Rocchio 83.2% f80% (Joachims [10])

Naive Bayes 85.3% ~84% (Joachims [10])

One vs. All (Naive Bayes) 75.2% n/a

One vs. All (RLSC) 79.4% 86.9% (Rifkin [19])

ECOC (Naive Bayes and BCH-63) 87.6% n/a

ECOC (RLSC and BCH-63) 85.1% 87.5% (Rifkin [19])

Rifkin also used the BCH-63 matrix, so the results are directly comparable.
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Statistic Value

Correct predictions 97.1%

Incorrect predictions 2.8%

Sensitivity 0.816

Specificity 0.974
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Chapter 5

Cesium

This chapter describes the design and implementation of Cesium, an auto-classification

agent for Haystack, and Haystack's first real autonomous agent.

Cesium's job is to learn a model from a Haystack categorization scheme, and to

apply this model to any new documents in a collection. Cesium produces a set of pre-

dicted class labels for a document, and annotates the document with its predictions.

These annotations are distinct from the document's manually assigned categories, and

while the classifier's predictions are displayed in the UI, the predicted categories do

not affect any other aspect of UI operation; the rest of the Haystack UI is still keyed-

off of the manually assigned category. The classifier's predictions are an unobtrusive

but valuable addition to the categorization UI.

Cesium is backed by the learning framework's Fuzzy Simple Multi-label classifier,

which is described in Section 4.3.1. The aforementioned "fuzziness" allows Cesium

to assert facts about documents with varying degrees of confidence. The fuzziness

extends beyond training, and encompasses the classifier's predictions as well; the

classifier does not make a simple binary decision regarding class membership - a

document is not simply in or out of a class - but, instead, the classifier produces a

list of potential categories, ranked by their likelihood according to the classification

model.
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5.1 Problem Specification

An auto-classification agent should have the following characteristics:

" The classifier must be able to place documents in more than one category. Some

types of classifiers assume that documents are only a member of exactly one

class. While these classifiers might be appropriate for a traditional e-mail han-

dling program, where an e-mail is located in exactly one folder, Haystack's

flexible categorization scheme requires the flexibility of a multi-label classifier,

which can label a document with any number of categories.

" The classifier must be kept fresh. Training a classifier is a time-consuming

process, and cannot be done incrementally. The auto-classification agent must

conserve system resources (i.e. re-training every time a document is added is

most likely not an option) but maintain a relatively fresh corpus.

" The user must be able to specify arbitrary "training" and "test" sets. While the

notion of a training and set set has little meaning on a real-world classification

system - it is mostly an artificial distinction made in research classifiers - the

user must be able to tell the classifier to learn from a set of documents and to

apply its model and classify another set of documents.

" The classifier must not train over its own predictions, even if its "training" and

"test" sets refer to overlapping collections of documents. The job of a classifier

is to predict new categories for a document, but these predictions may not be

accurate, and the user may not correct all mis-classifications. If the classifier

trains using its predicted data, classification performance will suffer; there must

be a mechanism for distinguishing the predicted categories from the actual,

manually-specified categories.

* The user must be able to correct mis-classifications. The classifier should learn

from its mis-classifications, and it must remember all corrections.
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5.2 A Cesium Agent's Properties

A Cesium agent has a number of properties that govern how it works:

" The set of training documents. Haystack lets the user define arbitrary cate-

gorization schemes, and an arbitrary number of these categorization schemes

define the training data for Cesium's classifier. A categorization scheme, an

example of which is shown in Figure 5-2, is defined by a set of possible cate-

gories, and the documents in the Haystack that have these categories. As such,

documents that have no category are not considered part of a categorization

scheme, and are not considered by the classifier.

New categorization schemes can be added by dragging and dropping them on

the appropriate place in the Cesium properties page (see Figure 5-1).

* The set of test documents. An Cesium agent can have any number of test

sets, or "autoclassify collections." The Cesium agent monitors these autoclas-

sify collections, and when new documents appear, it annotates them with its

predictions.

An agent's autoclassify collections are the collections where the classifier will

apply its model. Cesium monitors the autoclassify collections for changes, and

when a new document is added, it runs the classifier and annotates that doc-

ument with its predictions. A collection can be added to an agent's list of

autoclassify collections by dragging and dropping the collection in the appro-

priate place in the Cesium properties page (see Figure 5-1).

" Training Schedule. Training is a resource-intensive process, and cannot be done

incrementally. The Cesium agent retrains itself every hour, by default, though

this time period can be adjusted. There are other training schemes, some of

which are documented in Section 2.4.2, but Cesium simply re-trains itself on an

interval.
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Oscar
Show all information V Select information sources v

B General Service Properties

This service works on behalf of Mark Rosen.

" Sharing

L Access Control
No items in list

E Autodassify Colections

J Inbox

9.5.chedule.
Last Run Mon Feb 3 04:48 18 EST 2003 Add

Frequency 3600000 Add I

Service Oscar Add j

E categorization Schemes

j My Categorization Scheme

EStandard Properties

2All Properties

8 Locate additional information

No information is available at this time.

Figure 5-1: Cesium Properties. The "Sharing," "Access Control," and "Locate addi-
tional information" property headings are provided by Haystack, and are not relevant
to this thesis.
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5.3 Classification and Correction

Z Classification occurs automatically when new documents appear in a Cesium agent's

"autoclassify collections." The predictions of the classifier are distinct from the man-

ually generated labels. This is done for two reasons:

" Classifier inaccuracy. The classifiers discussed in this thesis perform well, but an

80-90% classification accuracy is far from perfect. The UI is currently keyed off

of a document's manually specified labels - all navigation and organization UI

components use the manually specified labels. The classifier's recommendations

are displayed as just that - tentative recommendations - and accomplishing

this requires that the manually generated labels be distinct from the classifier's

predictions.

" The classifier must not train off of its own predictions. The classifier only

trains off of manually labeled categories; classifier performance would suffer if

the classifier trained off of its predicted labels.

5.3.1 The Data Model

A document's category or predicted category is represented by annotating that object

with one of three possible types of annotations:

* memberOf. This assertion is used when a user manually assigns a document to

a category.

* notMemberOf. This assertion is used when a user manually indicates that a

document is not a member of a category.

" predictedMemberOf. This assertion is used by the classifier to predict a docu-

ment's category.
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A Belief Engine

This data model is inelegant in that it introduces a new type of memberOf assertion,

predictedMemberOf, that represents a specialized form of membership asserted by

a single agent, Cesium. While this is an acceptable short-term fix, if every type of

agent made its own, specialized assertions about class membership, the data model

would quickly become cluttered.

The elegant way to implement predictedMemberOf is to use a belief system. A

belief system takes the disparate memberOf assertions provided by each agent, de-

termines how much we trust each of the assertion's creators, and filters the results

accordingly. A belief system obviates the need for separate types of memberOf asser-

tions such as predictedMemberOf.

5.3.2 Training a Fuzzy Classifier

Much ado has been made about the "fuzziness" of some of the classification algo-

rithms in Chapter 4. A traditional multi-label classifier makes the assumption that

if a document is in set of categories, then it is not in all other categories. While

this assumption is an inaccurate description of Haystack's categorization ontology,

it does have the benefit of generating a large number of negative training examples.

Haystack does provide a mechanism for users to assert that a document is not a mem-

ber of certain categories, but it's unlikely that users will manually negatively label

many documents. Documents will most likely be assigned negative labels only when

the classifier mis-predicts an item's category and the user corrects this prediction;

we estimate that there will be significantly fewer negative examples than positive

examples.

It's likely that there wouldn't be sufficient data to build a robust model if the

classifier trained only on the user's explicit categorizations. We use the traditional

categorization assumption - that a document that is a member of a set of classes is

not a member of all other classes - to generate additional negative training examples,

but we tell the classifier that these examples are "weak."
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Fuzzy classifiers associate each set of document's labels with a confidence value

that quantifies how certain we are about the document's categorization. We are ab-

solutely certain about manually classified documents, and they are presented to the

classifier with a confidence value of 1.0. Documents generated by the traditional cat-

egorization assumption are presented to the classifier with a much smaller confidence

value.

To summarize:

" Assertions made by the user are presented as concrete examples. If the user

manually labels a document as either a positive or negative example of a cat-

egory, then the document and its label are presented to the classifier with a

confidence value of 1.0.

* Negative examples generated by the traditional categorization assumption are

given weak confidence values. Machine-learning problems typically assume that

if a document is a positive example for a set of classes, then it must be a

negative example for all other classes. This assumption is generally not true

in Haystack, but without this assumption there wouldn't be sufficient numbers

of negative examples in each class for most learning algorithms to generate an

effective model. Class labels generated by this assumption are presented to the

classifier with a weak confidence value.

5.3.3 The Classification User Interface

A good user interface for classification must have the following capabilities:

" The UI must be able to denote that a document is in a category, is not in a

category, or that a document's category is unknown.

" The classifier's predictions must be displayed in a unobtrusive way. The clas-

sifier will be incorrect frequently enough that the classifier's recommendations

should not significantly alter the UI - i.e. the classifier's predictions should not

be used for navigation.
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Figure 5-2: Haystack's Organize Pane

" Users must be able to correct and validate predictions. If the classifier's predic-

tion is correct, then the user must be able to validate this prediction. Similarly,

if the classifier's prediction is incorrect, then the user must be able to correct

this mis-classification.

" Different predictions have different strengths. Not all predictions are created

equal; the classifier might be very confident about one prediction, but uncertain

about another. The user interface should differentiate between the different

prediction strengths.

Cesium's categorization user interface is simple and easy to use, but contains a lot

of functionality and renders a lot of information. The centerpiece of the categorization

UI is the "Organize" pane, which is displayed in Figure 5-2.

The most important job of a categorization UI is to display membership - i.e.

whether a document is or is not in a category. This is accomplished by a series of

check boxes adjacent to the category names. If a document is in a category - if

there is a memberOf assertion connecting the document with a category - then a

check appears in the check box adjacent to the category. The absence of a check

implies that either the user has not labeled the document, or that the document is

not in that category. The user cannot distinguish between the two cases, but they
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are represented differently in the underlying data model, and are used differently

by the classifier. Documents that are not in a category have have a notMemberOf

assertion connecting the document and the category, while an unknown category has

either a memberOf or a notMemberOf assertion. To the classifier, documents that are

definitely not members of a category are regarded as concrete negative examples, while

documents with unknown labels are passed on to the classifier as "weak" negative

examples of those categories.

Predictions are displayed in the user interface via a light bulb - if a light bulb

appears next to a category, then the classifier has predicted that the current document

is in the category. The intensity of the color of the light bulb indicates the strength of

the prediction - a deep yellow light bulb indicates that the classifier is fairly confident

in its prediction, while a light yellow light bulb indicates that the classifier is relatively

uncertain of its prediction.

The classifier's predictions can be validated by clicking on the light bulb - clicking

the light bulb will change the tentative predictedMemberOf assertion to a concrete

memberOf assertion, will remove the light bulb from the user interface, and will place

a check next to the category. To correct a classification, a user clicks on a light bulb

and then unchecks the category.

5.4 Oscar

Cesium is the name of a general type of auto-categorization agent backed by a Simple

Multi-Label classifier that learns from a categorization scheme and applies its model

to a collection. To set the machine learning machinery in motion, you must create an

instantiation of a Cesium agent, and configure the Cesium agent's properties. Oscar

is currently the only Cesium agent in Haystack. By default, Oscar trains on any

indexable document, and automatically classifies items in the Haystack Inbox.

Oscar trains over all Haystack content, but new instantiations of Cesium should

probably specialize on a specific type of information. For example, a new classification

agent, Einstein, could be created to categorize research papers.

79



80



Chapter 6

PorkChop: An Outlook Plugin for

Spam Filtering

This section describes the implementation of a spam-filtering Microsoft Outlook plu-

gin using the learning algorithms described in Chapter 4. Outlook was chosen because

it has a dominant market share, and because its API is much more flexible than the

plug-in APIs of other competing programs like Eudora.

Spam Filtering Tools

There are a large number of spam filtering programs out there. A search of down-

load.com for "spam filter" yields over 100 Windows programs - and this excludes

the UNIX universe. This section discusses, in-depth, several popular spain-filtering

programs and techniques.

Spam filtering programs, in general, are far from state of the art. The most

common spam filters these days use rules-based filtering; only recently have naive

bayesian filters started appearing in popular spam detection packages.

Blacklists

Blacklists were the earliest means of spam filtering. A blacklist is a simple concept -

various groups like MAPS, SPEWS, and Spamhaus [26, 27, 25] respond to complaints
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from users and compile a list of originating domains that are used to send spam. ISPs

that subscribe to the blacklist then block all e-mail messages (or even all network

traffic) from these domains. Early blacklists were met with open arms - blacklists

were viewed by ISPs as a way to reduce the network traffic associated with spam and

therefore lower their costs, all while pleasing their customers [5].
However, spammers have adapted well to the challenge posed by blacklists. They

often hop from SMTP server to SMTP server, operating one step ahead of the black-

lists. An article in Network World [4] references a study that found that the MAPS

RBL, one of the most popular blacklists, blocked only 24% of actual spam messages,

but blocked 34% of legitimate messages. Such results are absolutely abysmal and

even the most unsophisticated content-based filters can easily accomplish better clas-

sification performance.

Additionally, the spam blacklist maintainers have made many enemies by adopting

a "shoot first and ask questions later" blacklisting policy. In one rather exceptional

case [4], one customer of the iBill electronic billing service complained to MAPS about

unsolicited e-mail from one of iBill's clients. The e-mail was not even sent from iBill

itself - it was sent by one of iBill's thousands of customers. MAPS not only placed

the accused spammer on their Realtime Blacklist (RBL), but they placed all of iBill's

IP addresses on the blacklist as well. iBill received no warning - only complaints

from customers confused by the blackout - and lost over $400,000 during the four-

day blackout. The blacklist maintainers' heavy-handed tactics have won them few

fans among IS managers at blacklisted companies - "There's no appeals process once

you're blacklisted. The MAPS folks were arrogant and pompous to deal with. They're

out of control."

CRM114

The CRM114 "Controllable Regex Mutilator" is a system to process large data

streams, and has been used to build a Naive Bayes e-mail filtering system. The

author makes impressive claims about the accuracy of the software - it is over 99%

accurate on a corpus of 5,800 messages - but his results have not been independently
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and rigorously verified.

While most machine learning systems generally try to reduce the number of fea-

tures, both to reduce computational requirements and to decrease the potential for

over training, the CRM114 system tries to generate as many features as possible by

moving a 5-word sliding window over the incoming text and generating subphrases

from this 5 word window. See Section 2.1.1 for more information on CRM114's phrase

expansion algorithm.

Spam Assassin

Spam Assassin is a framework for combining disparate spain detection techniques.

Rather than use one technique - Naive Bayes statistics or rules-based detection algo-

rithms - Spam Assassin provides a framework to combine any number of heuristics.

SpamAssassin maintains a table of different spam detection techniques. Each entry

in the table has two components: 1) code to calculate the specific metric, and 2) the

weight of the metric. Most of the metrics are typical rules-based metrics, but one

of the metrics is the Naive Bayes classification of the e-mail message. To classify a

message, Spam Assassin runs each metric in the table, and adds up the weights of the

triggered metrics; if they exceed a specified threshold, then the message is marked as

spam. Spam Assassin runs a genetic algorithm on the spam detection table, altering

the weights of each classification technique until it maximizes the classifier's efficiency.

There are a number of possible ways to combine traditional rules-based systems

and Naive Bayes classifiers, and the Spam Assasin designers believe that they have

found the best way to combine the power of the two respective approaches. It's easy

to write a rule to detect a malformed e-mail message header (indicative of spam),

but it's much more difficult to, for example, determine a numerical measure of how

malformed a header is, and then use that measure as a feature in a message's word

frequency vector.

The Spam Assasin team experimented with using Naive Bayes to learn different

measures of "spammishness" in the text (i.e. the number of ALL CAPS words), but

found this to be ineffective. Most spam metrics are positive - i.e. they are designed
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to identify spam, rather than identify non-spam - but machine learning algorithms

work best when the feature vectors contain both positive and negative metrics. The

rule table used in Spam Assassin is additive, which is better suited for positive spam

metrics; if a rule is triggered, then the weight associated with that rule is added to the

spain metric. Naive Bayes is implemented as a single entry in the rule table, though

the genetic algorithm usually gives a high weight to the output of the Naive Bayes

classifier.

6.1 PorkChop Implementation

The Outlook spam filter plugin uses the learning framework provided in Chapter 4.

The Outlook filter uses the binary classification algorithms provided by the learning

architecture - specifically the Regularized Least Squares Classification algorithm - to

classify spam.

When PorkChop is first installed, it must be initialized with e-mail messages from

the user's Inbox; PorkChop does not come pre-programmed with a spam database.

When new messages are downloaded from the e-mail server, PorkChop runs these

messages through the learning framework and produces a predicted classification for

each message. Messages that are suspected to be spam are invisibly marked as such

via an Outlook CustomProperty, and are moved by Outlook's filtering mechanisms to

a special Spam folder. New buttons in the Outlook interface are provided to handle

mis-classified e-mail.

Training the classifier is a resource-intensive process, and cannot be done incre-

mentally. The classifier can be trained on demand, but it is automatically run when

there are more than 100 new messages in the "to be trained" queue, or when there is

a message in the queue that has been around for more than eight hours.

In addition to the binary classifier, PorkChop uses whitelists to properly classify

e-mail. The whitelists are manually maintained - users must add e-mail addresses.

Messages from users on the whitelist are not run through the classifier; whitelists

reduce both false positives and total total computation time.
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The Haystack Learning Framework is written in Java, but it takes a substantial

amount of work to bridge the gap between Microsoft Outlook and Java. Microsoft

Outlook provides a very robust scripting interface via Visual Basic for Applications

(VBA). While VBA is well-suited for GUIs and other lightweight tasks, more heavy-

duty tasks are often offloaded onto COM modules. COM stands for Component

Object Model, and is Microsoft's distributed object system. Java modules can export

COM interfaces, but, unfortunately, Java support for COM ties you to a specific VM;

Microsoft provides support for COM interfaces in its VM, while Sun's VM supports

COM interfaces via JavaBeans. SWT provides VM-independent COM interface sup-

port, but then you're tied to the SWT library; the SWT library comprises about a

megabyte - not exactly lightweight.

Ironically, the easiest way to interface the Java machine learning code with Out-

look's VBA is to use C++. Microsoft Visual C++ has excellent support for COM

development, and JNI allows C++ functions to call Java code. Because there were

only a few functions (addDocument, train, and classify), it was easy to write a C++

COM wrapper for the Java learning functions. When an action needs to be performed

in Outlook (i.e. a message must be classified), Outlook VBA code calls C++ COM

code, which uses JNI to invoke the Haystack Learning Framework.

6.2 Performance

PorkChop uses whitelists and the RLSC algorithm to filter spam messages from Out-

look. The performance metrics in Section 4.4 show that RLSC can distinguish spam

with roughly 95% accuracy. This is impressive, but there are better frameworks for

spam detection.

SpamAssassin, described in Section 6, uses a combination of static rules and dy-

namic machine learning algorithms (Naive Bayes) to detect spam. While machine

learning algorithms perform extraordinarily well by themselves, some attributes of

spam are extremely difficult to quantify and present as a feature to a machine learn-

ing algorithm. For example, spam e-mails often have malformed e-mail headers; it's
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Figure 6-1: PorkChop in action

difficult to make a machine learning algorithm learn whether a header is well-formed

or malformed, but it's easy to write a rule that determines the validity of an e-mail

header.

SpamAssassin's hybrid approach to spam detection is more robust than Pork-

Chop's machine-learning only spam detection algorithms. Were I to write PorkChop

again, I would not code it as a stand-alone application; I would incorporate it into

the SpamAssassin codebase.
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Chapter 7

Cholesterol

7.1 Introduction

Resource Description Framework, or RDF, forms the backbone of Haystack; all data

in Haystack is stored in RDF. Haystack's RDF store is called Cholesterol, and because

of RDF's central role in Haystack, the design, features, and performance of Cholesterol

have a major effect on Haystack. RDF statements are triples - a subject, predicate,

and object, and Cholesterol is a database that is purpose-build to store these RDF

triples.

Because Cholesterol is the backbone of Haystack, it is placed under a very high

query load. For Haystack to be sufficiently responsive to user interface commands,

Cholesterol must be able to execute thousands of queries per second over a typically

80-120 megabyte corpus. Cholesterol bears little resemblance to the common notion

of a database - i.e. one that supports transactions, tables, and can be manipulated

using SQL. Clients interface with Cholesterol using a Java API; the overhead of

creating a connection and parsing the SQL query is too great to achieve the kind of

performance expected by Cholesterol. Unlike SQL, which has a rich query syntax,

Cholesterol's query interface is very minimalistic; the only tools one has to work with

are wildcards and joins.

As of the writing of this thesis, there are three versions of Cholesterol. Cholesteroll

is the first incarnation of the Cholesterol database, and was a hasty C++ port of a
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Java database. Cholesteroll indexed its RDF triples with an eye toward the common

case; as long as the predicate of a query is not a wildcard, Cholesteroll can execute the

query fairly quickly. However, because Cholesteroll was quickly written, its code was

not very readable, and the complexity of the code led to a number of nagging, virtually

unsolvable bugs. Cholesterol2 uses the same architecture as Cholesteroll, but is

completely rewritten with the goal of improving code readability. Unfortunately, due

to memory copying overhead in the query execution code, Cholesterol2 is only half

as fast as Cholesteroll. Cholesterol3 is a completely new take on the Cholesterol

database that manages its own memory and indexes all fields.

7.2 Cholesterol API

This section discusses the Cholesterol API that is implemented by all Cholesterol

databases. The Java interface IRDFStore defines the Java interface that must be

implemented by an RDF Store, but because of the need for speed, all three Cholesterol

databases are written in C++. The CholesterolRDFStore implements IRDFStore,

and specifies that the following JNI native interfaces must be provided by a C++

Cholesterol database.

class CholesterolRDFStore
native void doNativeInit(String basePath);
native void doNativeKill();

native boolean add(String subj, String pred, String obj, String id);

native boolean addAuthored(String subj, String pred, String obj, String id, Object [ authors);

native void remove(String ticket, Statement s, Resource[] existentials) throws ServiceException;

native Set query(String ticket, Statement[] query, ResourceE] variables, Resource[] existential)
throws ServiceException;

native Set queryMulti(String ticket, Statement[] query, Resource[] variables,

Resource[] existential, RDFNode [][] hints) throws ServiceException;

native boolean contains(String subj, String pred, String obj);

native RDFNode extract(String ticket, Resource subject, Resource predicate, RDFNode object)

throws ServiceException;

native Resource[] getAuthors(String ticket, Resource id) throws ServiceException;
native Resource[] getAuthoredStatementIDs(String ticket, Resource author) throws ServiceException;

native Statement getStatement (String ticket, Resource id) throws ServiceException;

}

Figure 7-1: The native interface provided by each C++ Cholesterol database
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" doNativeInit. The doNativeInit function initializes the Cholesterol database.

* doNativeKill. The doNativeKill function indicates to Cholesterol that Haystack

is shutting down, and that Cholesterol can begin to free up its internal data

structures. However, practically, queries continue to be issued to Cholesterol

even after the doNativeKill function is called. Implementations of doNativeKill

should flush any buffers to ensure that Cholesterol's state is written to disk,

but doNativeKill should not delete any data structures because Cholesterol

must handle queries even after doNativeKill is called.

" add. The add method adds an RDF triple, plus a unique identifier, to the

Cholesterol database. After the add function is called, subsequent calls to query

must reflect the updated database state. However, Cholesterol is not a trans-

actional database; after a crash, Cholesterol does not have to recover the exact

pre-crash state, which allows for faster add performance. Adds are written to

a log (more details in Section 7.4.3).

* addAuthored. The addAuthored method has the same interface as add, ex-

cept that it takes an additional argument that represents the authors of a spe-

cific statement. The authors parameter is an array of Object classes, whose

toString() values are stored in the database and are used to answer queries to

the getAuthors and getAuthoredStatementID methods, which are part of the

belief layer described in M. Zhurakhinskaya's thesis [29].

* remove. The remove function removes the given RDF triple from the database.

The RDF triple may be fully specified (i.e. no wildcards), or it may include

wildcards. The wildcard matching scheme is implemented in the same man-

ner as in the query method. C++ implementors of remove must make a JNI

call to the CholesterolRDFStore.addToRemoveQueue method, which is used to

implement triggering. Removes are written to a log (more details in Section

7.4.3).

" query. The query method queries the Cholesterol database. The query method
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takes an arbitrary number of RDF triples that may contain wildcards. If a

query has more than one RDF triple, then Cholesterol performs a join across

the triples. Section 7.3 discusses Cholesterol queries in detail. The existential

argument to query contains an array of RDFNodes which represent the existen-

tials used in the query. The variables argument contains an array of Resources

that must be a subset of the Resources in the existential argument.

The query method returns a Set that contains all of the possible existential

bindings. Each element of the Set is an array of RDFNodes, and the existentials

in the RDFNode array are stored in the same order as the existentials were

specified in the variables array. For example, if the first element of variables is

the existential ?x, then the first element of every RDFNode array corresponds

to the value of the existential ?x.

" queryMulti. The queryMulti method has the same interface as query, with the

addition of a hint parameter. This parameter provides data that restricts the

values of some variables in the query. The data in the n-th row of the hint

parameter represents the set of all allowed values for the n-th existential in the

existential parameter. If data is present for an existential (i.e. the row is not

null), then that existential is constrained to one of the given values. The hint

parameter is used to optimize federation, which is an inter-database join.

" contains. The contains method takes as an argument a single RDF triple (no

wildcards allowed), and returns true if that triple exists in the database.

" extract. The extract method is a specialized form of query. Exactly one of the

arguments to extract must be null, which implies a wildcard in that position.

The extract method will then execute the query defined by the RDF triple and

return one of the possible values of that existential. If there are many values

for the existential, then extract is free to return any possible value.

" getAuthors. The getAuthors method returns all authors of a given statement

ID (or null if the statement has no authors). The getAuthors method is used
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to implement authoring, which is described in M. Zhurakhinskaya's thesis [29].

" getAuthoredStatementlDs. The getAuthoredStatementIDs returns the state-

ment IDs created by a given author. A statement ID uniquely identifies a

statement, and is specified in calls to the add or addAuthored methods. The

getAuthoredStatementIDs method is used to implement authoring, which is

described in M. Zhurakhinskaya's thesis [29].

" getStatement. The getStatement method returns the RDF triple associated

with the given statement ID. The statement ID uniquely identifies a statement,

and is specified in calls to the add or addAuthored methods.

Cholesterol may be called from within multi-threaded client programs, and must,

therefore, be thread-safe.

7.3 Queries

This section describes how to query

is used in all subsequent examples.

a Cholesterol database. The following database

Cholesterol supports a very minimalist query interface. A query is composed of

an arbitrary number of RDF statements, which may or may not contain wildcards.

A wildcard - also called an existential - will match any possible row. For example

mark likes ?x matches:
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Subject Predicate Object

mark likes melanie

mark likes robert

melanie likes joe

beth likes joe

mark hates kim

melanie likes steve



?X

melanie

robert

Existentials, by convention, are prefixed with ?, but practically, an existential is

any value specified in the existential parameter of the query or queryMulti methods.

A query may contains any number of existentials - ?x ?y ?z matches all rows in the

database.

A query consists of an arbitrary number of statements. If there is more than one

statement in a query, then the results of querying the database for each individual

statement are combined using a join. A join combines values with similar existentials.

For example, mark likes ?x, ?x likes ?y matches:

?x ?y

melanie joe

melanie steve

If the statements in a query do not share any common existentials, Cholesterol

joins the statements by computing their Cartesian product. For example, mark likes

?x, melanie likes ?y produces:

?x ?y

melanie joe

melanie steve

robert joe

robert steve

7.4 Cholesteroll and Cholesterol2

This section describes the architecture of Cholesteroll and Cholesterol2. Cholesterol2

uses the same architecture as Cholesteroll, but the Cholesterol2 code is vastly more

readable than the Cholesteroll code. Cholesteroll was written quickly, and its code is

difficult to maintain; there are several nagging bugs in the query code of Cholesteroll
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have proven to be nearly impossible to fix. Cholesterol2 is a ground-up rewrite of

Cholesteroll that fixes the query bugs and has a much more elegant design. Unfortu-

nately, due to not-clearly-understood causes - most likely memory copying overhead

in the query code - Cholesterol2 is about twice as slow as Cholesteroll.

Because Cholesteroll and and Cholesterol2 have the same architecture, they are

discussed together.

7.4.1 Indexing

Conceptually, the RDF store can be viewed as a flat table of RDF triples. Queries

are composed of any number of statements, with an arbitrary number of wildcards

in each statements. While each RDF triple may have an arbitrary wildcard pattern,

some types of queries are performed much more frequently than other types of queries.

Specifically, most queries do not have an existential predicate, and Cholesteroll and

Cholesteroll optimize for this common case.

Predicate Table for "likes"

Subject -> Object Object -> Subject

mark melanie, robert melanie melanie, robert

melanie joe, steve robert joe, steve

beth joe joe joe

kim melanie, robert

steve joe, steve

Figure 7-2: A predicate table for the predicate "likes"

The triples in a database are organized into "tables," where each unique predicate

has its own table. The mapping between predicates and their tables is stored in a

hash table; given a literal predicate, it is very efficient to retrieve its table. However,
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if the predicate in a query is an existential, then Cholesterol must iterate through

every predicate in the database to execute the query.

Within each table, there are two indexes; one that associates subjects with objects,

and one that associates objects with subjects. The indexes are implemented as hash

tables, which allows for efficient lookup of subject and object data. Given a literal

subject, it's very efficient to retrieve the object parameter of all triples in the database

with that subject. Similarly, given a literal object, the other index can be used to

efficiently retrieve the subject parameter of all triples in the database with that literal

object.

This indexing structure means that the following queries can be executed quickly:

?x predicate object, subject predicate ?x, and ?x predicate ?y.

7.4.2 Joins

In Cholesterol's simple query interface, joins and wildcards are the only way to extract

data from the database. Joins are used commonly and must be very efficient. A

join occurs when a Cholesterol query consists of more than one RDF statement;

Cholesterol executes each RDF statement separately, and combines the results of

each single-statement query using a join.

Queries are implemented internally via executing one statement at a time; the

database knows how to query itself using a single statement with any pattern of

wildcards. A higher-level join engine combines the results of separate single-statement

queries. Figure 7-3 is a listing of the Cholesterol2 join code and shows the modularity

of the query execution engine.

The statements that compose each query could be executed individually, and after

every statement has been processed, combined by the join engine. However, this is

inefficient; once you have executed one statement that contains one existential, you

have constrained the value of that existential. Subsequent queries and joins can only

reduce the total set of possible values for that existential.

Once Cholesterol has executed a query involving at least one existential, it stores

a list of all possible values for that existential. Ensuing queries that involve that exis-
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CResultSet *CCholesterolDatabase: :doQuery(const CStatementArray &statementArray)

if (statementArray.NumStatements() == 0)
return NULL;

else if (statementArray.NumStatements() == 1)
return doSingleStatementQuery(statementArray.GetStatement(0));

else
{

CResultSet *pAllResults = new CResultSet(statementArray.GetNumExistentials());
CResultSet *r = doSingleStatementQuery(statementArray.GetStatement(0));
if (r == NULL) return NULL;
pAllResults->Append(r);
delete r;

for (nt q=l;q<statementArray.NumStatements();q++)

CQueryRestriction qr(pAllResults);
CResultSet *nr = doSingleStatementQuery(statementArray.GetStatement(q), &qr);
if (nr == NULL) return NULL;
pAllResults->Join(nr);
delete nr;

}

return pAllResults;
}

}

Figure 7-3: The Cholesterol2 Join Code

tential, rather than examining all possible values for the existential, can examine only

the known values for the existential. One can illustrate the usefulness of constraining

an existential using the example database defined in Table 7.3 and the example query

mark likes ?x, ?x likes ?y.

After the first statement has been executed, the ?x variable is constrained to

either melanie or robert. If ?x likes ?y were to be executed independently, it

would return 5 rows (nearly all of the rows in the database). However, because

of the constraints on ?x, ?x likes ?y can be executed as melanie likes ?y and

robert likes ?y. The more constrained the existentials in a statement are, the

faster subsequent single-statement queries will execute.

7.4.3 Logging

Cholesteroll and Cholesterol2 serialize the contents of their database using a log. The

log is relatively simple; it is a sequential record of every add or remove that has been

performed on the database. To load the database, all adds and removes in the log are

simply re-played. There is currently no optimization to remove redundant log lines;
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rows that are added and then removed still exist in the log.

Cholesteroll and Cholesterol2 originally enforced a strict coherency model; after

an add or remove successfully executed, the database was required to recover to

the exact same pre-crash state and had to reflect every successfully executed add or

remove operation. However, this restriction requires writing to disk after every add

or remove, which severely impacts Cholesterol's performance.

This strict coherency requirement has been relaxed, and writes to the log are now

cached in memory, and are flushed to disk only when the cache becomes full. This

means that if Cholesterol crashes abruptly, the most recent database modifications

may be lost. However, this is an acceptable price to pay for the nearly 2x performance

improvement that accompanies cached log writes.

7.4.4 Locking

Cholesterol is called simultaneously from different threads in Haystack; to prevent

race conditions and data corruption, it must place locks around its data structures.

Some testing was performed, and locks in both Windows and Linux are very

inexpensive; there is virtually no overhead to obtain a lock. As such, Cholesterol uses

very fine-grained locks. There is a lock for nearly every individual data structure, and

locks are held as briefly as possible - only over accesses to a single data structure.

If locks were expensive to obtain, more coarsely-grained locking would be used; i.e.

there would be a single lock across the entire add function.

Cholesterol does not use typical critical sections or mutexes; it uses custom read-

write locks. These read-write locks allow multiple threads to read from the same data

structure, but if a thread wishes to write to a data structure, it must have exclusive

access.

7.4.5 Resource IDs

Cholesterol implements a basic form of compression to reduce total memory consump-

tion and to make some internal computation more efficient. Strings are represented
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internally as integer resource IDs. At all entry points - i.e. the add or query method

- strings are translated into integer resource IDs. The reverse occurs at all exit

points; for example, when the query method returns, all of the internal resource IDs

are translated to strings. Not only does this reduce memory consumption - a string

exists only once in memory, even if it exists multiple times in the database - it also

speeds up internal computation. It is much more efficient to compare two integral

resource IDs than it is to compare two null-terminated strings.

The downside of using resource IDs is that there is a central bottleneck that all

methods must access before they execute, but profiling has found that resource ID

translation takes up a negligible amount of time. The majority of the time is spent

inside of the query and add functions, where all computation is done using the integer

resource IDs.

7.5 Cholesterol3

Cholesterol3 uses a dramatically different architecture than Cholesteroll or Choles-

terol2. Older versions of Cholesterol were fairly fast, but they had a large memory

footprint, and, unfortunately, the primary assumption of the index structure - that

most query predicates are not existential - is not true a significant portion of the

time.

Cholesteroll and Cholesterol2 load the entire database into memory. Theoreti-

cally, the operating system should efficiently send unused portions of memory out to

disk and load them back in if they are needed, but, empirical testing has shown that

Cholesterol generates an abnormally large number of page faults, even on systems

that should have enough physical memory to store the entire database. Cholesterol3

implements its own custom memory management system.

While all versions of Cholesterol support queries with arbitrary patterns of wild-

cards, Cholesteroll and Cholesterol2 optimize for what is a common case - the predi-

cates of each query are literal. While this is true the majority of the time, queries with

existential predicates execute very slowly. Cholesterol3 has a more robust indexing
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system.

7.5.1 Memory Management

An average Haystack store contains about 500,000 RDF triples that comprise 80 to

120 megabytes of data. This should, theoretically, not be a problem for a modern

operating system's virtual memory facilities. The operating system is supposed to

send unused portions of memory out to disk - to a page file - and load them back into

memory on demand. Unfortunately, empirical testing has shown that the operating

system makes poor decisions about which portions of memory to unload; even on

systems with much more physical memory than the 80-120 megabyte Cholesterol

footprint, Cholesterol has an abnormally large number of page faults. The OS's own

memory management algorithms are, unfortunately, inadequate for applications such

as Cholesterol, which deal with large data sets and are highly dependent on memory

access speeds.

Cholesterol implements its own memory manager. The basic block of the Choles-

terol memory manager is the node, which contains a value and a number of indexes

that contain triples with that value. For example, a predicate node contains the

predicate itself, and then hash tables that index the subjects and object parameters

of triples with that specific predicate. A predicate node looks much like the table

described in Figure 7-2.

Cholesterol starts a watcher thread which monitors the total number of nodes

loaded into memory. If there are too many nodes in memory, the watcher thread

locks the database and then writes nodes to disk. Cholesterol decides which nodes to

write to disk using the least recently used (LRU) algorithm - each node remembers its

last access time, and the oldest nodes are written to disk. If the nodes are requested

- i.e. they are needed for a query - then they are loaded back in from disk.

The paging implementation is far from complete. If a node is paged to disk and

then loaded back in, the next time it is paged to disk, it will be written to in a

new location. Thus, given a database which contains more nodes than the maximum

number of nodes allowable in memory at a single time, the total disk space consumed
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by Cholesterol will grow as queries are performed. When a query is executed, it may

touch old pages, which must be loaded into memory. As new queries are executed,

these pages will become old again and will be paged out to disk again, but in a new

location. Even if no new nodes are added, the disk footprint of the database will

increase.

Cholesterol3 makes extensive use of memory mapped files; rather than allocating

internal memory using malloc, most data is stored in a memory mapped file.

7.5.2 Indexing

All versions of Cholesterol support arbitrary queries, but Cholesteroll and Choles-

terol2 optimize for common-case queries. Specifically, queries with existential predi-

cates may take a long time to execute, as Cholesteroll and Cholesterol2 must traverse

every unique predicate in the database.

Cholesterol3 improves upon the older indexing schemes by indexing on every field,

rather than just on predicate. In Cholesteroll and Cholesterol2, there is a table

for every unique predicate, and a hash table makes it efficient to retrieve the table

associated with each predicate. Within each table, there are separate hash tables

that index the subject and object parameters of triples with the specified predicate.

This table structure is discussed in Section 7.4.1 and Figure 7-2.

Cholesterol3 uses the same table abstraction, but stores a table for the subject,

predicate, and object. A subject table, for example, is keyed on the subject of a RDF

triple, and contains indexes of the predicate and object. This means that all queries

with identical numbers of existentials are executed in the same manner, regardless of

the position of the existentials.

This index structure duplicates the database many times over, and thus consumes

a large amount of memory. Cholesterol3 allows you to revert back to the old-style

indexes; the new index structure consumes too much memory for most machines.
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