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Abstract

The simulation of materials exposed to extreme loads, as is relevant in many ar-
eas of engineering, including protection materials, impact damage in turbine engines
and high velocity impact in space, remains one of the key challenges in the field of
computational mechanics. Despite significant advances, a fully robust and generally
applicable computational framework for simulating the response of materials under a
wide range of dynamic loading conditions is still lacking and the search for improved
approaches continues. Existing methods suffer from a litany of limitations and draw-
backs, including difficulty representing fracture, robustness issues, difficulty scaling
to a large number of processors, excessive computational expense, and fundamental
convergence issues for problems involving material damage.

In this thesis, we conduct a thorough investigation into the theory of peridynamics
and its numerical implementation as a promising alternative approach for simulating
extreme material response. Peridynamics is a relatively new nonlocal formulation of
continuum mechanics based on integral equations. It includes a physical length scale
and naturally supports the presence of discontinuities in the solution field. As part of
the work for this thesis, we uncover fundamental limitations in existing constitutive
formulations of the peridynamic theory, and propose solutions to these limitations
which furnish an extended constitutive theory of peridynamic for large deformations
of continua. It is shown that these issues are responsible for numerical instabilities
commonly observed in peridynamic particle discretizations. Specifically, unphysical
deformation modes which allow for matter interpenetration, without contributing to
the strain energy, are shown to exist in the original formulation. In order to address
this issue, we introduce an extension of the constitutive correspondence framework
based on bond-level nonlinear strain measures. It is found that numerical instabilities
are suppressed by the extended theory.

In addition, we address the issue of incorporating damage and fracture, as is
required for modeling materials subjected to intense loads. In particular, two novel
approaches for modeling damage and fracture within peridynamics are proposed. One
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is based on classical continuum damage models, while the other is specifically suited
for brittle fracture response.

A robust, scalable computational framework based on these extensions to the peri-
dynamic theory is developed, and numerical examples are provided which demonstrate
the ability to capture experimentally observed ballistic limit curves for ductile mate-
rials, as well as realistic fracture patterns in brittle materials subjected to projectile
impact loadings.
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Chapter 1

Introduction

Despite advances in the ability to describe many important aspects of the physics

of ballistic impact events, computational approaches to the design of armor systems

have yet to fully materialize [17]. The key to enabling a fast and relatively inexpensive

approach for evaluating the effectiveness of candidate protection materials and multi-

material armor systems at mitigating blast and ballistic threats is the development of

a robust and accurate ballistic impact simulation framework. Additional important

engineering applications for simulating impact other than ballistic loading of armor

systems include spall impact damage in turbine engines [77], space debris impact [27],

as well as geophysical problems [109].

As noted by a recent study from the National Academy [17], a comprehensive

science-based approach for the accurate simulation of armor systems requires three

may components: constitutive models which capture the correct dependence of strain,

strain-rate, stress, temperature and history; computational methods which can ro-

bustly and accurately represent finite deformations and failure modes; and experi-

ments which provide material response data for calibrating constitutive laws and for

validating the computational output. The goal of his thesis is to focus on the second

component, and explore particle-based numerical methods based on peridynamics for
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simulating ballistic impact problems.

An important motivation for the computational efforts in this thesis are provided

by a set of experimental results conducted by Professor Haydn Wadley's group at the

University of Virginia. This work was part of a Multidisciplinary University Research

Initiative (MURI) on cellular concepts for high intensity dynamic load mitigation.

The UVA data set includes results from impact experiments on monolithic 6061-T6

aluminum plates (Figure 1-1) and corrugated aluminum sandwich structures (Figure

1-2) [46].

Due to the severe deformations involved, specialized techniques are needed which

can robustly and accurately capture these deformations, and which can correctly

represent the relevant failure modes. Such modeling improvements could also help

successfully furnish the design and analysis of the next generation of protection ma-

terial systems.

Figure 1-1: Experimental results for a monolithic 6061-T6 aluminum plate impacted
by a steel sphere projectile (courtesy of Prof. Haydn Wadley).

In my Master's thesis [68] we focused on exploring the capabilities and limitations

of several competing computational approaches for simulating protection materials

under a extreme loading conditions. As has been mentioned, the robust and accu-

rate simulation of ballistic impact on protective materials requires addressing some

key limitation to the existing computational approaches. In particular, there are still

difficulties in efficiently modeling complicated three-dimensional structures, in accu-

rately predicting both ductile and brittle crack propagation, and in robustly handling
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V = 452.8 m/s V = 531 n/s

Ic) m
V= 637.7 m/s

Fd)

Figure 1-2: Experimental results for 6061-T6 aluminum sandwich structures impacted
at different velocities (courtesy of Prof. Haydn Wadley).

severe material deformations.

The current state of the art Lagrangian solvers for simulating impact are explicit

dynamics finite element codes such as LS-DYNA and EPIC. An example of a recent

LS-DYNA simulation of ballistic impact is shown in Figure 1-3 [12], where severe

deformations require the deletion of elements based on a calibrated phenomenological

fracture criterion, and it is acknowledged that the solution is mesh dependent due

to the softening part of the constitutive response. EPIC uses element deletion or

element erosion as well, but also has the capability to convert meshes to particles

dynamically during the simulation [50]. This conversion appears somewhat ad-hoc,

but reasonably accurate results have resulted from this approach [8].

One of the approaches explored in my master's thesis was to use adaptive remesh-

ing to handling severe deformations. A sample result using this approach is shown

in Figure 1-4, where the simulation results for the impact of a long rod projectile

on a ceramic target is depicted. While this approach has several appealing aspects

such as a well defined field interpolation at all times and the ability to handle large
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a v 300.0 m/s v, 221.1 m/s

b v - 300. m/s, v, = 127.1 m/s

Figure 1-3: Penetration simulation with a damage model for AA7075-T651 aluminum
in LS-DYNA (reproduced from [12]).

17

I'

17

17
Figure 1-4: Long rod projectile impacting ceramic target with adaptive remesh-
ing [68]. Contours depict material damage using the Deshpande-Evans ceramic dam-
age model [19].
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Figure 1-5: A comparison of results from five computational approaches for a tungsten
projectile impacting a steel target at 1,615 in/s (reproduced from [8]).

deformation without removing mass and energy from the system via element deletion,

it was found the approach is not yet sufficiently robust in 3D and limits scalability.

In addition, it does not alleviate the mesh sensitivity issues associated with softening

models, and in fact may exacerbate the problem by artificially diffusing material his-

tory information and damage throughout the mesh, as can be observed in Figure 1-4.

The lack of a reasonable discretization approach for impact problems is demonstrated

in [8], where several different computational approaches were applied to simulate the

same experimental problem. Results for one such simulation are shown in Figure

1-5, where it is clear that different computational approaches such as conversion to

particles, pure particle methods, element deletion, etc, lead to very different results,

even when using the same constitutive model and fracture criterion.

Unsatisfied with the ad-hoc workarounds used by the existing commercial codes,

and frustrated by the limitations of adaptive remeshing approaches, we began to

pursue alternative approaches. One popular alternative is to use so-called particle
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or meshless methods, which are summarized in Section 1.1.4. These approaches are

promising, but are potentially limited by the fact that either a classical damage

law or discrete crack representation approach is still required, leading to same mesh

sensitivity issues associated with Lagrangian finite element approaches.

An alternative approach is based on the work of Stewart Silling and his proposed

continuum theory of peridynamics, which appears to have the potential to address

several of the limitations of existing methods. This continuum theory is based on a

reformulated theory of classical continuum mechanics, coined by its author as peri-

dynamics [93, 98]. The theory allows for nonlocal material point interactions, and

thus introduces a characteristic physical length scale, which is often necessary for reg-

ularizing problems involving fracture and/or damage which are otherwise ill-posed.

Peridynamics has enjoyed increasing popularity in the literature since it was first

proposed in 2000. It is a continuum formulation which employs integral equations

to evaluate internal energies instead of derivatives, with the immediate consequence

that the theory is intrinsically nonlocal. Recent advances have allowed the theory

to incorporate 'classical' constitutive models, traditionally based on derivatives in

the displacement field, while retaining the nonlocal, integral nature of the theory. A

summary of some of the potential advantages of peridynamics are as follows:

" Discontinuities such as cracks, shear bands, and phase transitions are naturally

supported as a direct consequence of the lack of derivatives in the formulation.

" The theory can be naturally discretized as a particle method, so mesh entan-

glement issues are avoided.

" In contrast to many other nodally integrated particle discretizations, peridy-

namic discretization are rooted in a rigorous theoretical framework.

" Because the theory is nonlocal and includes a length-scale, convergence is possi-

ble for problems involving material property degradation and localization (i.e.,

22



damage, fracture).

* Similarities with molecular dynamics allows for straightforward and highly scal-

able parallel implementations.

" Allows for more general, nonlocal constitutive responses to be modeled.

While promising, the theory is still in its early stages of development and suffers from

some limitations which we attempt to uncover and address in this thesis. In order to

better understand issues with existing methods, we first review several of the main

computational approaches to ballistic impact modeling.

1.1 Ballistic impact simulation: computational ap-

proaches and issues

A wide variety of computational approaches for modeling ballistic impact have been

developed in the literature, with competing advantages and drawbacks according to

their versatility, robustness, efficiency and/or scalability. At a fundamental level

there are two general approaches to continuum mechanics simulations, which are La-

grangian methods typically based on finite element or Galerkin methods, and Eule-

rian methods typically based on finite difference or finite volume techniques (Eulerian

hydro-codes). Lagrangian formulations track the motion of material points moving

with the body and consider the evolution of field variables such as displacements,

velocities, and stresses stored at these material points. Eulerian methods consider a

fixed region of space and track the flow of material through this fixed spatial domain.

They have, to some extent, complementary advantages and disadvantages. In the

following we briefly explore a variety of approaches to simulating ballistic impact,

their advantages and limitations, and our experiences with them.
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1.1.1 Lagrangian finite element methods

The advantage of the Lagrangian formulation, commonly discretized using the fi-

nite element method, is that material histories at material points, boundaries and

interfaces are all naturally tracked. The drawback is that severe deformations can

result in stability problems which break the discretization. Deformations can cause

the mesh to become ill-conditioned and can result in rapidly decreasing stable time

steps and mesh entanglement, also called element inversion. Additionally, the na-

ture of the finite element discretization requires specialized techniques for modeling

fracture. Common strategies for overcoming these limitations include incorporating

phenomenological cohesive zone models [103] and also the practical, but less rigorous

technique of element deletion or element erosion [10]. The most common approach to

representing fracture with finite elements is via continuum damage models, which phe-

nomenologically model the degradation of material strength and/or stiffness. When

the damage parameter reaches a critical value at a specific quadrature point, that

element is deleted. This is also sometimes referred to as element erosion or element

death. While often very successful in practice with a well calibrated material model

on a particular mesh [57], this procedure is well known to be sensitive to the mesh

discretization and mesh refinement. There is no known mathematical framework for

this modification to the discretization, as it is purely an engineering solution, and it

will often artificially remove mass, momentum and energy from the simulation. Con-

tinuum damage models, if not regularized with spatial or time gradient terms, lead

to an ill-posed continuum formulation [17, 88]. When material softening occurs, the

continuum solution predicts imaginary wave-speeds and damage zones of zero volume,

resulting in essentially no energy loss due to fracture. When a specific mesh is chosen,

the discretization itself provides a length scale and a reasonable solution can often be

found, though the solution will be highly sensitive to the mesh size. The procedure

of using damage models and element deletion may be easier to justify when modeling
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ductile materials, as the energy dissipated during the softening regime of the material

response is small compared to the energy dissipated during plastic hardening. As

a result, damage models for ductile materials may be somewhat less mesh sensitive

than brittle damage models.

Approaches based on cohesive zone models have succeeded in simulating conical

cracks in ceramic plates using finite elements, [15] but due to computational limita-

tions in modeling crack surfaces the simulation were conducted in 2D, and had to

include a damage model to approximate the effect of radial cracks. It has become

evident that to fully capture 3D effects in ballistic impact simulations, alternative

scalable algorithms must be investigated. One such approach is based on a scalable

implementation of discontinuous Galerkin methods with cohesive zone models on el-

ement interfaces [85]. An approach to handle large deformations involves using finite

elements, combined with the ability to adaptively modify the mesh (remesh) [58].

This approach has shown some promise for impact problems in two dimensions [15],

but extensions to three dimensions have proved difficult.

In my Master's work, I experimented with a continuum mechanics formulation

discretized using the finite element method. Numerical examples were presented us-

ing the Deshpande-Evans ceramic damage model for modeling brittle ceramic with

a mechanism-based damage model [19]. These results demonstrated the constitutive

model's ability to predict experimentally observed crack patterns, such as conical

shaped crack patterns and multiple radial cracks emanating from the impact zone.

Additional examples, which utilized adaptive remeshing algorithms, probed the lim-

itations of the Lagrangian finite element method's ability to predict long rod pen-

etration in a ceramic target and the transition from dwell to penetration. The full

potential for this approach to modeling hypervelocity ballistic impact remains un-

clear, as even frequent adaptive remeshing was unable to avoid element inversion for

the impact conditions considered. A sample result using this framework is shown in
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Figure 1-4.

1.1.2 Eulerian and arbitrary Eulerian-Lagrangian formula-

tions

As mentioned in the National Academies study [17], Eulerian-based hydro-codes were

primarily developed by the DoE and DoD, and their history is discussed in detail in

the review by Benson [20]. These codes are still frequently used to this day in the

ballistic impact community due to their general robustness and scalability. These

approaches are in general only first or second order accurate in time, and first order

accurate in space. This low order of accuracy could affect the efficiency of such ap-

proaches, and limit their ability to rigorously handle more complicated constitutive

laws, such as rate independent damage models, which require additional length scales

for regularizing an otherwise ill-posed problem. In addition, for material models with

history or internal variables, such as many common constitutive laws for plasticity

and damage, the internal variables at material point must be advected by the flow.

This introduces additional inaccuracies due to numerical dispersion effects on the

advected material point information and incompatibility between the advected mate-

rial point data and the computed deformation state. This additional inaccuracy can

be devastating to the physics of the problem and is often overlooked. To overcome

this, many only use constitutive laws formulated in rate form, which may introduce

additional discretization error or limit the variety of constitutive models possible.

Eulerian approaches suffer from a variety of additional complications, such as diffi-

culty in imposing boundary conditions, difficulty in tracking interfaces and difficulty

in accurately and robustly advecting history variables.

Another related method for impact simulations is arbitrary-Lagrangian-Eulerian

(ALE) approaches. These attempt to combine aspects of both Lagrangian and Eu-

lerian approaches to improve robustness. They can be thought of as Lagrangian
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approaches defined on a moving background mesh, which require at each time-step a

remapping back to the newly updated computational domain [20]. In this manner,

they can track deforming interfaces and can make boundary condition imposition

more straightforward. However, for material models with history they still suffer

from the same drawbacks as purely Eulerian methods, which must advect material

point data, reducing simulation accuracy.

1.1.3 Particle and meshless methods

Particle based numerical methods for simulating impact problems are believed to

provide an advantage in robustness over more traditional methods, such as finite el-

ements and finite differences. The origin of such methods dates back to the smooth

particle hydrodynamic (SPH) method, an idea independently introduced in the pa-

pers by Lucy [60] and Gingold and Monaghan [84]. An early review by Monaghan

[43], along with a more recent review [44] discuss the many advances in techniques for

overcoming some of the initial limitations of the method. The primary motivation for

these particle methods comes from the astrophysics community's desire to solve hy-

drodynamic PDEs, but has since been adapted by the computational solid mechanics

community, where it is sometimes called smooth-particle applied mechanics (SPAM)

[116]. A variational formulation of SPH simulations for both fluids and solids has

also been proposed [38]. Several recent papers have used the method for simulating

high velocity impact [87, 33] including experimental validation using a Taylor impact

test [16]. While extremely robust, the method is well known to have several compu-

tational limitations, specifically, the so-called tensile instability, zero energy modes,

and difficulties with boundary conditions. Several of these issues have been resolved

using somewhat ad-hoc remedies, but at the expense of additional computational

costs [44, 116]. The critical advantage of SPH and SPAM methods is their gener-

ality and robustness, in particular in the presence of severe material deformations.

27



This has motivated the development of methods combining Lagrangian finite element

methods with the ability to convert elements into SPH particles dynamically during

a simulation when elements become too distorted [50].

Meshless methods are a related family of methods which have shown promise for

ballistic impact problems involving large deformations. Meshless methods based on

the Galerkin procedure for solving partial differential equations were first proposed

in a paper by Nayroles on the diffuse element method [5] and further developed

by Belytschko with the element-free Galerkin (EFG) method [108]. Various other

extensions, improvements, generalizations and alternative formulations have been ex-

plored since, including the reproducing kernel particle method (RKPM) [117],[118],

h-p clouds [14], partition of unity [48], the local meshless Petrov-Galerkin method

(MLPG) [106], the method of finite spheres [92] and the local maximum entropy

method [63]. The MLPG method has been validated using a Taylor impact bench-

mark test [124] and has been shown to be more robust for problems involving ballistic

impact than a finite element approach. An extension of the EFG method using moving

least square (MLS) approximations combined with an extrinsic crack field enrichment

has been successfully applied in two dimensions to a high-speed ballistic impact [122].

An alternative hybrid particle/mesh-based method, originally called the Hamil-

tonian particle hydrodynamics method, avoids the tensile and boundary instabilities

known to plague many particle based methods [26]. The algorithm works by using

particles to model contact and impact, as well as material response under compression,

while a finite element discretization is used to compute tensile and shear response.

The method has been applied to various problems, including hypervelocity impact

[26] and orbital debris impact [27]. The method is further improved by a parallel

implementation which helps its efficiency. While the method is robust for modeling

brittle materials, it is still limited for ductile materials undergoing large shear strains,

as elements are still prone to failure in tension and shear.
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An interesting recent development in meshless methods uses ideas from variational

calculus and in particular, optimal transportation theory, combined with maximum

entropy meshfree interpolations [63, 4]. The method has been successfully applied to

problems in both fluid and computational mechanics and has been validated using

the Taylor impact benchmark problem [4]. Most of these methods overcome some

of the specific shortcomings of SPH methods, however the associated computational

costs are relatively high, which could hinder their widespread use. Additionally, they

do not overcome the mesh sensitivity issues associated with continuum damage laws.

1.1.4 Particle discretizations based on peridynamics

An alternative Lagrangian particle approach is based on discretizations of the peri-

dynamic formulation of continuum mechanics [93, 98]. Peridynamics is a continuum

theory based on a generalization of the local stress assumption of classical contin-

uum mechanics to allow for forces acting at a distance, thereby introducing a length

scale to the continuum description. The typical assumption of local stress states in

a material limits the interaction of materials points to immediate neighbors in direct

contact with each other. The alternative approach taken in peridynamics is a con-

tinuum theory based on integral equations, which "sums" force contributions from

material points acting at a distance. The material behavior is determined by these

nonlocal interactions, where the interaction forces are taken to be functions of the

deformation within a finite neighborhood of material. In a sense, the peridynamics

theory more closely resembles molecular dynamic interactions where forces act on

atoms at a distance. All continuum theories are ultimately homogenized macro-scale

approximations of these atomistic interactions. The idea for peridynamics was first

proposed by Silling in 2000 [93]. The initial model was restricted to elastic materials

which in three dimensions have a Poisson's ratio, v = 0.25. This initial theory laid the

foundation of what is now known as bond-based peridynamics, which only considers
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pairwise interaction between distinct material points. A more recent extension of the

theory, named state-based peridynamics, was introduced by Silling et al. in 2007

[98] and allows for more general interaction potentials and interaction forces between

distinct material points.

Peridynamics, is a so-called strongly nonlocal theory due to its integral formula-

tion and its explicit inclusion of forces acting at a distance. By contrast, classical

continuum constitutive laws result in local theories which in the presence of either

plastic softening or damage, suffer from the emergence of negative tangent moduli and

therefore imaginary wave speeds [126]. Boundary value problems with such a consti-

tutive response are mathematically ill-posed, as material softening will localize to an

infinitesimal region. To solve this issue, a physical length scale must be introduced

into the constitutive description using nonlocal theories. Such theories are broadly

grouped into two categories: weakly nonlocal and strongly nonlocal [126]. Strain

gradient and higher order gradient theories such as those of the Mindlin variety [86]

are examples of weakly nonlocal theories, as the nonlocal effects are approximated by

evaluating higher order gradients locally. The peridynamics theory, a strongly nonlo-

cal theory, accepts nonlocal interactions from the onset, thereby providing a physical

length scale to regularize the continuum description.

A further distinction of the theory compared to classical elasticity theories is the

complex dispersion relation which results from to the nonlocal interactions. The

issue also arises in other nonlocal models including higher order gradient theories

[86] and strongly nonlocal theories [2, 74]. For a homogeneous classical linear elastic

material, the wave speed is independent of the wave number, but this is not in general

true for peridynamics. It is known that all real materials exhibit complex dispersion

behavior at sufficiently small wavelengths [74] and it has been shown that specific

peridynamic models are able to reproduce the "exact" elastic dispersion relation for

sufficiently large wave number, or equivalently, sufficiently small peridynamic horizon
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length [73, 74].

From the point of view of numerical methods, common discretizations of peridy-

namics lead to a particle based method which is similar to other meshless discretiza-

tions of classical continuum mechanics in that the internal forces are work conjugate

to particle displacements. The main difference is that the peridynamic discretization

uses no elements, basis functions, kernels, or ad hoc differencing techniques. Com-

pared to many common particle methods, one of the key advantages of a particle

method based on peridynamics is that it directly inherits important properties of the

peridynamic formulation such as strict conservation of linear and angular momentum,

and can utilize classical constitutive models, such as viscoplasticity [98, 52].

Owing to the integral formulation and the relaxed continuity requirements, frac-

ture and fragmentation can be introduced in a natural manner without the need for

cohesive elements or other devices commonly used in classical continuum discretiza-

tions [103]. As no gradient terms arise in the formulation, the equations are still valid

in the presence of discontinuities such as cracks and phase boundaries. This elimi-

nates the need for additional constitutive assumptions at the interface. This benefit

is not without its own complications, as it is accompanied with the additional bur-

den of incorporating additional constitutive information, such as a failure criterion,

directly into the continuum formulation. Significant effort has already gone towards

developing and utilizing the advantages of the peridynamic formulation for modeling

material failure [95, 94, 22, 67, 100, 121]. The convergence properties of bond-based

peridynamics for modeling crack propagation were numerically investigated by Bo-

baru, et al. [28]. This investigation helped to establish the notion that both the

spatial resolution of the discretization, along with the length scale introduced by

the peridynamic formulation must be considered when evaluating the properties and

convergence of a peridynamic discretization.

Since its inception, peridynamics has already been used in a variety of different
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continuum mechanics applications. These include membrane and fiber models [95],

phase transitions [53], inter-granular fracture [22], and heat transfer [28]. An imple-

mentation of peridynamics using traditional finite element codes, via beam elements,

has been presented in [89]. A bond based formulation has also been implemented

in a molecular dynamics code, LAMMPS [67]. Analytical results have shown the

dependence of the nonlocal effect of the bond-based model on the material response

for simplified ID scenarios [99, 64, 73]. Peridynamic formulations of continua have

been demonstrated for meso-scale modeling of material response [22]. In this respect,

peridynamics may provide a means of bridging length scales within a multi-scale

paradigm. Several results exist on the mathematical properties of the bond-based

theory, including well-posedness and convergence [25, 96]. In particular, it has been

proved that elastic bond-based peridynamics converges to classical elasticity for the

special case where the Poisson's ratio is v = 0.25 [96]. It has also been shown that

there is a correspondence between strain gradient elasticity and elastic peridynamics

[96]. This comparison between the theories is only applicable in situations where the

displacement fields are sufficiently smooth to permit a classical interpretation, and is

no longer meaningful near strong discontinuities. In this sense, peridynamics can be

viewed as an extension of classical continuum theories.

In the original peridynamic formulation the classical equation of conservation of

linear momentum is replaced by the bond-based peridynamic equation of motion:

pii[x, t] = f (u[x', t] - u[x, t], x' - x) dV,' + b[x, t] (1.1)

where the p is the density of the material at the point x in the reference configuration,

u the displacement field, b is a prescribed body force density, and B the domain of

the body under consideration in the reference configuration. Each pair of particles in

the body interacts through the vector valued function f (u[x', t] - u[x, t], x' - x). The

32



integral term should be interpreted as the force per unit reference volume which is

due to its interaction with other particles in the body. It is typically assumed that the

function f has spherical compact support of radius 6 centered at x. This peridynamic

horizon radius can be tuned to capture the relevant physical length scale. In the

limit of this radius going the zero, the theory in 3D reduces to classical elasticity with

v = 0.25 [96].

While advantageous for problems involving nonlocal effects and discontinuities,

bond-based peridynamics is limited to pairwise interactions via central acting forces.

This leads to a limitation on the Poisson's ratio and means that any plasticity for-

mulation will require permanent volumetric deformations. This imposes a strong

limitation on the variety of materials which can be accurately modeled using the

theory.

To address these issues, Silling et al. developed a new formulation of peridynamics

called state-based peridynamics [98] (reviewed in Chapter 2). This formulation is a

significant generalization of the peridynamic framework which allows the response of

the material at a given point to depend on the collective deformation of all points

in the neighborhood, leading to a nonlocal measure of deformation analogous to the

deformation gradient tensor of classical continuum mechanics (e.g., [65]). As a result,

in state-based peridynamics it is in principle possible to consider a much broader

class of constitutive models. In particular, it allows for inelastic materials and elastic

materials with Poisson's ratio other than 0.25 to be modeled. The ability of this

state-based peridynamics theory to model viscoplasticity has been demonstrated and

validated using a Taylor impact test [52].

It therefore appears that the state-based formulation of peridynamics possesses

many of the features required to model extreme material response. However, it is also

clear that significant developments are necessary for formulating specific constitutive

models within the state-based framework. In particular, it remains unclear how to
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incorporate the description of material damage and fracture in a manner that is

consistent with established models of brittle and ductile material failure. In addition,

there have been reports of numerical issues in particle discretizations of this theory

[21, 81] which need to be addressed before the method can have widespread use.

1.2 Objectives and thesis outline

In this thesis, we explore the state-based formulation of peridynamics as a potential

candidate for modeling the failure response of materials subject to intense loadings.

The end goal is to formulate a sound computational framework which ideally has the

following properties:

" robustly produces simulation results which do not exhibit numerical instabili-

ties, such as zero-energy modes, common to many meshless approaches

* can represent and accurately predict the onset of fracture and crack propagation,

and can reliably compute the energy dissipated in this process

* produces simulation results in which fracture paths and dissipated energies are

relatively insensitive to the discretization, and ideally converge to a fixed value

for small mesh sizes

" can use both classical constitutive models as well as specialized peridynamic

constitutive models

" scalable so that small-scale features of fracture may be sufficiently resolved

The organization of this thesis is as follows. For completeness and in order to fix

notation, we provide an overview of the state-based theory of peridynamics in Chap-

ter 2. In addition, we discuss the kinematic constraint of peridynamics and the issue

of matter interpenetration, which plays a key role in developments of Chapters 3-5.
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An additional constitutive condition is suggested which enables a natural enforcement

of the kinematic constraint.

In Chapter 3, we focus on numerical discretizations of state-based peridynamics.

We first provide an overview of the common particle discretization, and validate our

C++ implementation using a Taylor impact test. However, we then show simple

examples which exhibit unphysical instabilities when using the constitutive corre-

spondence version of peridynamics. In order to eliminate the possibility of numerical

zero-energy modes associated with under-integration, we introduce a novel finite ele-

ment discretization of state-based peridynamics. Even after addressing the numerical

issues, we find that the instabilities still persist for discretizations of constitutive cor-

respondence. This suggests that the observed instabilities are due to issues with the

theoretical framework of the original constitutive correspondence formulation. Chap-

ters 4 and 5 are devoted to developing two different theoretical extensions of the

peridynamic theory which address this issue.

In Chapter 4, we propose an extension of the constitutive correspondence frame-

work of peridynamics. The main motivation for this development is to address un-

physical deformation modes (i.e. matter interpenetration and zero-energy modes).

We show analytically that these modes are present in the original formulation and

are the likely cause of the numerical instabilities observed in Chapter 3. We believe

that this limitation may have inadvertently mired a wider application of peridynamics

methods [81]. The basic approach we propose is to introduce nonlocal peridynamic

strain tensors which are in turn based on corresponding bond-level Seth-Hill strain

measures. These bond-strain measures inherently avoid violations of the matter inter-

penetration constraint. Several examples are used to show that the modified theory

avoids issues of matter interpenetration in cases where the original theory fails. The

resulting extended constitutive correspondence framework supports general classic con-

stitutive laws as originally intended. It is shown that the formulation also belongs to
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a specific class of peridynamics constitutive models referred to as ordinary [98].

Another key contribution, which is discussed in Chapter 5, is an alternative ap-

proach for developing ordinary peridynamic constitutive models based on the nonlin-

ear bond-strain measures first introduced in Chapter 4. It is shown that the proposed

formulation extends the existing linear theory of ordinary peridynamics to large de-

formations. Unlike constitutive correspondence, the original linear theory does not

exhibit zero-energy modes in simulations; however, we show that it does still allow

for the possibility of matter interpenetration. Similar to the extended correspondence

approach in Chapter 4, we overcome this limitation by using nonlinear bond-strain

measures which preclude unphysical deformations on a bond-by-bond basis. Both

analytical and numerical examples are provided to highlight the advantage of the

nonlinear constitutive theory over its linear counterpart.

The issues of incorporating material damage in peridynamics, as is required for

modeling materials subjected to intense loads, is discussed in Chapters 6 and 7.

In Chapter 6, a general bond-failure criterion for brittle state-based peridynamic

materials is introduced. This bond failure criterion is an extension of existing bond-

failure criteria [94, 121, 39] with two essential new ingredients. The first ingredient

is based on the observation that the bond-energy dissipated when severing bonds is

difficult to estimate in state-based peridynamics (for materials which are not bond-

based) due to the fact that this energy depends on the collective action of neighboring

bonds and on whether other bonds are being severed simultaneously. We show that in

the case of state-based peridynamic, the energy associated with cutting a single bond

instantaneously (with all other bonds unchanged) can be easily quantified and thus

constitutes a practical quantity on which to base a bond-failure criterion. In practice,

we find that this assumption (that bonds are severed instantaneously with other

bonds unchanged) accurately predicts the energy dissipated in numerical simulations.

The second ingredient is a bond-energy failure function which determines the bond-
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energy required to sever a bond as a function of the bond's reference length. Similar

to existing approaches, the proposed bond-failure criterion is related to the classical

fracture energy, Gc, of the material for the case when all bonds are severed across an

interior 'fracture' surface.

In order to demonstrate the various theoretical advances and extensions proposed

in this thesis, a scalable computational implementation of the improved peridynamic

theory was developed. This development included incorporating the peridynamic dis-

cretization approach into a conventional finite element code, implementing algorithms

and data structures to determine and update particle interactions, and implementing

a ghost element parallelization strategy using C++/MPI. In addition, it required the

implementation of discretized versions of various peridynamic constitutive models.

The result of this effort is a numerical tool for investigating the types of problems

which initially motivated the theoretical extensions proposed in this thesis.

The versatility and robustness of the developed framework is evaluated using two

validation problems which are challenging benchmarks for numerical simulations of

brittle fracture. These tests highlight the capability of the proposed framework to

capture experimentally observed fracture patterns in brittle materials subjected to

projectile impact loadings. The two tests we consider are: 1) an edge-on impact prob-

lem which results in Mode-I crack propagation and 2) the Kalthoff test which exhibits

"mixed-mode" crack propagation. For the Mode-I impact problem, we demonstrate

that the numerically computed dissipated fracture energy is consistent with the frac-

ture energy, Go, which is provided as an input parameter. We also show that the

dissipated fracture energy for Mode-I fracture is remarkably insensitive to changes

in mesh size. These results highlight a key advantages of the peridynamic fracture

modeling approach over many existing approaches, which is that fracture energies and

predicted crack paths can converge as the discretization is refined. We also qualita-

tively capture the experimentally observed transition from Mode-I crack propagation
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to crack branching which occurs in experiments for increasing initial impact velocities.

We also show that simulations of the Kalthoff test for brittle fracture are capable of

predicting the experimentally observed angle of crack propagation.

An approach for incorporating classical continuum damage models in the state-

based theory of peridynamics is proposed in Chapter 7. Currently, damage has only

been incorporated in the peridynamics formulation via specialized bond-severing cri-

teria, which may not reflect known fracture mechanisms for general brittle or ductile

solids. The proposed approach has the advantage of enabling the description of the

damage evolution processes in peridynamics according to well-established models.

The main idea is to modify the peridynamic influence function according to the state

of accumulated damage. As a result, peridynamic bonds between nonlocal material

points are severed in accordance with the damage law. The proposed peridynamic

damage formulation is implemented for the particular case of a well established duc-

tile damage model for metals. The model is then applied to the simulation of ballistic

impact of extruded corrugated aluminum panels and compared with experiments.

We conclude in Chapter 8 with a summary of the results and some suggestions

for future research.

1.3 Summary of thesis contributions

" Investigated numerical instabilities in particle discretizations of the constitutive

correspondence version of state-based peridynamics.

" Developed and implemented a finite element discretization of state-based peri-

dynamics.

* Showed that instabilities in the constitutive correspondence theory of peridy-

namics are due to flaws in the theory, namely that there is no mechanism for

preventing matter interpenetration.
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" Suggested an additional constitutive condition to naturally enforce the kine-

matic constraint of peridynamics and thereby prevent matter interpenetration.

* Proposed an extension of the constitutive correspondence formulation of peridy-

namics based on nonlinear bond-strain measure which naturally prevent matter

interpenetration.

" Showed that the linear ordinary solids formulation of peridynamics is also not

guaranteed to prevent matter interpenetration.

" Proposed a nonlinear extension of linear ordinary solids based on bond-strain

measures which naturally prevent matter interpenetration.

" Conducted numerical simulations which demonstrate that the nonlinear ordi-

nary theory prevents matter interpenetration in cases where the linear theory

fails.

" Proposed a generalized bond-failure criterion for brittle state-based peridynamic

materials, calibrated to dissipate a specified fracture energy of G, per unit area.

" Developed a parallel computational framework in C++/MPI for simulating

brittle peridynamic materials and showed that simulated results can capture

experimentally observed fracture patterns and dissipated energies which are

remarkably insensitive to discretization size.

* Proposed an approach for incorporated classical damage models in peridynamics

which was validated using a ballistic impact test.

" Provided an alternative derivation of the peridynamic equations of motion and

the nonpolar constraint based on virtual power and frame-invariance arguments.
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Chapter 2

The theory of state-based

peridynamics

For completeness and in order to fix notation, in this chapter we briefly review the

basic notation and concepts related to state-based peridynamics, primarily following

the notation and approach in [98, 97]. In addition, we include a discussion of the

issue of matter interpenetration and the kinematic constraint, which plays a key role

in Chapters 3-5. An additional constitutive condition is proposed which naturally

ensures that the kinematic constraint holds.

State-based peridynamics is a nonlocal continuum theory which describes the

dynamics of a continuum body which occupies the region BO C R3 in the reference

configuration at time t = 0 and the region Bt c R3 at time t. It can be viewed as

a generalization of the bond-based peridynamics theory and also generalizes classical

continuum mechanics to include nonlocal material point interactions.
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Figure 2-1: Schematic representation of a body BO and the fa
mapping p.

miily 71(x) under the

2.1 Peridynamic states

Consider material points in the reference configuration x, x' E BO. From the perspec-

tive of point x, the bond to x' is the vector

:= x' - x.

Under the deformation mapping p: Bo --+ Bt, points x and x' map to

y = p(x) and y' = V(x'),

respectively. Following the definition from [97], a family 71 at x is given by

W(x) := {{ E R' I ( + x) E Bo, 1 1 < 6 1 ,

where 6 provides a physical length scale. A schematic of a peridynamic body and the

family at x is shown in Figure 2-1.

The state-based theory of peridynamics is formulated in terms of mathematical

objects called peridynamics states which are used to express peridynamic constitutive

relations and peridynamic equations of motion in a compact notation. In peridynamic

theory they play a role analogous to tensors in classical continuum theories [97].
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A peridynamic vector-state A [x] E V3 (x) at a point x c BO is a function

A[x](-) : 1(x) - R3 ,

where V3(x) := 7(x) x R3 is the space of vector-states at x. Note the analogy to a

tensor A C R3 x 1R3 . Similarly, a peridynamic scalar-state a [x] E V1 (x) is a function

a[x] () : 7(x) -+ R,

where V1 (x) := -(x) x R is the space of scalar-states. Peridynamic vector-states

are denoted in this thesis using bold type-faced capital letters with an underscore,

while scalar-states are denoted using standard type-faced lowercase letters with an

underscore.

Following the standard peridynamic conventions [98, 97], we use square brackets to

indicate the field dependence over space x and time t, we use angle brackets to express

dependence on the bonds E -(x), and we use parentheses to express dependence

on other variables and vector-states. We will often suppress the field dependence on

x and t to simplify notation, when there are no ambiguities. For a functional

f(A) : Vd -+ R,

with d = 1, d = 2, or d = 3, we denote its Fr chet derivative with respect to the

vector-state A by f, A We refer the reader to [97] for a definition of the Fr6chet

derivative used in this context, noting that our notation differs slightly in that we

also add a comma before the vector-state. Note that the Frechet derivative of a

functional of a vector-state is itself a vector-state [97]. The inner product between
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peridynamic vector-states A, B E Vd, is defined by the operation.: Vd x Vd - R,

AoB :=4 _A R ( ) d ,

where - denotes the standard inner-product between vectors in R . For two vector-

states A, B E Vd, vector-state addition, which maps Vd x Vd -+ Vd is defined bond-

wise by

(A + B) (( =A (() + B (),V E W.

Similarly, for two scalar-states a, b E V1 , scalar-state multiplication, which maps

V1 x V1 -± V1 is defined bond-wise by

(ab) ( ) := a ()b(),V E X.

An simple example of a scalar-state is the identity state 1 [x] E V1 (x) with

I [x] ( ) := 1, V E R(x).

An important example of a vector-state is the deformation vector-state Y [x] C

V3 (x), which is defined as

Y[x] () := y' - y = O(x + () - W(x), V E 7-(x). (2.1)

The deformation vector-state is the primary deformation measure in peridynamics,

and it assigns every bond to its deformed image. A critical, physically motivated,

kinematic constraint in continuum mechanics is that distinct material points in the

reference configuration remain distinct in the deformed configuration, or in other

words, the deformation mapping must be one-to-one. In classical mechanics, a nec-
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essary condition for this constraint is

det (F) > 0, (2.2)

which ensures that the material density remains positive and finite, and, in turn, that

the material can not fully collapse or invert to obtain negative volume. The condition

that the mapping is one-to-one in peridynamics can be expressed directly in terms of

the deformation vector-state [98, 97]:

Y [x1 ( ) # 0, V # 0 E W(x), Vx E B0 . (2.3)

The peridynamic equations of motion are written in terms of the force vector-state

T, where T ( ) is a bond-force with units of force per unit volume-squared which

acts as an interaction force between nearby materials points. In peridynamics, the

force vector-state plays an analogous role to the stress tensor in classical continuum

theories. The peridynamic equations of motion are [98]:

p4y = TWX ( ) - T'()d + b, (2.4)

where T'( ') = T [x'] (-c), b is an externally applied body force, and po is the

reference material density. This equation expresses conservation of linear momentum.

Angular momentum is conserved provided that the material is non-polar and the

following constitutive condition holds [98]:

J _ () x Y (() d = 0, Vx E BO. (2.5)

A derivation of the peridynamic equations of motion based on the standard virtual

power assumption is provided in A.1.
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Classical Continuum

Deformation Measure Y F

Conjugate Force T P

Internal Power T o Y P :

Linear Momentum Poy = f _T() - T'(--) d poy= V -P

Angular Momentum 0 fT () x Y (() d PFT = FPT

Elastic Material T(Y) y (Y) P(F) = V (F)

Kinematics Y ( ) # 0, for | # 0 det(F) > 0

Table 2.1: Analogies between peridynamics and classical continuum mechanics.

The standard constitutive assumption of state-based peridynamics is that the

force vector-state is given by a constitutive law T of the form:

T = T( Y, _Y, q, q),

where q are internal field variables such as temperature or damage, and q are internal

vector-state field variables.

When formulating new concepts in peridynamics, it is often helpful to focus on

its similarities with classical continuum mechanics. Table 2.1 shows the analogies

between the two theories, where 0 is the elastic energy density and V is the gradient

operator.

What differentiates peridynamics from classical continuum mechanics in an essen-

tial way is that the theory is inherently nonlocal in the sense that material points

interact through long-range forces represented by the force vector-state T, whose

bond-wise components T ( ) can be loosly interpreted as a force per unit reference

volume-squared at point x due to interactions with the point x'.
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2.2 Constitutive formulations

Within the state-based formulation, two distinct approaches to formulate peridynamic

constitutive models have been proposed, the so-called: 1) constitutive correspondence

framework which uses a nonlocal approximation of the local deformation gradient

tensor, F, and 2) ordinary peridynamic materials in which the elastic energy is formu-

lated in terms of the magnitude of deformed bond lengths. While even more general

constitutive models are allowed by the state-based formulation [114], in this thesis

we focus exclusively on the constitutive correspondence and ordinary peridynamic

formulations.

2.2.1 Constitutive correspondence

One of the original material models proposed for state-based peridynamics is the so-

called constitutive correspondence formulation. A peridynamic material model is said

to correspond to a classical material model when the strain energy density of both

the classical and peridynamic material are equal under affine deformations. For this

purpose, an approximate deformation gradient F E R' x R' was introduced [98]:

F(Y) := [j ) (_Y() ® )d(1 K 1 , (2.6)

where w is called the influence scalar-state which must satisfy

ai to e s , V E n

and is assumed in this thesis to be spherical, meaning

_ ( ) = W (I 1), (2.7)
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for some influence function w. The nonlocal shape tensor K e- RI x RI is defined

K d.(2.8)

It has been shown that the approximate deformation gradient obtained in this way is

identical to the classical deformation gradient (i.e., the continuous gradient of the de-

formation mapping, F) for affine deformations [98]. It can be seen from Equation (2.6)

that the constitutive correspondence form of F provides a description of the state of

deformation at point x which is based on a weighted average of the deformation of

all the neighboring bonds.

Given a classical constitutive model with strain energy density (F), the corre-

sponding peridynamic model has strain energy density:

V(Y)= 4(F(Y)). (2.9)

The resulting force vector-state for constitutive correspondence, which follows from

work conjugacy, is

T(P) = (() PK , (2.10)

where P = P(P) is the first Piola-Kirchhoff stress tensor obtained from a classical

constitutive law as a function of the approximate deformation gradient. This form

of the force vector-state leads to a peridynamic formulation which conserves angular

momentum provided that the classical constitutive model used is one which ensures

conservation of angular momentum and is non-polar. This is the case if the resulting

Cauchy stress & is symmetric, i.e.,

& = 1-1 PF = &f, j= detF-. (2.11)
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2.2.2 Ordinary peridynamic materials

An alternative constitutive modeling approach called ordinary state-based peridy-

namics was also proposed in [98]. A peridynamic material model _Y is said to be

ordinary if, for all Y E V3 ,

T()xX Y( 0, V 4

where T = T(Y). This condition simply states that the force vector-state must

be parallel to the deformation vector-state, which automatically ensures that the

angular momentum constraint, Equation (2.5), is satisfied. For elastic materials,

this condition is equivalent to requiring the elastic energy to depend only on the

distance between neighboring material points in the deformed configuration (not on

angles between deformed material points, for example). While this imposes an added

restriction on possible constitutive models, ordinary peridynamic materials have been

shown to be capable of modeling nonlocal isotropic elasticity [98], as well as nonlocal

isotropic plasticity [40].

While in principal ordinary peridynamic material models can be quite general, in

practice they are typically formulated in terms of bond-extensions:

e (( := 1 ((| - (I ,(2.12)

where e is called the extension scalar-state. The bond-extension measures the change

in distance between material points relative to their initial separation distance in

the reference configuration. The original and most common example of an ordinary

peridynamics constitutive model, called a linear ordinary elastic solid or a linear

49



peridynamic solid [98], has a strain energy density of the form:

k 02
kY 2 + f J (K)edev edev(() d(, (2.13)

2 2 1Wj

where the deviatoric extension is defined as

6 |(edev(( :=0((
3

the volumetric dilatation 0 is

6 =- 2()e((||d , with -y: Q () - d(,

and & is the standard spherical influence function [98], C,(_) = c'(1). The force

vector-state for a linear ordinary elastic solid is

(3k0 6 YK(()_T(() = + a edev () )M(), where M((): (2.14)
IT _Y (2.)4)

For uniform infinitesimal strains, the energy density of an ordinary elastic peridynamic

solid is identical to its corresponding classical isotropic elastic solid, provided that

the constitutive parameters used are bulk parameter k= K, and shear parameter

a = 15 p/y, where K and p are the classical bulk and shear modulus respectively.

2.3 Kinematic constraint

In addition to frame invariance, and the first and seconds laws of thermodynamics

(see A.2 for a discussion of the thermodynamics of state-based peridynamics), an

additional important physically motivated assumption of general continuum theories

is that the deformation mapping p : BO -+ Bt is one-to-one. This means that dis-

tinct material points in the reference configuration remain distinct in the deformed

50



configuration, i.e. material points can never overlap: for x, x' E 3o: if x / x',

then y'(x) # p(x'). As it has been pointed out [98, 97], using the definition of the

peridynamic deformation vector-state, Equation (2.1), a necessary condition for the

mapping to be one-to-one isi

Y [x] () 0, V E R(x), 7 0, Vx Bo. (2.15)

Solutions to the peridynamic equations of motion are valid only if they satisfy this

constraint. In practice, this suggests an additional constitutive constraint which en-

sures solutions to the peridynamic equations of motion naturally satisfy the kinematic

constraint. Until now, this consideration has been neglected in peridynamic consti-

tutive modeling.

2.4 Constitutive constraint for preventing matter

interpenetration

We propose an additional constitutive assumption which naturally prevents matter

interpenetration, namely:

Y ( ) - 0, for some W E (x) = O(Y) -+ oo.

However, due to the integral nature of the peridynamic theory, strict enforcement of

this constraint Equation (2.15) is not possible in general, as violation for a single bond

occurs over a region of zero-measure. This suggests a somewhat relaxed constitutive

'This condition, Equation (2.15), is not always sufficient as particles which are not within each
others' family may be allowed to overlap. This limitation can be alleviated by taking 6 -+ oc.
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restriction:

Y(() -+0, V E Q C 7-(x) -- > 4(Y) -* oc, (2.16)

where Q is some measurable subset of -(x). We caution that this may not be a

sufficiently strong condition in all cases, as even point-wise infinite strain energy

densities may still result in finite total strain energy density over the entire body. We

do note, however, that Equations (2.9), and (2.13) both fail to satisfy this condition.

This constitutive constraint is analogous to an assumption which is common in

classical nonlinear elasticity theories:

det F - 0 =- V(F) - oo.

Such restrictions, together with the assumption of poly-convexity of the elastic energy,

and other technical assumptions have been shown to be sufficient to establish the

existence of solutions in non-linear elasticity [47]. We anticipate that constraints of

the form Equation (2.16) may similarly play a critical role in the development of

existence proofs for nonlinear peridynamic elasticity.

Enforcing the kinematic constraint of peridynamics through the constitutive re-

sponse plays a fundamental role in later developments in this thesis. For completeness,

we also suggest a possible alternative constitutive restriction for the force vector-state:

Y () - 0 -- > T ( ) - _Y () -4 - o.

This condition is in a sense more general as it does not require the existence of an

elastic energy. It is analogous to the classical condition: det F -* 0 == P -* oc,

where P is the pressure.
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Chapter 3

Numerical discretizations of

peridynamics

In this chapter, we discuss various discretization approaches for state-based peridy-

namics and examine their potential limitations. Specifically, we review the particle

discretization of constitutive correspondence proposed in [52], and demonstrate the

existence of instabilities using this approach. Numerical instabilities are common to

many particle-based discretizations of continuum mechanics [90, 9]. We argue that

the instabilities observed here are not solely due to the particle nature of the dis-

cretization, but actually indicate the presence of zero-energy mode instabilities in

the theory itself (which are described analytically in Chapter 4). In order to con-

firm that these instabilities are indeed due to the theory and not the discretization,

we introduce a novel finite element discretization of state-based peridynamics which

allows for full integration of the weak form (energy) so that numerical zero-energy

modes can be alleviated. However, even with this fully integrated finite element

formulation, instabilities continue to manifest themselves for discretizations of the

constitutive correspondence formulation. On the other hand, it will also be shown

that these instabilities do not arise in finite element discretizations of ordinary peri-
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dynamics materials (see Section 2.2.2), indicating that it is a failing of the particular

formulation of constitutive correspondence, and not the discretization approach or

the general peridynamic theory itself.

3.1 Particle discretization

A straightforward and natural discretization approach for peridynamics which results

in a particle method was proposed in [521. In this approach, the initial configura-

tion of the problem domain is discretized into a set of N particles which represent

the volume of the Voronoi cells. Displacement degrees of freedom and other field

and internal variable data are associated with each particle, which in effect implies a

piecewise-constant interpolation supported on the Voronoi diagram. Particles located

at xi E BO in the reference configuration map to positions yj C Bt in the deformed

configuration at time t. Integrals in the peridynamic formulation are naturally dis-

cretized as volume-weighted sums over the Voronoi cells.

We begin by investigating the constitutive correspondence formulation, as its dis-

cretization is now relatively common [51, 52, 21, 69]. Thus, for the constitutive cor-

respondence formulation, the nonlocal deformation gradient is obtained from Equa-

tion (2.6) as

N

Fj = v w( xi - xj 1) (yi - y3 ) 0 (xi - xj) R
i=1

N

Kj = vi Z K (1xi - xj1) (xi - xj) 0 (xi - xj),
i=1

where Vi is the volume represented by particle i. The stress and internal state corre-

sponding to this state of deformation is computed for each particle by direct applica-
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tion of the classical constitutive update P3 (F3 , qj). Integrating the force state (2.10)

and replacing in (2.4) leads to the following semi-discrete equations of motion:

N

poy = ZVw( xj - xi1) {PiK (X - xi) - PK K (xi - x)}.
i=1

These equations of motion are integrated in time using the Newmark time stepping

algorithm, with Newmark parameters chosen for explicit time integration and second

order accuracy [107], 3 = 0 and -y = .

The resulting method can be interpreted as a nodally based "meshless" discretiza-

tion of continuum mechanics. Such discretization approaches are known to exhibit

zero-energy mode instabilities [90, 9] and similar instabilities have been reported in

numerical implementations of the peridynamic correspondence formulation [21, 81].

Despite the potential limitations, this approach has previously been successfully used

to model viscoplastic behavior [52], as well as ductile fracture [51, 69] (see also Chap-

ter 7). In order to validate our implementation of the peridynamic particle discretiza-

tion we simulate the Taylor impact test, which has become a standard benchmark for

computational approaches to viscoplasticity.

3.1.1 Validation using a Taylor impact test

The Taylor impact test [30] has been extensively used for characterizing the dynamic

plastic response of materials as well as for validating numerical methods, e.g. [49, 42].

The test consists of a cylindrical metallic bar impacting a rigid wall at a high velocity.

In the case of peridynamics, a Taylor impact test has been used to demonstrate a

numerical implementation of the state-based formulation without damage [52]. This

test consisted of a 0.0324 m long 6061-T6 aluminum cylinder with a diameter of

0.00635 m impacting a rigid wall at 363 m/s. Instead of using this test, we chose

to adopt the specific configuration of the numerical test presented in [42] in order to
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Properties Values
Initial density 8930 kg/m 3

Bulk modulus 1.3x10" N/m 2

Shear modulus 4.3x 1010 N/m 2

Initial yield stress 4.0 x108 N/M 2

Linear hardening modulus 1.0 x 108 N/M 2

Table 3.1: Material properties used in Taylor impact test simulations.

compare with alternative discretization approaches from the literature [1, 123, 35, 4].

In this case, the cylinder material is copper, which is modeled as elastic-plastic with

linear isotropic hardening. The cylinder length is 1 = 0.0324 m and its radius r =

0.0032 m. The impact velocity is 227 m/s. The material properties of the cylinder

are shown in Table 3.1. Three different discretizations of 2394 (DI), 16929 (D2) and

130536 (D3) peridynamic particles are used in calculations. Similarly to the approach

in [52], for each discretization the horizon size, 6, was chosen to be 3.01 - Ax, where

Ax is the approximate average distance between neighboring discrete particles.

The final configurations of the bar and contours of equivalent plastic strain are

shown in Figure 3-1. The final radius of the impacting face of the cylinder Tmax,

the cylinder length 1f, and the maximum equivalent plastic strain Cmax are compared

to results obtained with finite element calculations [1, 123, 35] and the optimal-

transportation method (OTM) [4] in Table 3.2. With the exception of the results

computed by means of the OTM method, the other calculations used for comparison

were carried out in axisymmetric mode. It can be seen that the peridynamic sim-

ulation results compare reasonably well with results obtained using other numerical

methods. These computational results provide an initial verification of the theory, the

discretization method, and its computer implementation. However, in the following,

we demonstrate a few simple cases in which the peridynamic particle discretization

approach appears to break down and exhibit instabilities.
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Figure 3-1: Simulated
Dl (left), D2 (center),

final configurations of a Taylor impact test for discretizations
and D3 (right).

Kamoulakos [1]
Zhu and Cescotto [123]
Camacho and Ortiz [35]
Li et al. [4]
Peridynamics, Dl
Peridynamics, D2
Peridynamics, D3

if (mm)
22
21
21
21
22
21
21

rmax (mm)
7.0-7.1
6.9-7.2

7.2
6.8
7.1
7.5
7.4

Table 3.2: Comparison of Taylor impact test using different numerical methods.
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3.1.2 Numerical instabilities in constitutive correspondence

Instabilities resulting from peridynamic discretizations have previously been reported

in [21], where it was suggested that they can be alleviated using a numerical stabi-

lization approach. Here we expand on this observation, and highlight some cases in

which instabilities occurs, as a means of diagnosing and resolving this issue.

Again using the discretization approach described above, we return to the simula-

tion of the Taylor impact test in Section 3.1.1, where reasonable accuracy was found

using a fixed peridynamic horizon length to discretization size ratio 1/h. However, for

1/h sufficiently small or large, instabilities emerge, as are demonstrated in Figure 3-2.

Figure 3-2 (left) shows that for very small horizon sizes (relative to the discretization

length scale) instabilities may occur. This can be readily explained by the fact that

for small horizon sizes, it is possible that an insufficient number of particles fall within

the peridynamic horizon 6; for instance, it is impossible to form a full rank discrete

F if there are less than 3 neighboring particles. For a peridynamic horizon of roughly

3 times the typical element size as shown in Figure 3-2 (middle), the approach en-

ters a regime where the solution is stable and has accuracy commiserate with other

discretization approaches (as shown in Section 3.1.1). However, Figure 3-2 (right)

indicates that as the horizon size is further increased, instabilities again emerges.

This is evidence of a zero-energy mode instability, similar to what has been observed

numerically in [21, 81], and which will be shown to exist analytically (i.e., in the

peridynamic theory itself) in Chapter 4.

Zero-energy mode instabilities are common to many particle based continuum

discretizations [90, 9] and ultimately result from under-integration of the weak form.

A common explanation for this type of instability is that smaller wavelength defor-

mation modes are unable to be fully integrated, leading to high frequency, small

wavelength numerical instabilities. Adding more particles to the discretization does

not alleviate this issue, as expanding the solution space allows for ever smaller wave-

58



t -

Finite Element 3 ; h 6 3 3h 6 7h

Figure 3-2: Instabilities in Taylor impact for varying peridynamic horizon size and a
fixed discretization size.

lengths to be resolved which, in turn, are not properly integrated by the numerical

scheme. The most straightforward approach to resolve this issue is to improve the

background quadrature rule by adding integration points which do not contribute

to the displacement field approximation. In this way, the small length-scale energy

modes can be fully integrated for any given discretization size.

In order to investigate the presence of zero-energy modes in a more controlled

setting, we propose the use of a finite element discretization of peridynamics, which

is derived below. The particle discretization assumes that field variables are piece-

wise constant over the Voronoi cells, which renders it effectively an under-integrated

discontinuous Galerkin (DG) discretization with piece-wise linear shape functions. In

this sense, a DG finite element approach can be viewed as a natural extension of the

particle approach to more general quadrature rules and field approximants.
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3.2 Ruling out numerical instabilities: finite ele-

ment discretization

We propose a general discretization approach for state-based peridynamics which is

based on standard field approximants (e.g., finite elements) and quadrature rules.

Finite element discretizations of peridynamics have been previously proposed [24, 89,

119], though they have been limited to bond-based peridynamic constitutive models

(typically linear). Our approach can be viewed as a generalization of the approach

proposed in [119] (where both continuous Galerkin and discontinuous Galerkin dis-

cretizations were presented for ID bond-based peridynamics) to the case of state-

based peridynamics in higher dimensions.

We approximate the 3D deformation field by 3N deformation degrees of freedom

ya E R 3, and N global shape functions Na (for a =1, ... , N) as:

N

y' (x) = Na(x) Y,
a=1

where the partition of unity requires the ability to exactly represent rigid body modes:

Na(X) = 1, for all x E Bo. Integration over the reference body is approximated

via a quadrature rule in which the integrals are replaced by a sums over quadrature

points xq with weights wq as

/ f (x) dx ~ W f (xq).
so q

Here we derive the equations of motion using a standard Galerkin procedure,

where we introduce a test function v(x) and integrate against the strong form, Equa-

tion (2.4), to obtain the weak form of the state-based peridynamic equations of mo-
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J~0 [Pox: x - T [x] ( ) - T [x + ] (-c))
d - v(x) dx = 0,

where for simplicity we leave out the body force b, as its discretization is standard.

The corresponding discretized weak form is

Po(Xq) 1ybNb(Xq) - Wr (T'N [xq (Xr
b

-xq Tx r ]( )) - X
r

-vaNa(xq) = 0,
a

(3.1)

which we require to hold for all Va and leads to the semi-discrete equations of motion:

ybi Majfai,

where the standard symmetric mass matrix M has components

Mab =3 Wq Po(Xq) Nb(Xq) Na(xq),
q

and the nodal forces are

fa = T,>Y (' [xq] (Xr - Xq) - T' [Xr] (xq - xr)) wq Wr Na(xq).
q r

To complete the formulation it is necessary to provide a discretized constitutive law

Th - Th( h) for the force vector-state, where the shape function approximation

implies a discrete deformation vector-state of

yh [X ' (X' - x) -3Ya(Na(X') - Na(X)).
a
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We use the term discretized constitutive law to emphasize that Th (yh) is itself a

discretized functional, requiring integrals over the peridynamic horizon which must

be evaluated using a quadrature rule. If the same quadrature rule is used for both

the integration over the body and integration over the peridynamic horizon, such a

discretization approach is variational for elastic peridynamic materials in the sense

that the nodal forces fa are work conjugate to the nodal deformations ya.

To show this we first assume that the discrete elastic (potential) energy Vh for

the entire body is of the form

Vh = w O/h (yh [q)

q

where the weights wq and location xq fully define the quadrature rule, then the work

conjugate nodal forces are

fWC q~~ y [xq])
fa Wq ayaq

- W (j) d Ya
q q

= - Wq J h [xq] (X, - Xq) {N(x,) - N(xq)} dx,
q 030

If we assume that the constitutive law functional uses the same quadrature rule as

the one used for integrating the weak form, we find

fwC _ _ h[xq] (xr - xq) {N(x,) - N(Xq)}
q r

1:Wq Wr (I1 h [xq] KXr -xq) _ Th [Xrl (xq - x,)) N(xq) =fa

q r

meaning that the discretization approach based on the weak form (3.1) is variational

for elastic peridynamic constitutive laws.
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A mass lumping scheme is used in simulations instead of the consistent mass

matrix, as is common for finite element discretizations with explicit dynamic time

integration. While more generally time integrators are possible, we typically use the

Newmark time stepping algorithm, with Newmark parameters chosen for explicit time

integration and second order accuracy [107], 3 = 0 and y =2

Figure 3-3: Schematic of continuous Galerkin (left) and discontinuous Galerkin (right)
approximants.

We point out that up to this point we have not chosen a specific field approxi-

mant. Additionally, we note that there are no field gradients in the formulation of

peridynamics, which means that no integration by parts is necessary when deriv-

ing the discretized equations of motion. This seemingly benign observation has an

important implication for peridynamic discretizations using discontinuous Galerkin

elements (see Figure 3-3), which is that no interface element integration terms arise.

Inter-element compatibility is handled solely by the nonlocal peridynamic force in-

teractions as there are no flux terms across element interfaces. Discontinuities can

naturally arise without the need for any additional discretization considerations. This

means that discontinuous Galerkin finite-elements based discretizations are a natu-

ral choice for peridynamics, as both the interpolation and formulation allow for the

possibility of jumps in the deformation field from the onset.
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3.2.1 Finite element discretizations of constitutive correspon-

dence: instabilities persist

In this section, we investigate the stability behavior of finite element discretizations

of state-based peridynamics using a few simple examples. For simplicity, we restrict

attention to 2D discretizations based on linear triangular finite element interpolants

(with nodal unknowns at the corners of the triangles), and consider both continuous

Galerkin (CG) and discontinuous Galerkin (DG) discretizations (see Figure 3-3).1

In order to fully alleviate the possibility of numerical zero-energy modes, we use a

Gaussian quadrature rule over each triangular element which is capable of exactly

integrating 5th order polynomials even though the interpolation is piece-wise linear.

This higher order quadrature rule is chosen to be sufficient to fully integrate the

linear peridynamic constitutive theories, recalling that a (possibly nonlinear) double

integral is required to compute the total elastic energy of a peridynamic body.

The example we consider consists of a 2D peridynamic bar of length L = 0.2m

and height h = 0.2m. For simplicity we fix the peridynamic horizon size at 6 = 0.02m

throughout. The boundary conditions are such that the bar is fully constrained over

a region of one horizon length 6 on the left end (i.e., u(x) 0 for x < 6), and we apply

a uniform body force of a region on the right end (b(x) = b for x > L - 6). We assume

that the material behavior is a constitutive correspondence material (Section 2.2.1)

with a classical constitutive law corresponding to a neo-Hookean material extended

to the compressible range, with strain energy density:

= ( logJ P J - log J+ -(11 -3),
2 2

where A and p are the Lame constants, J = det(F), and 11 = tr(C) for F = Votp

and C = FTF. This constitutive behavior has the important property that as J -+ 0,

'See, for example, [113] for more on CG discretizations of classical mechanics and [111, 71, 72
for more on DG discretizations of classical mechanics.

64



?/ - o, meaning it has an equation of state behavior sufficient to prevent material

collapse. The Lam6 constants used are A = 1.0 and p = 0.3 (the properties were

chosen essentially arbitrarily, as this is only meant as a demonstration of the stability

behavior and need not be physically realistic). The constitutive behavior is elastic, so

we can solve the static problem via energy minimization. We use a conjugate gradient

optimization routine [91] to minimize the discrete elastic energy over all possible nodal

displacements subject to the imposed constraints.

The resulting static solution using a continuous Galerkin mesh is shown in Fig-

ure 3-4, with varying applied body forces. The corresponding results using a discon-

tinuous Galerkin mesh is shown in Figure 3-5, but with lower applied body forces.

These solution results clearly indicate instabilities in the approach. For the CG fi-

nite element case, the instabilities start out as relatively minor, but continue to grow

unabated for larger applied loads. The DG case is highly unstable from the outset,

possible due to the proliferation of degrees of freedom inherent in the DG approach.

It is reasonably to question whether these results may simply be due to a poor im-

plementation, or a misinterpretation of the formulation. We do not believe that this is

the case, as we provide physically reasonable results based on an alternative constitu-

tive formulation of peridynamics in Section 3.2.2 using the exact same discretization

approach. The extreme instability of the DG approach may seem surprising at first, as

it is simply a generalization of the relatively successful particle discretization (which

exhibits instabilities, but not nearly as severe as observed here). Indeed, at the outset,

we expected that a DG discretization (as compared to CG finite elements) would be

closer to the true solution of peridynamics where discontinuities are allowed. We even

carefully chose a classical constitutive model with equation of state behavior sufficient

to prevent matter interpenetration to rule out the macroscopic constitutive behavior

as a possible cause of instability. Having ruled out both the discretization and the

macroscopic constitutive behavior as possible causes of instability, the only remaining
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plausible explanation for these observations is that there are instabilities inherent to

the constitutive correspondence theory of peridynamics. This conclusion is consis-

tent with the analytic results presented in Chapter 4, which show the existence of

deformation modes which are not detectable by the nonlocal deformation gradient F.

In fact, we speculate that the relative success of the standard particle discretizations

is due to under-integration of the unstable energy modes, i.e. increased quadrature

in this case leads to improved integration of unstable modes which might otherwise

have gone undetected!

3.2.2 Finite element discretizations of linear ordinary solids:

instabilities suppressed

In the previous section, it was suggested that by over-integrating the weak form of

the peridynamic equations of motion, the numerical zero-energy instabilities can be

eliminated. It was then shown using a simple numerical example that zero-energy

modes are still present. This apparent contradiction makes it essential for us to

ensure that these instabilities are not a result of the discretization process, or from

errors in the implementation. Towards this end, and to illustrate the viability of

finite element approaches for state-based peridynamics, we provide a simple example

using an alternative peridynamic constitutive law. Specifically, we use the identical

discretization approach, problem set up, and optimization solver from Section 3.2.1,

but model the material behavior as a linear (isotropic) peridynamic solid[98, 97]

(see Equation (5.2) in Section 2.2.2 with m = 1/2). The material constants used

in this 2D case are \ = 1 and ft = 0.5. Figure 3-6 depicts the static solution

using a CG finite element mesh with body forces b = 1 (left) and b = 4 (right),

while Figure 3-7 depicts the same results using a DG mesh. These results indicate

that finite element discretizations of peridynamics are stable and do no exhibit zero-

energy modes, provided that the an appropriate peridynamic constitutive model is
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(b) b = -0.3

(c) b = -0.6 (d) b = -0.9

Figure 3-4: Static solution for constitutive correspondence using a CG mesh, where
b is the applied body force on the right side of the specimen.
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(b) b = -0.02

(c) I = -0.04 (d) I = -0.06

Figure 3-5: Static solution for constitutive correspondence using a DG mesh, where

b is the applied body force on the right side of the specimen.
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used.2 This further suggests that the observed instabilities in Chapter 3.2.1 are due

to issues with the theoretical framework of the original constitutive correspondence

formulation.

3.3 Chapter summary

In this chapter, instabilities in peridynamics discretizations of the constitutive corre-

spondence formulation of peridynamics were found to be prevalent. It was suggested

that the problem could be alleviated by fully integrating the peridynamic equations of

motion in space using traditional quadrature rules and finite element interpolations.

In order to test this idea, we introduced a general finite element discretization ap-

proach for state-based peridynamics using both CG and DG finite element interpola-

tions. The discretization approach was shown to be variational for elastic constitutive

models, provided that the same quadrature rule was used for both evaluating the con-

stitutive model and for integrating the weak form over the spatial domain. Contrary

to our initial motivation for this development, it was found that improved integra-

tion led to increased instability, an apparent contradiction. We argued that these

observed instabilities are a manifestation of the theoretical limitations of constitutive

correspondence (which will be investigated in Chapter 4) and that our efforts only

provided an improved discretization approach for a theory with inherent instabilities.

Finally, to demonstrate the feasibility of the proposed discretization approach using

sound peridynamics theories, we provide examples based on the linear theory of or-

dinary peridynamics (sometimes called a linear peridynamic solid, see Section 2.2.2).

These solutions were found to be stable for a fairly wide range of loading conditions.

While this alternative constitutive theory appears to fix the instabilities observed

2We caution, however, that while this alternative constitutive theory appears to fix the instabil-
ities observed here, it will be shown in Chapter 5 that the linear theory also fails to prevent matter
interpenetration under impact conditions. For example, simulations based on the linear ordinary
theory of peridynamics are shown to exhibit instabilities in Figure 5-3.
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(b) b = -0.2

(c) = -0.4 (d) b = -0.6

Figure 3-6: Static solution for a linear ordinary elastic solid using a CG mesh, where
b is the applied body force on the right side of the specimen.
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(a) b =0 (b) b = -0.2

(c) b= -0.4 (d) b = -0.6

Figure 3-7: Static solution for a linear ordinary elastic solid using a DG mesh, where
6 is the applied body force on the right side of the specimen.
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in the simulations conducted here, we caution that the linear theory also allows for

unphysical matter interpenetration, as will be discussed in Chapter 5.

Further investigation is still needed to provide insight into the advantages and

convergence behavior of the proposed finite element discretization approach.
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Chapter 4

An extended constitutive

correspondence formulation of

peridynamics based on nonlinear

bond-strain measures

In this chapter, we propose an extended constitutive correspondence formulation of

peridynamics which addresses fundamental limitations in the original correspondence

theory and generalizes the constitutive framework to models expressed in terms of

generalized strain tensors and their work-conjugate stresses. Towards this end, we

introduce nonlinear measures of bond elongation which are inherently singular when

the matter interpenetration constraint is violated and, thus, avoid unphysical defor-

mations.

As discussed in Section 2.2, two essential peridynamic constitutive modeling frame-

works have been proposed: 1) constitutive correspondence and 2) ordinary peridy-

namic materials. The constitutive correspondence formulation is particularly appeal-

ing as classical nonlinear constitutive models can be incorporated using the nonlocal
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approximation of the deformation gradient tensor F. For clarify we repeat here Equa-

tions (2.6) and (2.8):

F (Y) [i (]) (Yk(-)1)d1 IC,

where

In principle, general constitutive laws can be formulated based on nonlocal versions

of classical nonlinear strain measures which are computed from this nonlocal F. How-

ever, it will be shown below that the nonlocal deformation gradient allows for modes

of deformation which are physically impossible and yet undetectable by the theory,

irrespective of the chosen strain measure. We note that this observation also provides

a explanation for the instabilities observed in the computational results in Chapter 3.

To overcome this limitation, the proposed extended constitutive correspondence

formulation is expressed in terms of generalized nonlocal Seth-Hill strain tensors [13,

82] which are shown to be exact in the uniform infinitesimal limit and which are in

turn formulated in terms of corresponding bond-level strain measures. It is also shown

that the extended constitutive correspondence framework is ordinary and supports

general inelastic anisotropic materials models.

In Section 4.1, we provide examples which demonstrate the kinematic deficiency

of the original correspondence formulation. Section 4.2 is devoted to the new peri-

dynamic bond-strain measures, the corresponding family of nonlocal strain tensors

and their properties, including a demonstration that the new formulation fixes the

violation of the matter interpenetration constraint in cases where the original version

fails. In Section 4.3, the extended constitutive correspondence formulation is then

stated and shown to be ordinary. We conclude the chapter with a brief summary in
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Section 4.4.

4.1 Limitation in the kinematics of constitutive

correspondence

In this section, we investigate a basic fundamental limitation of the kinematic assump-

tion of the constitutive correspondence formulation. Specifically, we demonstrate us-

ing several examples how unphysical deformation modes may be undetectable by the

nonlocal deformation gradient P.

1. Sub-horizon material collapse: Consider the extreme situation depicted in

Figure 4-1 where a small volume of material g C Bo collapses to a single point

z E Bt. The peridynamic deformation vector-state in this case is Y [x] ( ) = 0

for x, x' E 9, where x' = x + . This deformation is clearly unphysical as it

violates the matter interpenetration constraint (2.3).

BO B

Figure 4-1: Schematic showing a region g C Bo collapsing to a single point z E Bt.

However, it is easy to see that the nonlocal deformation gradient F(x) remains

positive-definite at a point x whose horizon N(x) contains the collapsed region

g, i.e. 9 C 7(x). In other words, P is unable to detect this localized unphysical

deformation, because violating the kinematic constraint (2.3) on the bond-level
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a) opening b) interpenetrating

Figure 4-2: Schematic of surface discontinuities, with both an opening deformation
discontinuity (left) and an interpenetrating deformation discontinuity (right).

does not imply that the resulting nonlocal deformation gradient violates the

tensor-level kinematic constraint (2.2).

2. Jump discontinuities in 1D: Another example consists of a displacement

jump discontinuity with a displacement field of y(x) = a+x for x > 0 and y(x) =

x for x < 0. A schematic showing the nature of this discontinuity is shown in

Figure 4-2 for a > 0 on the left (which is physically acceptable), and a < 0 on

the right (which is physically impossible). For the opening displacement case,

a > 0, the nonlocal scalar deformation gradient P(x) obtained from the ID

version of Equation (2.6) satisfies the classical kinematic constraint (2.2), with

F(x) > 1 for IxI < 6. This means opening jump displacements are kinematically

admissible deformation modes for the constitutive correspondence formulation,

as desired.

However, a value of a < 0 which corresponds to unphysical interpenetration

(and violates the peridynamic kinematic constraint (2.3)) results in F > 0 for

lal < 6. In other words, the constitutive correspondence formulation admits

deformations that are physically inadmissible.
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This example highlights an important consideration when formulating peridy-

namic models: whereas one of the basic premises of peridynamics is that it

contemplates the presence of discontinuities in a natural way, it actually goes

too far and allows for discontinuities that are unphysical. Based on this con-

sideration we argue that in any valid peridynamic formulation suitable for fi-

nite deformations, discontinuities leading to matter interpenetration should be

kinematically inadmissible. We have therefore shown that constitutive corre-

spondence, as currently formulated, does not satisfy this criterion.

3. Zero-energy modes in ID: In this example we demonstrate the presence of

zero-energy modes' in the constitutive correspondence formulation. Consider

the ID case and an influence function of the form w(lx' - xj) = Ix' - xj-1 for

1X' - xj < 6. By Equation (2.6) this influence function results in a nonlocal

scalar deformation gradient given by:

1 x+6
F(x) =- sign(x' - x)(y(x') - y(x)) dx'

1 rx +6 1
I f y(x') - y(x) dx' - g j y(x') - y(x) dx'

1 x+ 6  
, 1

= y(x') dx' - X y (x') dx'.

For deformations of the form y(x) = x + a sin (27kx/6 + #), the corresponding

'It should be emphasized that here we refer to zero-energy modes that exist in the mathemat-

ical formulation of the peridynamics correspondence theory, which should not be confused with

those appearing in numerical discretizations. We point out that the issue of zero-energy modes has

been observed in numerical discretizations of peridynamics and can be alleviated using numerical

stabilization techniques [21].
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deformation gradient is

F(x)

for any integer k > 0

deformation mappings

1 X+6
= x' +a sin (27rkx'/6 + $) dx'

I Ix x' +a sin (2-rkx'/6 + $) dx'

2 x +6
=- x'dx' = 1,32x

and all a, # E R. In other words, there exist periodic

for which the nonlocal deformation measure P is unable

to describe the state of deformation of the material and, thus, they do not

contribute to the elastic energy of the material irrespective of the constitutive

model.

4. Vanishing-energy modes in ID: A related example demonstrates how more

general influence functions allow for the existence of deformation modes with

vanishing energy in the short wavelength limit. Consider w functions which

satisfy

I d
((w~(|)d( < oc. (4.1)
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A deformation of y(x) = x + a sin(bx) results in

F(x) = w(R) ) [y(x+) - y(x)]{ d<

a [ )I -a

= 1 + w| sin(bx + b ) < K f7 || sin(bx)d<

0

=1 + _ j w(|j) cos(bx) sin(b ) d

K
+ j w( cos (b ) sin (bx) <k

0

acos(bx) d
= 1 - - ( w (t cos (bt) <,bW 1Wd

where we've used standard trigonometric identities, the fact that W is an even

function and the last step results from an integration by parts using W = 0 on

7-. Taking the limit of vanishingly-small wavelengths by increasing b for fixed

oscillation amplitude a gives

lim (a j( d) cos(b ) < < lim ((a{|) d { = ~~ 0,
b-+oo b " <{ b-+oo b " <{

and we find lim P(x) 1.
b-+oo

This shows that for sufficiently well behaved influence functions, Equation (4.1),

rapidly oscillating displacement fields contribute negligibly to the nonlocal de-

formation gradient F. It should be noted that this example also embodies the

case of local matter interpenetration for large values of the amplitude a.

This example has important implications for numerical discretizations of the

constitutive correspondence formulation: for a fixed peridynamic horizon size,

as the discretization is refined such that high-frequency oscillations become
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increasingly resolved within the horizon, additional zero-energy modes emerge,

which inevitably leads to instability.

As is known, [21], numerical implementations of peridynamic correspondence

formulations are mired with instabilities commonly attributed to artifacts in

particle-based discretizations of continuum mechanics [90, 9]. This chapter

demonstrates that even when the numerical issues are properly addressed, more

fundamental instabilities of a theoretical nature remain in the peridynamic cor-

respondence formulation, as currently stated.

4.2 Finite deformation peridynamic bond-strain mea-

sures

In the previous section, we concluded that in the existing constitutive correspondence

framework unphysical deformations may result in a kinematically admissible F. In

other words, violating the kinematic constraint (2.3) on the bond-level does not imply

that the resulting nonlocal deformation gradient violates the tensor-level kinematic

constraint (2.2), i.e.

Y [x] (() = 0 for some E 71(x) -f det (F(x)) < 0.

The source of this limitation is that F averages the material deformation over the

horizon in such a way that localized misbehavior may contribute negligibly or be

compensated for elsewhere in the integral. In order to fix this issue, we propose

a nonlocal measure of strain which is sensitive to any violation of the bond-level

kinematic constraint (2.3) .2 To achieve this, we introduce strain measures on a bond-

by-bond basis which have the appropriate kinematic behavior in the fully compressed
2The intuition here is that any violation of the matter interpenetration constraint should imme-

diately gives rise to infinities in the integrand for the nonlocal deformation gradient.
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limit.

We propose a family of bond-strain measures inspired by the Seth-Hill' strain

measures [13, 82]:

(M) 1 = [ (" -1 (4.2)2m

where

Y (() -Y ()

is the Cauchy-Green deformation scalar-state which measures the bond elongation.

We call E(m) the strain scalar-state, which is parameterized by the strain measure

parameter m.

For the degenerate case m = 0, we obtain:

1
f(O) := log(

which we define as the logarithmic (also Hencky or true) strain scalar-state. For in-

finitesimal bond strains all of these measures reduce to the same scalar-state. For

m < 0, these strain measures have the proper kinematic behavior in the fully com-

pressed limit, i.e.

Y(() 40 (M) --.

As a result, these bond-strain measures for m < 0 naturally allow for the enforcement

of non-interpenetration (2.3) on a bond-by-bond basis. This is in contrast to consti-

tutive correspondence, which only allows for an averaged enforcement of the tensorial

3 Recall the classical Seth-Hill strain tensors, E(m) = (C M - 1), and right Cauchy-Green

deformation tensor C = F TF.
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kinematic constraint (2.2).

4.2.1 Nonlocal peridynamic strain tensor

In order to use established constitutive models formulated in terms of a strain ten-

sor, it is convenient to formulate a tensorial measure of the nonlocal strain. This

is accomplished by defining a nonlocal peridynamic strain tensor E(m) E R3 x JR3

parametrized by m as

E(m) : ()Em()H()d , (4.3)

where we define the shape tensor-state H E 7 x R3 x IR3 by

5404 1_ 1 (4.4)

and without loss of generality we normalize the influence function in 3D as follows:

j ( d)d = 3. (4.5)

4.2.2 Properties of the family of nonlocal strain tensors E(m)

1. Correspondence for infinitesimal strains: The specific forms of (4.4) and

(4.5) ensure that the nonlocal strain tensor E(m) reduces to the classical value

for infinitesimal uniform strains. This can be shown as follows. Start by noting

that in this case E(m) =E j , j /I 12 for any m, where cij = i +

are components of the classical infinitesimal strain tensor. Here we drop the

m subscript, as in this limit the strain measures are all identical. Using index

notation and the summation convention, the nonlocal strain tensor for uniform
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infinitesimal strains is

Pj =- J- l Ek 6ij,

where

fWi j ) k 1 l d and Jkl .- =- IWk d .2 JN1

These integrals can be computed analytically using symmetry arguments and by

transforming to spherical coordinates, as in [98].4 It follows from the symmetry

of the influence function (2.7) that terms like 11112, 11233 and J 12, where any

index appears an odd number of times, are zero. Also by symmetry, 11122 =

11221 = 12233, 1 11 =12222, J11 = 22 , etc.

To compute the nonzero terms of J, note that

1
2 |_|2 2 fj w( ) d =-

3
2

where we have used the normalization constraint (4.5), and therefore

1 1
J = 22 = 33 = -Ji = -.

3 2

The nonzero terms of I can be found by noting that

(4.6)

5. f11 = ) d2 = Ill + 11122 + 13311,

4These calculations are only valid in the interior of the body, far from boundaries.
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and

13333 = - , f w(r) cos4 4 sin q r 2 dr do dO
2 0 J0  o

( {5 d 7)cos' 4 sin # do = 15 2
4 10 4 51

to find

3 1
11111 = 12222 = 13333 =- and 11122 = 12233 = 13311 -.

2 2

The off-diagonal terms of the nonlocal strain tensor evaluate as

E 1 2 = P21 = 11212 612 + 11221 621 = = E12,2 2

and similarly for E23 and E31. We find for the diagonal terms that

El = 11 E + 11122 622 + 11133 633 - J11' 611 - 2 2 E22 - J 3 3 633 = El,

and similarly for E22 and E33. We conclude that in the limit of uniform infinites-

imal strains, the nonlocal strain tensor is identical to the actual (classical) strain

tensor, E = E.

2. Correspondence of the nonlocal log strain tensor for pure dilatation:

In addition to being exact in the limit of infinitesimal strains, we show that for

the case m = 0, E(o) is exactly the log strain tensor for large uniform volumetric

deformations. Consider a uniform volumetric strain with deformation gradient

F = JiR, where R is a rotation vector, RRT = RTR = 1, and J represents

the volume change between reference and deformed configurations. The actual
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log strain tensor E(o) for this deformation gradient is

E(o) = - log(FTF)
2

=log(J3iRR) = - log(J)1.
2 3

For this case, the peridynamic deformation vector-state is:

Y() =F = J-R,

which results in the log bond-strain:

1 1
f (0) log( log(J), V E '-

and the nonlocal strain tensor:

- 1 (2_ 1 )
E(o) = - log(J) -()11

1
= -log(J)

3
5 Jil - -1

2)

1
= log(J)1 = E(),3

where the integral J1 , is given by Equation (4.6).

4.2.3 A fix to the issue of matter interpenetration

We revisit the issue of matter interpenetration and explore how the nonlocal strain

tensor in Equation (4.3) behaves for some of the examples described in Section 4.1.

1. Sub-horizon material collapse: Consider again Figure 4-1, which depicts a

small finite volume of material g C Bo collapsing to a single point z E Bt.

For m < 0, it is easy to see from Equation (4.2) that at a point x E 9,
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E(m)[x] ( ) -+ -oc for x + E c g, and therefore

tr (E(m)(x)) = j (() E(m)[x] ( ) d a -oo,

which follows from (4.3) provided that _Y ( )I < oc, V. E 7-C. This shows that

if any finite volume g collapses to a single point, the nonlocal strain tensor E(m)

exhibits the expected behavior.

2. Interpenetrating jump discontinuities in 1D: In this example, we consider

a displacement jump discontinuity with a deformation field of the form y(x) =

x + a for x > 0 and y(x) = x for x < 0. The nonlocal strain in ID is

E(m)(X) := w( n(m) [x] () d

2m y |m

where in ID we constrain the influence function by f w(I) d = 1. We con-

sider the case a < 0, Jal < 6, corresponding to a small interpenetrating jump

discontinuity. The nonlocal strain at a point x < 0 for JxJ < Jal is

2mE(,)= |+a| "2m (< <

-j_ W(0) d ) f
W( - - a)2"m < + (+ a)2"m <

This shows that for m < -1/2, matter interpenetration near surfaces of dis-

continuity results in an unbounded nonlocal strain scalar, at least in ID, i.e.

E(m)(x) -+ -oc for - al < x < 0 and by symmetry for -Jal < x < Jal.

3. Opening jump discontinuities in 1D: In addition, we consider the case
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a > 0, corresponding to an opening displacement jump discontinuity as would

occur in the presence of fracture. In this case, the nonlocal strain tensor at

x < 0, xI < 6 is

2 E8(x ) = f-XW(|O| - <(E}d

< 00,

provided that

w(1 1) < C1 12m-1, V -(, for some C > 0.

This example shows that for sufficiently well behaved influence functions, open-

ing fracture-type discontinuities are allowed and result in a finite nonlocal strain

scalar.

These previous examples show that use of appropriate bond-strain measures en-

sures that unphysical deformations are ruled out from the peridynamic theory, i.e. the

nonlocal strains become undefined, as expected. This is accomplished without sacri-

ficing the key advantage of peridynamics for problems involving physically admissible

discontinuities such as those which occur during fracture.

4.3 Constitutive models based on the nonlocal strain

tensor

A straightforward approach for formulating constitutive models in terms of the pro-

posed strain measures is based on the peridynamic correspondence concept: the clas-

sical strain energy density function b (E(m)) as originally formulated in terms of a

classical strain tensor E(m) must be evaluated using the corresponding nonlocal strain
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tensor E(m), i.e. 4'(Y) = O(E(m)(Y)). The work-conjugate stress measure then fol-

lows as:

0(m) : 6- (E(m)) V (E(m)).

Finally, the peridynamic force vector-state follows from work conjugacy and using

Equations (4.2), (4.3) and (4.4) as:

>() = ( ( ( Y(m>(Y))

=V (E(,m)) : E(m),_Y d

=((m) : H () z()c()M-1 1 -2 y 4.7)

It should be noted that this extended correspondence formulation generalizes to ma-

terials exhibiting anisotropy and inelasticity as long as they are formulated within an

internal variable framework. Another important observation is that the resulting ma-

terial models are ordinary (which can be clearly seen by noting that the force vector-

state is parallel to the deformation vector-state, i.e. T (() x Y ( ) = 0, V C 7-t),

and therefore conserve angular momentum. It is also interesting to note that in this

correspondence formulation only the symmetric part of the stress tensor contributes

to the force vector-state. This follows from (4.7) and the symmetry of H (a), see

Equation (4.4).

In summary, the proposed extended constitutive correspondence formulation shares

the main features of the original version: it enables the direct use of classical con-

stitutive models and is formulated entirely in terms of integrals of deformation, so

that derivatives need not exist and no special treatment is required in the presence

of discontinuities. In addition, the new formulation addresses the fundamental is-

sues discussed in Section 4.1: 1) it avoids unphysical deformation modes present in

the original formulation by introducing generalized bond-level strain measures, and
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2) the formulation is extended in the sense that constitutive models are formulated

directly in terms of generalized nonlocal peridynamic strain tensors E(m) and their

corresponding work-conjugate stress measures.

4.4 Chapter summary

The ability to naturally handle field discontinuities has previously been put forward as

a key advantage of the peridynamic theory over classical continuum theories [98, 97],

however, without careful consideration this flexibility may go to far and result in

peridynamic formulations in which highly unphysical deformation modes (i.e. matter

interpenetration) are allowed. We have shown by way of example that the consti-

tutive correspondence framework of peridynamics [98] fails to enforce the kinematic

invertibility constraint and thus allows for a variety of unphysical deformation modes

including material collapse, matter interpenetrating surfaces of discontinuity and zero-

energy modes. To overcome this limitation, the constitutive correspondence frame-

work of peridynamics [98] has been extended to a class of constitutive models which

are formulated in terms of generalized nonlocal Seth-Hill strain tensors and their

work-conjugate stresses. These nonlocal strain tensors are in turn based on nonlinear

bond-strain measures which enforce the kinematic constraint at the individual bond

level by design. Several examples are used to show that the modified theory avoids

the associated issues of matter interpenetration in cases where the original theory

fails. The resulting extended constitutive correspondence framework supports general

classic constitutive laws as originally intended and is also shown to be ordinary.
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Chapter 5

Ordinary elastic solids based on

nonlinear bond-strain measures

One of the main conclusions of Chapters 3 and 4 was that the existing constitutive

correspondence formulation of peridynamics allows for unphysical deformations, ir-

respective of the classical constitutive model used. To overcome this limitation, an

extension of the constitutive correspondence theory based on nonlinear bond-strain

measures was proposed in Chapter 4. As an alternative approach to overcome limi-

tations in existing peridynamics constitutive theories, in this chapter we extend the

linear theory of ordinary peridynamics (sometimes called a linear peridynamic solid)

[98] to nonlinear elastic behavior. This extension is motivated, in part, by the success

of finite element discretizations of linear ordinary solids, which were shown in Sec-

tion 3.2.2 to not exhibit zero-energy modes. However, it will be demonstrated below

that this constitutive theory still allows for the possibility of matter interpenetration.

To overcome this limitation, we formulate the ordinary constitutive models di-

rectly in terms of the nonlinear bond-strain measures proposed in Section 4.2. By

construction, these nonlinear measures of bond elongation are inherently singular

when the matter interpenetration constraint is violated and, thus, avoid unphysical
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deformations. As a result, the approach naturally furnishes constitutive models with

the correct limiting behavior under material collapse, in stark contrast with the stan-

dard linear theory [98] where interaction forces remain finite even when the matter

interpenetration constraint is violated.

In the following, we derive the proposed nonlinear theory and provide analytic

examples which demonstrate its advantages over the existing approach. Specifically,

in Section 5.2, concrete analytical examples are provided which demonstrate how

the nonlinear version of the theory overcomes limitation of the original linear the-

ory. Numerical results are provided in Section 5.3 using the standard peridynamic

particle discretization approach[52, 69]. Specifically, we conduct numerical simula-

tions of a peridynamic analog of the Riemann problem, which serves as a simplified

model for the initial stage of ballistic impact events, and provides a good test of the

behavior of peridynamic constitutive models and their discretizations under impact

conditions. These computational results further highlight the advantage of formulat-

ing the constitutive response in terms of nonlinear bond-strain measures and confirm

that numerical instabilities are suppressed by the modified theory.

5.1 Nonlinear ordinary elastic solids

We propose a generalized constitutive modeling framework for ordinary peridynamic

solids which generalizes the linear ordinary elastic solids approach reviewed in Sec-

tion 2.2.2. A basic issue with the linear theory is that it suffers from a similar limi-

tation found in infinitesimal elasticity: in the limit when the material is compressed

to zero volume (Y (() - 0), we have e ) -, which implies a bond-strain of

_ ( --- 1,
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and, in turn, a finite bond-force (2.14) which is unable to prevent matter interpene-

tration. The source of the problem is that the deformation measure e does not have

the appropriate kinematic response under large compression. However, as will be

demonstrated below, it is possible to formulate nonlinear ordinary elastic solids in

terms of bond-strain measures which do not suffer from this limitation.

The constitutive models developed in this chapter are formulated in terms of the

nonlinear bond-strain measures introduced in [70] and described in Section 4.2:

1
(m)(( : [cK(()" m- 1],2m

where

y(()) := .

We propose nonlinear ordinary elastic solids with strain energy density:

= M )) = 2 (m) + p trW(4M)), (5.1)

where O(m) := trw(f(m)) is a nonlinear measure of the volumetric dilatation, A and p are

peridynamic Lame constants, and we introduce the w-trace operator tr, (-) : V - R,

where the w-trace of a scalar-state a is defined as

tr, (W := (( 1 ( ) d .

For consistency with the trace of the identity tensor in 3D, we constrain the influence

function to satisfy tr, (1) = fu ( ) d. = 3, where we use the identity scalar-state:

1 (() := 1. The force vector-state for a nonlinear ordinary elastic solid follows from

93



work conjugacy as

One could in principal apply a similar approach to even more general strain energy

densities based on peridynamic analogs of deformation (strain) invariants [75, 37].

The elastic energy density can alternatively be written as the sum of a volumetric

and a deviatoric term:

= K(n2>+ A trw(,dev E d), (5.2)

where the w-traceless deviatoric scalar-state ffm is defined as

dev (n

Eim) :=E(m) - tr (f (M)) 1/3,

and R, = A + 2p.1

It can be shown that the extension scalar-state (2.12) can be written in terms

of the strain scalar-state with m = 1/2, as e ( ) = f(1/2) ( ) - . Furthermore, it

is easy to show from Equation (5.2) that nonlinear ordinary solids with m = 1/2 are

equivalent to linear ordinary peridynamic solids with unnormalized influence function

'Note the analogy with classical hyperelastic isotropic materials with Lame parameters y and A
which can equivalently be written in terms of K and p, where K = A + 2p.
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W (d) = L7 (d) ( 2, bulk parameter k = k, and shear parameter a = 6p/ -y:

(1/2)= 2 (1/2 +tr( 2 ) (/p1/2))

= -o12) + -y- - ( I) |122(f(1/2) ) - 0(1/2) d

2= 2 +2 ( ( - 3||d

k02 + ( edev )dev ( ) d ,
2 2 j

which is identical to the energy for the linear peridynamic solids, as defined in Equa-

tion (2.13), and where we use the fact that

0(1/2) = d) f(1/2) d = -3I d = 0.

In this sense, the proposed nonlinear theory is a direct generalization of the linear

ordinary peridynamic solids model [98].

It follows that for k = r and a=7/6 = j p, the energy density of a nonlinear

ordinary elastic peridynamic solid is identical to its corresponding classical isotropic

elastic solid for uniform infinitesimal strain fields. In terms of the classical Lam6

- -2- 5constants, the peridynamic Lam6 constant A follows as A K - t = K - = A - p.

The relationship between the peridynamic Lame constants and their classical values

are summarized as:

5

-2

also + = + -.3

These results can also be derived directly by equating the expression for the strain
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energy density, Equation (5.1), for uniform infinitesimal strains with the strain energy

density of classical isotropic elastic materials (see also [98, 70]).

Another interesting feature of this formulation is that a material with A = 0 has

elastic energy density

ft M))~ (rnd , (5.3)

which directly satisfies the definition of a bond-based peridynamic material [100].

Consistent with this observation, one finds that A = 0 implies A = p and therefore

/ = 1/4, as expected for bond-based peridynamics.

We point out that these materials share features with the extended constitutive

correspondence materials discussed in Sections 4.2-4.3, in that they are based on

bond-level nonlinear strain measures and are both ordinary. However, these material

models are distinctly different due to the fact that the isotropic materials described

here explicitly include a bond-based term which is absent in the extended constitutive

correspondence formulation.

5.2 Limitations and fixes for ordinary elastic solids

In this section, we seek to demonstrate how the generalized theory of ordinary peridy-

namic solids proposed above overcomes fundamental limitations of the original linear

theory (alluded to in Section 2.2.2). Specifically, we provide concrete examples which

expose these limitation in the linear ordinary elastic theory [98] and demonstrate the

advantages of the proposed generalized nonlinear theory. The examples we use are

the same as those in Section 4.2.

96



5.2.1 Unphysical behavior of the linear theory under degen-

erate deformations

1. Sub-horizon material collapse: We first consider the situation depicted in

Figure 5-1 where a small volume of material g C BO collapses to a single point

z E Bt. The peridynamic deformation vector-state in this case is assumed to be

Y [x] ( ) = 0 for x E g, x+ E g and Y [x] ( ) = otherwise. This deformation

is clearly unphysical as it violates the matter interpenetration constraint (2.3)

and, in fact, does so over a finite region.

so Bt

Figure 5-1: Schematic showing a region C Bo collapsing to a single point z E Bt.

Computing the elastic energy density functional at x, Equation (5.1), for this

examples with m = 1/2 (which corresponds to the linear case), we find

101 = f u) | 11 ( _Y ( )I - |(1) d
= -<(x)

= -LX) d <00o,
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a) opening b) interpenetrating

Figure 5-2: Schematic of surface discontinuities, with both an opening deformation
discontinuity (left) and an interpenetrating deformation discontinuity (right).

where g(x) := {{ I x + E g}. We therefore find that the energy is bounded:

2  2 (X)
k0 2  a

2 2 ]x

This indicates that the linear ordinary theory fails to prevent local matter col-

lapse. In other words, a finite amount of energy is required to force the body

into an unphysical deformation mode. This is consistent with the observation

in Section 2.2.2 that the bond-force remains finite in the presence of matter

interpenetration.

2. Interpenetrating jump discontinuities in 1D: Another illustrative example

consists of a displacement jump discontinuity in ID with a displacement field

of y(x) = a + x for x > 0 and y(x) = x for x < 0. A schematic showing the

nature of this discontinuity is shown in Figure 5-2 for a > 0 on the left (which is

physically acceptable), and a < 0 on the right (which is physically impossible).
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We consider the strain energy density functional, Equation (5.1), and for sim-

plicity restrict attention to the ID and the bond-based case, \ = 0, as in the

limit of matter interpenetration, the bond-based term typically dominates the

dilatation term for the cases considered here. Additionally, for a < 0 with

Jal < 6, we find at a point x < 0 with IxI < Jal that

1 +
= w(Ix' - x)' zi-2 ( - -) dx'

0IX+6
-Wa(x, - XI) It-x - x'+a - x + _ (I ' XI )2

jx-a w(x' - x) (2x - 2x' - a)2 d' + X+W(I - x a2 dx'
0 |X' - X|2 JX-a Ix' - 12

< 00,

provided that

0 w(IX' - X)X' - X- 2 dx' < o. (5.4)

This indicates that for sufficiently smooth influence functions, the energy re-

quired to create a surface of discontinuity involving matter interpenetration is

finite.

We note that in principal it is possible to use influence functions which are

sufficiently singular as -+ 0 to prevent matter interpenetration due to jump

discontinuities. However, this has two unacceptable limitations: 1) uniform

crushing, as in the first example, is still allowed, and 2) as will be shown be-

low, singular influence function would also prevent opening (crack-like) jump

discontinuities, whose existence is often regarded as a key advantage of the

peridynamic theory over existing continuum models.

3. Opening jump discontinuities in ID: We next consider the case a > 0,
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corresponding to an opening displacement jump discontinuity (as would occur

for fracture). The goal here is to confirm that the constitutive behavior is

reasonable in the presence of physically allowable discontinuities, as the ability

to handle such discontinuities is regarded as one of the key features of the

peridynamic theory. At a point x < 0 with IxI < 6, we find

X6w (Ix' - x )(1)( dx'
1 x-xD+dx

= Wa|x' - x|) Ix -x|-2 (lx+ a - x| - |X' - x l)2 dx'
0x+

=a2 j _ X)I)x' -2 dx'.

This shows that the elastic energy density is finite for sufficiently smooth in-

fluence functions, as desired. However, it is interesting to note that for poorly

behaved influence functions with w(1 1) 1 - 2 < -± oc, the elastic energy

density is undefined at the surface of discontinuity, x = 0. This indicates that

the regularity of the influence function dictates the smoothness of the possible

solutions to the peridynamic equations.2 In particular, in order for physically

realistic opening discontinuities (e.g., Figure 5-2, left) to be admissible, the

influence function must be sufficiently smooth that Equation (5.4) is satisfied.

To summarize, when using the linear theory of ordinary peridynamic solids

one is faced with two options regarding the choice of influence function. The

first option is to allow for crack-like discontinuities (using sufficiently smooth

influence functions), but this choice would also allow for matter interpenetra-

tion due to jump discontinuities. The other alternative is to choose influence

functions which are sufficiently non-smooth to prevent matter interpenetration

due to jump discontinuities. However, this would necessarily also prevent the

2 A related observation that the smoothness of the influence function (in the form of the bond-
based micro-modulus) impacts the smoothness of the solution has previously been made in [99].
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possibility of opening crack-like discontinuities (which are highly desirable). It

appears that the only other feasible option is to modify the strain measures

so that matter interpenetration is strictly prohibited, while opening crack-like

discontinuities are still allowed, as desired.

5.2.2 Behavior of the nonlinear theory under degenerate de-

formations

Here we now show how the generalized nonlinear ordinary elastic theory, as presented

in Section 5.1, properly addresses the issues with the linear theory. In particular, the

new formulation strictly precludes matter interpenetrating deformations, yet allows

for physically admissible crack-like surfaces of discontinuity. We repeat the examples

above to investigate the behavior of the nonlinear theory under unphysical deforma-

tions.

1. Sub-horizon material collapse: We again consider the unphysical situation

in which Y [x] ({) 0 for x E g, x + C g. The nonlinear dilatation for this

example is

O(m)j (~xd

If ( 1-2)l 12 m _3

2m ](x) 2m

It follow immediately that 0(m) -+ -oc for m < 0. It is straightforward to

show that this is also true for m = 0. In turn, this implies that for any x E

(x) -+ oc, provided that A > 0.

For completeness we also consider the case in which the constitutive model is

that of a nonlinear bond-based material, A = 0, p > 0. In this case, the elastic
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energy density functional is

O~(M) (Y) f A -m(l 2m_ 12 2d

and again we find that both for m < 0 and m = 0, an infinite amount of energy

is required to fully collapse the material, i.e., 0(m)(x) --+ oc for x E g.

2. Interpenetrating jump discontinuities in 1D: We return to the displace-

ment jump discontinuity example which assumes an imposed deformation field

of y(x) = a + x for x > 0 and y(x) = x for x < 0. A schematic showing the

nature of this discontinuity is shown in Figure 5-2 for a > 0 on the left (which is

physically acceptable), and a < 0 on the right (which is physically impossible).

We consider the strain energy density functional, Equation (5.1), and for sim-

plicity restrict attention to the bond-based limit, A = 0. First considering the

matter interpenetrating case, a < 0, with Jal < 6, we find at a point x < 0 with

JxJ < al that

)()= 4 2  4 ( X (x' + a - xi2" - - X12m) 2 dx'
4m2 o x - x 4"

Am j Cx '72 ((X- X) - a - x) 2m (X' - X) 2 x

± ft X+J W / x) )2)

+ 4 2 J 4m ((x' + a - ) - (X' - X)2" dx',

and V(m)(x) - 00 for 4m < -1. It follows from symmetry that O(x) - 00 for

a < x < -a, m <

3. Opening jump discontinuities in ID: Lastly, we return to the case a > 0,

3This result is similar to that in Section 4.2.3, where is was shown that the nonlocal strain tensor
becomes infinite near interpenetrating jump discontinuities for m < 1/2. The fact that the result
here is slightly stronger results from the fact that isotropic ordinary materials contain a bond-based
term which provides stricter enforcement of the kinematic constraint than an integral measure of
strain (provided, of course, that a nonlinear bond-strain measure is used).
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corresponding to an opening displacement jump discontinuity (as would occur

during fracture). At a point x < 0 with JxJ < 6, we find

(W =4m2 J X - ox4m( + a - xi2"n - ia' - x12m) dx',

and we find that 0(x) < oc, provided that f_+ w(x' - 1) 1' - x4" d < o0.

This indicates that for a nonlinear ordinary elastic model (with m < -1/4

and a sufficiently smooth influence function) prevents matter interpenetrating

surfaces of discontinuity (at least in ID) and simultaneously allows for physically

reasonably opening jump discontinuities. We speculate that the situation is

similar for m E [- 1/4, 0], and interpenetrating discontinuities require infinite

work and are therefore inadmissible. In lieu of analytic results, in Section 5.3

we support this claim using numerical examples which compare the material

behavior using a strain measure with m = 0 and the standard m = 1/2.

5.3 Numerical example: peridynamic Riemann prob-

lem

In order to further highlight the advantages of using nonlinear bond strain measures,

we consider a peridynamic analog of the classical Riemann problem. For complete-

ness, we note that an analytic solution to a version of the peridynamic Riemann

problem has been solved in the context of linear bond-based peridynamics [23]; how-

ever, the issue of matter interpenetration was not considered, as it was not a focus of

the paper. We note that because the problem was linear in the displacements, matter

interpenetration was indeed allowed as a possible solution.

Here, we conduct simulations of a 2D peridynamic bar of length 1 = 2 m and

height h = 1 m. The numerical method we use is based on the particle discretization

103



approach reviewed in Chapter 3. The initial conditions for this problem are

-1200 m/s for x 1 > 0
vi (x t 0)={

1200 m/s for x1 < 0,

v 2(x,t = 0) = 0,

y(x,t 0) = x.

This example provides a strenuous test of peridynamic constitutive theories when

subjected to compressive loadings, as might occur during ballistic impact events. It

was demonstrated in Section 5.2.2, that nonlinear ordinary elastic theories of peridy-

namics with strain measure parameters m < 0 have the appropriate limiting behavior

to prevent localized volumetric material collapse. Furthermore, for m < -1/4 it was

shown that matter interpenetrating surfaces of discontinuities are also disallowed (at

least in ID). It is possible that this last property also holds more generally, for m < 0,

but we have yet to demonstrate this analytically. Instead, here we conduct numer-

ical examples using m = 0 and m = 1/2, respectively, in order to demonstrate the

advantage of using a logarithmic bond-strain measure in computations.

For the simulations in this section, the material properties are taken to be A =

10 GPa, p = 10 GPa, p = 1180 kg/M 3, and 6 = 0.05 m. Also, the 2D influence

function we use is given by Equation (6.6). Using the standard peridynamic particle

discretization (Sections 3.1), we first consider the peridynamic Riemann problem for

a relatively coarse mesh of 20,000 particles and 80 neighbors within the horizon of

each (interior) particles. The results using a strain measure with m = 1/2 at several

different times are shown in Figure 5-3, where the half of the specimen initially on

the left with velocity v1 (t = 0) = 1200 m/s is colored red and the right half with

vi(t = 0) = -1200 m/s is colored blue. The surface between the two halves is

modeled to be pre-fractured so that it cannot support tensile loadings, but particle
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interactions are maintained in compression. This is done in order to simulate contact

in a more natural way, but the conclusions of this section are insensitive to this

particular modeling assumption. The corresponding results for m = 0 are shown in

Figure 5-4.

These results indicate that in certain situations (e.g., sufficiently high impact

velocities), the traditional linear peridynamic solids, m = 1/2, are unable to prevent

matter interpenetration in simulations. On the other hand, for the case using a

log-strain measure, m = 0, no appreciable matter interpenetration is observed for

the same initial conditions (Figure 5-4). This is a direct result of the fact that as

neighboring particles approach each other, the repulsive force between them increases

arbitrarily in the limit of complete contact. We note that for sufficiently low velocities

(not shown in this thesis as it is a more standard peridynamic result), the simulation

results remain physical using either of the two strain measures. 4

While the use of nonlinear strain measures appears to be critical for preventing

matter interpenetration during impact events, we point out that there are some po-

tential drawbacks to the approach. The first drawback is that computing nonlinear

strain measures is more computationally expensive than the constitutive evaluations

in the linear version of the theory. A second limitation is that for even higher ini-

tial impact velocities, discretization errors can still lead to matter interpenetration

in simulations. However, in practice this limitation can be overcome by further re-

fining the discretization and having more neighboring particle in the horizon, but

this may become computationally prohibitive. The final and most significant draw-

back is that as particles approach each other, the nonlinear behavior is such that

the elastic "bond-stiffness" increases, meaning that the simulation stable time-step

often has to decrease substantially under compressive loadings. This is in contrast to

4 Our observation has been that for fixed elastic constants and horizon size there is a critical
energy barrier (impact velocity) which must be overcome in order for matter interpenetration (as
shown in Figure 5-3) to occur in linear peridynamic solids.
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(b) t = 50 ps

(c) t = 100 /Is (d) t = 150 ps

Figure 5-3: Self impact for 20,000 particle mesh with Ivol = 1200 and m = 1/2.

the case m = 1/2, where the stable time-step does not appear to change appreciably

throughout the course of the simulation.

To show that these conclusions are insensitive to the discretization size, we provide

additional results using a slightly finer mesh of 34,000 particles and 120 neighbors for

each (interior) material point. The results for m = 1/2 are shown in Figure 5-5, and

those using m = 0 are shown in Figure 5-6. Once again, we conclude that using a

nonlinear strain measure (m < 0) is critical for preventing matter interpenetration

in simulation. In fact, our experience suggests that as the discretization is further

refined, matter interpenetration issues become more pervasive for m = 1/2, while with

m = 0, finer meshes are better able to prevent matter interpenetration for fixed initial

velocity, horizon and elastic constants. This is likely due to the fact that we are better

resolving the highly localized nonlinear response. Additionally, we point out that the
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(b) t = 50 ps

(c) t = 100 pis (d) t 150 ps

Figure 5-4: Self impact for 20,000 particle mesh with Ivo| 1200 and m = 0.

results in Figures 5-4 and 5-6 show solutions which are relatively insensitive to the

mesh size, an indication of convergence.

5.4 Chapter summary

A nonlinear extension to the existing linear elastic theory of ordinary peridynamics

(linear peridynamic solids) was proposed. Although the ability to naturally handle

field discontinuities has been suggested as an important advantage of the peridynamic

theory over classical continuum theories, [98, 97], in some situations this flexibility

may go to far and result in peridynamic formulations in which highly unphysical de-

formation modes (i.e. matter interpenetration) are allowed. The proposed nonlinear

generalization is shown to overcome limitations in existing peridynamic theories in

the limit of matter interpenetration. The is accomplished by formulating the ordinary
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(b) t = 50 ps

(c) t = 100 /is (d) t = 150 ps

Figure 5-5: Self impact for 35,912 particle mesh with Ivol = 1200 and m = 1/2.

(a) t = 0 ps (b) t = 50 ps

(c) t = 100 Ps (d) t = 150 ps

Figure 5-6: Self impact for 35,912 particle mesh with |vol = 1200 and m = 0.
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constitutive theory directly in terms of nonlinear bond-strain measures which are ca-

pable of enforcing the matter interpenetration constraint of peridynamics (2.3) on

a bond-by-bond basis. Several analytical examples are provided which demonstrate

how unphysical behavior is prevented by this nonlinear generalization. Numerical

examples based on a peridynamic analog of the Riemann problem were used to fur-

ther highlight the advantages of the proposed nonlinear theory. In particular, it was

demonstrated that the linear version of the theory exhibits matter interpenetration

for sufficiently high initial impact velocities, and that this issue is alleviated by using

a logarithmic bond-strain measure.
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Chapter 6

Brittle damage modeling in

state-based peridynamics

In this chapter, a generalized bond-failure criterion for brittle state-based peridy-

namic materials is proposed. This approach extends several previous approaches to

peridynamic damage modeling in which bonds are severed based on either a maxi-

mum bond-stretch criterion [94] or a critical bond-energy criterion [39] to more general

cases in which the critical bond-energy at failure is allowed to vary with bond length.

As with previous approaches, the proposed damage model is constructed such that

the classical linear elastic fracture energy, Gc, is dissipated when all of the bonds are

broken across an interior fracture surface of unit area.

The damage formulation is derived using a bond-energy type of criterion, similar

to that in [39]. However, it will be shown that the concept of bond-energy is am-

biguous due to the fact that the energy dissipated by severing a single bond depends

on the order in which neighboring bonds are severed. To circumvent this difficulty,

we introduce the instantaneous bond-energy, an unambiguous quantity which corre-

sponds to the energy dissipated per unit volume-squared when a single bond is cut

instantaneously (i.e. all other bonds remain unchanged during the bond-severing
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process). The bond-failure criterion which we propose here is formulated in terms

of this instantaneous bond-energy. In order to validate this bond-failure criterion,

we conduct numerical simulations of brittle elastic peridynamic materials, where the

elastic part of the constitutive response is based on the nonlinear generalization of

ordinary elastic solids proposed in Chapter 5.

In Section 6.1, we derive the proposed bond-failure criterion for general state-based

peridynamic materials. We specialize the failure criterion for a specific peridynamic

influence functions and demonstrate that the resulting constitutive model satisfies

the laws of thermodynamics in Section 6.1.3. In Sections 6.2.1 and 6.2.2, we inves-

tigate the ability of the nonlinear ordinary elastic solids based approach to capture

experimentally observed fracture patterns in brittle materials subjected to projectile

impact loadings. In addition, we demonstrate the scalability of the C++/MPI im-

plementation in Section 6.2.3, which is important for resolving small-scale features of

fracture.

6.1 Bond failure criteria for brittle peridynamic

materials

Existing approaches to damage modeling in peridynamic are typically based on sev-

ering bonds instantaneously when a bond-level criterion is satisfied [94, 121]. For

the most part, these criteria have been restricted to the bond-based version of the

theory; however, recent developments have begun to extend these strategies to the

state-based theory of peridynamics [39].

These approaches are made to be consistent with linear elastic fracture mechanics

(LEFM) and the classical Griffith criterion [34] in the appropriate limit. This is

accomplished by calibrating the bond-severing criterion such that cutting all of the

bonds which cross an interior "crack" surface results in a dissipated energy per area
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of Gc, where G, is the classic fracture energy (fracture energy release rate) of the

bulk elastic material. The original demonstration of this correspondence between a

bond-severing criterion and the classical fracture energy was presented in [94]. In the

following, we use this idea and generalize to the case where the critical bond-energy

is a generic function of initial bond-length.

6.1.1 Relationship between the dissipated bond energy and

the fracture energy

Starting with the 3D case, suppose we have a fracture energy of Gc, with units of

energy per unit area. We require the fracture energy to be identical to the energy

dissipated by severing bonds across an interior surface of unit area. Furthermore,

suppose that the energy dissipated per bond is in general a function of the initial bond

length, sc( ) (which has units of energy per unit volume-squared), where := |(1.

The total elastic energy per unit area dissipated on one side of the newly formed

surface is (see also [94],[39]):

S27r cos SC (z ) 2 sin($) d < d dz =Ge, (6.1)

where we use spherical coordinates. The intuition behind the form of this integral

is depicted schematically in Figure 6-1. The factor of a half in front of Gc is due to

the fact that we are only considering the energy dissipated in the lower half of the

fractured body (z > 0).

Similarly in 2D:

/f 6 f6 Cos-,(40/scs( ) dO < d z = -G, (6.2)
SZ -cos 1 (z/) 2

where G, now has units of energy per unit length, sc() now has units of energy per
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Figure 6-1: Schematic showing the region within the horizon 'N(x) and across the
fracture surface from point x. This figure (modified from [94]) depicts the domain of
integration in Equations (6.2) and (6.1).

unit area-squared, and the integral is in polar coordinates.

The functional form of sc( ) is a constitutive choice which we call the bond-

failure-energy function. The bond-failure-energy function weighs the relative failure

strength of bonds depending on their initial lengths. For example, a reasonable first

assumption might be that bonds corresponding to material points which are initially

relatively far away from each other fail at lower bond-energies than material points

which are initially closer to each other. This is in contrast to most existing approaches

in which bonds are severed at the same energy independently of the distance between

the material points [94, 121, 39].

For concreteness, in the remainder we consider a particular functional form for

the bond failure-energy function:

sC( () = /3w(() (j- 2 (6.3)
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where w( ) is the normalized spherical influence function used for the nonlinear ordi-

nary elastic material models in this thesis, 1 and 3 is a constitutive parameter which

can be related to the fracture energy, G. This approach differs from existing ap-

proaches which are typically based on a maximum relative stretch (or strain) [94, 121]

or a maximum bond-energy which is constant for all bonds in the family [39]. It will

be shown in the applications later in this chapter that such an approach provides

a feasible alternative to existing approaches and is capable of capturing physically

realistic fracture patterns.

For the special case in which the material is bond-based with strain measure

parameter m = 1/2, the bond-failure-energy function, Equation (6.3), is equivalent to

a maximum relative bond-displacement criterion.2 To demonstrate this, we consider

a maximum bond displacement criterion: bonds are severed when u() > uc, where

u( ) := Y () - . This failure criterion can be rewritten in terms of bond strains

as:

>(1)

or alternatively

u2

where s ( ) is the bond-energy in this case, as for bond-based materials

where V) is the elastic energy given by Equation (5.3) for m = 1/2. Taking ) =

'In applications we used the influence functions in Equation (6.6) for 2D and Equation (6.7) for
3D.

2 The use of a maximum relative bond displacement criterion is motivated by cohesive models of
fracture [104] which typically have an analogous critical opening displacement.
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this bond displacement criterion can be equivalently expressed as: bonds are severed

when s {() > sc( J), with sc( ) given by Equation (6.3).

6.1.2 Interpretation of the bond energy

In order to model brittle fracture problems in peridynamics, it is important to be able

to calculate the elastic energy which is dissipated when breaking a single bond. For

the case when the material is bond-based (as discussed above), the bond-energy is well

defined, as the elastic energy is a direct integral of bond-energy, Equation (5.3). For

more general elastic state-based materials, the energy per bond is not well defined.

One proposal is to define a bond-energy by the integral of the work done on the

bond [39]:

s M( t = _oT{)-Y{) dt.

However, this definition of bond-energy is not, in general, equal to the energy dissi-

pated by severing the bond, as the dissipated energy for a particular bond depends

on whether other bonds are severed simultaneously. To show this, we consider the

case where the material is nonlinear ordinary elastic, Equation (5.2), modified appro-

priately to allow for severing bonds. The modified elastic energy is of the form:

2 "(x) "(x)

where

I for intact bonds,

0 for severed bonds,

and E( ) is the preferred bond-strain measure, Equation (4.2).
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We first consider the case where all the bonds in the region Nt C W are broken

simultaneously. The energy dissipated in this process is

At= A (j()&(g) dk) - X () &(g) dg - Jw()s(g) di)
+ d f c) d - d 2~

+ jK~~~ d (j-)~~ dd) - d jK) ~

+fjd)E s~ d .

We next consider the energy dissipated by cutting the bonds in some region Ht and,

in an independent experiment, the energy dissipated by cutting the bonds in Wt, with

71t U 7 = N, wt n w = 0. This results in

±Va +Ab =~d +ftj ) w( &()E(f w() ( () d

+ (Jd) ~ d ) (JA)K d ) -2 14

+ d) (j() A- d)

and for A = 0, AVt $ A + A#b.

This result shows that, in general, the dissipated bond-energy is not uniquely

determined by the deformation state, as the elastic energy which is dissipated by

breaking a particular bond depends on whether other neighboring bonds are cut
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simultaneously (as well as which other bonds are being severed). This can be demon-

strated in an even simpler manner by considering the two extreme limiting cases: 1)

all bonds in the horizon are cut simultaneously, and 2) only a single bond is cut while

all other bonds remain unchanged. In the first case, we have Wt =-(x), and the

total energy dissipated is

AVi= -1 (jA-~~ d )(~)) d ) + d ,

and the dissipated energy associated with a particular bond ( is

1- ()

as jsi(=)AV),.

In the second case, we have Wt - {(} (which has zero-measure) and the energy

dissipated due to cutting the bond in isolation (i.e., with all other bonds unchanged)

is

12 Aw()()(w~c~ d ) +,

Evidently, the energy dissipated per bond when cutting all bonds simultaneously,

s ( ), is not equal to the energy dissipated by cutting a single bond in isolation,

s2( ): sl(K) # s2(). In the numerical simulations conducted later in this chapter,

we have found that it is typical for bonds to be severed in isolation (i.e., at different

time-steps), so a reasonable approximation to the energy dissipated per bond is given

by s 2 ( ) above. We call this particular bond energy the instantaneous bond-energy,

118



which in general is defined by the Fr6chet derivative:

finst~d =, ( (6.5)

where b is given by Equation (6.4).

6.1.3 Brittle peridynamic material model

The constitutive response for the brittle peridynamic materials simulated in this chap-

ter are assumed to have strain energy density as given in Equation (6.4). For the 2D

simulations in the chapter, we use a spherical peridynamic influence function, Equa-

tion (2.7), of

10
W2D( ~ 1066 36)(6- (6.6)

which satisfies the conditions tr, (1) = f 22D ( ) d' = 2 (at least for material

points which are far from the boundary), and w > 0 for .( E (0, 6). Similarly, for 3D

simulations we use the influence function:

3156 7(31-i-6)(6- 1)3, (6.7)
167r

which satisfies tr, (1) f1 w3D ( ) d = 3 at points far from the boundary of

the body. We use the notation N 2D and N 3D to distinguish the dimension of the

peridynamic horizon, when necessary.

We choose to use these (normalized) influence functions everywhere in the do-

main, even near boundaries of the body. A consequence of this decision is that near

boundaries we have tr, (1) $ 3 in 3D and tr, (1) / 2 in 2D, which in turn implies that

the nonlocal dilatation near free surfaces will not be exact even for uniform infinites-

imal strains. Despite this apparent drawback, we feel that this interpretation of the
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peridynamic influence function is more natural as it does not artificially inflate the

bond-energy/bond stiffness near surfaces. It also allows for a more consistent treat-

ment of bond-damage, because the initial boundary surfaces have the same surface

energy as ones created during the bond-failure/crack propagation process.

For a given influence function (2.7), the value of 3 from the bond-failure-energy

function, Equation (6.3), can be computed analytically by evaluating the integrals

(6.2), (6.1) for 2D and 3D respectively. For example, computing these integrals using

(6.6) and (6.7), respectively, leads to:

/f fcos- (z/) W(2D () dOddz 8

J z -COS- 1 (Z/0 2 7T6

and

6 J 27r f6  cos-1(z/ ) 3D(0)63
S Jz 2 2in=326

By matching the energy dissipated when severing bonds to the classical fracture

energy G, using Equations (6.2) and (6.1), for 2D and 3D, respectively, we find

7r
/2D =-G, in 2D,16

and

16wr
03D = 1 G, in 3D.

63

Model Summary: The constitutive response for the brittle peridynamic materials

in this thesis are assumed to have a free energy given by Equation (6.4), which results
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in a force vector-state of

T [)() = X + 2fp(K) 1(K) K() 1()"r-

(6.8)

with

(0) (t) =

0

1

for E(() > 0 and the bond failure criterion, (6.10)

or (6.11) for 2D and 3D, respectively, is satisfied at

some time 0 < to < t,

otherwise,

(6.9)

and where the bond failure criterion is:

A& (() (2D

7T 6G,
16 1 (() > 0 in 2D

(6.10)

and

167T 6G
;> 63 1 ( > 0 in 3D.

(6.11)

The bond failure criterion, (6.10) or (6.11), can be written generically as

ninst( ) > sc(e), f t) > b 0.

In simulations, we use a slightly modified version of the bond failure criterion:

f () >0,
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to ensure that the two bonds3 connecting x and x' are severed simultaneously, without

otherwise affecting the fracture criterion.

The model is formulated so that when broken bonds are under compression, their

force contributions are still included. This allows for a naturally treatment of material

recontact after fracture, and prevents matter interpenetration even in cases where the

material is fully damaged. In addition, the model is constructed such that only bonds

under tensile strains are allowed to fail. This model has the property that if all of

the bonds are broken across a surface of unit area (in such a way that the bonds are

severed asynchronously, i.e., at different times), then the dissipated energy required

to create the new fracture surface is exactly the fracture energy, G,.

A measure of the nonlocal damage at a material point x is defined by

D(x) : 1 -- -j () # ( ) d , (6.12)
d "(X

where d is the dimension: 2 or 3, for 2D and 3D, respectively. This parameter is

convenient for detecting the initiation and propagation of fracture surfaces, as it

'counts' the number of material points which are still interacting with the point x. It

can also be interpreted as a measure of the amount of free surface near the material

point x. Material points near newly created fracture surfaces will have a higher value

of nonlocal damage D, as will points near external boundaries of the body.

For completeness, we show that the failure model proposed in this section also

satisfies the second law of thermodynamics. In order to satisfy a version of the

Clausius-Duhem inequality (as given in Appendix A.2), it is necessary that

3 There is a bond at x to x', as well as a bond at x' to x.
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where the free energy @ is given by Equation (6.4). From Equations (6.8) and (6.9):

for E() > 0 and P () =0 otherwise. For (_) > 0, we have ( ) < 0 and5(() < 0

only if misft () ;> s(I ) > 0. This result establishes that the laws of thermodynamics

are satisfied, and a rigorous accounting of the various energies (elastic, kinetic, and

dissipation due to fracture) is therefore possible.

6.2 Validation

The proposed model for brittle fracture was implemented in C++ using an appro-

priately modified version of the standard particle discretization strategy described in

Section 3.1, and parallelized with C++/MPI using a ghost particle strategy [80]. The

resulting approach is then applied to two test problems in order to validate the ability

of the model to capture experimentally observed fracture patterns, and to confirm

that the dissipated fracture energy and observed crack patterns are insensitive to the

discretization size.

6.2.1 Edge-on impact test of PMMA plates

As an initial test to validate the brittle peridynamic material model proposed in

Section 6.1.3, we simulate an edge-on impact test designed to initiate the propagation

of a Mode-I crack. Schardin [101, 102] conducted the first edge-on impact tests in the

1930s to investigate fracture patterns in glass. More recently, Rosakis and co-workers

have used edge-on impact tests to study crack growth in bi-materials [59, 105]. The

numerical simulations presented in this section are inspired by tests of Umberger

and Love [115] who conducted edge-on impact test using a gas gun to accelerate

an aluminum cylinder to impact a pre-notched PMMA target in a one-point bend
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configuration (see Figure 6-2). Coherent Gradient Sensing (CGS) techniques [112]

were used to obtain information about the crack propagation including the evolution

of the near-tip displacement gradients and the crack tip speed. An experimental

observation was that at low impact velocities a single Mode-I crack is propagated in

the x direction from the notch tip. Crack branching occurs for higher initial impact

velocities and the number of cracks generally increases as the velocity is increased.

A few examples images from the experimental results in [115] are reproduced in

Figure 6-3.

Figure 6-2: A schematic of the specimen and impactor geometry for the Mode-I
edge-on impact tests of Umberger and Love on pre-notched PMMA plates. Figure
reproduced from [115].

To model this experiment, we use material properties for the target corresponding

to that of PMMA, with density p = 1180 kg/m 3 , elastic modulus E = 3.5 GPa, and

Poisson's ratio v = 0.35. For plane stress in 2D, these elastic constants correspond to

peridynamic Lam6 constants of [i = 2.6 GPa and \ = 0.1 GPa. The fracture energy

for the PMMA was taken to be G, = 400 J/m 2 . The target geometry is as depicted in

Figure 6-2. The projectile geometry was simplified for these 2D simulations to have

a square shape with a length of 0.02 m for each edge. The elastic constants for the
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projectile correspond to those of aluminum, with E = 70 GPa, v = 0.33 and p = 2700

kg/m 3 . Fracture is suppressed in the aluminum projectile. In most simulations, a

relatively large peridynamic horizon of 6 = 0.0055 m is used.

Simulation results for a fixed particle density and peridynamic horizon size are

shown in Figure 6-4 for varying initial impact velocities. In this figure and throughout

this chapter, the plotted material damage corresponds to a discrete version of the

nonlocal damage, Equation (6.12). Recall that this definition of material damage

'counts' the number of neighbors a given particle it is still interacting with, and

can be interpreted as a measure of the amount of nearby free surface. As a results,

particles which are close to newly created fracture surfaces will show higher values

of nonlocal damage D, as will particles which are near the external boundary of the

discretized domain.

The results in Figure 6-4 demonstrate that the proposed brittle damage model

is capable of qualitatively capturing the experimentally observed trend of increasing

number of cracks with increasing initial impact velocity.4 At sufficiently low velocities,

the numerical results also exhibit the clear propagation of a single Mode-I crack. At

sufficiently high velocities, fracture directly under the impactor is observed, again

consistent with the experiments.

4These comparison are only qualitative, as we are making several simplifying assumptions, e.g.,
the projectile geometry.
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(b) vo = 50.5 m/s

(c) vo = 58.3 m/s (d) vo = 65.9 m/s

Figure 6-3: Experimental results (reproduced from [115]) with different initial im-
pact velocities for edge-on impact of PMMA. Results show a transition from Mode-I
fracture to crack branching at higher velocities. Black and white contours depict
deformation gradients from Coherent Gradient Sensing.
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(b) vo = 25 m/s

0 #

*.00

(c) vo = 35 m/s (d) vo = 50 m/s

Figure 6-4: Nonlocal material damage at t = 0.001 s for a discretization with 61,600
particles and a horizon of 6 = 0.0055 m, with varying initial impact velocities.
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In the simulations, we are able to carefully track energy histories. In Figure 6-11,

the elastic energy, kinetic energy and dissipated fracture energy is plotted over time

for the case 6 = 0.0055 m, vo = 15 m/s, and a relatively fine particle density with

61,600 particles. The elastic energy and kinetic energy are directly computed from the

discretized constitutive formulation. The dissipated fracture energy is computed as a

sum over time of the energy dissipated by severing bonds, which is estimated to be

the instantaneous bond energy, defined in Section 6.1.2. An important observation is

that the sum of all the energies (total energy) remains constant throughout the course

of the simulation. That this should occur may seem obvious, but this conservation

property is not explicitly encoded in the simulations. The fact that the total energy

is conserved in simulations confirms that it is the instantaneous bond energy that is

dissipated when bond are broken. This validates the assumptions of the approach for

modeling brittle fracture described in Section 6.1.3.

To investigate the convergence behavior of the proposed approach, we restrict

attention to the case 6 = 0.0055 and vo = 15 m/s. The nonlocal material damage

is shown at various time-steps using different particle densities in Figures 6-5-6-9.

Results using an unstructured particle distribution are shown in Figure 6-10. It can

be observed that the simulations are relatively insensitive to the particle density,

a remarkable feature for brittle impact simulations. Figure 6-12 provides a more

direct comparison between the results for the various discretization levels by plotting

the dissipated fracture energy over time. This comparison indicates that after a

sufficient level of resolution is achieved (more than 39,4242 particles in this case), the

dissipated energy is relatively insensitive to the particle density for both structured

and unstructured particle distributions (at least over short periods of time).

It remains to confirm that the energy dissipated in simulations is consistent with

the fracture energy, Gc, which is entered as an input parameter. An approximate value

for the simulated fracture energy can be obtained by dividing the total dissipated
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(b) t = 0.0002 s

Figure 6-5: Nonlocal material damage at t = 0 s and t = 0.0002 s for 9,856 particle
discretization with initial impact velocity of vo = 15 m/s.

(a) t = 0 s (b) t = 0.0002 s

Figure 6-6: Nonlocal material damage at t = 0 s and t = 0.0002 s for 22,176 particle
discretization with initial impact velocity of vo = 15 m/s.
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(a) t = 0 s (b) t = 0.0002 s

Figure 6-7: Nonlocal material damage at t = 0 s and t = 0.0002 s for 39,424 particle
discretization with initial impact velocity of vo = 15 m/s.

(a) t = 0 s (b) t = 0.0002 s

Figure 6-8: Nonlocal material damage at t = 0 s and t = 0.0002 s for 61,600 particle
discretization with initial impact velocity of vo = 15 m/s.
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(a) t = 0 s (b) t = 0.0002 s

Figure 6-9: Nonlocal material damage at t = 0 s and t = 0.0002 s for 109,104 particle
discretization with initial impact velocity of vo = 15 m/s.

(a) t = 0 s (b) t = 0.0002 s

Figure 6-10: Nonlocal material damage at t = 0 s and t = 0.0002s for unstructured
particle distribution (109,867 particles) with initial impact velocity of vo = 15 m/s.
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0.0002 0.0004 0.0006
time [s]

0.0008 0.0010

Figure 6-11: Discretized energies plotted over time for the case vo = 15 m/s, 6 =
0.0055 m, using an unstructured particle distribution using 109,867 particles.

fracture energy by the measured length of crack propagation at some time, t.5 In

Table 6.1, we show the results of this analysis for several different discretization sizes,

an unstructured particle distribution and even using a different peridynamic horizon

size, 6. The results indicate that after a sufficient level of resolution is achieved, the

computed fracture energy is fairly constant and is remarkably close to the input value

of G, = 400 J/m 2 . It is worth emphasizing that there is no prior guarantee that the

simulated fracture energy be similar to the input parameter, as such a correspondence

would require a highly localized fracture plane to develop.

'Crack propagation lengths were approximated from Figures 6-5-6-10 by counting pixels.
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Energies vs. time

- 9856
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Figure 6-12: Dissipated energy over time for varying particle densities, with vo

15 m/s. The red curve uses an unstructured particle distribution.

number of discrete particles crack length dissipated energy cohesive energy

9,856 4 mm 2.5 J 620 J/m 2

22,176 12 mm 4.6 J 400 J/m 2

39,424 11 mm 4.4 J 420 J/m 2

61,600 11 mm 4.4 J 410 J/m 2

109,104 10 mm 4.2 J 420 J/m 2

109,867 (unstructured) 10 mm 4.1 J 410 J/m 2

Table 6.1: Comparison of crack propagation length, dissipated energy and the es-

timated cohesive energy for different particle densities after t = 0.0002 s, using

6 = 0.0055 m.

Results for a few different time-steps using a higher initial impact velocity of

vo = 35 m/s with a 61,600 particle discretization are shown in Figure 6-13. This

result shows the initial (albeit brief) propagation of a Mode-I crack, followed by

crack branching, similar to what is observed in the experimental results of Figure 6-3

for higher initial velocities.
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(b) t = 0.00005 s

(c) t = 0.0001 s

Figure 6-13: Nonlocal material damage at v
6 = 0.0055, vO = 35 m/s, and 61,600 particles.

(d) t = 0.00015 s

arious time-steps for simulation with
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Up to this point, we have simplified matters slightly by considering only a fixed

horizon size, 6, as the effect of the peridynamic horizon is not a primary focus of this

thesis. A more detailed discussions of this important consideration in peridynamic

material modeling can be found in [121, 29]. As a representative case showing the

effect of changing the horizon size for the problem considered here, in Figure 6-14

we show several time-steps using a smaller horizon size of 6 = 0.0015 m, with a

significantly higher particle density and an initial impact velocity of vo = 35 m/s.

Similar to the case using 6 = 0.0055 m, this result shows the initial propagation of

a Mode-I crack, followed by crack branching. In this case, the estimated cohesive

energy in the simulation was found to be 380 J/m 2, once again close to the input

parameter value of 400 J/m 2

In Figure 6-15, we show the damage profile at t = 0.001 using different initial

impact velocities and a horizon size of 6 = 0.0015 m. The experimentally observed

trend that the number of branches increases for increasing initial velocity is again

observed, as was the case for the larger horizon size. Another feature of the peri-

dynamic approach is that crack coalescence, and therefore fragmentation, is handled

naturally, as can be seen in Figure 6-15d.

In order to test the ability of the computational framework to simulate three

dimensional problems, a 3D discretization with 573,346 particles was created, where

the in-plane target and impactor geometries are the same as in the 2D case, and

the thicknesses are 0.02 m. Two example solutions using a peridynamic horizon of

6 = 0.004 m are shown in Figure 6-16, where the expected trend of crack branching

occurring at higher initial impact velocities is again observed.6 These results further

highlight the remarkable robustness of the computational framework developed in

this thesis.

6We do not expect to get results which are quantitatively similar to the experimental results in
Figure 6-3, as we are not fully modeling the projectile.
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(b) t = 0.00005 s

(c) t = 0.0001 s (d) t = 0.00015 s

Figure 6-14: Nonlocal material damage at various time-steps for simulation with
6 = 0.0015, vo = 35 m/s, and 431,636 particles.
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(a) vo = 15 m/s

(c) vo = 35 m/s

(b) vo = 25 m/s

(d) vo = 50 m/s

Figure 6-15: Nonlocal material damage at t = 0.005 s with different initial impact
velocities, and 431,636 particles.
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(a) vo = 30 m/s (b) vo = 50 m/s

Figure 6-16: Nonlocal material damage at t = 0.001 s with different initial impact
velocities for edge-on impact simulations in 3D. A discretization with 573,346 parti-
cles, using a horizon size of 6 = 0.004 m is shown sliced through the thickness of the
plate.

138



6.2.2 Kalthoff test

The Kalthoff test, which is based on experimental results by Kalthoff and coworkers

[11, 55, 56], has emerged as a benchmark problem for numerical approaches to brittle

and ductile failure modeling [125, 62]. The test consists of a plate with two edge

notches, as depicted in Figure 6-17, impacted by a projectile with initial velocity

vo. The two initial notches are equidistant from the center-line of the target and are

separated by distance equal to the diameter of the projectile. Peridynamic simulations

of the Kalthoff test have previously been demonstrated using the simpler bond-based

version of the theory [41].

For the simulations in this thesis, the notches are separated by a distance of

0.05 m, while the height of the target is 0.2 m and its width is 0.1 m. The material

parameters used are a density p = 8000 kg/M 3, Young's modulus E = 190 GPa,

Poisson's ratio v = 0.3 and fracture energy G, = 22, 000 J/m 2 . We use an initial

impact velocity of vo = 16 m/s, which in experiments resulted in brittle fracture

behavior. Results using different particle densities are shown in Figure 6-18, where a

fairly consistent angle of crack propagation is observed of around 66', similar to both

experimentally observed results [11, 55] which find a propagation angle of around

700 and other computational approaches [125] which also typically under-predict the

crack angle slightly. 7 The difference in appearance for Figure 6-18d compared to

the rest of the images is due to a change in visualization which was required for the

larger number of particles. Table 6.2 summarizes the computed propagation angle

for the different particle densities. For a smaller peridynamic horizon size, the crack

propagation angle increases slightly towards the experimentally observed value.

7To handle the interface sliding which occurs in the Kalthoff test, the damage model was modified
slightly by permanently turning off the interaction forces for damaged bonds, even under compressive
strains.
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0. 1m

FV
0.2m

Figure 6-17: Schematic of the Kalthoff experiment[56].

number of particles

62,875

92,060

138,037

456,652 (6 = 0.00185)

angle (degrees)

660

650

670

680

Table 6.2: Comparison of Kalthoff test crack propagation angle for different particle
densities using 6 = 0.005 m (unless otherwise specified).
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(b) Number of particles: 92,060, 6 = 0.005

(c) Number of particles: 138,037, 3 = 0.005 (d) Number of particles: 456,652, 3 = 0.0019

Figure 6-18: Nonlocal material damage with different particle densities and horizon

sizes for the Kalthoff test.
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6.2.3 Scalability test

As a final test of the computational framework, we provide a demonstration of the

scalability of our C++/MPI implementation. A standard ghost particle approach

(see, e.g., [80]) is used and shown to exhibit good scalability. Several existing peridy-

namics codes have also demonstrated good scalability. These include an implementa-

tion of peridynamics in the molecular dynamics code LAMMPS [67], which is known

to be highly scalable up to tens of thousands of processors. In addition, there is

Peridigm [66] which is a massively parallel, open-source computational peridynamics

code based on Sandia National Laboratories' agile software components efforts.

Strong scalability results for the code developed in this thesis using two different

particle discretizations, each with two different horizon sizes, are shown in Figure 6-

19. We see that even for relatively small problem sizes the scalability is maintained

up to hundreds of processors, which is the limit of the machine we had access to.

Given that the parallelization strategy we use is similar to what is used in existing

codes, we anticipate that this scalability will continue for sufficiently large particle

discretizations. It can be observed in Figure 6-19 that the scalability is slightly worse

for larger peridynamic horizon sizes. This is expected as larger horizons require more

particle communications per sub-domain.
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Figure 6-19: Scalability plot for two different particle discretizations: D1 has 109,104
particles, D2 has 431,636 particles, each using two different peridynamic horizons.
The plot shows the normalized compute time (compute time divided by the compute
time using only 2 processors) vs the number of processors. Near perfect scalability is
observed for the smaller horizon sizes.

143



144



Chapter 7

Incorporating classical damage

models in peridynamics

In this chapter, we describe an approach for incorporating classical continuum damage

models in the state-based theory of peridynamics. The discussion below is adopted

from [69], and uses examples which have also previously been reported (in less detail)

in [68].

A key remaining challenge in peridynamics and its associated discretization meth-

ods is how to describe material failure in ways which are consistent with established

models of fracture and damage. In the original formulation of peridynamics, usually

referred to as the bond-based theory, fracture is commonly incorporated by means of

a critical relative displacement criterion, i.e., when the change in distance between

two particles reaches a critical value uc, their bond is irreversibly broken [95, 94]. A

particle-based discretization of peridynamic was proposed in [94], where it was demon-

strated that the critical bond elongation u, can be related to the fracture energy Go

for brittle materials. This approach has been used for modeling fracture and failure

of composites, nanofiber networks and polycrystals [22], to simulate ballistic impact

on brittle plates [67], to study crack nucleation in peridynamic solids [100], and to

145



study dynamic crack propagation and crack branching [121]. The main limitation of

the bond-based peridynamic theory is that it only considers pairwise interactions be-

tween particles. As is well known, a direct consequence of this assumption is that the

effective Poisson's ratio for isotropic linear materials is fixed at the value of v = 0.25

[93]. An immediate repercussion of this limitation is the inadequacy of the bond-

based peridynamics formulation in situations involving incompressible deformations,

e.g. plasticity.

To address these issues, Silling et al. developed the so called state-based peri-

dynamics formulation [98] (summarized in Chapter 2), which makes it possible to

incorporate general constitutive models. In particular, the new formulation intro-

duces a constitutive correspondence framework which enables the use of traditional

constitutive models formulated in terms of a continuum local measure of deformation

(i.e., the deformation gradient tensor, F, see Section 2.2.1). Recently, this approach

was used to model viscoplastic deformations in metals [51, 52]. The ability to incor-

porate classical constitutive models also opens the path for using classical continuum

damage models within the peridynamics framework.

Existing state-based peridynamic damage modeling approaches in the literature

are based on permanently modifying the peridynamic influence function by instantly

setting it equal to zero and severing the bond when a failure criterion is achieved

[51, 78]. Within the context of ordinary state-based peridynamics, the role of the

influence function has been explored in [79], and a critical bond elongation criterion

has been proposed in [78] which is similar to the damage modeling approach commonly

used in bond-based peridynamics [95, 94, 22, 67, 100, 121]. A severing criterion

based on a maximum elastic bond energy was proposed in [51] for the constitutive

correspondence formulation and calibrated to dissipate a pre-specified fracture energy

when a new surface is created. These approaches appear to be successful for modeling

brittle fracture. However, there are situations (e.g. in ductile fracture), in which
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damage evolution and failure are known to depend on quantities such as the stress

triaxiality, Lode angle, and possibly other parameters characterizing the local stress

state [7, 54, 6]. It would therefore be desirable to be able to incoporate classical

damage models whose primary objective is the description of damage mechanisms

and their evolution in a physics-based or phenomenological manner.

A more general framework for modeling damage within peridynamics has recently

been proposed [97]. The theory constitutes a thermodynamically consistent extension

of state-based peridynamics where accumulated damage is represented by a damage-

state. However, the requirement to introduce a peridynamic damage-state makes it

impossible to use existing damage models directly, and the necessary reformulation

within this framework has yet to be done for general damage models. Specifically, it

is not clear how the Johnson-Cook damage model adopted in the examples in this

chapter should be modified to fit this general framework.

The main objective of this chapter is to develop a state-based peridynamics formu-

lation where classical (local) continuum damage models can be incorporated without

modification. It is found that a direct implementation of damage models within the

constitutive correspondence framework leads to instabilities associated with unphys-

ical diffusion of the damage zone. To address this issue, we employ a peridynamic

bond degradation criterion based on the accumulated material damage. As dam-

age evolves at a material point, the peridynamic influence function for bonds in the

neighborhood is decreased so that in the limit of full damage its interaction with

other material points vanishes. This can be viewed as an extension of previous bond-

severing criteria in state-based peridynamics to more general cases where the influence

function is allowed to degrade gradually and to have a general dependence on other

state variables such as plastic strain, void volume fraction, temperature, etc., thereby

enabling the description of the damage evolution process. To assess the method, we

consider the specific case of the Johnson-Cook plasticity and damage model [32].
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7.1 Constitutive correspondence with damage

The ability to incorporate existing classical constitutive models provided by the corre-

spondence formulation opens up the possibility of using classical continuum descrip-

tions of damage within the peridynamic framework. However, it can be easily seen

that an inattentive use of such models results in unphysical instabilities in numerical

computations. Specifically, when a material particle in the peridynamic body is fully

damaged, the material is able to flow unconstrained. Due to the nonlocal character of

the peridynamic deformation gradient F, material points within the horizon of fully

damaged regions will then compute unphysically-large strains which, in turn, will

lead to unphysical damage. As a result, there is a tendency for damage to diffuse in

an unrealistic manner in situations where damage should in fact localize into regions

whose width should be of the order of the horizon size. It is therefore necessary to

augment the peridynamic formulation to preserve the ability for damage to localize.

Instabilities in peridynamic simulations have been previously observed in the form

of zero energy modes [21], which are common to many particle based continuum

discretizations [90, 9]. These zero-energy modes can manifest themselves even in

purely elastic simulations. However, the instability we focus on here appears to be

primarily due to unphysical propagation of damage.

In order to address this issue, we adopt a generalized definition of the influence

function w, Equation (2.6), and make it dependent not only on the length of the bond

but also on the internal state-variables (q, q'):

w = cZ^(I 1, q, q')

where q and q' are vectors of internal or state variables at the material points x and

x' respectively. This strategy can be viewed as an extension of previous approaches

to state-based peridynamic damage modeling in which the influence function is set to
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zero when a bond failure criterion is satisfied [51, 78, 79] with two major differences:

1) the proposed formulation contemplates the possibility that the influence function

may depend smoothly on the internal fields, resulting in a gradual degradation of

material point interactions. In addition, 2) both the evolution of the damage process

and the ultimate material failure criterion are governed by the classical continuum

damage model which in general may depend on any of the internal state fields (e.g.

plastic strain, void volume fraction, temperature, stress triaxiality, Lode angle, as

well as material properties). These two considerations are probably critical to fully

capture the damage mechanisms that are phenomenologically implied by the original

continuum damage model.

In the following we will assume for simplicity that the state of material damage

in the constitutive model is described by a single parameter D, which is commonly

the case in some of the most popular damage models used in practice. We consider

influence functions of the form

c,^ (I , q, q') = W (J J) WD(D, D') (7.1)

where D and D' E [0, 1] are the values of the damage parameter at x and x', respec-

tively, and w (J ) is the conventional (radial) influence function which quantifies the

relative degree of interaction between neighboring material points in an undamaged

material. We require WD to be a non-increasing function of each of its arguments

and to be zero if either argument is 1, i.e., wD(a, b) = 0 if a = 1 or b = 1. In this

way, the contribution of a damaged material point to the peridynamic force-state of

neighboring points decreases as damage accumulates, and vanishes altogether when

the material point is fully damaged. Any subsequent compressive response resulting

from contact interactions are handled by a particle contact algorithm.
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The specific forms we choose for the influence functions are

wo( (l) =e ,

WD(D, D') = 0 if D > D,, or D' > Dc (7.2)
1 otherwise,

where -defines the physical length scale, and Dc is the critical bond damage. A Gaus-

sian influence function such as wo has previously been used in the context of bond-

based peridynamics [3]. The influence function, Equation (7.1), leads to equations

of motion which conserve angular momentum, as can be shown by arguments iden-

tical to those presented in [98]. The only difference is the added explicit dependence

on additional internal state-variables, q and q', which does not affect momentum

conservation.

7.2 Constitutive model for metal

The damage correspondence formulation of Section 7.1 is general and can in principle

be applied to a wide array of continuum damage models. For definiteness, we spe-

cialize it to a modified Johnson-Cook constitutive model of viscoplasticity and failure

of metals [31, 32]. In this model, the flow stress Y is defined as

Y=oi1 [1+Clog ( + 1+ ,
c [ _ 2eO 200

where EP is the equivalent plastic strain, Pr is the equivalent plastic strain rate,

I
P (UO) n
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is a reference plastic strain, and jo is a reference plastic strain rate. Compared to the

classical Johnson-Cook flow stress, this modified expression avoids singularities in the

hardening as P" -+ 0 and in the hardening modulus as &r - 0. [31, 83, 76, 120]. The

elastic part of the constitutive response is described using a hyperelastic formulation

based on logarithmic strains and standard isotropic elastic constants.

As in the standard Johnson-Cook damage model [32], the evolution of damage is

controled by the damage parameter given by

D= bd,

ifD<1

0 otherwise

with cf defined as

Ef =d,+ d2 exp -d3 )J 1+ d4 ln )J
Ue _ _ 1 _0)

where di, d2 , d3 , d4 , and eo are material parameters, -m is the hydrostatic stress, and

-e is the Von Mises equivalent stress.

7.3 Ballistic impact simulations

To assess the functionality of the proposed state-based constitutive correspondence

damage formulation, the discretized equations were implemented from scratch in a

C++ computer code for three dimensional simulations. The discretization used for

the example presented here is based on the particle method introduced in [52] and

described in Section 3.1.
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v = 370m/s

v = 530m/s

V 900rGm/s

Figure 7-1: Comparison between numerical simulations and experimental results of
a steel sphere projectile impacting an aluminum sandwich structure (experimental
results courtesy of Hayden Wadley, UVA.)

We consider the simulation of recent experiments of hard-steel spherical projectiles

of diameter 0.55 inches impacting extruded 6061-T6 aluminum sandwich panels [46].

The design of such sandwich structures for improved protection performance against

impulsive loadings has recently received significant attention [61, 36, 110]. This case

provides a stringent test on the ability of the numerical method to model damage,

as material damage has a critical influence on the ballistic limit of the structure (the

lowest projectile impact velocity for which the target is fully penetrated), and on the

residual projectile velocities at higher impact speeds. The left column of Figure 7-

1 shows the post-mortem configurations of the tested panels for different impact

velocities.

In simulations, the panel's constitutive response was described by the modified

Johnson Cook model, Section 7.2. The Young's modulus E and the strain hardening

parameters n, B, and o were calibrated to quasi-static tensile tests, conducted on
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Figure 7-2: Modified Johnson-Cook material model fit against uniaxial test data [45].

coupons cut from the faces of the finished panels and measured in the direction of ex-

trusion [45]. Figure 7-2 shows the quasi-static tensile test stress-strain curve obtained

in experiments and the results from the calibrated constitutive model. The parameter

C controlling rate-sensitivity in the flow stress was adopted from [18], where it was

calibrated to dynamic test data for this material at a reference strain rate P' = 1 s~.

The full set of calibrated constitutive parameter values for the viscoplastic response

of the aluminum panels is shown in Table 7.1. A systematic approach to calibrate

damage models for ductile fracture of metals typically involves conducting specific

experiments of strain-to-failure for different triaxialities and possibly other parame-

ters characterizing the local stress state [7, 54, 6]. However, it is well known that the

damage parameters of the model must be recalibrated in simulations depending on

the type and size of the discretization [17]. Considering these difficulties and that the

emphasis of this chapter is in demonstrating the peridynamics description of damage,

we calibrated the damage model using a simplified approach where the parameters

were adjusted to match a specific measurable metric of a single experiment.

In simulations we represent failure between particles by breaking their bonds when
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E v 9- B n C eo p
72GPa 0.343 250MPa 365MPa 0.04 0.002 1 2700kg/m3

Table 7.1: Material parameters used in ballistic impact simulations.

the damage parameter D, in Equation (7.2) exceeds the value 0.99. The choice of

a critical damage of 0.99 was chosen arbitrarily and its calibration may have a non-

negligible impact on simulation results. Contact between particles is enforced using

a simple penalty algorithm which prevents interpenetration of both undamaged and

damaged particles. This form of contact is similar to what has been used in the

peridynamic literature for particle-on-particle contact [67].

Since the spherical projectiles showed no perceivable plastic deformation in ex-

periments, for simplicity we decided to model them as elastic with density 7800

kg/m 3 , Young's modulus 200 GPa, and Poisson's ratio 0.25 using a finite element

discretization. The boundary conditions for the plate were chosen so as to replicate

the experimental conditions by fully constraining the particles along the two long

sides of the sandwich specimen. Contact between the finite element mesh (projectile)

and the peridynamic domain (sandwich structure) is enforced via penalty contact

forces between the nodes of the finite element mesh and the particles in the peridy-

namic discretization. The peridynamic horizon radius was taken to be approximately

three times the largest distance between neighboring particles, which proved to be

sufficiently large to ensure reasonably stability of the method.

Simulations were conducted for all of the projectile impact velocities used in exper-

iments. The simulations were run until the projectile: bounced, partially penetrated

and was arrested by the panel, or fully penetrated and exited the back face with a final

residual velocity. The Johnson-Cook damage parameters were calibrated using the

test-case where the initial projectile velocity was 740 m/s. The parameters, shown in

Table 7.2, were calibrated to exactly reproduce the experimentally observed residual
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d1  d2  d3  d4

0.875 0.13 -1.5 0.0

Table 7.2: Damage parameters used in ballistic impact simulations.

velocity for this test-case. All other simulations were performed using those same

parameters.

Figure 7-1 shows both the experimentally obtained [46] and simulated post-mortem

deformed configuration of the impacted sandwich structures. The results show that

the simulated results accurately predict that an initial projectile velocity of v = 370

m/s is well below the ballistic limit. For an initial velocity of v = 530 m/s, which

is near the experimentally predicted ballistic limit, the simulated results accurately

predict that the projectile penetrates the top face of the sandwich structure, but is

barely stopped by the second layer. At v = 900 m/s, the prediction that the projec-

tile penetrates both layers is again consistent with the experiments. The numerically

computed projectile residual velocity as a function of the initial impact velocity is

shown in Figure 7-3 and is compared with the corresponding experimental results by

Wetzel [46]. As it can be observed in this figure, there is a very reasonable agreement

between simulations and experiments.

7.4 Chapter summary

In this chapter, an extension of the peridynamic state-based constitutive correspon-

dence framework to incorporate material damage has been proposed. The main mo-

tivation is the desire to incorporate in the modeling framework continuum damage

models commonly used in other numerical approaches which have difficulty in simu-

lating problems involving extreme deformations, e.g. the finite element method.

It is found that a direct use of damage models within the constitutive corre-

spondence framework leads to instabilities associated with unphysical diffusion of the
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Figure 7-3: Simulated peridynamic residual velocity vs. initial impact velocity for
sandwich panel impact compared to experimental results [46].
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damage zone. In order to address this issue, we proposed to progressively degrade

the peridynamic influence function appearing in the nonlocal integral measure of de-

formation as continuum damage accumulates. This approach effectively generalizes

previous approaches which set the influence function to zero when a bond extension

[78] or a bond elastic energy [51] criterion is satisfied. As a result, fully-damaged ma-

terial points cease their interaction with their neighbors and damage diffusion issues

are avoided.

The method was tested for the case of ballistic impact of steel spheres on corru-

gated aluminum sandwich structures at varying initial velocities. After calibrating

the damage evolution law to a single experimental result, both the ballistic limit

and the dependence of residual velocity on impact velocity were found to be in close

agreement with experimental results. In conclusion, the proposed method furnishes a

robust and simple way to incorporate damage models in the peridynamics framework

method which is critical for problems involving severe deformations and failure.
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Chapter 8

Summary and suggestions for

future research

In this thesis, several extensions to the peridynamic theory of continua have been pro-

posed. These developments emerged from limitations which were observed in particle

simulations based on state-based peridynamics. The theoretical extensions gener-

ally fall into two categories: 1) reformulating the various peridynamic constitutive

theories in terms of nonlinear (Seth-Hill) strain measures in order to prevent issues

related to matter interpenetration, and 2) extending existing damage modeling ap-

proaches in peridynamics. A computational framework incorporating these extensions

was developed and shown to overcome many of the previously observed limitations

when simulating problems involving ballistic impact. A more detailed summary and

suggestions for future work are presented below.

In the early part of the thesis process, numerical instabilities were observed when

simulating ballistic impact events based on particle discretizations of the state-based

theory of peridynamics. The identification of these instabilities and their ultimate

solution (via modified peridynamic constitutive theories) provided motivation for a

significant portion of the developments in this thesis. It was ultimately demonstrated
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that these instabilities result from issues with the theory and are not artifacts of the

discretization approach. To show this, a novel finite element discretization of state-

based peridynamics was introduced in order to resolve the stability issues, which

are typical for particle and meshless discretization of classical continuum mechanics.

However, even after carefully addressing the numerical issues, the instabilities still

persisted. This helped to confirm that the observed instabilities are due to theoretical

issues within the original constitutive correspondence formulation.

Analytical investigation into the constitutive correspondence formulation of state-

based peridynamics found that the theory permits the existence of unphysical defor-

mation modes (i.e. matter interpenetration and zero-energy modes). In order to

address this theoretical issue, an extension of the constitutive correspondence frame-

work of peridynamics was proposed. The approach introduces generalized nonlocal

peridynamic strain tensors which are in turn based on corresponding bond-level Seth-

Hill strain measures. These bond-strain measures inherently avoid violations of the

matter interpenetration constraint on a bond-by-bond basis. Analytical examples

were used to show that the modified theory avoids issues of matter interpenetration

in cases where the original theory fails. The introduced nonlinear bond-strain mea-

sures also enable a finite deformation extension of the linear version of the so-call

ordinary elastic solids formulation. Once again, analytical and computational results

are provided which highlight cases in which the nonlinear theory behaves reason-

ably while the linear theory fails to prevent matter interpenetration. Possible future

work includes demonstrating how inelastic and anisotropic material behavior may be

incorporated using the modified constitutive correspondence theory. Alternatively,

inelasticity may be incorporated using the concept of the plastic part of the devia-

toric extension-state (or in our case the plastic strain-state), as in [40]. Additional

work is also needed to estimate the stable time-step for discretizations of nonlinear

peridynamics formulations, as this currently constitutes a significant bottleneck in
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numerical simulations.

In addition to resolving fundamental issues with the peridynamic theory and its

discretization, two distinct approaches for modeling material damage were explored.

The first approach is an extension of the bond-severing criteria used in bond-based

peridynamic theories. It is formulated in terms of a critical energy per bond, corre-

sponding to the energy dissipated when that bond is cut while all other bonds are

held fixed. This is in contrast to existing critical bond-energy criterion which may

not properly quantify the true energy dissipated by severing a bond. In addition, a

generalized bond failure function is introduced which weighs the relative strength of

bonds based on their initial separation distance. The resulting damage model has

the property that the fracture energy G, is treated as an input variable (similar to

cohesive models of fracture). The viability of this approach in capturing experimen-

tally observed fracture patterns was demonstrated using two standard test problems

for brittle fracture: 1) edge on impact of PMMA and 2) the so-called Kalthoff test.

For Mode-I fracture simulations based on the edge on impact tests, a fairly constant

level of dissipated fracture energy was observed for different discretizations sizes, a

rare feature for brittle fracture discretizations. In addition, it was shown that the

input fracture energy G, per unit crack length (in 2D) is dissipated in simulations

to within a few percent error. A possible extension to this brittle fracture modeling

approach is to combine such a bond-severing criterion with elasto-plastic bulk behav-

ior, which would result in a ductile fracture law with a pre-specified cohesive energy.

In addition, one could envision modifying the cohesive energy to make it depend on

quantities such as stress triaxiality, Lode angle or crack-tip velocity. The proposed

bond-severing approach can also be readily extended to constitutive correspondence

theories of peridynamics.

In addition, an approach for incorporating classical continuum damage models in

the state-based theory of peridynamics was proposed, which has the advantage of
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enabling the description of the damage evolution process in peridynamics according

to well-established models. The approach was applied to the simulation of ballistic

impact of extruded corrugated aluminum panels and compared with experiments.

This advancement has the advantage that practitioners desiring to use a peridynamics

based discretization approach can readily use existing, well established models of

material failure. An important next step for this line of research is apply the approach

to more general damage models.

In summary, the extensions in this thesis have enabled the development of a

powerful computational framework for simulating material response under extreme

impact loading.
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Appendix A

Appendix

A.1 Virtual power derivation of the peridynamic

equations of motion

To derive the equations of motion for peridynamics, we deviate slightly from previous

approaches which assume from the outset a momentum balance [98, 97], and instead

we apply the principal of virtual power [65]. In this derivation, the key assumption

of peridynamics is that internal work is performed by changes in the deformation

vector-state at x. In particular, the specific internal power is assumed to be given by

the functional of the velocity field Pint (- ; x) : BO - R,

Pint (V ; X) : = T* -iY = _TX ( ) - (v(x + ()-v(x)) d ,

where the force vector-state T is defined to be the vector-state which is power con-

jugate to the deformation vector-state, v(x) := e,(x) is the velocity field, and x

parametrizes the location where the specific power is evaluated. This form for the

internal power is analougous to the stress power P = P : F in classical continuum

theories, where F is the deformation gradient tensor and P is the first Piola-Kirchhoff
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stress tensor.

The total internal power I over BO is

I = Pint (v ; x) dx,

and the externally applied power W is assumed to be of the form

W = I b(x) -v(x) dx,

where b is the externally applied body force which is power conjugate to v. We make

the standard assumption that the kinetic energy KC of the body is given by

Kc = j -p(x)Iv(x)12 dx,/0 2

and the rate of change of the total kinetic energy is

k = j p(x) v(x) -v(x) dx,

where p(x) is the spatially varying reference density, which is constant in time. Con-

servation of energy implies the power balance:

V = + k, (A.1)

which must hold over the body BO.

The principal of virtual power [65] requires that equation (A.1) must hold for all

admissible "virtual velocities" V, which are disassociated from the actual evolution of
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the body:

b(x) -V(x) dx =
Jo

By changing variables and the order of integration:

Pi,,t(V ;x) dx= TJ [x) () x +

T [x] (x' - x) [V(x')
J "0JB

J T [x'] (x - x')

- J 0 [x]

-V(x)] d dx

-V(x)] dx' dx

v (x) dx dx'

(x' -x) -V(x) dx'dx

T [x'] (x - x') - T [x] (x' - x) dx') -V(x) dx,

and the balance (A.2) becomes

I(/ b - pfA) -V(x) dx = 0,
W(x)

where T = T [x], and T' = T [x']. Invoking the fundamental lemma of the calculus

of variation, the local force balance

(A.3)p = x)

must be satisfied. Equation (A.3) is the standard peridynamic equation of motion

[98, 97].

In addition, the requirement of frame invariance of the specific internal power
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provides restrictions on the force state T. Consider a change of frame

y* =u+Qy, fi±QOy+QV.

u E R3, and where Q c R3 x IR3 is a rotation vector, QQT = QTQ = 1, where

without loss of generalization we assume that the rotation is about the origin 0. The

specific internal power in the new frame must equal the internal power in the original

frame:

Pint = T * Y = T* e*

Evaluating the right hand side:

T* .Y* = ( Q i () - [0 (y(x + ) - y(x)) + Q (y(x + ) - y(x))] d

- r(x))] d

T (h ) . QTO (y(x + o) - y(x)) d

= T *

i+ T7X i
IN(x)

Y + - y(x)) d) -W,

where w is the angular velocity vector of the rotating frame associated with the skew

tensor QTQ. Enforcing that the expended power is invariant to arbitrary frame

rotations requiresi

T ( ) x (y(x + ) - y(x)) d( - W = 0, Vw E R3

'Note that translation invariance is automatically satisfied because only relative deformations
are accounted for in the deformation vector-state.
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and therefore

/ _T (X ) x Y ( ) d = 0, Vx E Bo. (A.4)

It known that the peridynamic equation of motion (A.3), together with equation

(A.4) ensures conservation of linear and angular momentum over the peridynamic

body BO [98, 97]. In the peridynamic literature, materials which satisfy (A.4) are

called nonpolar, and it appears to be a new result that this condition (the nonpolar

constraint) can be derived directly from frame invariance principals. For a more

general discussion of non-local conservation laws on subregions P C BO, see [97].

Having investigated the consequences of the first law of thermodynamics together

with frame invariance of power expenditures, in the next section we investigate con-

stitutive restrictions required to satisfy the second law of thermodynamics. This

derivation is similar to that in [97], and is included for completeness.

A.2 Thermodynamic restrictions on the constitu-

tive behavior

We postulate the existence of a Helmholtz free energy 4', which depends on the

deformation vector-state, internal vector-states, and other internal variables and is

allowed to vary in space:

S= (Y, q, q, 0; x), (A.5)

where q are internal vector-state field variables (e.g. a damage-state [97]), q are

internal field variables, and 0 is temperature. The second law of thermodynamics can
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be expressed via a dissipation version of the Clausius-Duhem inequality

(A.6)

where r7 is the entropy,

V) = 0,b Y Y+V, e+ Vq4- + 000

and recalling that T e Y is the specific internal power. We can decompose the force-

state as

T= i (Y,Y, q, q,O) =0 _L, (Y, q, q, 0) + Td (Y,, _q,

where the subscripts e and d mean equilibrium and dissipative respectively, using

(A.6)

[t ,v] Y+ E Y - ,q - V& - 4

Allowing Y, and 0 to vary arbitrarily:

_'' =O, y and,,-= 9'94'

Furthermore, we require each inequality term to hold independently:

I . Y > 0,

-0,q e 4 > 0,

-Vq - 4 > 0.

168

[97, 65]:

r+ ao 0.aoI



Elastic peridynamic materials are defined by the restricted dependence

Td () = 0, V~~7-t(x).
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