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ABSTRACT

The subject of this thesis is the theory of non-

holomorphic modular forms of non-integral weight, and

its applications to arithmetical functions involving

Dedekind sums and Kloosterman sums.

As was discovered by Andre Weil, automorphic forms of

non-integral weight correspond to invariant funtions on

Metaplectic groups. We thus give an explicit description of

Meptaplectic groups corresponding to rational weight

automorphic forms and explain this correspondence.

We also describe the spectral decomposition of

automorphic forms, and use this to find the spectral

decomposition of a class of automorphic forms: the

Poincare series.

The applications center around the fact that for

congruence subgroups of SL(2,Z), the Dedekind a function

can be used to define multiplier systems of arbitrary

weight, and these involve the Dedekind sum. We can

use the general theory to bound sums of Kloosterman

sums which involve the above multiplier systems, and

therefore Dedekind sums. From this follows results

about the distribution of values of the Dedekind sum.
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PREFACE

The subject of this thesis is the theory of

non-holomorphic modular forms of non-integral weight,

and its applications to Number Theory.

As was discovered by Andre Weil, modular forms of

non-integral weight correspond to invariant functions

on Metaplectic groups. This explains the title of the thesis.

Most of the work on modular forms of non-integral

weight has been centered on the case of half-integral

weight. In this work, however, arbitrary rational weight

is considered, yealding some interesting results.

Thus the results of §4.2 seem to be new, including the

main theorem: Theorem 4.2.4.

Chapter II is a description of the Metaplectic group,

and the exposition has been modelled on the one given by

Gelbart in [Gel]. However, it would seem that our

decomposition of a more general Metaplectic group has not been

given in the form of Theorem 2.2.1 .
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The material of Chapter III has been well known since Selberg's

paper [Sell, however the explicit spectral decomposition of the

Poincare series has never been published. Also, the computation

of the classical integral of Lemma 3.1.1 is new.
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NOTATIONS

The set of real numbers

The set of complex numbers

The set of integers

The set of positive integers

The set of rational numbers

Denotes ez, zC.

Denotes e2aiz , zCC.

The integral part of x, xcR.

The Kronecker symbol: 6y =x

Let f,g be

f= O(g)

f << g

[x]= Max { nx}
ns-Z

1 if x=y

0 if xfy

complex valued functions defined

for all sufficiently large xcR, or ns IN. We write:

If g is a positive function, K>0 a constant with:

if(x)I<K g(x) for all sufficiently large x, or

If(n)I<K g(n) for

If lim f(x) =0,
+ g(x)

If lim f(x)=1
x+ g 0 =1,

log(jzI)+ i-arg(z):

all sufficiently large n.

or

or

lim f(n) =0
n+ g(n)

lim f(n)
n+ g g(n)

z= IzI-exp(i-arg(z)) The Principal branch of log.
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R

C

z

Q

exp (z)

e(z)

[x]

6y
x

f= O(g)

f g

log z -i< arg(z)4ff , z#O
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INTRODUCTION

The subject of this thesis is the theory of modular

forms of non-integral weight, and its applications to arithmetical

functions involving Dedekind sums and Kloosterman sums.

We recall that the Dedekind sum is defined for integers c,d

c

s(d,c)=1 ((j/c))((jd/c)),where ((x))=x-[x]-% for x a real
j=1

number, and [x] denotes the integral part of x.

The Dedekind sum plays an important role in Number Theory

and has been extensively studied, the work of Rademacher being

outstanding. Very little, however, is known about the distribution

of values of the Dedekind sum. In [Rad-Gro] p.28, Rademacher

and Grosswald ask if the values of s(d,c), as d and c vary over

the integers, are dense on the real line.

In this thesis, the following related result is proved:

Theorem A ( §4.2, p.59)

Let {x}=x-[x] denote the fractional part of x, for x real.
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Let h and k be integers, then the sequence of fractional parts:

hs(dc)}
kC.

cEO (mod 12k)
O<d<12kc
(d,c)=1,d=l (mod 12k)

is equidistributed on [0,1).

We now recall Weyl's criterion for equidistribution

which states that a sequence {E }. _ of complex numbers

(§4.2,p.58)

of

absolute value 1 is equidistributed iff for every positive

integer m, we have:

. = 0(x)
j<x I

as x +- o.

Since the study of the fractional part of x on [0,1)

is equivalent to considering e(x)=e2xix on the unit circle,

we see by Weyl's criterion that Theorem A amounts to giving

non-trivial estimates of the sum:

0<c<x
cEO (mod 12k)

z
0<d<12kc
(d,c)=1
d=l (mod 12k)

e( mhs(d,c)k

However it turns out that this sum appears naturally in the theory

of modular forms, as a sum of Kloosterman sums.

(1)



This occurs as
O<d<12kc

e( mhs(dc)) for cEO
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(d, c) =1
dEl (mod 12k)

can be expressed as a generalized Kloosterman sum defined below.

The classical Kloostermdn sum is given by:

(mod 12k)

S(m,n,c)= II
O<d<c
(d,c)=1

e( am + dn ) , for integers m,n,c.c

a-d:l (mod c)

There has been much work on the Magnitude of S(m,n,c)

culminating in Weil's estimate [Weil]:

S(m,n,c) << c +C , for m,n fixed and any s>O; and this is

the best possible estimate.

In another direction Kuznetsov [Kuzn] has shown:

7 S(m,n,c) «xl/ 6+E

O<c<x C
, for m,n fixed and any s>O.

Though Selberg has conjectured that this also holds with

x replaced by x

In [Sell Selberg generalized the Kloosterman sum, however,

in order to explain this, we will first have to recall the

basic notions of the theory of modular forms.
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It is well known that SL(2,R)={ a b)a,b,c,dER,ad-bc=l}

acts on the complex upper half plane H={x+iylx,yeR,y>0} by:

Z az+b , for zEH. It is known that d is a volume

element invariant under this action.

We recall that a subgroup G of SL(2,Z)={(a b>SL(2,R)ja,b,c,dEZ}

is a congruence subgroup if r1(N) C G for some NE IN, where

F(N)={ a SL(2,Z)j b= 0 )(m'd N)}

We say that

with az 1+b

cz2+d
= z 2

open set F C H

a) If z ,z2EF,

z, z2H are G-equivalent if there is ( b)EG

Now a Fundamental domain F for G, is an

satisfying:

then z1 is not G-equivalent to z2 '

b) Every zEH is G-equivalent to a z' EF, the topological closure

of F.

It is known that every congruence subgroup G has a fundamental

domain F which has finite invariant volume. That is ffdxdy <00

F Y

For example: if G=SL(2,Z),F looks like:
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We let G be a congruence subgroup of SL(2,Z), r a

real number, X:G -+ T={zeCj zi 2=1},and define zr=exp(r log(z))

where we have chosen the principal branch of log .

We now say that f:H -+ C is an Automorphic form of weight r

and multiplier x for G if f satisfies:

r
az+b (cz+d>

f(cz+d )=X(g) -zF+ d1a) f(z), for zcH, g= a)EG.

b) j f If (z) 1 dxdy < co
F yz

We denote by M(r,X,G) the space of such functions.

It turns out that there is a correspondence between

automorphic forms of weight r and multiplier X and invariant

functions on the Metaplectic group, which is a Covering group

of SL(2,R). This is the reason for the title of this thesis.

We now say that ucM(r,X,G) is a Modular form if u is a

C" function of x and y, and there is a XcR such that:

2 2 )2 -iy-
Aru +u=O, where A= y ( -2 + 32 -iry

is the

invariant Laplacian for M(r,X,G).

It is known that (*) has an orthonormal set of solutions

(*)
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K K
{u }=-v,u EM(r,X,G), with eigenvalues {X -<...<<=x. < .'''j=-V

X. + w as j + C , if K= 0 .

The finite set A={X. I0<.< } is called the set of
3 3

Exceptional eigenvalues.

The set of eigenvalues has received much attention and is

completely unknown except for a few cases corresponding to

zeta functions of Quadratic fields.

There has been much work on the problem of whether X > ,

that is whether the set of exceptional eigenvalues is empty.

This result would have many applications, for example when r=O,

there is [Iwan-Des]. There is a survey article on this problem

in [Vigneras].

For our purposes, however, the trivial bound X>O suffices.

We can now define the Generalized Kloosterman sum:

S(mjnjcXG)=
O<d<qc

g= d) EG

a (m-a)+d(n-a) X
qc

Where q>0 is such that G ={( ) EG}= 0 )nZ)e(-)X(( )

0, a <1.



-13-

This generalizes the classical Kloosterman sum, for it is

seen that: S(m,n,c)=S(m,n,c,1,SL(2,Z)).

Kuznetsov's result (1) generalizes to:

Theorem B. (Kuznetsov-Goldfeld-Sarnak-Proskurin)

S(mn.G) A. x +r(x ), for any c>0.
O<c<x C Xc

Where c.=2/r.-T , the A.'s are constants, and
J J J

S=Inf J IS(m,n,c,x,G)<cO
6>0 c>0 1+6

The relation between the generalized Kloosterman sum and

Dedekind sum arises from the transformation law of the

Dedekind n-function: n(z)=e(z/24)VV (1-e(nz)).
n=1

log
az+b

log n( cz+d log

This is:

CZ +d a+d
n(Z)+%[lg9( czd )+2ri( 12c -s(d,c))], for c#O.

n(z)+ 2( 2 ib for c=0.172 ~frc

for a b)sSL(2,Z).

2r
This gives that n (z) satisfies an automorphy condition:

2r az+d )Xr( )N (cz+d)r 2r (z), ( ESL(2,Z) where:
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Xr is therefore a multiplier system of weight r for SL(2,Z),

and therefore for all congruence subgroups.

We can explicitly calculate:

e[r( 12c -s(d,c) - )], if
( b))= 12

Xr cd/

te(rb/12), if C=O

c>O

From this, it follows that for h,m,k positive integers

we have:

e(-hm )S r(12k))=
e4kS(hm~hmlC9Xhm/kp O<d<12kc

(d,c)=1
d=l (mod

e( hmsd,c ), and cEO (mod 12k).

12k)

And it is now clear how Theorem A follows from Theorem B

using partial summation to give non-trivial estimates of.:

S(hmhmcXhm/k, F(12k))

O <c <x
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OUTLINE OF THESIS

Chapter I is an outline of the prerequisites to understanding

the following chapters. In §1.1 we recall the action of

SL(2,R) on the complex upper half plane, and also describe

some properties of the discrete action of congruence subgroups

on H. In §1.2 we define our space of automorphic forms,

while §1.3 gives us the Fourier expansions of automorphic

forms at the cusps. In §1.4 we recall some theorems about

Kloosterman sums.

Chapter II is independent of the others, and explains

how automorphic forms of non-integral weight correspond

to invariant functions on the Metaplectic group SL(2,R),

which is a covering group of SL(2,R). §2.1 proves some

technical facts about multiplier systems. In §2.2

we construct the Metaplectic group, and find an explicit

decomposition of it. We also give the correspondence

between automorphic forms and invariant forms on the

Metaplectic group.
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In §2.3 we take the approach of Representation Theory to

define modular forms. We then review some facts about the

eigenvalues corresponding to modular forms.

Chapter III deals with the spectral decomposition of

automorphic forms. In §3.1 we introduce the Eisenstein series

which are a fundamental tool in the theory of automorphic

forms. In '§3.2 we describe Selberg's spectral decomposition

of the space of automorphic forms. In §3.3 we find the

explicit spectral decomposition of a class of automorphic

forms: the Poincare series.

Chapter IV is an application of the theory developped

in the previous chapter to a special case involving rational

weight automorphic forms and special congruence subgroups.

In §4.1 we show how the Dedekind n function can be used

to construct multiplier systems of arbitrary weight.

In §4.2 we restrict ourselves to rational weight mh/k,

and to the congruence subgroup P(12k), and show how

: 1
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the generalized Kloosterman sum reduces to a simple

sum involving Dedekind sums. This fact, combined with

a theorem of Kuznetsov, Proskurin, Goldfeld and Sarnak,

allows us to prove the main theorem of this work: Theorem 4.2.4.
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CHAPTER I

BASIC DEFINITIONS
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1.1 BASIC DEFINITIONS

Let R be the set of real numbers, we denote by

H={x+iyly>O} the complex upper half plane. If we write -=

then it is well known that SL(2,R)={ ( ) a,b,c,dcR,ad-bc=l}

acts on H and on Rw{o} by

_ az+b
cz+d where a b)SL(2,R), zcH or zRV{co}

Note that and 1 0) have the same action, and

the group of transformations is PSL(2,R)=SL(2,R)/±l.

However we shall denote a transformation gePSL(2,R) by one of

its associated matrices. We thus write:

az+b
CYZ= cz+d for a= a bSL(2,R)

The classical theory gives that dx2+Ax2 is an SL(2,R)
2

y

invariant metric on H, and the invariant volume element is

given by dxd Thus considered, the complex upper half plane
y

becomes a Riemann surface of constant negative curvature,

and is called the Poincare or Lobachevski plane.

Let G be a subgroup of SL(2,R), we say that zi,z 2 H

are G-equivalent if there is a gcG such that zl=gz 2 '
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We say that G is a discrete subgroup of SL(2,R) if G

is a subgroup and for any zEH, the set {gz~zcG} has no

limit point in H.

Let Z be the set of integers and SL(2,Z)={ ab d

ad-bc=1}. It is well known that SL(2,Z) is a discrete

subgroup of SL(2,R).

Now for N a positive integer we define r(N)={ a) SL(2,Z)i

a d ( ?)(mod N)} , where the congruence is defined componentwise.

We call F(N) the Principal congruence subgroup of level N.

It can be shown that r(N) has finite index in SL(2,Z),

in fact: [P(N):SL(2,Z)]= N3 -T (1_ 1 2
pIN p

Defining a subgroup GC SL(2,Z) to be a Congruence subgroup

of SL(2,Z) if F(N)C G for some N>O, we conclude that:

G is a discrete subgroup of SL(2,R) and G has finite index

in SL(2,Z).

We will restrict ourselves to G a oongruence subgroup

of SL(2,Z), so in this section G will aways denote a congruence

stbgroup of SL(2,Z)
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A Fundamental domain F for G is an open set FCH satisfying:

a) If z1 ,z2 cF ; z1 # z2 implies that zi,z2 are not

G-equivalent.

b) Every z6H is G-equivalent to a z0sF, the topological

closure of F.

It is well known that a fundamental domain for SL(2,Z)

can be given by

F

R

F={x+iylx2 +y2 >1, -<x<}

and an easy calculation shows that

F 23 thus Vol(SL(2,Z)\ H)<.
y

Therefore G has finite index in SL(2,Z) implies:

a) The fundamental domain F of G is a finite union of

translates of a fundamental domain of SL(2,Z), and can thus

be chosen to be a simply connected set.

b) Vol(G\H)=[G:SL(2,Z)]Vol(SL(2,Z)\H)< 00

The fundamental domain for G looks like:

F

R
t%11 nQn A A
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We say that an element gESL(2,R) is parabolic

if la+dl=2, where g= .

Let G be as before, then we say that KcHvRAoO} is a

cusp of G, if K is left fixed by a parabolic element in G.

It turns out that all cusps are in Rv{} .

Let N={ IxeR} then it is clear that

a) N consists of parabolic elements.

b) N is the subgroup of SL(2,R) of elements fixing c .

c) m is a cusp of G iff GCO=GON #0

Further, as G is a congruence subgroup, there is an M such

that F(M)C G. So as ( j)r(M), we have G # 0, and

is always a cusp of G.

We note that SL(2,Z), ={(1 njn}Z Z

and G C SL(2,Z) ,

is a cyclic group

Thus G has a unique generator ( 0 1 q>09

and we denote this by q=q(G).

It can be shown that {co} is a complete set of inequivalent

cusps of SL(2,Z). So as G has finite index in SL(2,Z), we

have that G has a finite set of inequivalent cusps:



K,... , Kh and there are a ,... ,ahE SL(2,Z), ai=id

such that a . (o)=K ..
JJ

AUTOMORPHIC FORMS

Let G be any subgroup of SL(2,R) then we say that

j:G x H-+ C is a Factor of automorphy for

if for g1 ,g2sG, zEH: j(g1g2 ,z)=j(glg 2z)j(g 2 ,z)

Direct computation immediately gives that j(g,z)=cz+d,

where g=c b)e SL(2,R), is a factor of automorphy for SL(2,R).

From this it follows that j(g,z) r is a factor of automorphy

for SL(2,R), for r any real number.

Let log z be the principal branch of log and let

z r=exp(r log z) we defime: r (g,z)=(cz+d) r

Jr (gz)= cz+) r; where rcR and g=( b )SL(2,R).

We recall that T={tcCl I|t 2=1} be the multiplicative group

of the circle. If G is a subgroup of SL(2,R), we say that

X:G+ T is a Factor of automorphy of weight r for G if for

g1 ,2 cG, zcH: X(g1g2) r ir( 1 2 z)jr(g 2 ,z)

X(g1 )X(g2) jrC( 1 2 ,z)

-23-

1.2

G
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this can also be written:

X(g1g2)

X(g 1 ) X(g 2 )

as 1jr(g,z)lr

= r l'g2z)Jr(92,z)

r(91 92,z)

is a factor of automorphy.

We now define our space of automorphic forms for

a congruence subgroup: Le

multiplier system of weight

t r be a real number and X a

r for G. We define the space

M' (r,x,G) of functions

b) £ Ga) For 9=

f:H+ C satisfying:

we have

f(gz)=X(g)jr (g,z)f(z)=x(g)(cz+d)rf(z)

b) fJ r If2(z)d <

F y2

where F is a fundamental

We will

domain for G.

find it more natural to consider the space

M(r,X ,G) of functions of the form yr/2f(z) where fEM'(rX,G).

If we let Im(z)= y, where z=x+iy; x,ycR, then a simple computation

gives Im(gz)= Y 2bi'+d2

it becomes clear that

g=(b b eSL(2,R).

fc M(r,XG)

Using this fact,

iff:

a) f(gz)=x (g)Jr (g,z) f (z)=x (g) cz+d f(z),

( cZ+d 

g=a )

(1.2.1)

G



b) ffIf(z) 12
F

For example: if f (Z)=yr/2 f 1 (z) , f1
E M' (r, X, G) ;

f(z)= Im(z) r/2 f 1 (z)

f(gz)= Im(gz) r/2 f(gz)

= X(g) ( yr/2

and if ge G

d )/2

cz+d 12

f1 (z).

It is seen from a) that is G-invariant,

b) makes sense. We also note that

Vol(F)< o implies that the constant functions are in M(0 ,x,G).

Condition b) gives that M(r,X,G) is a Hilbert space

f,ge M(r,X,G).inner product

We call this the Petersson Inner Product.

FOURIER EXPANSIONS

Let G be a congruence subgroup, we recall that

G, ={g c Gjgco =g} , q=q(G) >0 1) In Z}.is such that

Now let X be a multiplier system of weight. r for G,

a<1- We write a=a(X,G).

-25-

dxdy <
2
y

then

f1 (z)

Thus

as

F

with

fg dxdy
2

y

1.3

re R

X(g)(cz+d)/2

X(g) Jr (g,z)1=1.

and q = e(-a), 0 <

Goo={ (o
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If fe M(r,X,G) we see that f(z+q)=X ( q (0-z+l)rf(z)=e(-a)f(z).

So f(x+iy) has a Fourier expansion at w:

n=o
f(x+iy)= Z a n(y) e( (n-a) x)

n=-co q

Similarily if K. is any cusp of G, with as SL(2,Z), q(c)= K.

We let G ={gc GlgK=K}, so a G a = G
K K 0

h(z)=Jr(a ,z)~ f(z) satisfies

We then have that

h(z+q)=e(-a)f(z);

We thus have the Fourier expansion at the cusp K:

n=oo

r(a ,z) f(a z)=E
n=-o an, (y) e( (n-a) x).

q

We define the space of Cusp forms S(r,X,G) to be the

subspace of functions fE M(r,X,G) such that for any cusp K

of G, then a 0,K(y)=O, where a ,K(y) is the zero'th Fourier

coefficient at the cusp K, a n,K(y) as in (1.3.1).

Remark: In this work, we will be working exclusively

with Fourier expansions at 0.

1.4 KLOOSTERMAN SUMS

The classical Kloosterman sum is defined for integers m,n,c

(1.3.1)



and is given by: S(m,n,c)= d(mod c)
(d,c)=1

e( ma+nd )
c

a-d=l(mod c)

The Kloosterman has been extensively studied, with much work

on finding upper bounds on IS(m,n,c)I for m,n fixed.

The trivial estimate is IS(m,n,c)|<c. Estermann and Salie

obtained S(m,n,c)<<c 3/4+e,for any c >0, m,n fixed. Davenport

improved this to S(m;in,c)<< c 2/3+c ,any E>0. Finally.

Andre Weil found that S(m,n,c)<< c , for E>O, and m,n fixed;

and this is also the best possible.

In another direction Selberg studied the sum

c~c<x c

S(m,n,c) ,,c
Cc < cX

and conjectured that

for any c >0

The best result known,however, is due to Kuznetsov and gives:

(1.4.2) S(m,n,c) < /6+F
Oc< x c

for any E >0.

In his paper on the Fourier coefficients of modular forms [Selberg 1],

Selberg showed that the estimation of the sum (1.4.1) is

inextricably related to the theory of modular forms.

-27-
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Selberg also showed how the Kloosterman sum could be generalized

to a congruence subgroup G of SL(2,Z), and a multiplier

system X of weight r for G, rc R, by:

gE G\o

d (mod c)

X(g) e( (m-ct)a + (n-c)d )
qc

X(g) e( (m-a)a + (n-a)d )

O<d<qc

g=(* )(G,adEl(mod c)

qc

g=(a b)' c d/

where Go , q=q(G), a are as in section 1.3.

The sum (1.4.1) can be generalized to:

/ S(m,n,c,x,G) , and the following result has been proved:
c<x c

Theorem 1.4 (Kuznetsov, Goldfeld, Sarnak, Proskurin)

S(m,n,c,X,G) =
c<x c j=1

A. x T + L(xP/3+ ), for any >O.
J

Where A. are constants, T.= 2V-., where O<X.<4
3 J 4 j J

belong

to the set A of exceptional eigenvalues defined in section 2.3,

and 3= lim inf { S(m,n,G) <
6 o<c c1+6

In the case G=SL(2,Z), r=0,X=l it turns out that S(m,n,c,XG)

=S(m,n,c). Also there are no exceptional eigenvalues,and = by

Weil's estimate. Thus Kuznetsov result (1.4.2) follows.

S(m,n,c,x,G)=
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CHAPTER II

METAPLECTIC GROUPS



FURTHER PROPERTIES OF MULTIPLIER SYSTEMS

We first characterize factors of automorphy and

multiplier systems.

Proposition 2.1.1

Let G be a subgroup of SL(2,R) and j:G x H+ C,

then the existence of a non-vanishing

f(gz)=j (g,z)f(z)

f:H+ C satisfying

, gsG

is a factor of automorphy for

Let g1 ,g2 c G then

f(gig 2z)=j(g 1g2 ,z)f(z)=f(g1 (g2z))= j (g1 ,g2z)f(g 2z)

and f(z)#O give the result
//=j(g1)92z)j(g2,z)f(z)

We next have.

Lemma 2.1.1

Let G be a subgroup of SL(2,R) and

then X is a multiplier system of weight r for G iff

X(g)jr(g,z) and X(g)J r(gz) are factors of automorphy

The proof follows by cross multiplying

2.1
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thatimplies

Proof:

j (g,z) G.

X:G-+ T, rs R,

for G.

Proof : in



(2.1.1) X(g1g2)

X(gp)X(g2 )

= r(g 1 2'2 z)jr(g2'z) - Jr(g g2 z)Jr(g2 z)

ir(g 1g2 'z) Jr ( 1g 2 z)

where the last equality is a consequence of the fact that

lijr(g,z)l was shown in section 1.2 to be a factor of automorphy

for SL(2,R), and in fact is true for any g1 ,g2ESL(2,R)

//

Corollary 2.1.1

Let G be a subgroup of SL(2,R), and X:G+ T. Then the

existence of a novanishing function f:H+ C satisfying

f(gz)=X(g)jr (g,z)f(z) , ge G

implies thatX is a multiplier system of weight r for G.

Proof: Follows from above.
//

Definition 2.1.1

We will say that a multiplier system of weight r for G

is non-trivial if there exists a function f satisfying

the conditions of Corollary 2.1.1.

We will restrict ourselves to such multiplier systems, and

x is always assumed to be non-trivial.

-31-
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Proposition 2.1.2

Let XlX2 be multiplier systems for G of weight ri,r 2

respectively, then xlX 2 is a multiplier system of weight r +r 2 for G.

Proof: Follows if we note that for g=(c d)
j~ ~~~~~~~ dgzj(~)(zd r+ 2

jr Ig j r 2(g,z)=(cz+d) r(cz+d) =(cz+d) =j(r +r )(g~z)

We define X:G+ T to be an Abelian character of G if:

//

a) X(g1g2)=X(g1 )X(g2)

b) -')c G implies X

( 1 92 cG

-0 0 =

Proposition 2.1.3

Let neZ, then a multiplier system X of weight n

for G is an abelian character of G.

As in section 1.2
a bj 1(g, z) =cz+d, g= (c d)

is a factor of automorphy for SL(2,R). Thus, so is jl(g,z), hence

x(gg 2 ) = nI"(g'g 2z)jn( 2 ,z)

X(g1 )X(g2 ) in(g1 g 2 ,z)

=1

Also if ( _c G, then letting f:H+ C be as in Definition 2.1.1

gives f(z)=f( ~+u)= -( ) f(z), so X( 0 )-
/

Proof:
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Proposition 2.1.4

Let r be a real number, and X be a multiplier

system of weight r for G, then any other multiplier system

x' of weight r for G is of the form X'=X OX , where

XO is and Abelian character of G.

Proof: It follows from Proposition 2.1.2 that X/X'

is a multiplier system of weight zero, which is an Abelian

character by Proposition 2.1.3.
//

We now recall a Theorem of Maass.

Theorem 2.1. (Maass)

Let G be a congruence subgroup of SL(2,Z) then the

group of abelian characters of G is isomorphic to G/K*,

where K* is the group generated by the commutator of G

and by ~ -i).

Proof:

Moreover this group is finite of order n(G).

[Maass 1] page 117.
//

Let G be a congruence subgroup, r a real number, then there

Corollary 2.1.2
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are exactly n(G) multiplier systems of weight r for G.

proof: By theorem 2.1 and proposition 2.1.4, the

existence of one multiplier system of weight r for G

implies that there are exactly n(G) such. But in Chapter IV

(Corollary 4.1.2) we will construct a multiplier system

of weight r for any rER, and any congruence subgroup.

//

Corollary 2.1.3

Let r=m/k be a rational number with m,kEZ. If X

is a multiplier system of weight r for G for the congruence

subgroup G, then X(g) is aways a k-n(G) root of unity.

Proof: By proposition 2.1.4 Xk is a multiplier system

of weight m, and is thus an abelian character of G, and

so is an n(G) root of unity by theorem 2.1

nth

//

Let T n={tCItn=l} be the multiplicative group of

roots of unity, then we can express the result of

Corollary 2.1.3 as X:G+ Tn , n=k-n(G).

We will require the following result:



Proposition 2.1.5

Let r=m/kc Q;

jr(gl'g2z)jr(92,

m,ks Z, then for

z) is a kth

g1 ,g2 sSL(2,R)

root of unity.

jr(9 192,z)

as in Proposition 2.1.2

( jm/k(g 1'E2z)jm/k.(92

jm/k(9192,z)

as in the proof of

Corollary 2.1.4

,z) j (gl g2z)jm(92,Z)

jm(91 2 ,z)

proposition 2.1.3

With notation as in proposition 2.1.5, we have that

is awaysm/kflg2z)Jm/k 2,z)
im/k(9192,z)

a kth root of

Follows as above

-35-

Proof:

= 1

//

Proof:

unity.

//
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2.2 METAPLECTIC GROUPS

In this section we fix a rational number r=m/k;

m,kEZ and fix nEZ with kin. Also for (b = gbSL(2,R)

we will write J(g,z) for Jm/k(gz)- cz+d)m/k, zsH.
cz+d )

Definition 2.2.1

We define the Metaplectic Group SL( 2 ,R)m,k,n to be

the set of pairs {(g,t)jgESL(2,R), tT n} with multiplication law

a(glg 2)= J(g1 9'2z)J(g 2,z)

J(g1g2,z)

We note that, by corollary 2.1.4, a(g 1 2 )T k T n as kin,

so (2.2.1) is well defined.

Note: We will supress m,k,n and henceforth write

SL(2 ,R) for SL( 2 ,R)m,k,n

Remark 2.2.1

SL(2,R) is an n-fold cover of SL(2,R). That is, there

1i T n -* SL(2,R)+ SL(2,R)+ 1

(2.2.1)

(2.2.2)

(glptl)(glt2)=(192,a(glpg2)tlt2)

is an exact sequence
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Also a(g1,g2 )
is a factor set , that is for any g,g2'9 3 eSL(2,R)

a(g 1 g2,g3) c(g1 ,g2)=a(g1 ,g2g3)ca(g 2,g3)

Since the map SL(2,R)+ SL(2,R) given by (gt) t+ g

is a homomorphism, we see that SL(2,R) acts on the upper half

plane H by

We also

J(g,z)=t J(g,

gz=(g, t)z=gz,

extend J(g,z)

where we have written g=(g,t).

to J:SL(2,R) x'.H+ C

where again g=(g,t).

by

We have then :

Proposition 2.2.1

J(g,z)

Proof:

is a factor of automorphy for SL(2,R).

Let g.=(g ,t )c SL(2,R) for j=1,2

J(g1g2 'z)=J( (g1 ,t1)(g2 ,t2 ),z)= J((g 1g2,J
l'g 2 z)J(g 2 z)

J(g1g2,z)

t 1 t 2 ) ,z)

J( 1',g2z)J(g 2,z)

J(g1g2 ,z)

t 1t2 J(9192,z)= t 1 gJ( ,g2z)t2J(g2,z)

=t 1J(g, g2 z)t2J(g2,z)=J(g 1 1g2z)J(g2,z)

//

We will now obtain a decomposition of SL(2,R).

Lemma 2.2.1

Let N={ ( 1) IxcR} ,={( y 0

y 2 ) 4) ly >0, ycR}

then



then N, A are subgroups of

this follows

J( ( X l),z)=

(0 y 2

We now examine how

SL(2,R).

from the fact that

=1 , for y >0

SL(2,R) acts on the point

Proposition 2.2.2

( ( 1)( [y2
0

b) K= {gcSL(2,R)jgi=i}=

where r()= os
(sinO

-sinO
cose

Follows from direct computations.

We require the following simple result:

Lemma 2.2.2

J(r(6),i)= exp(ire)

we have J(r(O),i)
sin +Cos r

* isin +os) exp~ r

Sexp(ir) = exp(irO),
1 as ecR gives lexp(ire)1=1.

//

We now have:

Proof:
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//

a)

i.

i= x+iy y >0

Proof:

//

Proof:

,0 k

0<2Tr, tcT n

1 - 0 Z+ y ~k r

Z -iy4 /1
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Proposition 2.2.3

There is an isomorphism

kT(r(E3),t)=(texp(ire),t )

}:KT x Tn/k given by

We first show that S1,V , 2 given by

T 1 (r(O),t)=texp(ir6),

of K- T,K+- Tn/k re

T2 (r(8),t)=tk

spectively.

are homomorphisms

We will then find inverses

for T and T2'

Now

=T 1[(r( 1 )r(O 2 ),t1t 2

T (r 7) t ) (r ) .,t2

J(r( 1 ),r(6 2 )z)J(r(02,z) )

J(r( 1 )r(62 ),z)

Letting z=i we appeal to Lemma 2.2.2,

r(01 )r(62)=r( 1+e2 ) the above becomes:

and noting that

exp(ir( 1 +02 ))t
ex

=T(r(e ),t 1 T (r(

1t2exp(ire )exp(ire2
p(ir( 1+62))

e2, t2))

) ,t1 ) (r(02 ) ,t2)T 2 (rre 1

Proof:

Also we have

=T 2(r(O 1 +e2),tl t 2a[(r(O ),t 1),(r(e 2 ),t2D

=tk tk (a[(r(O ),t )(r(O2),t2M k= tktk= ((r(a 1),t )T 2((r(O 2),t2)
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as we have noted that a(gl,g 2 )k=1 for any g1,g2.

To show that T is one to one and onto, we find inverse

maps to V, '2.

0 e<2nk.

We first define: r(O)=exp(iO/k) for

Then let:

: ) < e <27Tk} + , E2 n/k

He(r(e))=(r(2{/20} r([e/2TI)); t (e(jk/n))=(r(-i k),e(j/n)),j<

where x=[xl+{x} denote the integral and fractional parts of

x respectively. We then have that

These results follow from a direct

Y =id.T,

computation,

proposition follows.

Corollary 2.2.1

Every element ueK can be uniquely written as u=rT(7t,

where 0, e<27k and tk =.

Proof: We use E to identify { rTe)0,<e<27k} and

Tn/k with their images in K. The result then follows from

Proposition 2.2.3.
//

We next prove:

T2 -E=id. Tn/k'

and the

//
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Lemma 2.2.3

Let ueE, and u=r(e)*t as above,

J(u,i)=exp(irO)

Proof: As J(g,z) is a factor of automorphy for

SL(2,R), we have:

J(u,i)=J(r(),ti)J(t,i)=J(r(6),i)J(t,i)

Now by Propositon 2.2.3 there

t=(r(- mn ),e(m/n)),

is a jcZ such that

so by Lemma 2.2.2

J(t,i)=e(m/n)exp(-2 ijk m)=e(m/n)e(- m/n)=

Also Proposition 2.2.3 gives r(O)=(r(2{6/27},e(r[G/27])), so:

J(r(e),i)=e(r[0/21)exp(2ire/2})=exp(2ir([1/2]+{e/2}))

=exp (27ir O/27)=exp(ire)
//

If we combine Proposition 2.2.2 and Corollary 2.2.1

we obtain:

Theorem 2.2.1

SL(2,R) has the decomposition SL(2,R)=N K

geSL(2,R) can be uniquely written as:

then:

and every
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g= x)y(2.2.3) ) r(6)-t, where xeR,y>0,0<<2Trk,t n/k=1

and we have made the obvious identifications for N, A.

Remark 2.2.2

(2.2.2) gives us local coordinates for SL(2,R), and

enables us to carry out analysis on SL(2,R).

We now let G be a congruence subgroup of SL(2,Z),

r=m/kcQ; m,keZ,X a multiplier system of weight r for G, n(G)

as in Theorem 2.1 and n=k-n(G) (so kin). We will be

considering the Metaplectic group SL( 2 ,R)mk,n , which

we again denote by SL(2,R). We first prove:

Proposition 2.2.4

The map G + SL(2,R) given by g F- (g,X(g)) is an isomorphism.

Proof:

The map is well defined as we showed in Corollary 2.1.3

that X(g)cTn. By definition we have that

X(gg 2 )

X(g1 )X(g2)

SJ( 1,g2z)J(g 2 ,z)

J(g192 ,z)

for g1 ,g2 G so:
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(g1,X(g1 ))(g2 ,X(g2 ))=(g1g2 'X(g1 )X(g2) X(91g2 ) )=(g1g2,X(g1g2))
X(g1 )X(g2 )

//

We will use this map to identify G with its image in SL(2,R).

Theorem 2.2.2

a) There is an isomorphism

where $f (g)=f (gi) J(g, i)

M(r,XG) + L2 (G\SL(2,R)) given by

gESL(2,R)

b) The image of this map is the space L(r,G) C L2 G\SL(2,R))

of functions 4 satisfying $(g-r(e)-t)=$(g)exp(-ire), gcSL(2,R)

where we have used the representation of K given in Corollary 2.2.1.

Proof: We first show that Pf is left G-invariant:

letting E=(h,X(h))eG , and -g=(g,t)cSL(2,R) we have

$f(h-g)=f(h-gi)J(h-g,i) =f(h-gi) J(h-g,i)-1

=f(gi)X(h)J(h,gi)J(h-g,i) 1 f(gi)J(igi)J(- i) -1

=f(gi)J(Egi)J(E,gi) J(, i) as J(-,-) is a factor

of automorphy for SL(2,R). The above is thus equal to

=f(gi)J(gi) - f(g).

We next show that in terms of x,y,e,t we have:

f t+ $
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4gf(xyet)=f(x+iy)exp(-ire).

This will imply the result of b), for if $cL(r,G), then

the above proof shows that f (x+iy)=$(x,y,0,1) satisfies

the automorphy condition f (gz)=X(g)J(gtz)f (z), geG.

We thus write

J(g,i)=J[ ( Y

=1-exp(ire)

so gi=x+iy and

,Y) , r ( ) - t)- 6 i

by the proof of Lemma 2.2.1 and by Lemma 2.2.3.

Our result then follows.

Finally we note that the decomposition of SL(2,R)

given in Theorem 2.2.1 gives a product measure on SL(2,R):

dg= dxdy de g 12 T7Tk ink
y

2 k

G SL(2,R)

IZ 2Tk
tTf

so $g is square integrable iff

G |f(x+iy)exp(-ire)12 d y dO
G\H 2

k /k

2Fk

2T~k
0

f(x+iy)1 2 d.x yde= ( f (x+iy)1 2dxdy < c
G y F 2

as fcM(r,X,G).

The theorem now follows
//

= ,1) r y) t

,Y) 26)-t ,i = [ ( 0
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2.3 RELATION TO REPRESENTATION THEORY

In this section we fix a congruence subroup G, r=m/kEQ

with m,kc., and let n=n(G)-k, SL( 2 ,R)=SL(2 ,R)mkn

be as in the last section.

We presently recall that SL(2,R) acts on L2 (\SL(2,R))

by right multiplication: EL2 (G SL(2,R)),Rg($(h)) (h g)

and this is called the Right regular representation.

It has been the approach of Representation Theory to regard

the theory of Modular Forms as the analysis of the decomposition

of R-. We shall use this approach to motivate the definition
g

of Modular Forms.

We note that K is a Maximal compact subgroup of SL(2,R),

and that u= r(E)-t t+ exp(irO) is a character of K.

We see that L(r,G), and so,by Theorem 2.2.2, also M(r,X,G),

corresponds to decomposing R- according to characters of K.
g

For further decomposition, we must appeal to the Casimir

operator A for SL(2,R), for it is well known that R- decomposes
g

under the invariant subspaces of A.
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We recall that SL(2,R) is a covering group of SL(2,R)

and thus has the same Lie Algebra as SL(2,R). It follows

that SL(2,R) has the same Casimir operator as SL(2,R).

Using the local coordinates given in Theorem 2.2.1,

can be written as:

2 2 2 2
A$(x,y,e,t)=y2 - + 2- ) + y a

for $ a Co function of x,ye. A is SL(2,R) invariant.

We now analyse the restriction of to L(r,G).

Proposition 2.3.1

Let $ be a C" function of x,y,O in L(r,G) and

write $=f where fcM(r,X,G), then- A f=$A f
r

A f-y2  f + a )-iry f , and this can be extended to
r Dy

A~ D :MrDG)+Mr,,)

Ar:M(rXG) + M(rX,G).

C" function of x,y then:

Proof:

Further if h:H- C is any

Arh(z)= A r(h(gz)J(g,z) x(g), gEG.

As $f=f(x+iy)exp(-ir8) , we see that f is

a C function of x and y. We compute:

where
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A AI= A[f(x+iy)exp(-ir )=y exp(-ir)) (-ir))

+ y f aexp(-irO) Arf- exp(-irO) = f

As CW function are dense in M(r,X,G), we see that Af=$A fr

is true for any feM(r,X,G) and so Ar :M(rXG) + M(r,X,G)

as A:L2 (G\SL(2,R)) + L2 (G\SL(2,R)).

Finally as A is an SL(2,R) invariant, we see that the

correspondence $o(g)= f(gi)J(g,i)

Theorem 2.3.1 gives that A r h

With the decomposition of A

given in.

as the required invariance property.

//

in mind, we define:
r

Definition 2.3.1

We say that fsM(rXG) is a Modular form if f is C" and

A f + Xf=O
r

for some XeR.

There has been extensive study of the eigenvalues X.

First of all \>Q unless there are negative eigenval-ues :

corresponding to holomorphic functions y-r/2 u(z), uEM(r,X,G).

+
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These eigenvalues correspond to the Discrete series representation

of SL(2,R).

We say that X is an Exeptional eigenvalue, if O<x< ,

and denote by A the finite set of such eigenvalues.

Now if X does not correspond to the discrete series representation

then we have that X< if X correspond to the Complementary

series representation of SL(2,R), and X> if X corresponds

to the Continuous series representation of SL(2,R).

For r=O , the discrete series representation does

not occur, and Selberg has conjectured:

Conjecture 2.3.1 (Selberg)

For r=O, G a congruence subgroup of SL(2,Z), there are

no exceptional eigenvalues.

This can be generalized to:

Problem-2.3.1

Let G be a congruence subgroup, and rcQ, 0< r <2, and R-,
g

SL(2,R) as before. For'which r does the complementary series

representation not occur in R- ?
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Selberg showed that Conjecture 2.3.1 is true for

G = SL(2,Z). For G a general congruence subgroup, the best

that is known is the result of Jacquet-Gelbart, which gives

that X>3/16, if X O.

The truth of conjecture 2.3.1 has many application, for

example in the work of Iwaniec and Deshouiller [Iwan-Des]. There

is a survey article [Vigneras] on the work on this conjecture.

Now let 6(z)= e(n z), zcH, be the famous Jacobi theta
n=-co

function. It is well known that 6(z) satisfies:

1e(gz)=X (g)(cz+d)2 O(z) ,ge'r (4={(a )ESL(2,z)f 4jc}.

c d 1d£

the Jacobi symbol, and

for c O

c=O

1 if d=l (mod 4)

d= 1 if d=3 (mod 4)

Since it is known that e(z)#O for zEH, Corollary 2.1.1 implies

that X is a multiplier system of weight % for r0(4)-the

so called theta multiplier system.

Now it turns out that 3/16 is an exceptional eigenvalue

Where

(4) is



-50-

corresponding to yk0(z), and e(z) is holomorphic.

However Goldfeld and Sarnak have shown that for X

not corresponding to y-4 (z), it must be that X>15/64.

For general real weight r, the best known result

is that for 0<r<2, X an arbitrary multiplier, G any congruence

subgroup: X> %r(l-4r).

This result is due to [Roelcke], and was actually proved

for G any Fuchsian group. That is, a discrete subgroup G

of SL(2,R) such that J dxd < , where F is a fundamental
F yZ

domain of G.
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CHAPTER III

SPECTRAL THEORY OF AUTOMORPHIC FORMS
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In this chapter we will be considering a fixed congruence

subgroup G, r a real number and X a multiplier system

of weight r for G. We recall from Section 1.1 that

we have a complete set of inequivalent cusps of G:

00 =K , K 2' ' . . 'p Kh with id.=a ,. .. ,9 hcSL(2 ,Z) satisfying a j =K .

Further if GC={ 0 ncZ}, q >0, then we choose a=a(XG), 0<O1,

with X 0 =e(-). We let G ={gGIgK =K }=a G GO.

So every f M(r,X,G) has a Fourier expansion at w given by:

n=co
f(x+iy)= an(y)e( (n-a)x)

n- q

we also write j(gz)=X(g)( cz+d g 9=( b)EG



EISENSTEIN

Definition 3.1

For j=1,...,h

E (zgs)=gF GK

we define the Eisenstein series

- s -1[Im(or. gz)1 j(g~z) zcH, sEC.

Proposition 3.1.1

converges absolutely for Re(s)>l, and satisfies

E. (gz,s)=j(g,z)E. (z,s),

Proof:

for geG, in this domain.

S 5

We note that [Im(gz)] = s 2s
Icz+di

for 9= a

while lj(g,z)1=1. So for example:

Re(s) Icz+d- 2 Re(s)

c :) GQ

which is well known to converge for Re(s)>l.

Similarily E. (z,s)
J

It is then obvious that

nverges absolutely for

E (z,s) satisfies

Re(s)>l.

E (gz,s)=j(g,z)E (z,s)

for gcG,Re(s) >1,

//

Remark 3.1.1

then it can be shown[Im(gz)]s,

3.1
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SERIES

(3.1.1)

E. (z,s)

E(z,s)=
CG\ G

If we define
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that for Re(s)>1, s fixed, |E(z,s)-ys| is bounded for all zeH.

From this it follows that E(z,s) is not square integrable,

in other words E(zs) M(rXG).

Selberg has proved the following:

Theorem 3.1.1

E . (z,s) has an analytic continuation in s

complex plane, except for a possible finite set

on the interval (%,1].

at these poles p,... ,py

to the whole

of simple poles

Furthermore the residues 1,. . .e

are square integrable automorphic

forms which are not cusp forms. Also, the poles of E.(z,s)

coincide with the poles of the constant term in the Fourier

expansion of E.(zs).

Proof: [Kubota]
//

We will compute the Fourier expansion of E .(z,s),

but first we need some special functions.

Definition 3.1.2

Let a,beC, we define the Whittaker function for a-b-%
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not a negative integer by:

Wa,b (y)= 1 F(a-b+%)exp(-%y)
2ai

and C is the contour given

-t : t< -E

C: -e( t+E) : -E: <t<E;
2E;

t :t>C

and looks like

It is known that

(-t) b-a-% (1 )a+b-ex-t(+- 
2exp (-t) dt

C

by:

for any s>Q

C

W a,b (y) and W - a,b (-y) are a fundamental

set of solutions of Whittaker's equation:

u k + k-b 2

u"(Y)+ (- 4 y + 2 )u (Y)=0
y

As W a,b(z)% exp(- z) as z + , we

W a,b(y), y >0, satisfies the regularity

We can now prove:

Theorem 3.1.2

n=co

Let E (z,s)= Bn,j (y,s) e((n-aI)x)
n=-o q

see that only

condition at o.

then

B .(y,s)=6n ys-
0

T(n- a)
s-1

D .(s)

3. F (s+r/2)

W
r
-s gn (n) , s -%

(4nn-aj y)
q

(3.1.2)

(3.1.3) y >0.

- ,, 6. Mi .1--l- - - -- - - - - - - - - - - ---- -



Here D nj(s)

D n. (s)=
n,3 C>0

is the Dirichlet series:

c-2s
O<d<qc

X(g) e( (n-a)d
qc

Proof: W

B n (y, s)=0

e write

ys+

n-=
q

q

G .
J.

, and note that for

-1 s
.z)I

Re(s)>l

(gz)-1. e(- x)dx

[Im(gz)] j(gz) 1 e(-Sx) dx,

s

Icz+dI 2s

g= cc a G,c>O

r
Icz+d I

r
X (g) (cz+d)

-1as G =a G a.
K. J i 0j

e(- x)dx, since, by

by absolute convergence, we can interchange summation and integration,

and we have expanded Im(gz), j(gz). We now write

d=qr c+d1

=6 ys+ ys

(0,<d 1 <qc)

I X
o O<d<qc

g= ( a G

and obtain:

g) e (
co

e(- r dx
z - zr

=n ys+ D (s)0n. ys e(- x) dx

2s-r r
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0i s+ -1
G~ jG

q

0z
c,d=6n ys+

9=* * c-'Gg=cd jG



The theorem will therefore follow if we prove:

Lemma 3.1.1

s -e(- x) dx=Y 2s-r r

Ys e (- Bx)
z 2s-r r

-00Iz I

1
Wr (4 IT

7sgn(n) ,s-

i r(s+r/2)

dx = y

-00

e (- x)

(X2 +y2 ) s-r (X+y) r

now we have i (y-ix)=(x+iy)

e (- Bx)

(y-ix)s-r (Y+ix)s-r (y_- ix) r

x2 +2=(y+ix)(y-ix),

dx= 5'
ir ( ix)

so above is:

e (-r x)
s +-2-r (Y+ ix) s r

We now let x + 2yx and obtain:

COe(2pxy) dx, we let x + -x and expand:
(- s+ix)5 +r (.+ix) s-kr

exp(-27iry)

i 2(4y)s-1
1, exp(47rr y( +ix))

( +ix)s+ r _2iX) s-%r
dx. We put z=- -ix

_ exp(- 2TrBy)
r s-1

1
2T1i

f
C I

exp(4 3y(-z))

(-Z)s+ r(1+z) s-%r

Where C' is the contour

Now let I = C
J

C': - -it, t=-0 to t=0.

exp(47T y(-z)) dz
(-Z)s+r(1+z)s-r -

- +iT

C4

are given by

4-
Cl

C

--- /

- -iT ; C 2

-2 0

Where C. : j= .. ,4

-- , T>4, O< -<,12.

-57-

Proof:

y)

1 CO

dx

1

ir2(4y)s-1

dx

-00

to get:

dz

+ C'

C
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C2, C3 are segments of the circle {Iz+Ik=T} , while C3,C4

are segments of C, C' defined above, respectively.

It is now seen that as T -+ >: I1 ,I2 3 C' 14 * IC'

where IC',IC are defined similarily to I., j=l, ...,4.

As the residue theorem gives that IC +C +C2+C3=0, we conclude

that IC IC' . The above quantity is thus:

Trexp(-27y) 1  exp(-4Tr yz) r dz , we let z+ z
r s1 2Tri C (-~+ r(1zs-%r 4a y

(4 y)s+ r-1 7exp(-27 y)

(4y ~ r (4y) s-i
fexp(-z) (-z) -s- r z -s+ r dz
C

s-- r ( - ( s -%) +%I+%1r)exp (--2-7 y) (47, y),-k
i 4s-lF (s+%r) 2'rri

- (-z)-2r--+ )(1+ )-+ s+-) exp(-z)dz }

But, by Definition 3.1.2 , the expression in brackets is

W 2rsgn(n),-s+% %rsgn(n),s--(4Tlj y), as Osa<l implies

sgn(3)=sgn(n), and also Wa,b=W a,-b'

The result follows directly.

//
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Corollary 3.1.1

Let 0(z) be the residue of E (zs) at p, as in Theorem 3.1.1 ,

then O(z) has the Fourier expansion at w given by:

n=w
0(x+iy)= an y) e( x),

A=-cq

ny 0 7 (n--a) p-i
) 4+

1 rIr(p+kr)

Res D n (s) W rsgn(n),p-%(4- 1n-oIy)
q

Proof: Follows by taking the residue of

and then applying Theorem 3.1.1

B .(s) at s=p

//

We conclude this section by proving that 0.: j=1,...,y

are modular forms.

Proposition 3.1.1

Let 6(z) correspond to Res E.(z,s) then
s=p i

A re+p(l-p)=0O, thus corresponds to the eigenvalue p(1-p).

Proof: We show that for Re(s)>l

ArE (z,s)+s(j-s)E (z,s)=0.

follow by analytic continuation.

The result will then

where
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Ar [(Iq)S
- s = Y2 2s +

Ar7s 2
2 s

S)-iry
ax2

=s(s-l)y s-2y 2=s(s-l)y .

We now use the invariance property of Ar given

to get Arl(Im(gz) sj(g,z) -1 ]=s(s-l)(Imz) s j (g,z)

in Proposition 2.3.1

-1

Summing over gE G G
K j

gives the result.
//

Remark 3.1.2

For p.fl, 0 corresponds to an exceptional eigenvalue,
3 C)

as O<p <1 implies that 0< pj(l-pj)< 4.

We will adopt the notation v. to denote E

0.(z)= Res E.
s=v 3

(z,s) where

(z,s).



SPECTRAL DECOMPOSITION OF M(r,x,G)

Definition 3.2.1

Let C(r,X,G) be the space of functions:

(z, +it)dt, for fcM(r,X,G)

C(rXG) is the Continuous spectrum.

Definition 3.2.2

Let 0 1,..,y b

as in Theorem 3.1.1.

e the residues of

We denote by R

all E (z,s)

(rXG)

at pl,...,p ,

the subspace

generated by 61,...,e

We also recall that S(rXG)

that is, function satisfying

a .(y) e( (n-a) x)
q

is the subspace of cusp forms,

a0,j(y)=0 for j=l,...,h where

is the Fourier expansion

of f at K..

Selberg's spectral decomposition is

Theorem 3.2.1 (Selberg)

M(rXG)=S(rXG)9C(r,XG)@R(rXG)

3.2
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of M(r,X,G)

then:

u~z)- fE
c=1

( -,v +it) >E i
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We further have:

Theorem 3.2.2 (Selberg)

S(r,X,G) has. a complete orthonormal set given by

eigenfunctions of Ar. {u } _ , Aru +X u =0, where, if K=m, then
Sjj-v r j jj

X j-*co as j-O . And

to holomorphic functions y- u (Z).

Putting these results together yealds:

Theorem 3.2.3

Let fcM(r,X,G) then

-1
(3.2.1)

x., j<O correspond

<f,u.>u.(z)+'7<f,u.>u.(z)+ <f,e.>6.(z)
J J J J j=1 J

+ 1<f,E (-, +it)>E (z,2+it)dt
J=0 -

We now compute the Fourier expansion at

U j)Q, given in Theorem 3.2.2

Proposition 3.2.1

of the eigenfunctions

For j >0 let u.(x+iy)= Ia .(y) e( (n-a) x)
n#O n,q

a .(y)=a .W1  v/T- 4rn-y)n~j n~j -~rsgn(n) -A q

X 0 =O<x1<X2 *.'

then:
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Proof: Equating Fourier coefficients in A u.+k.u.=0
rj jj3 gives:

al .(y)+(-4T 2 2+ irr + )a (y =ny j n,j

where again we have written a _ n-a
q

We see that (3.2.1) is just Whittaker's equation (3.1.3).

So after a change of variables we get the solution

aA[ Wr,/4-: A.(47rfy) + a" W- ,n~j I /T41n -2r
(-4Tr y)

But we note that the square integrability of u. implies

a .(y) + 0 as y + <o. So as in Section 3.1.2 we have

a" .=0 if >O, that is n >0, as a<l. And a' .=O if n<0.
n, n,

The result then follows,
//

(3.2.1)



POINCARE

Definition 3.3.1

Let m >0 be an integer, then for zcH, seC

(3.3.1)

is the

E
g EG\0

Im(gz)s j(g,z)~

Non-holomorphic Poincare series.

Proposition 3.3.1

For Re(s)>1, (3.3.1) converges absolutely and Pm z,s)cM(r,X,G).

Proof: It is clear that

then P (z,s)

We note

if (3.3.1) converges absolutely

satisfies the automorphy condition.

7
so IP (Z' s)g< ,

m g G
that (Imgz))Re(s)qe( (m-a) gz)l<l

which converges abolutely for

Proposition 3.1.1.

(Imz)s e( (m-a) z)
q

maximum v= ((Re(s)-1)g
2 (m-c)

Re (s) >1 as in the proof of

Further, we have that:

yRe(s) exp(-2n(M-a)exp(-2~q

exp(1-Re(s))

y) which has a

at y= (Re(s)-1)q
2 (m-a)

So in fact:

IP m(z,s)I< j(Im(z)s e( (m-a) z)I
q

+ IE(z,s)-ys j< yi+JE(z,s)-ysI<Cst.

3.3
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SERIES

P m(Z' s) =

G
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Where, as before, E(z,s)= G
g E,\

(Im(gz))s and |E(z,s)-y s

is bounded for zeH, s fixed.

We therefore have that Pm(z, s) is bounded for zEH, s fixed,

Re(s)>1. Hence if dy <w3
F 2

y

implies that
F

and the proposition follows
//

The important property of

the n th Fourier coefficient

Pm(z,s) is that it "picks"

f automorphic forms:

Proposition 3.3.2

Let fEM(r,x,G) have the Fourier expansion at

f(x+iy)=

<f,Pm(-,s)>=

an (Y)

0

eC (n-ca) x)
q

exp (-2 Tr (M-a)
q y)

<f,P m(-,s)>=

Im(gz) s

f(z)Pm(z, s) dxdy
F 2

y

j(g,z) e(_ m-a)
q

gz) dxdy
y Z

absolute convergence we have interchanged integration and summation.

ff (Im (z))
gF

f(z) e(_ M-a) Z)q dxdy
y z

Pm(z,s)
2 dxdy <o

2
y

00

then

dyam(y)
s-2

y

Proof:

= -
F

f(z)

=-
gF G

, by
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s f (z) e(- ( z)
q

=5 y i exp(-2r (mt~)
0 q

a (y)
mr

exp(-27 (M-a)
q

f(z) e(- M-a) z) dxdydxdy
y T

f (z)

s-2

( c
s y-2

0 0

e(- (M-a) x)dx dy

dy

For further investigation of

its Fourier expansion at o.

Proposition 3.3.3

n=o
Let Pm (z, s)=

(y~s) n=-

Qn , s)

Where

=Sn y s n, ,

S(m,n~c,

Q n(y,s)

Y c- 2s S(mjncXG)
c>0

XG -
g £ \G/ /G

g=c b)

e( (n-a)
q

x), then

dx
0e[(- (n-a)x--a)

-- z2s-r zr

X(g) e[(m-ct)a+(n-a)d]
qc

is the generalized Kloosterman sum of Section 1.4 .

Proof: W

=ns + -G= +gi- +

e have

q
f e
0

)= Prz,s)e(-n-a)(IMn(y,s=fPm(,)e q

(-a gz)(Im(gz)) s
q

x

r

(cz+d rr
(g) (cz+d)r

x)dx

e(_(n-a) x)
q

by absolute convergence for

= HG\"

0

0 //

Pm(z, s) we will require

dx

Re (s) >1.
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Now writing Im(gz)= jcz+dj 2 and gz c c(z+d/c)

for g= a And the above is:

Sys c 2 s e[ (m ( ]z+dlr __ x)dx
Sge \G Y) 22 -cc-z-(z+d/c) ce q

glid. 0
z+dcz |

As in the proof of Theorem 3.1.2

CEZ and

X(g) (z+ -)

we write: d= qc+d , where

0<d 1 <qc. The result then follows directly.

//

Remark 3.3.1

We see from the above proposition that the generalized

Kloosterman sum occurs naturally in the Fourier expansion

of Pm(zs), In

Dirichlet series:

fact it occurs as a coefficient in the

Z(s,m,nXG)=
c >0

S (m,n ,c,x ,G)
2s

which is the Kloosterman-Selberg Zeta function

2+LOO s s
Xds=

2-i 0
Using Perron's formula: 1

2Ti

2+io

we have: S(m,n,x,G) =2 f Z(l+s,m,n,X,G) x s
0<c<x c 2 2-ic 2 s

for x >1

for x <1

ds

and this is the key to the Goldfeld-Sarnak proof of Theorem 1.4.
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We will give the spectral decomposition of Pm(zs)

for which we will need:

Proposition 3.3.4

(3.3.2) <P (-,s),E.(-,t)>=ir 4 -a)- -s (m-a -1D4q .(t)
m j q

.r(s-t)r (s+t-1)
1 (s- r)F (t+ r)

Proposition 3.3.5

For j >0, u.
J

as in Theorem 3.2.2, a nj as in Proposition 3.2.1:

<P (-,s),u.)>=a
m j mj (4 

)(m )
q

1-s
S(s-/ -X.-%)F(s+/- . )

F (s - r)

Before proving these propositions, we note that Proposition 3.3.4

gives:

Corollary 3.3.1

Let 8(z)= Res E.(z,s) be as in Theorem 3.1.1
s=p i

<P (-,s),O>= (47 - ) 1 (m-~ a))M q 4 q

then:

Res D (s) F(s-p)F(s+p-1)
s=P m,n (s-%r) F (p+%r)

Follows by taking the residue at s=p in

(3.3.2), and by noting that pc(k,l] and so is a real number.

//

Proof:



Proof of Proposition 3.3.4:

as before, we have, as in Proposition 3.3.2,
00

B .(y,s)exp(-2nry)ys-2dy<P (-,s),E(-,t)>=<E(-,t),Pm M-,s)>=0
0

S ( (M- a) t-
4q D (t)

r (s+%r)

exp ( -27rf-y)

- Tr(m-c) a)-
4q

0

r- D (t)

F (t+ r)
W -%(4T m-a y)

2r . q
exp(-2T (m- s-)y)y2dy

q

as all function are Real analytic.

We now require:

Theorem 3.3.1 (Barnes)

W b(y)=exp(-y)
27ri

oi
r (w-a)r(-w-b+%) )F(-w+b+)

_ 1 (-a-b- )r(-a+b+ )

[Whittaker and Watson

We have: Wr,-% ( 47Ty)

.exp ( -2f y)-
2Tr i

j (w-%r) F ( -w-t+1) F ( -w+t)

- 300 (
OTT Ty) w dw

Tr ) E-1
Substituting in the above gives:

r D .(t)

F ( E+kr) F (T-%r) F ( -t-%r+1)

Ci

ys-2 e(w-r) F (-w-t+l) F (-w+t) ( 4 7TSy)w dw dy
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Writing E (Zs)= B q(y,s)e( x)
n= -co

with

=5
0

q_ a

s-2
y dy

Proof :

yw dw

§16. 4] / /

-

0
exp (- -4f y)
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We interchange the order of integration in the above and note that:
00

f exp(-4fry)(4ffy)w y s-2 dy- r(w+s-1)
0 (47T)1

ooi

- i r (w- r)Ir(-w-E+1)Tr(-w+t)r(w+s-1)
2Tr _--0

_ P(-%r-E+1)r(t-r)r(s-t)r(s+t-l)
r (s - %r)

and Watson, 14.52].

The result now follows directly

by

. So we obtain the integral:

dw

Barne's Lemma [Whittaker

//

Proof of Proposition 3.3.5: This is similar to the previous

proof, as we have:

<P (-,s),u >= a r ,/y- (m-a)y)exp(-2m ) s-2 dym j mqj 0 qr,

a m-) 1-s F(s-/-X - S)(s+'1-_ -%)
m,3 q

F(s-4r)

By the same computation as above.
//

Putting the above three results together yealds:

Theorem 3.3.2

has the spectral decomposition:P m( z Vs )
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P (z,s)=(m 4qM-a
q

1
r(s- r) / a . ~-eA-)~+eA-); m, 3 3

02 -it) r(s- 2+it) r(S-';--it)

r (k-it+kr)
E(z,%+it)dt

+ t
j=1

( M-a )
Pj~ r(s-p.)1(s+p.-1)

r (p +%r)

Res Dm, v j
J

(s) 6.(z) }
J

If Ar has no negative eigenvalues

J(
_00

+ i
4

- -it
D .

u. (z)
J

S=

in M (r, X,G) .



-72-

CHAPTER IV

APPLICATIONS TO EXPONENTIAL SUMS
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THE DEDEKIND n FUNCTION AND MULTIPLIER SYSTEMS

The classical Dedekind n function is given by:

(4.1.1) r(z)=e(z/24) T
n=1

If we recall that

s(d, c)= _((j/c))
j=l

(1-e(nz)),

the Dedekind sum

-((jd/c)),

for z6H.

is given by:

where c,dEZ and ((x))=x-[x]-%,

Then we have the following transformation law:

Theorem 4.1.1 (Dedekind)

Let log z denote the principal branch of log, then for

cSL(2,Z) we have:

cz+d a+dlog rl(z)+ k[log( )+27rri for c#O

(4.1.2) log(n(gz))=

log n(z) 2Tib+ (12 ) , for c=O

There are many proofs of this, an elegant one given

in [Siegel].
//

We will show that n2r(z)=exp(2rlog q(z))

an automorphy condition: n2r (gz)=xr

Where g= E) SL(2,Z), and j r(g,z)=(cz

jr(gz)

satisfies

2r (z),

+d)r

4.1

xsR.

b)

Proof:

A i

- s(d,c))] ,
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For this we require:

Theorem 4.1.2:

Let g1 ,g2 '93 ESL(2,R),

and j 1 (gj,z)= c z+d .

wa b

where gj= (c. d.,

Then for
g3=9291

j=1,2,3.

we have:

(4.1.3) log(j 1 (g1 ,z))+ log(j1 (g2 ' 1z))= log(j1 ( 3,z)) + 27TiW(g 2 'g1 ),
where

[sgn(c 1 )+sgn(c2 )-sgn(c 3 )-sgn(c1 c2c3); c1c2c3 00

- (1-sgn(c))(1-sgn(c2);

(1+sgn(c1 ))(1-sgn(d2)),

(1-sgn(a1 ))(1+sgn(c2));

(1-sgn(a1 ))(1-sgn(d2 ));

C1 c2 0, c3 =0

*c c3 ,c 2= 0

C2 c 3#O,c1=0

c 1 = c 2=c3=0

Theorem 16, p.115

//

Corollary 4.1.1

Let the notation be as in Theorem 4.1.2,

ag 2,g)= e(r-W(g2 'g1 ), then we have:

(4.1.4) j r(g1 ,z)jr ( 2 ' 1 )= jr(3,z) (g2 '91 )

and define

It is seen that (4.1.4) is obtained by e(r-) of

equation (4.1.3).

Proof: [ Maass]

Proof:

//
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Proposition 4.1.1.

Let f(z)= exp(2rlog n(z)), then for = ESL(2,Z)gc cd/~

f(z), wheref(gz)= Xrg jr g~z)

e

(4.1.5) Xr(g)=
Pe

Proof: This fo

[ r( -1/4

(rb/12),

+ a+d
12c

if c=0

llows by applying

s(d,c))] , c >0

e(2r-) to equation

and appealing to Corollary 4.1.1 to get that: (cz+di

where i -1=e(-1/4) and c >0. As we have identified

(4.1.2)

r
=(cz+d)re(-r/4),

g and -g,

we can always

Corollary 4.1

choose ( ) with c ,0.

.2

Let G be a congruence subgroup of SL(2,Z), r a real number

then X given by (4.1.5) is a multiplier system of weight r
r

By restriction, we see that (4.1.5) holds for any

ge G, a congruence

that n(z) 0 for zEH

subgroup of

, therefore

SL(2,Z). Now

2r(Z)=f(z) O,

we see from

for zeH.

Therefore Corollary 2.1.1 implies that * is a multiplier

system of weight r for G.

//

Proof:

for G.

(4.1.1)
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APPLICATIONS TO DEDEKIND AND KLOOSTERMAN SUMS

We recall that for G a congruence subgroup we have

1nq
GC= {( 0 1 )IneZ}, where q=q(G)>O is uniquely defined.

Furthermore it is clear that q(P(N))=N, where

F(N)={ ( )ESL(2,Z)l(a b),(l 0) (mod N)) Ns IN.

Let us now fix r=h/kE Q, with h,kE N. We

denote the multiplier system of weight r for

given in Proposition 4.1.1:

Xr( c d)~=

let Xr

r (12k)

e(r( - + c s(d,c))) , for c 0

!e(rb/12), if c=O

We will be studying the Generalized Kloosterman sum:

S(m,n,cX r,(12k))=
O<d<12kc

Xr (g) e( am + dn )
l2kc

9= (a r (12k)

where we note that Xr( 0 1)=e(qr/12)=e(12kh/12k)=e(h)=l=e(o)

as q=q(r (12k))=12k, and therefore we have ac(Xr j(12k))=O.

We immediately have:

Theorem 4.2.1

Let m,n,c be positive integers, then:

4.2
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(4.2.1) S(m,n,c,Xr, 1 2k))=e(.dr)
O<d<12kc

(a
C

e( a(m-h)+d(n-h) + hs(d,c)l2kc k

dI r (12k)

=e( r)
O<d<12kc

e( a(m-h) +d(n-h)e( l2kc + hs (d, c)

(d,c)=1
d=l(mod 12k)
c=O (mod 12k)
a-d=-l (mod c)

Substituting the explicit formula for Xr in the

Kloosterman sum, and noting that c>O gives

[(l-sgn(c))(sgn(d)-1)=0, and we have

O<d<12kc

c (12k)

and the first

e(- [ (-4)+ -

equation

s(d,c)] + lknc

(4.2.1) follows.

We obtain (4.2.2) from (4.2.2) by noting that

c=O (mod 12k), d=l (mod 12k) and (c,d)=1; also ad-bc=1 implies

that ad=l (mod c).

//

Corollary 4.2.1

O<d<12kc
e( h s(d,c))

c=O (mod 12k)
dEl (mod 12k)
(c, d)=1

(4.2.2)

Proof:

)

S(m,npc~,.r(12k))

)

iff

S~h~~cX /k~ (12k))= e(-4 h )

cd Er (12k)
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We now apply Theorem 1.4,p.10, to S(m,n,c,XrVF(12k)) and get:

Theorem 4.2.2

Q<c<x

S(m,n,c,Xr,

c

r(12k)) = AXEA xT +0 (x /3 +
)

any c>O. Where A is the set of exceptional eigenvalues

0<x <4 associated to M(r,Xr ,r(12k)), T =2vT- and A. 's
i

constants. Also = Inf {7
6>0 C>-

<0), IsoIS(m,n,c,x r, r(12k)) I
1+6c

Corollary 4.2.2

For 0<r<

Y S(m,n,c,Xr
r<c<x

in particular,

2, and for every

Sma

,or(12k))= ( m

for 2/3<r<4/3

c>O, we have:

xc{ 2/ -(%r(l-%r) 1/3} +E
)

this gives:

S(m,n, c, Xr' r (12k))

c

This follows from Roelcke's result [Roelcke],

which gives that X> 4r(1- r) for any XcA, and from the

trivial estimate f 41.

//

(4.2.3)

for

are

81.

0 <c <x
« 1/3+F

Proof:

for any >0 .
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We now let r= h be an arbitrary rational number, h,kE N.k

We examine in detail the case m=n=h in Theorem 4.2.2.

Proposition 4.2.1

There is a 6>0 such that:

(4.2.4)
0<c<x

Proof:

S(h,h,c,x ,r1(12k)) 1-6

c

We note that 0<X< implies that T= 2/kEE <1 ,

so as A is a finite set, by Theorem 3.2.2, we have

v= Max{T. }< 1.
X.cA J

Let P'= Max{P,1/3}<l, then we see from

Theorem 4.2.2 that 6= -11 will give us the required estimate, if

we choose e<6.

To prove our next result we require the following well

known technique.

Lemma 4.2.1 (Partial Summation)

Let f(t) be a continuously differentiable function

for 1<t<x, and A(x)= >_1
0<n<x

1<n<x

Proof:

a(n) then:

a(n)f(n)= A(x)f(x)-A(l)f(1)- A(t)f'(t)dt

1

A proof can be found in [Apostol] p.77.

//
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Proposition 4.2.2

There is a 6'>0 such that:

(4.2.5)

Proof:

0<c<x

We apply partial summation with a(n)= S(h,h,c,Xr,1r(12k)),

f(t)= t. So there is a constant K with A(x)<K-x 1-6 , by

Proposition 2.4.1. We therefore have:

0<c<x

x

S(h,h,c,X r, r(12k))= a(c)f(c)= A(x)-x - 0-0+ fA(t)-ldt
0<c<x 1

<-6 X K1- 1-. 2-6 2-6
<< x+f Kt 1 6 dt = K(1+ 2 -6 )x <<x

take 6'=6 <2.

. And we can

//

To prove our concluding Theorem, we will require:

Theorem 4.2.3 (Weyl)

Lf
Let {%} j1l be a sequence of complex numbers of

CO

absolute value one, then the sequence {% } j1 is equidistributed

iff for every me N, we have:

Z E. = O(x)
j<x i

Proof: A proof of this is given in [Polya-Szego] Part II,N*164.

//

S(h,h, c,X r , r(12k) ) << x2-61'
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Theorem 4.2.4

Let {x} = x-[x] denote the fractional part of x , xs R.

The sequence of fractional parts

h s(d,c)
k. c>O

c=O (mod 12k)
0<d<12kc
(d,c)=1, d:l (mod 12k)

is equidistributed on [0,1).

Proof: We first note that this is equivalent to the statement

that the sequence e( h s (dc))k }c>0
cO (mod 12k)
0<d<12kc
(d,c)=1, d:l (mod 12k)

is equidistributed on the unit circle T.

7 1
We next note that: c0cscO (mod 12k)

0<d<12kc, (d,c)=1
d=l (mod 12kc)

where p(n)= U__
(j,n)=1

1

Now it is well known

0<c<x
$(c)

c:O (mod 12k)

is Euler's $ function.

that x<< ZI
0<c<x

$(c)

c:O (mod 12k)

for example in [Apostol] Theorem 3.7.

If we now let m be a positive integer, and we combine Corollary 4.2.1,

Proposition 4.2.2



e( $)YI
O<c<x

mh ks(dc) )e( k O<c<x
S(hm,hm,X r,r(12k)) << x2-6

cEO(mod 12k)
O<d<12kc, (d,c)=1

dEO (mod 12k)

for a 6>0.

Combining this with:

x << 1
O<c<x
cEO (mod 12k)
O<d<12k, (d,c)=1
dEO (mod 12k)

by above, we see that

the sequence e( h s(d,c)
c>O
cEO (mod 12k)
O<d<12kc, (d,c)=1
d=l (mod 12k)

satisfies the conditions of Weyl's

and is therefore equidistributed.

criterion Theorem 4.2.3,
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