
Formally Modeling, Analyzing, and Designing Network

Protocols - A Case Study on Retransmission-Based

Reliable Multicast Protocols
by

Carolos Livadas

M.Eng. in Electrical Engineering and Computer Science, MIT (1997)

S.M. in Aeronautics and Astronautics, MIT (1996)

S.B. in Computer Science and Engineering, MIT (1993)
S.B. in Aeronautics and Astronautics, MIT (1993)

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

September 2003

@ Massachusetts Institute of Technology 2003. All rights reserved.

A iithir

Department of Electrical Engineering and Computer Science

August 1, 2003

Certified by-
Prolessor Nar4 A. Lynch

DepartmenIfElectrical Engineering and Computer Science

NEC ,Yrqfessor of 35ftware Science and Engineering

Accepted by

MASSACHUSETT INSTITUTE
OF TECHNOLOGY

OCT 1 5 2003

LIBRARIES

Professor Arthur C. Smith

Department of Electrical Engineering and Computer Science

Chairman, Department Committee on Graduate Theses

BARKER

2

Formally Modeling, Analyzing, and Designing Network Protocols - A Case
Study on Retransmission-Based Reliable Multicast Protocols

by
Carolos Livadas

Submitted to the Department of Electrical Engineering and Computer Science
on August 1, 2003, in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

In this thesis, we conduct an extensive case study on formally modeling, analyzing, and designing
retransmission-based reliable multicast protocols. We first present an abstract model of the
communication service that several reliable multicast protocols [12, 13, 32-34] strive to provide.
This model precisely specifies i) what it means to be a member of the reliable multicast group,
ii) which packets are guaranteed delivery to which members of the group, and iii) how long it takes
for a packet to be reliably multicast to the appropriate members of the reliable multicast group.

We then model and analyze the correctness and performance of three retransmission-based reliable
multicast protocols, namely the Scalable Reliable Multicast (SRM) protocol [12, 13], the novel
Caching-Enhanced Scalable Reliable Multicast (CESRM) protocol [24], and the Light-weight
Multicast Services (LMS) router-assisted protocol [32-34]. We show the each such protocol is
correct by proving that it is a faithful implementation of our reliable multicast service model.
These correctness proofs ensure the equivalence of the protocols in the sense that they guarantee
the delivery of the same packets to the same members of the reliable multicast group.

Under some timeliness assumptions and presuming a fixed number of per-recovery packet drops, we
show that our model of SRM guarantees the timely delivery of packets. Our timeliness analysis of
SRM reveals that the careless selection of SRM's scheduling parameters may introduce superfluous
recovery traffic and may undermine the loss recovery process. This is an important observation
that has, to date, been overlooked.

CESRM augments SRM with a caching-based expedited recovery scheme that exploits packet
loss locality in IP multicast transmissions by attempting to recover from losses in the manner
in which recent losses were recovered. We analytically show that the worst-case recovery latency
for successful expedited recoveries in CESRM is roughly 1 round-trip time (RTT) where as that
of successful first-round recoveries in SRM is 4 RTT (for typical scheduling parameter settings).
Moreover, trace-driven simulations, which exhibit the packet loss locality of actual IP multicast
transmissions, reveal that CESRM reduces the average recovery latency of SRM by roughly 50%
and incurs less overhead in terms of recovery traffic.

Finally, although LMS recovers promptly from packets in static membership and topology envi-
ronments, we demonstrate several dynamic scenarios in which LMS does not perform well. Thus,
CESRM is a preferable reliable multicast protocol to both SRM and LMS; CESRM inherits SRM's
robustness to dynamic environments and, thanks to its caching-based expedited recovery scheme,
drastically reduces the average recovery latency of SRM in static environments.

Thesis Supervisor: Professor Nancy A. Lynch
Title: NEC Professor of Software Science and Engineering

3

4

Acknowledgments

My long journey as a graduate student has finally come to an end. This journey would not have

been either possible or enjoyable without the support, help, and friendship of many people. To

begin, I would like to thank my thesis committee members Nancy A. Lynch, Idit Keidar, and Dave

Clark.

" Nancy has been my research advisor for numerous years. Her insight, her thorough reviews,
and her wise suggestions have been an invaluable asset to my research. I also would like to

thank her for supporting and letting me pursue research that was not mainstream within the

Theory of Distributed Systems group.

" Idit has been very supportive of my research and of the idea that lead to the novel Caching-

Enhanced Scalable Reliable Multicast protocol. I am also thankful that she insisted on

simulating CESRM. These simulations demonstrated that the protocol works well and gave

it credibility. I also thank her for making the trip to Boston for my defense.

" Dave was adventurous enough to agree to be on my thesis committee. While seeing the value

of our formal approach to modeling, analyzing, and designing network protocols, he acted as

the networking community conscience of my work.

I would also like to thank Nancy, Idit, and John Lygeros for writing recommendation letters for

me.

It has been a pleasure to be a graduate student at MIT, the EECS department, the Theory of

Computation group, and the Theory of Distributed Systems group. I would like to thank my

academic advisor Daniel Jackson for always being available to discuss academic and professional

issues and encouraging me throughout my graduate studies. I feel very lucky to have been assigned

to him. I would also like to thank Marilyn Pierce for bearing with me throughout the years as an

eternal graduate student and for nudging me along.

I would also like to thank several people from the 3rd floor of LCS who have made my graduate

studies a pleasurable experience. Joanne Talbot Hanley, the administrative assistant of our group,
has always been very helpful and has taken care of all the issues that have come up throughout

the years. Be Blackburn has been instrumental in making the 3rd floor a nice place to work in;

the numerous party's and unending supply of sweets has been much appreciated. Finally, our

administrative assistants William Ang, Greg Shomo, Matt McKinnon, and Michael Vezza, have

always promptly addressed all my computer related needs. They are a great sysadmin team.

My officemates over the years have made working in the TDS group a pleasurable and highly

educational experience. Roger Khazan, Roberto De Prisco, Rui Fan, Sayan Mitra, and Victor

Luchangco have all been good friends and I wish them well in their professional and academic

careers and endeavors. I also thank my latest officemate, Martin Demaine, for welcoming me into

his office during the last stages of my thesis.

During my many years as a graduate student I was very fortunate for having a large number

of friends. I thank them for making my life outside of school enjoyable and for encouraging

me during my arduous graduate student years. I thank Chris Hadjicostis, Pani Pyla, Nicolas

Hadjiconstantinou, Olga Simek, Andreas Savvides, Tony Ezzat, Amir R. Amir, Paris Smaragdis,
Karrie Karahalios, Petros Boufounos, Giorgos Zacharia, and Giorgos Kotsalis. I would also thank

my other set of friends Yannis Paschalidis and Gina Mourtzinou, Antonis Armoundas and Fania

Mela, Dimitris Bertsimas and Georgia Perakis, and John Lygeros for the many enjoyable get-

togethers.

5

Above all, I would like to thank Maria Kartalou for her love, support, and encouragement
throughout the years. She has always been there for me, has helped me through tough times,
and has always encouraged and believed in me. Maria, thank you for being there; I can only hope
that I have given you as much love, support, and companionship as you have given me throughout
the years.

Finally, this thesis would not have been possible without the love and support of my parents
Georgios-Argyrios Livadas and Nancy Weston Livadas. They have always encouraged me, looked
after me, and helped me in every possible way. I hope they now rejoice in the completion of this
thesis.

6

Contents

Contents........ 7

L ist of F igures . 10

L ist of T ab les . 15

N om enclature . 17

1 Introduction 19

1.1 Modeling Framework . 20

1.1.1 Form al M odel. 20

1.1.2 Protocol Correctness And Performance Analyses 20

1.2 Our Case Study in Reliable Multicast . 21

1.2.1 The Reliable Multicast Service . 21

1.2.2 Scalable Reliable Multicast (SRM) [12,13] . 22

1.2.3 Caching-Enhanced Scalable Reliable Multicast (CESRM) [23,24] 22

1.2.4 Light-Weight Multicast Services (LMS) [32-34] 23

1.3 Thesis Organization . 24

2 Background 25

2.1 The Timed I/O Automaton Model . 25

2.2 IP M ulticast . 26

2.2.1 Multicast Backbone Topology . 26

2.2.2 P rotocols . 27

2.2.3 Loss Characteristics . 28

2.3 Reliable Multicast . 29

2.3.1 Retransmission-Based Reliable Multicast . 30

2.3.2 Protocol Correctness and Performance Analysis 31

2.3.3 Scalable Reliable Multicast (SRM) [12,13] . 32

2.3.4 Light-Weight Multicast Services (LMS) [32-34] 34

3 The Reliable Multicast Service 37

3.1 Modeling Overview . 37

3.1.1 The Physical System . 37

7

3.1.2 The Reliable Multicast Service and its Environment

3.2 Formal Model

3.2.1 Preliminary Definitions . .

3.2.2 The RM-CLIENTh Automato

3.2.3 The RM Automaton.....

3.3 Properties of the Reliable Multicast

3.3.1 Preliminary Properties and D

3.3.2 Reliability Properties .

n

S

e

4 Scalable Reliable Multicast

4.1 Overview of the SRM Protocol

4.1.1 Packet Loss Recovery .

4.1.2 Session Messages

4.2 Architecture of the SRM Protocol

4.2.1 Membership Component .

4.2.2 IP Buffer Component . .

4.2.3 Recovery Component . .

4.3 Formal Model of the SRM Protocol .

4.3.1 Preliminary Definitions . . .

4.3.2 The Membership Component

4.3.3 The IP Buffer Component -

4.3.4 The Recovery Component - S

4.3.5 The IP Multicast Component

4.4 Analysis of SRM

4.4.1 Request and Reply Scheduling

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

4.4.7

History Variables

Correctness Analysis Prelimina

Correctness Analysis

Timeliness Analysis Preliminar

Static Timeliness Analysis . .

Dynamic Timeliness Analysis

.e.v.c.............

.. ito............

..RM...~.......

RM..~...........

ervice

finitions

.P.............

vi..............

e..............

.

.

.

RM-RECh -.-..-.--.-

- IPMCAST

Parameter Constraints

ries

ies

.

.

5 Packet Loss Locality

5.1 Introduction

5.2 Exploiting Locality Through Caching

5.3 IP Multicast Traces and Their Representation

5.3.1 Trace Data

5.3.2 Virtual Link Trace Representation

5.3.3 Concrete Link Trace Representation

135

. 135

. 136

. 137

. 137

. 139

. 140

8

. 38

. 40

. 41

. 42

. 43

. 46

. 46

. 52

55

. 55

. 55

. 57

. 58

. 58

. 59

. 59

. 63

. 63

.. . . 66

.. . . 68

.. . . 70

. 78

. 82

. 82

83

83

. . . . 112

116

. . . . 131

. . . . 132

5.4 Caching-Based Loss Location Estimation

5.4.1 Loss Detection and Loss Location Identification .

5.4.2 Loss Location Estimation

5.4.3 D iscussion .

5.5 Evaluating the Effectiveness of Caching

5.5.1 Immediate Detection/Immediate Identification

5.5.2 Delayed Detection/Immediate Identification .

5.5.3 Delayed Detection/Delayed Identification

5.5.4 Loss Location Scenario Distribution

5.5.5 Optimal Cache Size

5.6 Summary, Conclusions, and Future Work

. 144

. 145

. 146

. 151

. 152

. 153

. 154

. 157

. 159

. 163

. 165

6 Caching-Enhanced Scalable Reliable Multicast

6.1 Overview of Functionality of CESRM

6.1.1 Expedited Recovery .

6.1.2 Maintaining the Optimal Requestor/Replier Selection

6.1.3 Deducing the Optimal Requestor/Replier Pairs

6.2 Formal Model of the CESRM Protocol

6.2.1 Preliminary Definitions .

6.2.2 The IP Buffer Component - CESRM-IPBUFFh

6.2.3 The Recovery Component - CESRM-RECh

6.2.4 The IP Component - IP .

6.3 CESRM Correctness .

6.3.1 Correctness Analysis Preliminaries

6.3.2 Correctness Analysis .

6.4 CESRM Timeliness .

6.4.1 Timeliness Analysis Preliminaries

6.4.2 Static and Dynamic Timeliness Analysis

6.4.3 Expedited Versus Non-Expedited Recovery Timeliness Analysis

6.5 CESRM Trace-Driven Simulations .

6.5.1 Sim ulation Setup .

6.5.2 Lossless Recovery Results .

6.5.3 Lossy Recovery Results .

6.5.4 Summary of Simulation Results

7 Reliable Multicast Using Light-Weight Multicast Services

7.1 Overview of LM S .

7.1.1 LM S's W eakness .

7.1.2 Improving LMS's Robustness to Leaves and Failures .

167

. 168

. 168

. 168

. 170

. 170

. 170

- - . 172

. 174

. 182

. 184

. 185

. 193

. 194

. 194

. 199

. 200

. 203

. 204

. 205

. 210

. 214

217

. 217

. 219

. 220

9

7.2 Formal Model of LMS

7.2.1 The Recovery Component - LMS-RECh . - - .

7.2.2 The Light-Weight Multicast Services Component

.

..- - .-- - -

- LMS-IP

.

.

.

.

.

.

.

.

.

.

7.3 LMS Correctness

7.4 LMS

7.4.1

7.4.2

7.4.3

7.4.4

7.4.5

7.4.6

7.4.7

7.4.8

Informal Time

Ideal Recovei

Improper Pa

Lossy Recove

Unstable Ref

Replier Cras

ComparisonI

Comparison t

Summary .

8 Conclusions

8.1 Contributions

8.2 Future Work

liness Analysis

y

cket Recovery

ry

lier State

ies/Leaves

o SRM

o CESRM

220

222

226

235

235

236

237

237

238

238

239

241

241

243

. .244

. .245

References

10

247

List of Figures

Diagram of Reliable Multicast Service Architecture

Reliable Multicast Specification Definitions

The RM-CLIENTh Automaton .

The RM Automaton - Signature .

The RM(A) Automaton - Variables and Discrete Transitions

SRM Param eters .

Interface of all components involved in the reliable multicast service. .

SRM Packet Definitions .

SRM Set Definitions .

The SRM-MEMh Automaton - Signature

The SRM-MEMh Automaton - Variables and Discrete Transitions . .

The SRM-IPBUFFh Automaton - Signature

The SRM-IPBUFFh Automaton - Variables and Discrete Transitions

The SRM-RECh Automaton - Signature

The SRM-RECh Automaton - Variables

The SRM-RECh Automaton - Discrete Transitions

The SRM-RECh Automaton - Discrete Transitions (Cnt'd)

The SRM-RECh Automaton - Discrete Transitions (Cnt'd)

The IPMCAST Automaton - Signature

The IPMCAST automaton - Variables and Discrete Transitions

Timing Diagram of SRM's Loss Recovery Scheme

History and Derived History Variables

SRM-RECh History Variable Assignments

4.19 Timing Diagram Demonstrating Non-distinct Consecutive Round Requests

4.20 Timing Diagram Demonstrating Non-distinct Consecutive Round Replies

Example of a Lossy IP Multicast Transmission.

Example of a Lossy IP Multicast Transmission.

Virtual Link Trace Representation - Immediate Detection/Identification. .

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

11

. 41

. 41

. 42

. 44

. 45

. 58

. 64

. 65

. 66

. 66

. 67

. 69

. 69

. 71

. 73

. 75

76

. 77

. 79

. 80

. 82

. 84

. 84

. 123

. 126

. 151

. 152

.154

5.1

5.2

5.3

5.4 Virtual Link Trace Representation - Per-receiver Loss Distributions, Receivers 2 &
3, Trace W RN951128. 154

5.5 Concrete Link Trace Representation - Immediate Detection/Identification. 155

5.6 Virtual Link Trace Representation - Delayed Detection/Immediate Identification. . 156

5.7 Loss Distribution wrt Burst Length, Receivers 3 & 4, Trace RFV960419. 156

5.8 Concrete Link Trace Representation - Delayed Detection/Immediate Identification. 157

5.9 Virtual Link Trace Representation - Estimation hit rates wrt loss identification
delay, cache of size 1 (Trace WRN951030). 158

5.10 Virtual Link Trace Representation - Estimation hit rates wrt loss identification
delay, cache of size 10 (Trace WRN951030). 159

5.11 Concrete Link Trace Representation - Estimation hit rates wrt loss identification
delay, cache of size 1 (Trace WRN951030). 159

5.12 Concrete Link Trace Representation - Estimation hit rates wrt loss identification
delay, cache of size 10 (Trace WRN951030). 160

5.13 Virtual Link Trace Representation - Consistent High/Accurate/Low and Inconsis-
tent Estim ate Percentages. 160

5.14 Virtual Link Trace Representation - Average Distribution of Inconsistent Estimates. 161

5.15 Concrete Link Trace Representation - Consistent High/Accurate/Low and Incon-
sistent Estimate Percentages. 162

5.16 Concrete Link Trace Representation - Average Distribution of Inconsistent Estimates. 162

5.17 Virtual and Concrete Link Trace Representations - Percentage of Successful Expe-
dited R ecoveries. 163

5.18 Virtual Link Trace Representation - Consistent accurate hit rates wrt cache size. . 164

5.19 Concrete Link Trace Representation - Consistent accurate hit rates wrt cache size. 164

6.1

6.2

6.3

6.4

6.5

Interface of all components involved in the reliable multicast service. . . .

CESRM Preliminary Definitions .

CESRM Packet Definitions .

The CESRM-IPBUFFh Automaton - Signature

The CESRM-IPBUFFh Automaton - Variables and Discrete Transitions

6.6 The CESRM-RECh Automaton - Signature

6.7 The CESRM-RECh Automaton - Variables

6.8 The CESRM-RECh Automaton - Discrete Transitions

6.9 The CESRM-RECh Automaton - Discrete Transitions (Cont'd)

6.10 The CESRM-RECh Automaton - Discrete Transitions (Cont'd)

6.11 The CESRM-RECh Automaton - Discrete Transitions (Cont'd) .

6.12 The CESRM-RECh Automaton - Discrete Transitions (Cont'd) .

6.13 The CESRM-RECh Automaton - Discrete Transitions (Cont'd) .

6.14 The IP Automaton - Signature .

6.15 The IP automaton - Variables and Discrete Transitions

6.16 Per-Receiver Average Normalized Recovery Times; Lossless Recovery

. 171

. 171

. 173

. 174

. 174

. 175

. 176

. 178

. 179

. 180

. 181

. 182

. 183

. 183

. 184

. 206

12

6.17 Percent Reduction in Per-Receiver Average Normalized Recovery Times; Lossless

R ecovery .

6.18 Difference in Average Normalized Recovery Times Between Expedited and Non-

Expedited Recoveries of CESRM .

6.19 Number of Request Packets for SRM and CESRM

6.20 Number of Reply Packets for SRM and CESRM .

6.21 Number of Update Packets for CESRM .

6.22 CESRM Performance; Percentage of Successful Expedited Recoveries and Overall
Packet O verhead .

6.23 Per-Receiver Average Normalized Recovery Times; Lossless Recovery

6.24 Percent Reduction in Per-Receiver Average Normalized Recovery Times; Lossless

R ecovery .

6.25 Difference in Average Normalized Recovery Times Between Expedited and Non-
Expedited Recoveries of CESRM .

6.26 Number of Request Packets for SRM and CESRM

6.27 Number of Reply Packets for SRM and CESRM .

6.28 Number of Update Packets for CESRM .

6.29 CESRM Performance; Percentage of Successful Expedited Recoveries and Overall
Packet Overhead

7.1 Example of LMS recovery hierarchy based on replier links.

7.2 Interface of the components of the reliable multicast service involving the LMS

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

reliable multicast protocol

Preliminary Definitions for LMS

Packet Definitions for LMS

The LMS-RECh Automaton - Signature

The LMS-RECh Automaton - Variables

The LMS-RECh Automaton - Discrete Transitions . . .

The LMS-RECh Automaton - Discrete Transitions . . .

The LMS-IP Automaton - Signature

The LMS-IP automaton - Variables

The LMS-IP automaton - Discrete Transitions

The LMS-IP automaton - Discrete Transitions, Cont'd .

The LMS-IP automaton - Discrete Transitions, Cont'd .

206

207

208

208

209

210

211

211

212

212

213

213

214

218

221

. 221

. 222

. 222

. 223

. 225

. 226

. 227

. 228

. 229

. 232

. 234

7.14 Example of LMS lossy transmission scenario. The dashed lines correspond to the

replier links of the routers. 236

13

.

14

List of Tables

5.1 IP M ulticast Traces of Yajnik et al. [41]. .138

15

16

Nomenclature

Latin Abbreviations

cf. confer; Latin for "compare".

e.g. exempli gratia; Latin for "for example".

et al. et alii; Latin for "and others".

etc. et cetera; Latin for "and so forth".

Z.e. id est; Latin for "that is".

ib. or ibid. ibidem; Latin for "in the same work/place".

n.b. nota bene; Latin for "take special note of".

op. cit. opere citato; Latin for "in the work/text cited".

v.g. verbi gratia; Latin for "for example".

v.Z. vide infra; Latin for "see below".

v.s. vide supra; Latin for "see above".

vzZ. videlicet; Latin for "that is to say" or "namely".

vs. versus; Latin for "against".

Mathematical Notation

0 The empty (or null) set.

N+ The set of positive natural numbers, i.e., the set {1, 2, 3,...

N The set of natural numbers, i.e., the set {, 1, 2, 3,...

R, R 0 , R+ The set of all, non-negative, and positive real numbers.

Z, Z O, Z+ The set of all, non-negative, and positive integers.

17

18

Chapter 1

Introduction

To date, communication protocols are designed and analyzed using predominantly non-rigorous

techniques. Protocols are usually specified by informal descriptions, their correctness is validated

through informal reasoning and simulations, if at all, and their performance is evaluated through

statistical and simulation-based analyses. This informal approach to designing and analyzing

communication protocols has and continues to serve the networking community well. Novel protocol

ideas are presented without worrying about infrequent and exceptional behavior and protocol

simulations serve to weed out and refine promising ideas.

However, this informal design and analysis approach has some disadvantages. In many cases, the

informal protocol descriptions are imprecise, incomplete, and have unclear or lacking assumptions

about the environment in which the protocols are presumed to operate. Moreover, due to their

complexity, statistical analysis techniques have predominantly been used to analyze the behavior

of protocols in simple settings. As the complexity of either the protocols or the settings increases,
statistical analysis techniques become increasingly complex and unwieldy to use. Similarly,
simulation-based analysis techniques usually observe a protocol's average performance under normal

operating conditions. Thus, the complete behavior of a protocol and its performance under all

operating conditions is seldom evaluated. As protocol complexity increases, due for instance to the

onset of host mobility and wireless connections, such techniques may fail to evaluate a protocol's

complete behavior and, thus, expose its weaknesses.

In contrast to these traditional network protocol design and analysis techniques, we advocate

the use of a formal approach to modeling, analyzing, and designing network protocols. The

first step in this approach is to produce precise and complete specifications of both the protocol

and the communication service that the protocol intends to provide. The communication service

specifications provide an abstract description of the protocol's external behavior, which may specify

both a protocol's correctness and performance guarantees. The specification of the protocol involves

a precise description of the protocol's complete functionality. The protocol's correctness is shown

by proving that the protocol is a faithful implementation of the abstract communication service.

Its performance is shown either by reasoning about the protocol's behavior explicitly, or by proving

that the protocol faithfully implements a communication service that imposes the appropriate

performance guarantees.

In this thesis, we demonstrate the use of this formal approach to modeling, analyzing, and designing

network protocols through an extensive case study in the area of reliable multicast - the reliable

transmission of packets in the multicast (either one-to-many, or many-to-many) communication

setting. We proceed by describing our formal modeling approach, and giving an overview of our

case study. We conclude the chapter by presenting how the rest of the thesis is organized.

19

1.1 Modeling Framework

1.1.1 Formal Model

In our work, we model systems using I/O automata [25] and their timed extension timed
I/O automata [27]; formal specification models that produce simple, precise, and unambiguous
descriptions of complex system behavior and component interactions and lend themselves to formal
correctness and performance analyses. The use of I/O automata affords several benefits. Formal
specifications constitute precise system descriptions that can be used to rigorously reason about
a system's behavior. An invaluable side-effect of producing these formal specifications is the
exposure of hidden system and modeling assumptions that may otherwise be overlooked. Moreover,
formal notions of composition and refinement enable the modeling and analysis of very complex
systems. Systems may be decomposed into distinct parts, which may subsequently be analyzed
in isolation. Composition allows the extension of component-wise properties to the system as a
whole. Refinement is used to model systems at varying levels of abstraction. Reasoning about
a system's behavior while keeping track of implementation details is often too cumbersome and
overwhelming. However, implementation details and technicalities may be abstracted away by
describing the system functionality at a high or abstract level. Reasoning about a system's behavior
at an abstract level is simpler and more tractable. High-level system specifications may subsequently
be refined to describe the low-level implementation details. This refinement process may lead to
several increasingly detailed system specifications, each suitable for showing distinct sets of system
properties.

I/O automata, and their timed extension, are accompanied by formal correctness and performance
analysis techniques. Two such techniques are invariant assertions and simulation relations.
Invariant assertions are used to systematically prove system properties. Simulation relations
are used to show that more refined system specifications actually implement their more abstract
counterparts. Once a simulation relation is demonstrated between the abstract and refined system
specifications, the properties shown to be true for the abstract system specifications extend to their
more refined counterparts without additional proof obligations.

1.1.2 Protocol Correctness And Performance Analyses

Once a protocol and the communication service it provides have been formally specified, the
protocol's correctness is shown by proving that it is a faithful implementation of the communication
service. In some cases, a protocol may implement the intended communication service only under
particular assumptions. In these cases, the protocol's correctness proof involves precisely specifying
the assumptions under which the protocol is a faithful implementation of the communication service.
This process is often invaluable in understanding the behavior of the protocol and in exposing the
implicit assumptions made during the protocol's design.

A protocol's performance is quantified by proving conditional performance guarantees; that
is, absolute claims that a protocol achieves particular levels of performance under particular
assumptions. The art in this type of performance analysis lies in weakening the assumptions and
strengthening the performance guarantees involved in the conditional performance claims. The
performance of two protocols that implement the same communication service may be compared
by stating comparative performance claims; that is, claims that juxtapose the performance of
the two protocols. Such claims are particularly useful when comparing the performance of two
protocols, where one is an optimization of the other.

20

1.2 Our Case Study in Reliable Multicast

Our case study in reliable multicast involves the modeling, analysis, and design of retransmission-

based reliable multicast protocols. We begin by informally describing our precise specification for

a reliable multicast communication service that provides eventual delivery with, possibly, some

timeliness guarantees. We proceed to specify, prove the correctness of, and analyze the timeliness
of the Scalable Reliable Multicast (SRM) [12,13] protocol. We then design, specify, and analyze

the Caching-Enhanced Scalable Reliable Multicast (CESRM) protocol. This protocol enhances

SRM by a caching-based expedited recovery scheme that attempts to exploit the packet loss

locality exhibited by IP multicast transmission losses. In addition to the analytical correctness

and performance analyses, we also evaluate CESRM using trace-driven simulations. We conclude

our case study by specifying and informally analyzing the behavior of the router-assisted reliable

multicast protocol based on the Light-weight Multicast Services (LMS) [34].

1.2.1 The Reliable Multicast Service

Reliability in the multicast setting has assumed many meanings, ranging from in-order eventual
delivery to timely delivery where a small percentage of packet losses is tolerable. The many notions
of reliability stem from the varying assumptions regarding the communication environment and
the goals and requirements of the applications to which particular reliable multicast protocols
cater. Most often, the behavior of reliable multicast protocols is described informally. Moreover, a
protocol's description is seldom accompanied by a precise definition of its reliability guarantees. In
its simplest form, reliability is informally defined as the eventual delivery of all multicast packets to
all group members; other notions of reliability may include ordering, no-duplication, and, possibly,
timeliness guarantees.

Although intuitive, this simplistic reliability definition does not precisely specify which packets are
guaranteed delivery to which members of the group. This is especially the case when the group
membership is dynamic. Moreover, protocol descriptions put little emphasis on the behavior, or
the analysis of the behavior, of the protocols when the group membership is dynamic, either due to

failures or frequent joins and leaves. With the proliferation of mobile hosts and wireless connections,
a better understanding of the behavior of such services and protocols in highly dynamic and faulty
environments is increasingly important.

We begin our case study in reliable multicast by presenting a formal model of the reliable multicast
service, which we henceforth refer to as the reliable multicast specification (RMS). Specifying the
reliable multicast service is not straightforward. The plethora of reliable multicast protocols cater
to diverse applications that impose diverse correctness and performance requirements. Clearly,
capturing the functionality of all reliable multicast protocols using a single specification would be
quite complex and unwieldy.

Our reliable multicast service specification formalizes the behavior of a number of protocols, such as
SRM [12,13] and LMS [34], that strive to provide eventual delivery with, possibly, some timeliness
guarantees. We stipulate that, in the context of dynamic group membership, membership is

intrinsically intertwined with reliability; that is, membership and reliability must be addressed
together. Thus, our reliable multicast specification dictates precisely what it means to be a member
of a reliable multicast group and which packets are guaranteed delivery to which members of the
reliable multicast group. We parameterize our specification with a delivery latency bound. This

bound specifies the worst-case latency incurred for reliably delivering multicast packets. Thus,
our reliable multicast specification may be used to model the behavior of a collection of reliable
multicast protocols, some with loose and others with potentially stringent timeliness guarantees.

21

1.2.2 Scalable Reliable Multicast (SRM) [12, 13]

The Scalable Reliable Multicast (SRM) [12,13] protocol is a simple and robust retransmission-based
protocol. SRM uses IP multicast to transmit packets to the members of the reliable multicast group.
Packet recovery in SRM is initiated when a receiver detects a loss and schedules the transmission of
a request; an error control packet requesting the retransmission of the missing packet. If a request
for the same packet is received prior to the transmission of this local request, then the local request
is rescheduled by performing an exponential backoff. When a group member receives a request for
a packet that it has already received, the group member schedules a reply; a retransmission of the
requested packet. If a reply for the same packet is received prior to the transmission of this local
reply, then the local reply is canceled. Using this scheme, all session members participate in the
packet recovery process and share the associated overhead.

SRM minimizes the transmission of duplicate request and reply packets through deterministic and
probabilistic suppression. These suppression techniques prescribe how requests and replies should
be scheduled so that only few requests and replies are transmitted for each loss. Unfortunately,
suppression introduces a tradeoff between the number of duplicate requests and replies and the
recovery latency - the scheduling of requests and replies are delayed sufficiently so as to minimize
the number of duplicate requests and replies.

Our formal model of SRM specifies precisely the behavior of the SRM protocol. This behavior
includes not only the behavior of the reliable multicast group members but also the behavior of the
underlying IP multicast communication service. We prove the correctness of SRM by showing that
it is a faithful implementation of our reliable multicast service specification without any timeliness
guarantees. Moreover, under certain timeliness assumptions and assuming that the number of losses
suffered per recovery is bounded, we show that SRM guarantees the timely delivery of packets; that
is, that the worst-base time to recover from any loss is bounded. This timeliness guarantee is shown
by bounding the number of recovery rounds that may fail prior to recovering a packet.

Our timeliness analysis of SRM reveals that choosing SRM's scheduling parameters arbitrarily
may result in either superfluous recovery traffic or the failure of particular recovery rounds due
to scheduling issues rather than losses. This observation illustrates that formal protocol analysis
may help to better understand and, potentially, redesign a protocol's behavior. Moreover, our
analysis gives rise to several constraints on SRM's scheduling parameters. These constraints
constitute guidelines for choosing SRM's scheduling parameters so that scheduling issues do not
induce superfluous traffic and recovery round failure.

1.2.3 Caching-Enhanced Scalable Reliable Multicast (CESRM) [23,24]

SRM, as do most retransmission-based reliable multicast protocols, treats losses independently and
blindly repeats the recovery process for each loss. This blind repetition of the recovery process
wastes resources and, potentially, unduly delays packet recovery. This is especially the case when
IP multicast transmission losses exhibit locality - the property that losses suffered by a receiver
at proximate times often occur on the same link of the IP multicast tree.

We claim that packet loss locality in IP multicast transmissions can be exploited by simple caching
schemes. In such schemes, receivers cache information about the recovery of recently recovered
packets and use this information to expedite the recovery of subsequent losses. We present a
methodology for estimating the potential effectiveness of caching within multicast loss recovery.
We use this methodology on the IP multicast transmission traces of Yajnik et al. [41] and observe
that IP multicast losses exhibit substantial locality and that caching can be very effective.

Motivated by this expected effectiveness of caching in multicast loss recovery, we design and analyze

22

the Caching-Enhanced Scalable Reliable Multicast (CESRM) protocol. CESRM opportunistically

attempts to recover from losses in the manner in which recent losses were recovered. In so doing,
CESRM attempts to exploit packet loss locality and to reduce the recovery latency and overhead

of SRM.

CESRM augments the functionality of SRM by a caching-based expedited recovery scheme, which

operates in parallel to SRM's recovery scheme. In this scheme, reliable multicast group members
cache the requestor/replier pairs that carried out the recovery of recent losses. Based on this
cached information, receivers attempt to expeditiously recover losses in the manner (i.e., the
requestor/replier pair) in which the plurality of a fixed number of recent losses were recovered - this
fixed number constitutes the size of the cache. Expedited requests are unicast to the appropriate

replier and, upon receiving this request, this replier multicasts the requested packet.

Expedited requests and replies are not delayed for purposes of suppression. Thus, successful
expedited recoveries incur minimum recovery latency. CESRM uses SRM as a fall-back recovery
scheme. When the expedited recovery scheme fails to recover a loss, either due to losses or because
the replier has also shared the loss of the particular packet, then the packet is recovered, in due
time, through SRM's recovery scheme.

Our formal model of CESRM extends that of SRM by specifying CESRM's expedited recovery
scheme. Moreover, we extend our model of the IP communication service to provide both unicast
and multicast transmission capability. As in the case of SRM, we formally analyze the performance
of CESRM by showing that it is a faithful implementation of both an eventual and a timely reliable
multicast service specification. Furthermore, we analytically show that the worst-case recovery
latency for successful expedited recoveries in CESRM is roughly 1 round-trip time (RTT) where as
that of successful first-round recoveries in SRM is 4 RTT (for typical scheduling parameter settings).
Finally, trace-driven simulations reveal that CESRM reduces the average recovery latency of SRM
by roughly 50% and incurs less overhead in terms of recovery traffic.

1.2.4 Light-Weight Multicast Services (LMS) [32-34]

The reliable multicast protocol based on the Light-weight Multicast Services [32-34], which we
will henceforth refer to as LMS, enhances the functionality of the underlying IP multicast tree
routers so as to enable the intelligent forwarding of recovery packets and, hence, enable local
packet loss recovery. The idea behind LMS, as well as other similar router-assisted reliable multicast
protocols (e.g., [19]), is to appoint particular members (repliers) of the reliable multicast group to
be responsible for replying to requests originating within particular subtrees of the underlying IP
multicast tree. In the case of LMS, this is achieved by having each router maintain a replier link
onto which it forwards requests that originate within the subtree rooted at the given router. Thus,
requests originating within each subtree are forwarded to the appropriate replier by the routers
at the root of the given subtree. Subsequently, the replies to such requests are unicast to the
aforementioned routers which in turn subcast the replies downstream. The traffic pertaining to the
recovery of a particular packet is thus contained within the subtree of the IP multicast tree affected
by the given loss.

We precisely specify the behavior of LMS by refining our earlier models of the IP multicast service
so as to describe the enhanced router functionality introduced by LMS. In particular, we model the
IP multicast routers, their replier state, and the manner in which this state is maintained. Using our
precise model of LMS, we carefully reason about its behavior in dynamic and faulty environments.
This reasoning exposes several scenarios in which packet loss recovery in LMS may be prolonged
and even inhibited due to either changes in the reliable multicast group membership, changes
in the replier hierarchy, or replier failures. With the proliferation of host mobility and wireless

23

connections, a protocol's performance in dynamic environments becomes increasingly important.
LMS's weaknesses suggests that future protocols should be designed to perform better in these
highly dynamic and faulty environments. Perhaps LMS's lack of robustness to highly dynamic
environments tilts the scale in favor of CESRM - CESRM inherits SRM's robustness to dynamic
environments and, thanks to its caching-based expedited recovery scheme, takes advantage of packet
loss locality and affords good recovery latency in static environments.

1.3 Thesis Organization

In Chapter 2, we present some background material pertaining to the work presented in this thesis.
We start by presenting the timed input/output (I/0) automaton (TIOA) model which we use to
model and analyze the various protocols considered in this thesis. We then describe briefly the
manner in which IP multicast is implemented and give a brief overview of the area of reliable
multicast, in general, and retransmission-based reliable multicast protocols, in particular.

In Chapter 3, we present a formal model of a reliable multicast service. This model specifies i) what
it means to be a member of the reliable multicast group, ii) which packets are guaranteed delivery
to which members of the group, and iii) how long it takes for a packet to be reliably multicast to
the appropriate members of the reliable multicast group.

In Chapter 4, we present a formal model of the Scalable Reliable Multicast (SRM) protocol of
Floyd et al. [13]. Moreover, we prove that our model of SRM is a correct implementation of the
reliable multicast service and that, under certain timeliness and faultiness assumptions, guarantees
the timely delivery of reliable multicast packets.

In Chapter 5, we make the case for exploiting packet loss locality within the loss recovery schemes
of reliable multicast protocols, such as SRM [13]. Packet loss locality in IP multicast transmissions
can be exploited by simple caching schemes, in which receivers cache information about the recovery
of recently recovered packets and use this information to expedite the recovery of subsequent losses.
We present a methodology for estimating the potential effectiveness of caching within multicast loss
recovery. By applying this methodology to the IP multicast transmission traces of Yajnik et al. [41]
and observing that IP multicast losses exhibit substantial locality, we establish that caching can be
very effective.

In Chapter 6, we present, model, and analyze the correctness and performance of the novel Caching-
Enhanced Scalable Reliable Multicast (CESRM) protocol. The correctness analysis states that
CESRM is a correct implementation of the reliable multicast service. The timeliness analysis
states that, under certain timeliness and faultiness assumptions, CESRM guarantees the delivery
of the appropriate packets to the appropriate members of the reliable multicast group within a
finite amount of time. We also use trace-driven simulations to evaluate CESRM's performance and
compare it to that of SRM.

In Chapter 7, we model and informally analyze the performance of LMS. Our informal performance
analysis of LMS involves: i) stating the worst-case recovery latency of LMS when recoveries proceed
smoothly, ii) stating the worst-case recovery latency of LMS in scenarios that demonstrate LMS's
lack of robustness to highly dynamic and faulty environments, and iii) comparing its performance
to that of both SRM and CESRM.

In Chapter 8, we give a brief summary of the thesis, state its contributions, and present an
interesting direction in which the CESRM protocol may be extended to limit the exposure of
expedited recoveries by exploiting some of the light-weight router functionality enhancements
introduced by LMS.

24

Chapter 2

Background

In this chapter, we present some background material pertaining to the work presented in this

thesis. We begin by giving a brief overview of the timed input/output (I/0) automaton (TIOA)
model (introduced as the general timed automaton model in Ref. 25), the framework that we
use to specify and analyze protocols. We then overview the functionality of IP multicast. This
overview includes a description of the network of IP multicast capable routers and how they are
interconnected, a description of the various protocols that collectively implement the IP multicast
service, and a summary of the results of several research studies investigating the correlation
characteristics of losses in IP multicast transmissions. We continue by introducing the various
approaches to providing reliability in the multicast communication setting and by focusing and
describing in detail the issues afflicting retransmission-based schemes. We conclude by describing
the functionality of two representative examples of application-layer and router-assisted reliable
multicast protocols, namely the Scalable Reliable Multicast (SRM) protocol [12,13] and the reliable
multicast protocol based on the Light-weight Multicast Services (LMS) [32-34], respectively.

2.1 The Timed I/O Automaton Model

In this thesis, we use the timed input/output (I/0) automaton (TIOA) modeling framework
(introduced as the general timed automaton model in Ref. 25); a framework for modeling timed
systems. A timed I/O automaton A is a simple state-machine in which transitions are labeled by
actions. The actions of A, denoted acts(A), are partitioned into input (in(A)), output (out(A)),
internal (int(A)), and time-passage sets. Time-passage actions model the passage of time. The
input and output actions of A are collectively referred to as external and denoted as ext(A). Input,
output, and time-passage actions are collectively referred to as visible and denoted as vis(A).

A timed I/O automaton A is defined by its signature (input, output, internal, and time-passage
actions), states (states(A)), start states (start(A)), and state-transition relation (trans(A)). The
state transition relation of A is a subset of the cross product of states, actions, and states, i.e.,
trans(A) g states(A) x acts(A) x states(A), and dictates A's allowable transitions.

A timed execution fragment of A is a finite or infinite alternating sequence, a = s 0 7s 172 s2 ... , of
states and actions consistent with A's state-transition relation. A timed execution of A is a timed
execution fragment of A that begins in one of A's start states. A timed execution fragment of A
is admissible if an infinite amount of time elapses within the particular fragment. An admissible
timed execution a of A is fair when no action is enabled onwards of a particular state within a
without appearing within the suffix of a starting at that state. The time of occurrence of an action

7k, for k E N+, within a timed execution fragment a of A is the time elapsing within a prior to

25

the occurrence of rk. The timed trace of a timed execution fragment a of A is the sequence of
visible actions in a, each paired with its time of occurrence. We let aexecs(A) denote the set of all
admissible timed executions of A, attraces (A) denote the timed traces of all executions in aexecs (A),
fair-a execs (A) denote the set of all fair admissible timed executions of A, and fair-attraces(A)
denote the timed traces of all executions in fair-aexecs(A).

The composition of compatible timed I/O automata yields a timed I/O automaton. The hiding
operation reclassifies output actions of a timed I/O automaton as internal. Letting A, B be timed
I/O automata with the same external interface, B implements A, denoted B < A, when its external
behavior is allowed by A; that is, when attraces(B) C attraces(A). The implementation relation
between two timed I/O automata is often shown by defining a timed simulation relation; that is,
relating states of B to states of A and showing that for any step of B there is a timed execution
fragment of A that preserves the state relation and whose trace matches that of the step in B.

We use a precondition-effect style notation to define the state-transition relations of timed I/O
automata. The syntax and the semantics of this notation are described in detail in Ref. 14. We
complement this notation with the following notational shorthand. For any variable s and any set
variables S1 and S 2 , we use the notation S1 U= S2 as shorthand for S1 := Si U S2, S1 \= S2 as

shorthand for S1 := Si U S 2 , Si :C S2 as shorthand for the assignment of an arbitrary subset of S 2
to S1, and s :E Si as shorthand for the assignment of an arbitrary element of Si to s. Moreover, for
any state u of a timed I/O automaton A and any action f oo of A, we use the notation u.Pre(foo)
to denote the valuation of the precondition of the action foo in state u.

2.2 IP Multicast

IP multicast is the IP primitive for providing multi-party best-effort communication. A certain
subset of the IP address space is reserved for multicast communication. Individual hosts may choose
to subscribe and unsubscribe to messages addressed to such multicast addresses, thus forming
multicast groups. Packets addressed to such multicast addresses are disseminated to all subscribers
of the particular multicast address in a best-effort manner. In this section we describe the various
aspects of the IP multicast service. We begin by describing the multicast backbone (MBone); the
virtual network that is overlaid on portions of the Internet and used to disseminate multicast
packets. We then proceed to briefly describe the various protocols that are involved in providing
the IP multicast service.

2.2.1 Multicast Backbone Topology

As described by Casner [6] and summarized by Yajnik [41], the multicast backbone (MBone) is a
virtual network that is layered over portions of the Internet so as to support the transmission of
IP multicast traffic. Not all Internet routers are capable of handling IP multicast traffic. Thus, the
MBone is comprised of a set of IP multicast routers, referred to as islands, which are interconnected
by virtual point-to-point connections, referred to as tunnels. Islands are interconnected through a
combination of mesh and star configurations. Core MBone routers, which are used to provide IP
multicast connectivity to distinct geographical regions, are interconnected by a mesh of tunnels.
Redundant interconnections within this mesh protect the MBone against network failures. Within
each region, a star topology is used to connect the region's backbone router to all local routers
that wish to participate in IP multicast sessions. Additional tunnels may also branch out from
these local routers to include IP multicast capable routers on local area networks (LANs). MBone
routers disseminate IP multicast traffic by encapsulating packets into ordinary IP unicast packets
and transmitting them through the tunnels to their neighboring MBone routers. The use of

26

encapsulation allows the transmission of multicast traffic through intermediary routers not capable

of handling multicast traffic.

Some protocols make use of the time-to-live (TTL) field of IP packets to estimate the hop distance

between senders and receivers. Although the use of this field in the multicast setting is also

tempting, it is not as straightforward. Since IP multicast packets are encapsulated prior to being

transmitted through the MBone tunnels, their TTL field may not get decremented when traversing

the intermediary tunnel routers. Thus, the TTL field may underestimate the hop-count to the

source and cease to be an accurate hop-count estimate. To make things worse, the semantics

pertaining to the TTL field of IP multicast packets may be neither well-defined, nor consistent

among the various underlying multicast routing protocols [15].

2.2.2 Protocols

In order for a host to receive messages of a particular IP multicast session, it must join the IP

multicast session using the Internet Group Management Protocol (IGMP) [4,8,11]. As summarized

by Semeria and Maufer [37], local MBone routers maintain a list of all IP multicast sessions that

each of their network interfaces is interested in receiving. This list is updated according to the
join and report messages sent by hosts wishing to subscribe and remain subscribed, respectively,
to particular IP multicast sessions. Hosts inform their local MBone routers of their wish to receive

traffic addressed to an IP multicast session by sending a join message. This message alerts the local

MBone router of the existence of a host on the particular network interface that wants to receive the

packets pertaining to the particular IP multicast session. Keeping a list of the IP multicast sessions

that each of its network interfaces is interested in, the local MBone router is able to correctly

forward IP multicast traffic on its network interfaces. This list is also updated by report messages

that are sent by hosts in response to query messages sent by their local MBone router. In order to

refresh the information in its list, the local MBone router sends out query messages to the hosts

reachable by each of its network interfaces. Upon receiving such a query, a host sends a report

message to the local MBone router for each IP multicast session it is still interested in. Unless

the local MBone router receives a report for an IP multicast session from a network interface, the

forwarding of packets of the particular IP multicast session on that network interface is ceased.

Thus, in order to stop receiving packets addressed to a particular IP multicast session, a host

simply refrains from acknowledging the query messages for the particular IP multicast session.

IGMPv2 [11] augments the functionality of IGMP by introducing group-specific queries for local

MBone routers and leave messages for hosts. Thus, hosts may expedite leaving a particular IP

multicast session by sending a leave message which, in turn, induces the local MBone router to

send a group-specific query message. If no hosts respond to this query message, the local MBone

router ceases to forward packets of the particular IP multicast session down the given network

interface. IGMPv3 [4] augments the functionality of IGMPv2 by introducing group-source report

messages. Such messages enable hosts to instruct their local MBone routers to begin or cease

forwarding IP multicast packets sent by particular members of particular IP multicast sessions.

Bandwidth may thus be conserved by allowing hosts to refine the set of packets they are interested

in receiving and by minimizing the extent of IP multicast trees pertaining to particular session and

source pairs.

The dissemination of IP multicast traffic among the local MBone routers is carried out by an IP

multicast routing protocol [9,37]. Most such protocols save memory, computation, and bandwidth

resources by arranging a set of the MBone routers into a spanning tree that is subsequently used

to forward packets pertaining to a particular IP multicast session. Such trees can be either shared

by all the sources of the particular IP multicast session or specific to each source (referred to

as source-based IP multicast trees). The advantage of shared trees is that MBone routers store

27

per IP multicast session state only. The disadvantage is that traffic is concentrated on particular
interconnections of the MBone and that the point-to-point distance between sources and receivers
may not be optimal. Conversely, source-based trees better utilize the network by distributing
the load among more links and guarantee optimal routing between the sources and the receivers.
However, the use of source-based trees requires MBone routers to store per source state for each IP
multicast session, which may be prohibitive for IP multicast sessions involving numerous sources.

Several protocols make use of multicast messages to ascertain timing and topology information
regarding the underlying IP multicast trees. While doing so may often result in invaluable
information, collecting such information must be done cautiously. An important issue that is
often overlooked is that in the case of source-based trees, packets multicast by distinct members to
the same multicast group are forwarded on different IP multicast trees; that is, the paths traversed
by packets exchanged by two sources are not necessarily the same. Thus, the collective use of
timing and topology information gathered by packets multicast by different members may not be
straightforward.

2.2.3 Loss Characteristics

There have been several research studies regarding the location, the cause, and the statistical
characteristics of IP multicast transmission losses. The motivation behind such studies lies in
the promise that better insight into the characteristics of losses can guide the design of more
effective multicast communication applications and services. This rationale applies in particular to
applications and services relating to reliable multicast communication.

In a study of audio packet losses, Bolot et al. [1] report that in real-time audio transmissions in
both unicast and multicast settings the loss burst lengths are small, especially when the network
load is low. In particular, the authors observe that the probability distribution of loss burst length
decreases geometrically with the length of the loss burst. Bolot et al. conclude that, since losses in
real-time audio transmissions are predominantly solitary and prompt recovery is essential, forward
error correction (FEC) and error-concealment techniques are more suitable for error control in
real-time audio and video transmissions than their retransmission-based counterparts.

Yajnik et al. [41] analyze the spatial and temporal correlation of losses in constant bit-rate IP
multicast transmissions among 17 research community hosts. In their work, spatial correlation
is defined as the correlation of packet losses across receivers, i.e., the degree to which the losses
are shared among receivers. Temporal correlation is defined as the correlation of packet losses
at each receiver, i.e., the burstiness of packet losses. As to the location of losses, Yajnik et al.
observe that losses are rare within the MBone core, except for some occasional long loss periods
on individual links. Furthermore, losses are negligible at the receiving interface, i.e., packets are
seldom lost during the delivery from the MBone router on a LAN to the receiving hosts of that
LAN. Yajnik et al. also report that the pairwise spatial correlation among receivers is low, except
for the losses that occur close to the source and are thus shared by all receivers. Moreover, the
occasional long loss periods on the MBone seem to contribute heavily to the spatial correlation
observed. In terms of temporal correlation, losses are predominantly solitary and the lengths of
loss bursts are small, except again for occasional long loss bursts.

Handley [15] extends the work of Yajnik et al. by studying the multicast communication on a broader
scale, in terms of the number of receivers, the type of receivers, and the rate of transmission. In
particular, his experiments involve IP multicast transmissions from a single variable-rate video
source to a few hundred widespread receivers. Compared to the 17 research community receivers
used by Yajnik et al., hundreds of widespread receivers that are not necessarily part of the research
community are intended to faithfully represent the network characteristics of a more typical IP

28

multicast transmission. Moreover, a variable-rate video session is used to draw some conclusions

relating to the characteristics of potential congestion control mechanisms. Handley concludes that

80% of all receivers report loss rates of less than 20%, periodic bursts in losses occur at roughly

every 30 seconds, and packet losses are not independent. Handley observes that there were a

small number of particularly lossy links and a large number of slightly lossy links. Handley also

observes that the probability that a packet is received by all receivers is very low as the session

size increases; in particular, on the order of 3-6% for sessions of a few hundred receivers. Thus,
Handley concludes that any viable error control scheme for large multicast sessions must use either

a FEC scheme, a retransmission-based loss recovery scheme that achieves localized loss recovery, or,
more appropriately, a combination of the two. Solely using an FEC scheme would require excessive

amounts of redundancy to cater to loss bursts. Moreover, since losses are predominantly due to

congestion, the required redundancy would worsen the congestion and induce additional losses.

Similarly, solely using a retransmission-based scheme would require the retransmission of almost

all packets.

In a subsequent study, Yajnik et al. [42] further study the temporal correlation of packet loss in both

unicast and multicast constant bit-rate transmissions. Their work uses 128 hours of transmission

traces represented either as binary time series indicating whether particular packets were received
or as alternating sequences of reception and loss burst lengths. These traces reveal significant non-

stationary effects as to the mean loss-rates. In particular, gradual, abrupt, and dramatic changes as

well as spikes in the mean loss-rate are observed. Nonetheless, trace sections amounting to 76 hours

were identified as stationary and used to evaluate the temporal correlation of losses. Yajnik et al.

confirmed their earlier results that losses are predominantly solitary, with autocorrelation time-

scales of less that 1 second, and that loss burst lengths are geometrically distributed. The authors

were also able to faithfully model the observed loss patterns using Markov chain models of varying

orders.

2.3 Reliable Multicast

Reliable multicast refers to the service of providing reliable communication in the one-to-many and
many-to-many communication settings. Due to network congestion, queue overflow, and processing

overload at routers and hosts, packet losses are inevitable. The design of an efficient and scalable
error control scheme for multicast communication has been the focus of much research. Reliable
multicast surveys [10, 17, 18, 31, 40] group the various approaches to providing reliable multicast
communication into the following categories: i) retransmission-based, e.g., [13], ii) forward error
correction (FEC)-based, e.g., [5,30,36], and iii) error concealment-based, e.g., [36]. Retransmission-
based schemes recover from losses by detecting and promptly retransmitting missing packets.
FEC-based schemes proactively encode data packets with enough redundancy to tolerate a certain
number of packet losses. Using such encodings, the original data packets may be reconstructed by
decoding the subset of packets received by each receiver. The advantage of FEC-based schemes is
that the redundant encoding allows the recovery from different losses at different receivers. Lastly,
error concealment-based schemes, which are mostly used for audio and video transmissions, attempt

to faithfully recreate missing packets by duplicating, interpolating, and, otherwise, processing the

packets received.

In this thesis, we focus our attention on retransmission-based reliable multicast protocols. Such

schemes may be further split into application-layer and router-assisted protocols. Application-layer
protocols often use the underlying IP multicast service as a black box, or primitive, and build upon
it. Router-assisted protocols break the IP multicast abstraction and enlist the help of the routers
to intelligently forward error control and retransmission packets. In the rest of this section, we

29

describe some of the correctness and performance issues pertaining to retransmission-based reliable
multicast protocols, we present the performance metrics that have been used to date to evaluate
such protocols, and we conclude with a description of two representative examples of application-
layer and router-assisted protocols, namely the Scalable Reliable Multicast (SRM) protocol [12,13]
and the reliable multicast protocol based on the Light-weight Multicast Services (LMS) [32-34],
respectively.

In the rest of this section, we use the term data packets to refer to originally transmitted packets
that comprise the data of the application using the reliable multicast service. We use the term
retransmissions to denote subsequent transmissions of data packets. We use the term control
packets to denote packets used by the particular reliable multicast protocol to coordinate the
recovery of losses. We use the term recovery round to refer to the process of recovering from
a particular packet loss, i. e., the sequence of control packets exchanged by the members of the
reliable multicast group in an attempt to recover from a particular loss. Finally, we use the term
recovery latency to refer to the time needed by a particular member of the reliable multicast group
to recover from a particular loss, i.e., the time elapsing from the time at which the member detects
the loss to the time at which it receives the packet.

2.3.1 Retransmission-Based Reliable Multicast

Retransmission-based reliable multicast protocols recover from losses by detecting and promptly
retransmitting missing packets. In a one-to-one communication setting, reliable transport is
achieved by having the receiver acknowledge the reception of packets and the sender retransmit
any packets not acknowledged by the receiver. This approach does not extend well to the one-
to-many and many-to-many communication settings. In such settings, an acknowledgment-based
error control scheme induces acknowledgment (ACK) implosion; that is, senders get swamped by
the duplicate ACKs sent by the numerous receivers. A variety of approaches have been proposed
in the literature to solve this problem. One such approach is to limit the number of receivers that
send ACKs. This is achieved by a priori designating such receivers either arbitrarily, randomly,
or by arranging the receivers in a hierarchy [16, 28]. Another approach is to have receivers send
negative acknowledgements (NACKs) upon detecting packet losses, instead of acknowledging all
packets received. While the use of NACKs tends to alleviate ACK-implosion, there is still the
possibility of NACK-implosion, especially in large sessions with either high loss-rate, or losses with
high spatial correlation. In combating NACK-implosion, researchers have resorted to multicasting
NACKs and having receivers abstain from sending NACKs for packets for which a NACK has
already been overheard - otherwise referred to as duplicate suppression.

As described by Levine et al. [17,18], the use of NACKs leads to the memory deallocation problem.
In an ACK-based error control scheme, the receivers acknowledge the reception of all packets. The
sender may thus determine whether a packet has been received by all session members and release
it from memory. In a NACK-based error control scheme, the sender is not capable of determining
whether a packet has been received by all session members. Thus, memory may not be released.
Levine et al. [17, 18] show that NACK-based schemes work correctly only with infinite memory
and may lead to a deadlock when constrained by finite memory. While some applications, such
as the distributed white-board application, inherently need to store all multicast packets, the data
multicast by other applications is ephemeral. Thus, storing all packets transmitted would constitute
a waste of memory and, potentially, render the error control scheme impractical.

The approach of multicasting error control and retransmission packets to the whole multicast
group leads to the problem of exposure. In large multicast sessions, it is common for losses to
be concentrated in particular regions of the underlying multicast tree. Thus, the use of global
error control and retransmission packets wastes memory, processing, and bandwidth resources

30

in regions of the IP multicast tree that are not affected by the losses. Local error recovery, or

otherwise recovery isolation, is the obvious solution to this problem. It's simplest form involves

using the TTL field to limit the scope of error control and retransmission packets. More complicated

forms include arranging the members of a group in a hierarchy that aggregates error control and

retransmission messages, or similarly the use of representatives, e.g., [16, 28]. Router-assisted

protocols are particularly well suited for local error recovery, as routers may be used to limit
and focus the scope and direction, respectively, of error control and retransmission packets.

The performance of multicast communication depends heavily on the network topology and the
packet loss characteristics. To make things worse, multicast session membership and the underlying
topology are dynamic - members may join and leave the particular multicast session and network
failures may cause the underlying multicast tree to change. To cater to their unknown and dynamic
environment, reliable multicast protocols either use active services to gain up-to-date information as
to the network topology and the packet loss characteristics, or enlist the network routers to help with
sending ACKs/NACKs and retransmitting packets. Active services may use multicast messages in
order to deduce the inter-host round-trip times (RTTs) [12,13] and additional IP multicast tools,
such as mtrace, to gain knowledge of the underlying IP multicast tree topology and estimate the
loss characteristics of its links [15]. Although these active services obtain invaluable information
as to the cause and location of packet losses, they increase a protocol's complexity and introduce
additional overhead. On the other hand, router-assisted approaches take advantage of the network
routers to achieve efficient and localized loss recovery. Although the router-assisted approaches
result in reliable multicast protocols that are more scalable and have better performance, the
viability of their deployment is questionable. Despite the fact that the lack of a viable deployment
strategy may impede a protocol's adoption, the issue of a protocol's deployment has, until recently,
rarely been addressed in the literature [33].

2.3.2 Protocol Correctness and Performance Analysis

Following its design, a reliable multicast protocol may be analyzed in terms of both correctness
and performance [17, 18, 29, 40]. A protocol's correctness may be shown by proving that the
protocol faithfully implements the communication service it is intended to provide. Unfortunately, a
protocol's correctness is rarely analyzed; in fact, a precise definition of the reliable multicast service
the protocol is intended to provide is seldom specified and a protocol's correctness is verified only
informally.

A protocol's performance may be evaluated with respect to several quantitative and qualitative
metrics. The quantitative metrics include the protocol's recovery latency and overhead. Loss
recovery latency is defined as the time that elapses from the moment a loss is detected to the
moment a retransmission of the given packet is received. Recovery overhead refers to the memory,
processing, and bandwidth resources used by the reliable multicast protocol to recover from a loss.
Not surprisingly, the goal of a reliable multicast protocol is to minimize recovery latency while
limiting the recovery overhead.

Since loss recovery latency is different for each receiver and each loss, simulations are used
to measure a protocol's average recovery latency. A protocol's overhead is analyzed both
statistically and through simulations. Statistical analyses neglect the observed temporal and spatial
characteristics of packet loss and assume that packet losses are mutually independent, packet losses
are independent among receivers, and ACKs and NACKs are never lost. Then, a protocol's overhead
is obtained by calculating the expected number of messages exchanged while recovering from a loss
and the associated overhead incurred for each message. Simulations are used to observe a protocol's
average recovery overhead.

31

Apart from these quantitative performance metrics, reliable multicast protocols are analyzed qual-
itatively based on scalability to large sessions, adaptability to topology and membership changes,
fault-tolerance, deployment, and infrastructure requirements. With the advent of applications in-
volving large numbers of sources and receivers, the scalability of reliable multicast protocols is a
highly desirable, if not required, property. Moreover, a reliable multicast protocol must be dynamic,
fault-tolerant, and adapt to changes in the reliable multicast group membership and changes to the
underlying network due to failures and congestion. Deployment is an issue that is often ignored.
In order for a protocol to be adopted, either an immediate or an incremental deployment strategy
is required. Finally, the underlying services on which a reliable multicast protocol relies must be
examined and analyzed with respect to all aforementioned metrics. In particular, when analyzing
the overhead of a protocol, the contribution of all supporting services must be included. For ex-
ample, application-layer protocols rely on IP multicast and possibly additional external services.
The quantitative and qualitative performance of such services must also be included is a thorough
performance analysis.

2.3.3 Scalable Reliable Multicast (SRM) [12, 13]

SRM is an application-layer reliable multicast protocol that uses the IP multicast service as its
communication primitive. SRM recovers from losses through (multicast) retransmissions. These
retransmissions are instigated by the (multicast) transmission of retransmission requests (NACKs).
Duplicate requests and retransmissions are limited through delay-based suppression schemes. Since
SRM was initially designed for a distributed white-board application, in which receivers archive all
packets, the infinite memory requirements put forth by Levine et al. [17, 18] does not apply. We
proceed to give a more detailed description of SRM and several proposed extensions to SRM that
attempt to alleviate some of its shortcomings.

The SRM protocol consists of two distinct components: i) session message exchange, and ii) error
repair. Session messages are used to exchange state and timing information; state aids in the
detection of losses and timing aids in the suppression of duplicate error control and retransmission
packets. Losses in the middle of a sequence of packets are detected upon receiving data packets
with subsequent sequence numbers. However, when the last packet in a sequence is lost and the size
of the sequence is unknown a priori, as is the case in the white-board application, members may
be unaware of losses. Session messages, which are periodically multicast by each session member,
contain the sequence number of the last packet received from each source by the respective member.
Members use this up-to-date transmission state information to detect packet losses. In terms of
timing, session messages are used to estimate the round-trip time (RTT) among receivers. In view
of avoiding congestion, the frequency of session messages is adjusted to comprise a fixed percentage
of the total bandwidth used by the reliable multicast session. Thus, assuming a fixed session
bandwidth allocation, the frequency of session messages is reduced as the session size grows.

Error repair in SRM is initiated when receivers detect losses and schedule the transmission of a
repair request; an error control packet requesting the retransmission of the missing packet. A repair
request is scheduled by setting a repair request timer. Upon its expiration, the repair request is
multicast. If a repair request is overheard prior to the expiration of the request timer, then the
request is rescheduled by performing an exponential backoff. When a host receives a repair request
for a packet that is has either sent or received, it schedules a repair reply; a retransmission of the
requested packet. A repair reply is scheduled by setting a repair reply timer. Upon its expiration
the repair reply is multicast. If a repair reply is overheard prior to the expiration of the reply timer,
then the reply is canceled. Using this scheme, all session members participate in the error repair
by sending repair requests and replies and the retransmission load is shared among all members of
the reliable multicast group.

32

SRM reduces duplicate error control and retransmission traffic through deterministic and proba-

bilistic suppression. These suppression techniques prescribe how repair requests and replies should

be scheduled so that only few requests and replies are transmitted for each loss. Deterministic
suppression prescribes that request and reply timers be set proportionately to the distance from
the source and the requestor, respectively. In the case of requests, receivers further away from the

source will schedule their requests later in time and, presumably, their requests will suppress those
of their descendants in the IP multicast tree. The rationale is analogous for the case of scheduling

replies. Probabilistic suppression prescribes that members that are equidistant from the source
and the requestor spread out their requests and replies, respectively. This is done by scheduling
requests and replies within intervals whose widths are proportional to the distance from the source
and the requestor, respectively. Using this approach, members that are equidistant from the source
and the requestor, respectively, are given the opportunity to suppress each other.

Although SRM is highly robust to changes in the reliable multicast group and the IP multicast tree
topology, it suffers from scaling problems. First, hosts participating in a reliable multicast session
must maintain a table of RTT estimates of all other members of the session - a storage requirement
that grows linearly with the size of the session. Second, since each member of the reliable multicast
group periodically sends session messages, the number of the session messages grows linearly with
the session size. Thirdly, presuming a fixed bandwidth constraint on reliable a multicast session,
as the session grows in the number of members, the frequency of the exchange of session messages
drops. This results in poor performance in terms of both detecting packet losses and updating
RTT estimates. Finally, since requests and replies are transmitted to the whole IP multicast group,
even very localized losses consume bandwidth, memory, and computation resources in regions of
the network that are not affected by the losses.

Sharma et al. [38,39] describe a scheme in which session members are organized into a dynamically
self-configuring hierarchy, thus disseminating timing and session state information more efficiently.
In particular, scoped session messages are used to exchange timing and state information within
local neighborhoods and neighborhood representatives are used to exchange such info among neigh-
borhoods. Neighborhoods and representatives dynamically reconfigure so as to keep the hierarchy
well populated; that is, members self-appoint (and self-denounce) themselves representatives so as
to ensure that representatives are spread apart, close to the members they represent, and represent
numerous members. The benefits of this approach are several. First, members store timing in-
formation pertaining only to neighborhood representatives and local neighborhood members, thus
conserving memory. Second, local session messages contain less timing and state information and
are transmitted only within their respective neighborhood. Similarly, global session messages con-
tain timing information pertaining only to each representative and aggregate state information for
their respective neighborhood. Thus, bandwidth is conserved both within the neighborhoods and
among them, session messages may be transmitted more frequently, and losses may be detected
sooner. Finally, the self-configuring hierarchy introduces no performance degradation in terms of
number of requests and replies per loss and recovery latency.

Liu et al. [21, 22] address the absence of local error recovery in SRM. The authors propose two
distinct approaches to limiting the error recovery overhead incurred by wasteful exposure. The hop-
scoped approach limits the scope of repair requests and replies using the TTL field of IP multicast
packets. Inter-receiver hop-count information is piggybacked on session messages. Thus, the scope
of repair requests and replies is adjusted to reach the closest IP multicast group member capable of
servicing the request and all the receivers that shared the original loss, respectively. The overhead
of this approach is minimal since the required hop-count information can be piggybacked onto the
session messages. The drawback of this approach is that while the scope of recovery messages may
be adjusted, the direction of message dissemination may not. The group-scoped approach limits
the scope and the direction of recovery messages using distinct local recovery groups. Local IP

33

multicast groups are set-up based on the degree to which receivers share losses. Sequences of a
fixed number of packet losses, referred to by Liu et al. as error fingerprints, are used to determine
the degree of loss sharing among members. At the extreme, one such group is created for each
lossy link and thus the recovery overhead is constrained to the set of hosts that share all the losses
due to the particular lossy link. The overhead of this approach heavily depends on the number
of local groups needed to achieve good performance and the efficiency with which such groups are
created, maintained, and dissolved. Both hop-scoped and group-scoped approaches reduce the error
control overhead. The hop-scoped approach outperforms the group-scoped approach in reducing
the request overhead, except in the case of star topologies. The group-scoped approach outperforms
the hop-scoped approach in reducing the reply overhead. This constitutes a performance advantage
since replies carry payload and are thus costlier to transmit. Issues that are left for future research
include the measurement of the overhead incurred by maintaining the local groups in the group-
scoped approach, the convergence time of both approaches when the environment is dynamic, and
the combination of both approaches in a group-scoped approach where the scope of local group
messages are limited further by hop-count. The combination of both approaches is promising since
group-scoped local recovery performs well but may not be scalable to large sessions due to the
overhead of the numerous local groups required.

2.3.4 Light-Weight Multicast Services (LMS) [32-34]

LMS is one of the router-assisted reliable multicast protocols that have recently been proposed. In
its simplest form, LMS assumes that the underlying IP multicast routing protocol builds source-
based trees. Thus, each router has a clear notion of an upstream interface - the interface that
leads to the source of the given source-based multicast tree.

In LMS, each router selects one of its descendant members to conduct transport layer duties on
behalf of the subtree originating at the respective router. This member is denoted the replier of
the respective subtree and router. The replier selection process is carried out as follows. Members
who are willing to perform transport duties advertise themselves to the MBone routers. Among
all such willing members, the routers select the best candidate based on its distance and load; the
closer the member and the lighter its load the better. Following this selection process, the router
stores the interface leading to its replier.

Upon detecting a loss, receivers multicast a NACK with a hop-by-hop designation such that all
intermediate routers process it. Routers process NACKs according to the interface on which they
arrive. If a NACK arrives on the upstream interface, then the router knows that the NACK is
destined for its replier and forwards the NACK along the replier interface. If a NACK arrives on
the replier interface, then the router forwards the NACK upstream toward the source - the replier
must have not received the particular packet and is sending a NACK upstream in an effort to reach
either a replier responsible for an encompassing subtree or the source of the packet. Finally, if a
NACK arrives at any other interface, the router forwards the NACK along the replier interface thus
calling upon the replier to perform its transport layer duties. In this case, the router annotates
the forwarded NACK with fields containing the router's IP address and the interface on which the
router received the NACK. Papadopoulos et al. call this router the turning point because it is at
this location within the multicast tree where the NACK stops moving upstream toward the source
and starts moving downstream toward the replier.

Upon receiving a NACK, a replier does one of two things. If the replier has not received the
requested packet, it ignores the NACK since it will send (or has already sent) a NACK for the
given packet. If the replier has received the requested packet, it encapsulates it and unicasts it to
the turning point - the encapsulated packet is also annotated with a field containing the interface
on which the original NACK had arrived at the turning point. Upon receiving this unicast packet,

34

the turning point router unwraps the unicast packet and subcasts the missing packet along the
interface provided within the interface field of the encapsulated packet.

As expected, LMS improves the performance and reduces the overhead in comparison to application-
layer reliable multicast protocols. In particular, LMS limits the exposure of error recovery within
a subtree which is capable of recovering from the loss and thus achieves low exposure, overhead,
and recovery latency. LMS, however, inherits the Achilles heal of router-assisted protocols: the
issue of deployment. In a preliminary study of the effect of various deployment schemes on
LMS's performance, Papadopoulos and Laliotis [33] observe that a partial deployment of LMS
has a significant impact on its performance. Although recovery latency is lightly affected by a
partial deployment, exposure and peak NACK load are heavily affected. This impact varies greatly
depending on the deployment strategy used. LMS performs better if deployed in contiguous regions
rather than in dispersed patches across the MBone. The best performing deployment strategy was
to deploy LMS at the core routers. LMS performed well when the protocol was deployed on paths
from the source to several of the receivers. Finally, deploying LMS at the border routers performed
better than a random deployment strategy. This result is quite promising since border deployment
may constitute perhaps the only viable first stage of an incremental deployment strategy. The
study of the impact of partial deployment schemes is particularly important because it may guide
future deployment efforts in harnessing LMS's performance potential early on in its incremental
deployment schedule.

35

6

36

Chapter 3

The Reliable Multicast Service

With the increasing use of the Internet, multi-party communication and collaboration applications

are becoming mainstream. One such service or application is reliable multicast; that is, the reliable

transmission of packets in the one-to-many and many-to-many communication settings. In the

recent past, there have been a slew of protocols and schemes that strive to efficiently multicast

packets reliably [13, 16, 19, 20, 34, 35]. However, reliability in the multicast setting has assumed

many meanings, ranging from in-order eventual delivery to timely delivery where a small percentage

of packet losses is tolerable. The many notions of reliability stem from the varying assumptions

regarding the communication environment and the goals and requirements of the applications to

which particular reliable multicast protocols cater.

In our work, we focus on the eventual delivery notion of reliability and ignore additional transmission

guarantees such as ordering and no-duplication; that is, we focus on the notion of reliability that

is informally defined in the literature as the eventual delivery of all multicast packets to all group

members. Although intuitive, this simplistic definition of reliability in the multicast setting is

imprecise and vague. It specifies neither the assumptions regarding the environment, nor the

meaning of reliability in the context of a dynamic group membership. For instance, it is not clear

what types of faults are allowed/tolerated and which packets are guaranteed delivery to hosts that

join the multicast group while a particular transmission is already in progress.

In this chapter, we present a formal model of a reliable multicast service. This model precisely

describes the service that several reliable multicast protocols, such as SRM [13] and LMS [32-34],
strive to provide. Our reliable multicast service model includes a precise definition of what it means

to be a member of the reliable multicast group and of which packets are guaranteed delivery to

each reliable multicast group member. We begin the chapter by a brief modeling overview that

describes the physical system at hand and our reliable multicast service model. Then, we present a

timed I/O automaton model of the reliable multicast service and its environment. We conclude the

chapter by stating the various transmission properties that our formal specification of the reliable

multicast service provides.

3.1 Modeling Overview

3.1.1 The Physical System

We abstractly model the physical system as an infinite set of hosts that interact through an

underlying network. This network involves a set of interconnected routers. Each host is connected

to a particular router of the underlying network; for each host, we refer to this particular router

37

as the gateway router of the particular host. Hosts and routers are connected among themselves
through bi-directional communication links.

We assume that all hosts are of comparable processing power and storage resources. Resident
on each host are a set of processes. We assume that hosts are symmetric in the sense that the
same set of processes reside on each host. The set of processes on each host consists of a single
application process and several additional communication service processes. Henceforth, we refer
to the application process at each host as the client at the given host. The communication service
processes, either individually or collectively, provide the communication services required by the
client. For instance, the IP unicast service may be modeled as a set of processes, one such process
for each host. Clients may thus exchange IP unicast packets through their respective IP unicast
processes.

In terms of system faults, we consider only host crashes and packet drops on the communication
links. Once a host crashes it remains crashed thereafter. A host is said to be operational prior to
crashing and to have crashed thereafter. All the processes on each host are fate-sharing; that is, if
a host crashes, then all of its processes crash. Router failures and network partitions are assumed
to be ephemeral. Such failures are modeled as numerous packet drops.

Our assumption of an infinite set of hosts simplifies the modeling of host restarts. In particular,
hosts restart by taking on the identity of another host that has up to that point in time been idle;
that is, hosts restart by being reincarnated as completely new hosts. This modeling simplification
is equivalent to having hosts choose a unique host identifier each time they restart; presuming of
course the existence of an infinite set of such host identifiers. For instance, such an identifier could
involve a processor identifier and an infinite reincarnation counter that is stable across host failures
and gets incremented each time the processor crashes and restarts.

3.1.2 The Reliable Multicast Service and its Environment

We abstractly model the reliable multicast service as a single component that interacts with a
potentially infinite set of clients. In terms of the above description of the physical system, the
reliable multicast service encapsulates the behavior of all communication service processes at all
hosts and the underlying network. The clients correspond to the client processes at each host. For
simplicity, we assume that there is a single reliable multicast group. Since we assume a single client
per host and a single reliable multicast group, we do not distinguish among the client process and
the host when considering reliable multicast group membership. In fact, we often use the terms
client and host interchangeably.

Group Membership

The reliable multicast service maintains the set of hosts that comprise the reliable multicast group.
Hosts initiate the process of joining and leaving the reliable multicast group by issuing join and
leave requests to the reliable multicast service. A host becomes a member of the reliable multicast
group upon the acknowledgment of an earlier join request. Hosts may send and receive packets
through the reliable multicast service only while they are both operational and members of the
reliable multicast group.

A host initiates the process of leaving the reliable multicast group by issuing a leave request. Once
a host issues a request to leave the reliable multicast group, it relinquishes its right to receive any
more multicast packets. A host ceases to be a member of the reliable multicast group upon the
acknowledgment of an earlier leave request. Once a host leaves the reliable multicast group, it may
later rejoin the reliable multicast group.

38

Hosts may crash at any point in time. Following a crash, a host may restart by taking on the identity

of a host that has up to that point in time been idle; that is, a host restarts by being reincarnated
as a completely new host. This modeling simplification is equivalent to having hosts choose a
unique host identifier each time they restart; presuming of course the existence of an infinite set

of such host identifiers. For instance, such an identifier could involve a processor identifier and an

infinite reincarnation counter that is stable across host failures and gets incremented each time the

processor crashes and restarts.

Packet Naming Scheme

Floyd et al. [13] propose that, in the multicast setting, the application (the clients) should divide
the data to be multicast into segments, called application data units (ADUs), and assign unique
and persistent identifiers to each such segment. Floyd et al. argue that such a naming scheme is
preferable to the use of shared communication state among the senders and the receivers, as is
predominantly done in the unicast communication setting. An ADU-based scheme ensures unique
and persistent naming of the data, which is desirable in the multicast setting. We proceed by giving
a simple example that compares the two naming schemes.

For the purposes of illustration, consider the multicast transmission of a file named f oo. In the
case of the ADU-based naming scheme, the file f oo is split up by the application into segments
that are enumerated by consecutive sequence numbers. Thus, each data segment of the file f oo
is identified by the file name f oo and its sequence number. Presuming that the file name f oo
is unique and persistent, this naming scheme identifies data segments uniquely and persistently.
That is, the identifiers of the data segments remain the same no matter when and by which host
the data segments are transmitted. Moreover, ADU names are persistent across host failures. In
contrast, in the case of shared sender/receiver communication state, the data segments of the file
foo are identified by ephemeral sequence numbers that pertain to a particular transmission of the
file foo from a particular host. Although this scheme is simple and has been very successful in
the unicast communication setting, it is not well suited for the multicast setting. This is the case
because data segments may be named differently whenever they are retransmitted either by the
source or by any other host. Thus, it is very hard to keep track of which data segments have
actually been received by each receiver and to distribute the recovery overhead among the reliable
multicast group members.

In their presentation of SRM [13], Floyd et al. use a simple ADU-based naming scheme in which
each host assigns unique sequence numbers to each packet it multicasts. These sequence numbers
are assigned in a continuous fashion as hosts join, leave, and rejoin the reliable multicast group; that
is, consecutive packets sent by each host are assigned consecutive sequence numbers. Thus, packets
are uniquely and persistently identified by a pair involving their source host and their sequence
number. Throughout our treatment of reliable multicast, we adopt this naming scheme.

Reliability Guarantee

In this subsection, we describe the reliability guarantees provided by our reliable multicast service.
As noted above, we focus on the eventual delivery aspects of reliability and do not consider any
ordering and no-duplication guarantees. Thus, reliability entails specifying precisely which packets
are guaranteed delivery to which members of the reliable multicast group.

We say that a member h of the reliable multicast group has delivered the packet p if it has either
sent or received the packet p. We say that a member h of the reliable multicast group is aware of
p if it has delivered either p or a packet p' that is sent earlier than p from the source of p; that is,

39

the sequence number of p' is smaller than that of p. Moreover, we say that a packet p is active if
at least one host that is operational, is a member of the reliable multicast group, and is aware of
p, has delivered it.

We argue that once a host joins the reliable multicast group, the issue of catching up on any of
the packets multicast earlier is orthogonal to the reliable transmission of future packets through
the reliable multicast service. Once a host joins the reliable multicast group, the first packet it
receives from a particular source dictates the set of packets whose delivery will be guaranteed to
the given host; that is, earlier packets will not be delivered to the given host and later packets
will be delivered provided they remain active after being sent and the host remains a member of
the reliable multicast group. The host may catch up on the earlier packets from the given source
through a separate service. The rationale behind this choice is that the recovery of a large number
of earlier packets may strain the reliable multicast service and wastefully expose the recovery of
these earlier packets to all or a subset of the reliable multicast group. Alternatively, the earlier
packets may be requested directly from the source through a unicast communication channel.

Our reliable multicast service guarantees that if a packet p remains active forever after its
transmission then any member of the reliable multicast group that becomes aware of p and remains
operational and a member of the reliable multicast group thereafter, delivers p. Equivalently, if two
members become aware of a packet p, remain members forever thereafter, and one member delivers
p, then the other member delivers p also. It is important to note that a host is not required to
remain a member of the reliable multicast group indefinitely in order for the packets it multicasts
to be received by hosts that are aware of them; the eventual reception of packets is guaranteed to
all hosts that are aware of them provided that the packets remain active forever after they are sent.

Although possibly not apparent at first glance, the above notion of reliability captures the reliability
notion adopted by several reliable multicast protocols including SRM [13] and LMS [32-34]. For
example, consider the simple scenario in which a particular host joins the reliable multicast group,
starts multicasting packets, and remains a member of the group forever thereafter. Then, according
to the above definition, the reliable multicast service eventually delivers to all the hosts, that join the
reliable multicast group and remain members forever thereafter, all the packets that they become
aware of; that is, each member delivers a particular suffix of the stream of packets multicast from
the given source - the first packet of each such suffix is the first packet from the given source
delivered by each member.

3.2 Formal Model

We formally specify the reliable multicast service and each of the client processes using timed I/O
automata. The automaton RM(A), for A E R 0 U oc, models the reliable multicast service.
RM(A) defines what it means to be a member of the reliable multicast group and specifies
precisely which packets are guaranteed delivery to each member of the reliable multicast group.
The parameter A specifies an upper bound on the amount of time required by the reliable multicast
service to reliably deliver each packet. The automaton RM-CLIENTh models the client at the host
h. We let RM-CLIENTs denote the composition of all client automata and RMS(A), for any
A E R 0 U oc, denote the composition of the reliable multicast service and all client automata;
that is, RMs(A) = RM(A) x RM-CLIENTS. Figure 3.1 depicts the interaction of the RM(A) and
RM-CLIENTh, for h E H, automata.

40

Figure 3.1 Diagram of Reliable Multicast Service Architecture

crash, crashk

RM-CLIENTI eeO RM-CLIENTk

U ~' Cd uCd
Cd ICd ..
I p)) -%aiI De -e n) t

H tH fU W sH t U d
o 0) W) W)) 0 0) W) W) W

E~*~ U - r:: 9r-_ *r r=: E!4 E! r
.- 1 I ,I I I I I

RM(A)

Figure 3.2 Reliable Multicast Specification Definitions
H Set of all hosts.

Status = {idle, joining, leaving, member, crashed}

PRM-CLIENT = Set of packets such that Vp E PRM-CLIENT
source(p) E H
seqno(p) E N
data(p) E {0, 1}*
id(p) E H x N : id(p) = (source (p), seqno(p))
suffix(p) = {(s, i) E H x N I source(p)= s A seqno(p) < i}

3.2.1 Preliminary Definitions

Figure 3.2 includes several set definitions pertaining to our reliable multicast service specification.
H is the set of all hosts that could potentially participate in the reliable multicast communication.

The set Status consists of all possible valuations of the reliable multicast membership status of a
host. The value idle indicates that the host is idle with respect to the reliable multicast group;
that is, it is neither a member, nor in the process of joining or leaving the reliable multicast
group. The value joining indicates that the host is in the process of joining the reliable multicast
group; that is, the client has issued a request to join the reliable multicast group and is awaiting
an acknowledgment of this join request from the reliable multicast service. The value leaving
indicates that the client is in the process of leaving the reliable multicast group; that is, the client
has issued a request to leave the reliable multicast group and is awaiting an acknowledgment of
this leave request from the reliable multicast service. The value member indicates that the client is
a member of the reliable multicast group. The value crashed indicates that the host has crashed.

The set PRM-CLIENT represents the set of packets that may be transmitted by the client processes
using the reliable multicast service. According to the ADU naming scheme described above, data
segments are identified by their original source and a sequence number. Thus, for any packet

p E PRM-CLIENT the operations source(p), seqno(p), and data(p) extract the source, sequence
number, and data segment corresponding to the packet p. The operation id(p) extracts the source
and sequence number pair corresponding to the packet p. Such pairs comprise unique packet
identifiers. We also define the suffix(p) to be the subset of PRM-CLIENT comprised of all packets
whose source is that of p and whose sequence number is greater than or equal to that of p.

41

Figure 3.3 The RM-CLIENTh Automaton

Parameters:

h E H

Actions:

Input: Output:
crashh rm-joinh
rm-join-ackh rm-leaveh
rm-leave-ackh rm-sendh(p), for all p E PRM-CLIENT
rm-recvh(p), for all p E PRM-CLIENT Time Passage:

v(t), for t E RED

Variables:

now E R2 0 , initially now = 0
status E Status, initially status idle
seqno E N U _, initially seqno 1

Discrete Transitions:

input crashh output rm-joinh
eff status := crashed pre status = idle

input rm-join-ackh eff status joining

eff if status - joining then output rm-leaveh

status member pre status - member

input rm-leave-ackh eff status leaving

eff if status leaving then output rm-sendh(p)

status idle pre status = member A source(p) h

input rm-recvh(p) A(seqno =1 Vseqno(p) = seqno + 1)
eff seqno := seqno(p)

eff None
time-passage v(t)
pre None
eff now := now + t

3.2.2 The RM-CLIENTh Automaton

Figure 3.3 presents the signature, the variables, and the discrete transitions of RM-CLIENTh. The

RM-CLIENTh automaton models a well-behaved client; that is, a client that: i) transmits packets

only when it is a member of the reliable multicast group, ii) transmits packets in ascending and

contiguous sequence number order, iii) issues join requests only when it is idle with respect to the

reliable multicast group, and iv) issues leave requests only when it is a member of the reliable

multicast group.

Variables The variable now E R 0 denotes the time that has elapsed since the beginning of an

execution of RM-CLIENTh. The variable status E Status denotes the membership status of the

host h. It takes on one of the following values: idle, joining, leaving, member, and crashed.

These values indicate whether the host h either is idle, joining, leaving, a member of the reliable

multicast group, or has crashed, respectively. We say that a host h is operational if it has not

crashed. After a host h crashes, none of the input actions affect the state of RM-CLIENTh and

none of the locally controlled actions, except the time passage action, are enabled. The variable

seqno C N U L indicates the sequence number of the last packet to have been transmitted by

RM-CLIENTh - the value _ indicates that RM-CLIENTh has yet to transmit a packet using the

reliable multicast service. The seqno variable is initialized to I.

Input Actions The input action crashh models the crashing of the host h. The effects of crashh
are to record that the host h has crashed by setting the status variable to crashed.

42

The input action rm-join-ackh acknowledges the client's join request at h. If the client is in the
process of joining the reliable multicast group, i.e., status = joining, then the rm-join-ackh
action sets the status variable to member so as to indicate that the client at h has become a member
of the reliable multicast group.

The input action rm-leave-ackh acknowledges the client's leave request at h. If the client is in
the process of leaving the reliable multicast group, i.e., status = leaving, then the rm-leave-ackh
action sets the status variable to idle so as to indicate that the client at h has become idle with
respect to the reliable multicast group.

The input action rm-recvh(p) models the delivery of the packet p to the client at h. This action
has no effects.

Output Actions The output action rm-joinh is performed by the client to initiate the process
of joining the reliable multicast group. This action is enabled only while the client is idle with
respect to the reliable multicast group. Its effects are to set the status variable to joining so as
to indicate that the client at h has initiated the process of joining the reliable multicast group.

The output action rm-leaveh is performed by the client so as to initiate the process of leaving the
reliable multicast group. This action is enabled only while the client is a member of the reliable
multicast group. Thus, the client waits for join requests to complete prior to issuing leave requests.
Its effects are to set the status variable to leaving so as to indicate that the client at h has initiated
the process of leaving the reliable multicast group.

The output action rm-sendh(p) models the client's transmission of the packet p using the reliable
multicast service. The rm-sendh(p) action is enabled when the client is a member of the reliable
multicast group and the packet p is either the first or the next packet in the sequence of packets
to be transmitted by the client at h; that is, status = member, source (p) = h, and either seqno =1
or seqno(p) = seqno + 1. The effects of the rm-sendh(p) action are to set seqno to seqno(p) (or,
equivalently, to increment seqno), thus recording the transmission of the packet p.

Time Passage The action v(t) models the passage of t time units. It is enabled at any point in
time and increments the variable now by t time units.

3.2.3 The RM Automaton

The RM automaton specifies the reliable multicast service as a whole. Figures 3.4 and 3.5 present
the signature, the variables, and the discrete transitions of RM.

Parameters

The RM automaton is parameterized by a time bound, A E R o U {oo}, which specifies the
maximum delay in delivering each packet sent to the appropriate members of the reliable multicast
group. The value oc corresponds to the case in which the reliable multicast service guarantees the
eventual delivery of all packets to the appropriate members of the reliable multicast group. An
instance of the RM automaton is denoted by RM(A).

Variables

The variable now E R o denotes the time that has elapsed since the beginning of an execution of
RM. Each variable status(h) C Status, for h C H, denotes the status of the host h. Each of its

43

Figure 3.4 The RM Automaton - Signature

Parameters:

A C R:O U {oo}
Actions:

Input: Output:
crashh, for h E H rm-join-ackh, for h E H
rm-joinh, for h E H rm-leave-ackh, for h E H
rm-leaveh, for h E H rm-recvh(p), for h G H,p C P\L-CLIENT
rm-sendh(p), for h C H,p C PRM-CLIENT Time Passage:

v(t), for t E RC D

valuations is described in the definition of the set Status. We say that the host h is operational if
it has not crashed. After a host h crashes, none of the input actions pertaining to h affect the state
of RM and none of the locally controlled actions pertaining to h are enabled.

Each variable trans-time(p) c lR U L, for p E PRM-CLIENT, denotes the transmission time of
the packet p; that is, the time the packet p was sent by its source. Prior to the transmission of p,
trans-time (p) is equal to I. Each variable expected (h, h') C H x N, for h, h' E H, is the set comprised
of the identifiers of the packets from h' that the host h is aware of since it last joined the reliable
multicast group and, consequently, expects to deliver. Each variable delivered(h, h') C H x N, for
h, h' c H, is the set comprised of the identifiers of the packets from h' that the host h has delivered.

Derived Variables

The derived variable idle C H is a set of hosts that is comprised of all the hosts that are idle with
respect to the reliable multicast group. The derived variable joining C H is a set of hosts that
are in the process of joining the reliable multicast group. The derived variable leaving g H is a
set of hosts that are in the process of leaving the reliable multicast group. The derived variable
members C H is a set of hosts that are members of the reliable multicast group.

The derived variable intended(p), for each p E PRM-CLIENT, is the set of hosts that are expecting
the delivery of the packet p. We henceforth refer to the set intended(p) as the intended delivery
set of p. The derived variable completed(p), for each p C PRM-CLIENT, is the set of hosts that have
delivered the packet p. Recall that we say that a host has delivered a packet p if it has either
sent or received p. We henceforth refer to the set completed(p) as the completed delivery set of p.
The derived variable sent-pkts is the set of packets that have been sent since the beginning of the
given execution of the RM(A) automaton. The derived variable active-pkts is the set comprised of
the sent packets that have been delivered by at least one of the hosts in their respective intended
delivery sets.

Input Actions

Each input action crashh, for h c H, models the crashing of the host h. The effects of crashh
are to record that the host h has crashed by setting the variable status(h) to the value crashed.
Furthermore, the crashh action resets the set of packets that the host h is expecting from each
source and the set of packets it has delivered from each source. Thus, the RM automaton is released
of the obligation to deliver any of the active packets to the host h.

The input action rm-joinh models the client's request at the host h to join the reliable multicast
group. The rm-joinh action is effective only while the host h is idle with respect to the reliable
multicast group. When effective, the rm-joinh action sets the status(h) variable to joining so
as to record that the host h has initiated the process of joining the reliable multicast group. If

44

Figure 3.5 The RM(A) Automaton - Variables and Discrete Transitions

Variables:

now E R 0 , initially now = 0
status(h) E Status, for all h E H, initially status(h) = idle, for all h E H
trans-time(p) E R> 0 U I, for all p E PR-1CLIENT, initially trans-time(p) =-L, for all p E PRM-CLIENT

expected(h,h') C H x N, for all h,h' E H, initially expected(h,h') = 0, for all h,h' C H
delivered(h, h') C H x N, for all h, h' E H, initially delivered(h, h') = 0, for all h, h' E H

Derived Variables:

idle = {h G H I status(h) = idle}
joining = {h E H I status(h) = joining}
leaving = {h C H I status(h) = leaving}
members = {h C H I status(h) = member}
intended(p) = {h E H I id(p) E expected(h, source(p))}, for all p E PRM-CLIENT
completed(p) = {h C H I id(p) E delivered(h, source(p))}, for all p E PRM-CLIENT

sent-pkts = {p E PRNI-CLIENT trans-time(p) :-I}
active-pkts = {p E PRM-CLIENT I p C sent-pkts A intended(p) n completed(p) $ 0}

Discrete Transitions:

input crashh output rm-join-ackh
eff status(h) := crashed pre h E joining

foreach h' C H do: eff status(h) := member

expected(h, h') 0 output rm-leave-ackh
delivered (h, h') := pr evnpre h C Leaving

input rm-joinh eff status(h) := idle
eff if h E idle then output rm-reVh P)

status (h) := jo ining otu mrchp
pre h C members\{source(p)}

input rm-leaveh Ap E sent-pkts
eff if h C joining U members then A(expected(h, source(p)) = 0

status(h) := leaving r* now < trans-time(p) + A)
foreach h' E H do: A(expected(h, source(p)) $ 0

expected(h, h') := 0 = id(p) E expected(h, source(p)))
delivered(h, h') := 0 eff if expected(h, source(p)) = 0 then

input rm-sendh(p) expected(h, source(p)) := suffx(p)
delivered (h, source (p)) U = { id (p)}

eff if h E members n {source(p)} then
if expected (h, h) = 0 then time-passage v(t)

expected(h,h) := suffix(p) pre V p E active-pkts,
if id(p) E expected(h, h) then now + t < trans-time(p) + A

trans-time(p) := now vintended(p) C completed(p)
delivered(h, h) U= {id(p)} eff now := now + t

the client is either a member of or in
rm-j oinh action is superfluous. If the
rm-joinh action is discarded so as to
complete.

the process of joining the reliable multicast group, then the

client is already in the process of leaving the group, then the

allow the process of leaving the reliable multicast group to

The input action rm-leaveh models the client's request at the host h to leave the reliable multicast

group. The rm-leaveh action is effective only while the host h is a member of or in the process

of joining the reliable multicast group. When effective, the rm-leaveh action sets the status(h)

variable to leaving so as to record that the host h has initiated the process of leaving the reliable

multicast group. Moreover, the rm-leaveh action initializes the set of packets that the host h is

expecting from each source and the set of packets it has delivered from each source. Thus, the RM

automaton is released of the obligation to deliver any of the active packets to the host h. Leave

requests overrule join requests; that is, when a rm-leaveh action is performed while the host h is in

the process of joining the reliable multicast group, its effects are to abort the process of joining and

to initiate the process of leaving the reliable multicast group. If the client is either idle or already

in the process of leaving the reliable multicast group, then the rm-leaveh action is superfluous.

The client at h sends the packet p using the reliable multicast service through the input action

45

1.

rm-sendh(p). The rm-sendh(p) action is effective only when the host h is both a member of the
reliable multicast group and the source of the packet p. If p is the first packet sent by the host h,
then the rm-sendh(p) action initializes the set of packets expected by h from h to the set suffix(p);
that is, all packets whose source is h and whose sequence number is greater or equal to that of p.
Then, if p is in the expected set of packets of h from h, the rm-sendh(p) records the transmission
time of p by setting the variable trans-time(p) to now and adds the packet p to the set of packets
from the host h that the host h has delivered.

Output Actions

The output action rm-join-ackh acknowledges the join request of the client at h. The action
rm-join-ackh is enabled when the host h is in the process of joining the reliable multicast group.
Its effects are to set the status(h) variable to member so as to indicate that the client at h has
become a member of the reliable multicast group.

The output action rm-leave-ackh acknowledges the leave request of the client at h. The action
rm-leave-ackh is enabled when the host h is in the process of leaving the reliable multicast group.
Its effects are to set the status(h) variable to idle so as to indicate that the client at h has become
idle with respect to the reliable multicast group.

The output action rm-recvh(p) models the delivery of the packet p to the client at h. The
rm-recvh(p) action is enabled when the host h is a member of the reliable multicast group, the
host h is not the source of p, and p is an active packet. Moreover, if the expected deliver set of h
with respect to the source of p is undefined, then the delivery deadline trans-time (p) + A of p must
not have expired; that is, the first packet from any source to be delivered to any client must be
delivered prior to its delivery deadline. If the expected deliver set of h with respect to the source
of p has already been defined, then p must be expected by h. The effects of the rm-recvh(p) action
are: i) to define the expected delivery set of h with respect to the source of p to the set suffix (p),
unless already defined, and ii) to add the host h to the completed delivery set of p.

Time Passage

The action v(t) models the passage of t time units. Time is prevented from elapsing past the
delivery deadline of any active packet that has yet to be delivered to all the hosts in its intended
delivery set. Thus, prior to allowing time to elapse past the delivery deadline of an active packet,
all the hosts in its intended delivery set must either send or receive the packet, leave the reliable
multicast group, or crash.

3.3 Properties of the Reliable Multicast Service

In this section, we present various properties of the RM(A), for A E R G U oc, the RM-CLIENTh,
for h c H, and the RMs(A) = RM(A) x RMCLIENTS automata. We begin the section by defining
various notions and specifying some preliminary properties of the aforementioned automata. We
conclude the section by defining the reliability properties exhibited by the RMs(A) automaton;
that is, the reliable multicast service interacting with well-behaved clients.

3.3.1 Preliminary Properties and Definitions

The automaton RM-CLIENTh, for any h E H, satisfies transmission correctness, transmission
uniqueness, and in order transmission. Transmission correctness is the property that clients only

46

transmit packets for which they are actually the source. Transmission uniqueness is the property
that no two packets transmitted by a client share the same identifier. Finally, in order transmission
is the property that each client transmits packets through the reliable multicast group in ascending
sequence number order.

Lemma 3.1 (Transmission Correctness) Let 3 be any timed trace of RM-CLIENTh, for any
h E H. If # contains the action rm-sendh(p), for some p C PRM.CLIENT, then the host h is the

source of p; that is, h = source(p).

Proof: Follows directly from the precondition of the action rm-sendh(p). F1

Lemma 3.2 (Transmission Uniqueness) Let / be any timed trace of RM-CLIENTh, for any
h E H. For any packet identifier (s, i) E H x N, at most one packet p E PRM-CLIENT is transmitted
within 3; that is, 13 contains at most one action rm-sendh(p), for p E PRM-CLIENT, such that
id(p) (s,i).

Proof: Let a be any timed execution of RM-CLIENTh such that /3 = ttrace(a). Within a each
action rm-sendh(p'), for p' E PRM-CLIENT such that source(p') = h, transmits the packet p' whose
sequence number is equal to seqno and increments the variable seqno. Since no other actions affect
the variable seqno it follows that seqno monotonically increases each time a packet is transmitted.
Thus, # does not contain the transmission of more than one packets sharing the same sequence
number. 0

Lemma 3.3 (In Order Transmission) Let 3 be any timed trace of RM-CLIENTh, for h E H,
that contains the actions rm-sendh(p) and rm-sendh(p'), for p,p' E PRM-CLIENT, such that h =
source(p) = source(p') and seqno(p) < seqno(p'). Then, the action rm-sendh(p) precedes the
action rm-sendh(p') in /.

Proof: The effects of any rm-sendh(p"), for p" E PRM-CLIENT, are to increment the variable

RM-CLIENTh.seqno. Moreover, no other action affects the variable RM-CLIENTh.seqno. Thus is,
the variable RM-CLIENTh.seqno is monotonically non-decreasing in any execution of RM-CLIENTh.

The actions rm-sendh(p) and rm-sendh(p') are enabled only when seqno(p) = RM-CLIENTh-seqno
and seqno(p') = RM-CLIENTh.seqno, respectively. It follows that rm-sendh(p) precedes the action
rm-sendh(p') in any timed execution of RM-CLIENTh such that / = ttrace(a). E

The automaton RMs(A), for any A E R 0 U oc satisfies transmission integrity. Transmission
integrity it the property that, within a timed trace of RMs(A), the reception of a packet must be
preceded by the particular packet's transmission.

Lemma 3.4 (Transmission Integrity) Let / be any timed trace of RMs(A), for any A c
R 0 U oc. For h,h' C H and p s PMCLIENT, such that h 0 h' and h = source(p), it is the

case that any rm-recvh'(p) action is preceded in / by a rm-sendh(p) action.

Proof: Let a be any timed execution of RMs(A) such that / = ttrace(a). It suffices to show
that any rm-recvh' (p) action is preceded by a rm-sendh(p) action within a. This follows directly
from the precondition of the action rm-recvh(p). In particular, the precondition of the action
rm-recvh' (p) requires that there is a tuple in pkts corresponding to the packet p. However, such a

47

tuple may be added to pkts only by the occurrence of the action rm-sendh(p). Thus, the occurrence
of any action rm-recvh'(p) within a is preceded by the occurrence of the action rm-sendh(p). C,

We proceed by defining the set of members of the reliable multicast group following a finite timed
trace of RMs(A).

Definition 3.1 (Membership) Let 0 be any timed trace of RMs(A), for any A C R 0 U 00.

We define the members of 3, denoted members(), to be the set of all hosts h C H such that 13
contains a rm-join-ackh action that is not succeeded by either an rm-leaveh or a crashh action.
If a host h C H is in the set members(), then we say that h is a reliable multicast group member

of /3.

The following lemma relates the set members() of Definition 3.1 to the derived variable members
of the automaton RM.

Lemma 3.5 Let A E R o U 0o and a be any finite timed execution of RMs(A). Letting s be the
last state in a and 3 be the timed trace of a, it is the case that s.members = members().

Proof: Follows directly from the definitions of s.members and members(/3). El

Lemma 3.6 Let A C R O U 0o, h e H, and a be any timed execution of RMs(A) such that
h E members (ttrace(a)). Letting s be any state following the last occurrence of the rm-join-ackh
action in a, it is the case that h E s.members.

Proof: Let a', a" be the execution fragments of RMs(A) such that a'a" = a and the last action
in a' is the last occurrence of the rm-join-ackh action in a. Letting s' = a'.1state, the effects of the
rm-join-ackh action imply that s'.status(h) = member. By the definition of members (ttrace(a)),
it follows that a" contains neither a rm-leaveh or a crashh action.

The rest of the proof involves showing that for any prefix an of a" of length n E N, such that

s= a=n.lstate, it is the case that h E sn.members. This follows by a simple induction on the length
n of a,. For the base case, consider ao. Since a0 = s' and s'.status(h) = member, it follows that
so.status(h) = member, as required. For the inductive step, consider ak+l. Let sk+1 = ak+1.lstate,
let ak be the prefix of ak+1 involving its first k steps, and sk = ak.lstate. The induction hypothesis
is the assertion that sk.status(h) = member. Since a" contains neither a rm-leaveh or a crashh
action, the k + 1-st step of ak+1 is neither an rm-leaveh or a crashh action. Moreover, since

sk.status(h) = member, the k + 1-st step of ak+1 is neither an rm-joinh, rm-join-ackh, nor
rm-leave-ackh action. The remaining actions do not affect the status(h) variable. Thus, it follows

that sk+l.status(h) = member, as required. El

We proceed by defining the intended and completed delivery sets of a packet within a timed trace
of RMs(A).

Definition 3.2 (Intended Delivery Set) Let / be any timed trace of RMs(A), for any A C
R 0 U00, containing the transmission of a packet p C PRM-CLIENT . We define the intended delivery
set of p within 0, denoted intended(p, /), to be the members of / that have delivered either the
packet p or an earlier packet from the source of p since they last joined the reliable multicast group;

that is, h E intended(p,/3) if and only if h E members() and the last rm-join-ackh action in /
is succeeded by either a rm-sendh(p') or a rm-recvh(p') action, where source(p') = source(p) and

seqno(p') < seqno(p).

48

Lemma 3.7 Let /3 be any finite timed trace of RMs(A), for any A E IR U o, containing the

transmission of a packet p E PRM-CLIENT. Then, it is the case that intended (p, /) g members().

Proof: Follows directly from Definition 3.2. CI

The following lemma relates the intended delivery set of a packet p within a timed trace 3 defined

in Definition 3.2 to the derived variable intended(p) of the RM automaton.

Lemma 3.8 Let A e R 0 U oc, p E PRM-CLIENT, and a be any finite timed execution of RMs(A)
that contains the transmission of p. Letting s = a.lstate and 3 = ttrace(a), it is the case that

s.intended(p) = intended (p, /).

Proof: Follows directly from the definition of the derived variable intended(p) and Definition 3.2.

Definition 3.3 (Completed Delivery Set) Let / be any timed trace of RMs(A), for any
A R 0 U o0, containing the transmission of a packet p E PRM-CLIENT- We define the completed
delivery set of p within 0, denoted completed (p, /3), to be the members of 3 that have delivered

the packet p since they last joined the reliable multicast group; that is, h E completed (p, /) if and
only if h E members(/3) and the last rm-join-ackh action in / is succeeded by either a rm-sendh(p)
or a rm-recvh(p) action.

The following lemma relates the completed delivery set of a packet p within a timed trace / defined
in Definition 3.3 to the derived variable completed(p) of the RM automaton.

Lemma 3.9 Let A E R O U 00, p E PRM-CLIENT, and a be any finite timed execution of
RM(A) x RMCLIENTS that contains the transmission of p. Letting s = a.lstate and / ttrace (a),
it is the case that s.completed(p) = completed (p,3).

Proof: Follows directly from the definition of the derived variable completed (p) and Definition 3.3.

We continue by defining the set of active packets within a timed trace of RMs(A), for any
A E R O U o. This set is comprised of the packets whose intended and completed delivery sets
within the given timed trace overlap; that is, the packets for which there is at least one host that
was and has remained a member of the reliable multicast group following the packet's transmission

and, moreover, has either sent or received the packet.

Definition 3.4 (Active Packets) Let / be any timed trace of RM(A) x RMCLIENTS, for any
A G R Q U o. We define the set of active packets within 0, denoted active-pkts(), to be
the set of all packets p E PRM-CLIENT such that intended(p,/) n completed(p, /) : 0. If a packet

p E PRM-CLIENT is in the set active-pkts(), then we say that p is active within /.

The following lemma relates the set of active packets defined in Definition 3.4 to the derived variable
active-pkts of the RM automaton.

Lemma 3.10 Let A C R 0 U 00, p E PRM-CLIENT, and a be any finite timed execution of
RM(A) x RMCLIENTS that contains the transmission of p. Letting s = a.lstate and / = ttrace(a),
it is the case that s.active-pkts = active-pkts(3).

49

Proof: Follows directly from Lemmas 3.8 and 3.9, Definition 3.4, and the definition of the derived
variable active-pkts of the RM automaton. 0

Lemma 3.11 Let /3,/3' be timed traces of RM(A) x RMCLIENTS, for any A E R O U oc, containing
the transmission of a packet p E PRM-CLIENT such that ' /. Then, it is the case that if
p E active-pkts(3) then p E active-pkts(3').

Proof: We prove the above claim by contradiction. Suppose that it is the case that p g
active-pkts(') and p c active-pkts(). Thus, there must be some action 7r following 0' such
that p V active-pkts(0,) and p E active-pkts(A, -7), where /3, ' are the trace fragments of # such
that 0, -7 = 3.

Let a be any timed execution of RM(A) x RMCLIENTS such that / = ttrace(a) and s, and s'
be the pre- and post-states of w within a. We proceed by considering the possibility of 7r being
any of the actions of the RMS(A) automaton that affect the valuation of the derived variable
active-pkts. Since p V active-pkts(3,), Lemma 3.10 implies that p V s,.active-pkts. Thus, none of
the rm-recvh(p), for h E H, are enabled. Lemma 3.1 implies that none of the actions rm-sendh(p),
for h E H, except for h = source(p) are enabled. Moreover, since p has already been sent within

A., Lemma 3.2 implies that rm-sendh(p), for h = source(p), is not enabled in s,. The only other
actions that affect the variable active-pkts are the crashh and rm-leaveh actions, for h E H. The
effects of these actions are to remove the host h from both the intended(p) and completed(p) sets.
Clearly, if intended(p) n completed (p) 0 in the state s, then the same holds for s' . Thus, it
follows that p V s'.active-pkts. Lemma 3.10 implies that p V active-pkts(3, . r), which contradicts
our original supposition. 71

Lemma 3.12 Let A G R o U oc, h E H, p E PRM-CLIENT, and a be any timed execution of
RMs(A) that ends with the discrete transition (s,w, s'), for 7 = rm-sendh(p). Then, it is the case
that p G s'.sent-pkts.

Proof: From the precondition of rm-sendh(p), it follows that s.status = member and source (p) = h.
Thus, the effects of the rm-sendh(p) are to set the variable trans-time (p) to the value of now. By the
definition of the derived variable sent-pkts of RM(A), it follows that p E s'.sent-pkts, as required.

Lemma 3.13 Let A E R o U oc, p E PRM-CLIENT, s E states(RM(A)) be any reachable state of
RM(A) such that p e s.sent-pkts, and a be any timed execution fragment of RM(A) such that
s = a.fstate. For any s' E states(RM(A)) in a, it is the case that p G s'.sent-pkts.

Proof: Follows from a simple induction on the length of the prefix of a leading to s' and the fact
that none of the actions of RM(A) reset the variable trans-time(p) to I. E

Lemma 3.14 Let h E H, p E PRM-CLIENT, s C states(RM(A)), for A C R O U oc, and a be any
timed execution fragment of RM(A), such that s = a.fstate, h E s.intended(p) (or, equivalently,
id(p) E s.expected(h, source (p))), and a contains neither crashh nor rm-leaveh actions. Then,
for any state s' E states(RM(A)) in a, it is the case that h E s'.intended(p) (or, equivalently,
id(p) G s'.expected(h, source(p))).

50

Proof: Follows from a simple induction on the length of the prefix of a leading to s' and the
facts that: i) the variable expected(h, source (p)) may only be set to a non-empty set if it is empty,
and ii) the variable expected(h, source(p)) is reset to the empty set only by the actions crashh and
rm-leaveh. E

Invariant 3.1 For h E H and any reachable state s of RM(A) x RMCLIENTS, for A E R 0 U 00,
it is the case that s[RM-CLIENTh].status = s[RM(A)].status(h).

Proof: Follows by a simple induction on the length of any timed execution of RMs(A) leading
to s. E

Invariant 3.2 Let hh' E H and s be any reachable state of RMs(A), for A E R 0 U oo.
If s[RM(A)].status(h) # member, then it is the case that s[RM(A)].expected(h,h') 0 and
s[RM(A)].delivered (h, h') = 0.

Proof: Follows from a simple induction on the length of any execution of RMs(A) leading
to s and the facts that: i) the actions that set the variable RM(A).expected(h, h') are only
enabled when RM(A).status(h) = member, ii) the actions that add elements to the variable
RM(A).delivered(h, h') are only enabled when RM(A).status(h) = member, and iii) the actions
that reset the variables RM(A).expected(h, h') and RM(A).delivered(h, h') also set the variable
RM(A).status(h) to a value other than member. E

Letting A E R 0 U oc, the following invariant states that, for any active packet in any reachable
state of RM(A) x RMCLIENTS, either A time units have yet to elapse past the packet's transmission
time, or the packet has been delivered to all members that are aware of it. Thus, A bounds the
delivery latency of any active packet.

Invariant 3.3 Let s be any reachable state of the timed automaton RMs(A), for any A E R 0 Uoo.
Then, for any active packet p C PRM-CLIENT in s, i.e., p C s.active-pkts, it is the case that either
s.now < s.trans-time(p) + A or s.intended(p) C s.completed(p).

Proof: The proof is by induction of the number of steps n E N of a timed execution a of RMs(A)
leading to the state s. For the base case, consider a timed execution with no steps; that is, n = 0
and a = s for some s E start(RMs(A)). Since s.active-pkts = 0, the invariant assertion is trivially
satisfied.

For the inductive step, consider a timed execution a with k + 1 steps. Let a' be the prefix of
a containing the first k steps of a and s' be the last state of a'. The induction hypothesis is
that for any active packet p' E PRM-CLIENT in S', i-e., p' c s'.active-pkts, it is the case that either
s'.now < s'.trans-time(p') + A or s'.intended(p') C s'.completed(p'). For the inductive step, we
show that for any active packet p C PRM-CLIENT in s, .e., p E s.active-pkts, it is the case that either
s.now < s.trans-time(p) + A or s.intended(p) C s.completed(p).

Suppose that p E s.active-pkts and consider two cases depending on whether p E s'.active-pkts.
First, consider the case in which p s'.active-pkts. Lemma 3.11 implies that the step from s' to s
involves the action rm-sendh(p), for h = source(p). Its effects are to set the variable trans-time(p)
to now. It follows that s.now < s.trans-time(p) + A. Thus, the invariant assertion is satisfied in s.

Second, consider the case in which p C s'.active-pkts. Then, the induction hypothesis implies that
either s'.now < s'.trans-time(p)+A or s'.intended(p) C s'.completed(p). We proceed by considering
the effects of each of the actions that affect any of the variables present in the invariant assertion:

51

El crashh, for h e H: the effects of this action are to remove the host h from the intended
and completed delivery sets of p. Thus, the induction hypothesis implies that either s.now _

s.trans-time(p) + A or s.intended(p) C s.completed(p).

E rm-leaveh, for h C H: the reasoning for this action is similar to that of the crashh action.

El rm-sendh(p), for h = source(p): since p C s'.active-pkts it follows that p has been sent prior to
state s' within a. Thus, Lemma 3.2 implies that the rm-sendh(p) action is not enabled in s'.

El rm-recvh(p), for h E H: we consider two cases depending on whether s'.expected(h, source(p))
is empty. First, if s'.expected(h, source(p)) = 0, the precondition of rm-recvh(p) implies that
s'.now < s'.trans-time(p) + A. Since the rm-recvh(p) action affects neither the now nor the
trans-time(p) variables, it follows that s.now < s.trans-time(p)+A. Thus, the invariant assertion
is satisfied in s. Second, if s'. expected(h, source (p)) : 0, the precondition of rm-re cvh (p) implies
that id(p) E s'.expected(h, source(p)). The effects of rm-recvh(p) are to add the element
id(p) to the set delivered(h, source(p)). Thus, the induction hypothesis implies that either
s.now < s.trans-time(p) + A or s.intended(p) C s.completed(p).

El v(t), for t E R>O: the effects of the time-passage action are to allow t time units to elapse.
However, the precondition of the action v(t) implies that the invariant assertion is satisfied in s.

3.3.2 Reliability Properties

The RMs(A) automaton, for any A E R 0 U 00, satisfies the eventual delivery and, equivalently,
pairwise eventual delivery, properties. Eventual delivery is the property that if a host h is a
member of the reliable multicast group, becomes aware of a packet p, remains a member of the
group thereafter, and p remains active thereafter, then h delivers p since last joining the reliable
multicast group. Its pairwise counterpart is the property that if two hosts are members of the
reliable multicast group, become aware of the packet p, remain members of the group thereafter,
and one of them delivers p since last joining the reliable multicast group, then so does the other.
The eventual and pairwise eventual delivery properties are equivalent.

Theorem 3.15 (Eventual Delivery) Let / be any fair admissible timed trace of RMs(A), for
any A C IO U oc, containing the transmission of a packet p C PRM-CLIENT. If p E active-pkts(),
then p is delivered by each host in the intended delivery set of p within # since each such host last
joined the reliable multicast group; that is, intended(p,#) C completed(p,/).

Proof: Let a be any fair admissible timed execution of RMs (A), such that 3 = ttrace (a). Suppose
that p C active-pkts() and let h C intended (p, 0). It suffices to show that h C completed (p,/3).

First, we consider the case where h is the source of p. Since h C intended(p,/), Definition 3.2
implies that the last rm-join-ackh action in 0 is succeeded by a rm-sendh(p') action, where
source(p') = source (p) and seqno(p') < seqno(p). If seqno(p') = seqno(p) and, consequently, p' = p,
then it is the case that the last rm-join-ackh action in / is succeeded by a rm-sendh(p) action.
By Definition 3.3, it follows that h C completed(p,/), as needed. If seqno(p') < seqno(p), then
Lemma 3.3 implies that the transmission of p in / succeeds the transmission of p' in /. Since the
rm-sendh(p') action succeeds the last rm-join-ackh action in 3, so does the rm-sendh(p) action.
By Definition 3.3, it follows that h E completed (p, /), as needed.

Second, consider the case where h is not the source of p. Since h E intended(p, /), Definition 3.2
implies that the last rm-join-ackh action in / is succeeded by a rm-recvh(p') action, where
source(p') = source(p) and seqno(p') < seqno(p). If seqno(p') = seqno(p) and, consequently,

52

P = p, then it is the case that the last rm-join-ackh action in / is succeeded by a rm-recvh(p)
action. By Definition 3.3, it follows that h E completed(p,/), as needed.

Now, consider the case where seqno(p') < seqno(p). Let (s', T, s') be the discrete transition
in a corresponding to the particular occurrence of the rm-recvh(p') action in 3 and a' be the
suffix of a that starts in the post-state s' of (s'- w, s+). Moreover, let sa' be any state in a'.
Since h e intended(p,/3), Lemma 3.7 implies that h E members(). Since a' succeeds the last
rm-join-ackh action in a, Lemma 3.6 implies that h E s,'.members. Since h Z source(p), it
follows that h C s,'.members\{source(p)}. The precondition and the effects of the rm-recvh(p')
action imply that id(p) c s'+.expected(h, source(p)). Moreover, Lemma 3.14 implies that id(p) C
se'. expected (h, source (p)).

Moreover, let (s", i, s') be the discrete transition in a corresponding to the occurrence of the
rm-sendh'(p) action in /, for h' = source(p), and a" be the suffix of a that starts in the post-state
s" of (s"., i, s"). Moreover, let su be any state in a". Lemma 3.12 implies that p E s' .sent-pkts
and Lemma 3.13 implies that p E s 0 ".sent-pkts.

Now, let a* be any timed execution fragment that is a common suffix of a' and a" and let
s* be any state in a*. Since h E sa'.members\{source(p)}, p E si".sent-pkts, and id(p) C
s,,.expected(h, source(p)), it is the case that h E s*.members\{source(p)}, p C s*.sent-pkts, and
id(p) E s*.expected(h, source(p)). Thus, the rm-recvh(p) action is enabled in s*; that is, the
rm-recvh(p) action is enabled in any state in a*.

Since a* is a suffix of a and a is an admissible timed execution of RMs(A), it is the case that
a* is infinite. Since the rm-recvh(p) action is enabled in any state of a*, the rm-recvh(p) action
is enabled infinitely often in a*. Since a is fair, the rm-recvh(p) action occurs in a*. Thus, the
rm-recvh(p) action succeeds the last rm-join-ackh action in a. By Definition 3.3, it follows that
h E completed(p,/), as needed. EJ

The following theorem defines the pairwise eventual delivery property of RMS(A). It states that
if two hosts are members of the reliable multicast group, become aware of the packet p, remain
members of the group thereafter, and one of them delivers p, then so does the other. The pairwise
eventual delivery is equivalent to the eventual delivery property defined in Theorem 3.15.

Corollary 3.16 (Pairwise Eventual Delivery) Let / be any fair admissible timed trace of
the RMs(A) automaton, for any A G IR 0 U oc, that contains the transmission of a packet

p E PRM-CLIENT and the hosts h, h' E H, h : h' be any two distinct hosts in the intended delivery set
of p within /. Then, if h delivers p within /, then so does h'.

Proof: Since h is in the intended delivery set of p within / and it delivers p within /, it follows
that p is active within 13; that is, p E active-pkts(). Since h' is in the intended delivery set of p
within /, Theorem 3.15 implies that h' delivers p within #. EJ

The following theorem defines the notion of time-bounded delivery; that is, the property that any
packet that remains active for at least A E R o time units past its transmission is delivered within
these A time units to all hosts that become aware of it within these A time units.

Theorem 3.17 (Time-Bounded Delivery) Let /3 be any admissible timed trace of RM(A) x
RMCLIENTS, for any A E R 0 , that contains the transmission of a packet p E PRM-CLIENT. Let

be the finite prefix of / ending with the transmission of p; that is, the last action contained in /'
is the action rm-sendh(p), for h E H,h = source(p). Let /" be any finite prefix of /, such that

3' < /" < / and t' + A < t", with t', t" E R o being the time of occurrence of the last actions
of /' and /", respectively. Suppose that the host h' is in the intended delivery set of p within /"

53

and that the packet p is active within /". Then, the host h delivers the packet p within /"; that is,
h' c completed (p,/3").

Proof: Let a be any admissible execution of RM(A) x RMCLIENTS such that / = ttrace(a).
Moreover, let a' and a" be finite prefixes of a such that a' < a" < a, 0' ttrace(a'),
13" = ttrace(a"), and the last actions in a' and a" are the last actions in 0' and /", respectively.
Finally, let s' and s" be the last states of a' and a", respectively.

Since t' + A < t", it follows that s".trans-time(p) + A < s".now. Since p E active-pkts(3"),
Lemma 3.10 implies that p C s".active-pkts. Since p C s".active-pkts and s".trans-time(p) + A <
s.now, Invariant 3.3 implies that s".intended(p) C s".completed(p). Lemmas 3.8 and 3.9, imply
that intended(p,/") g completed (p, /"). Finally, since h' E intended(p,/3"), it follows that
h' C completed (p, /"); that is, the host h' delivers the packet p within /". C3

54

Chapter 4

Scalable Reliable Multicast

In this chapter, we present a formal model of the Scalable Reliable Multicast (SRM) protocol of
Floyd et al. [13]. Our model precisely specifies the behavior of the initial version of SRM presented in
Ref. 13 - subsequent research on the SRM protocol resulted in versions of SRM involving adaptive
and local recovery schemes [21, 22]. We begin the chapter by giving a brief description of SRM.
We continue by specifying the behavior of SRM in terms of timed I/O automata. We then prove
that, under certain assumptions, our formal specification of SRM is a correct implementation of the
reliable multicast service specification of Chapter 3. We conclude by proving several performance
claims about the protocol.

4.1 Overview of the SRM Protocol

In this section, we give a brief overview of the SRM protocol. SRM is an application layer reliable
multicast protocol that was initially designed for a distributed white-board application. The
protocol is implemented at the application layer, using the IP multicast service as a best-effort
communication primitive. SRM uses multicast NACKs to alert the group of losses and suppression
to reduce duplicate traffic. The SRM protocol consists of two distinct functional components:
i) packet loss recovery, and ii) session message exchange. We proceed by describing each of these
components. The physical system and the data naming scheme are as described in Sections 3.1.1
and 3.1.2.

4.1.1 Packet Loss Recovery

SRM's packet loss recovery scheme is receiver-based. Receivers detect packet losses by detecting
sequence number gaps in the stream of packets received from each source. Subsequently, the
recovery of packets proceeds in asynchronous rounds. A round involves the transmission of a
retransmission request and the retransmission of a packet by either the source or any host that
has successfully received the given packet. A recovery round may fail to recover a packet due
to additional losses. Thus, several recovery rounds may be required to recover each packet. We
proceed by describing in more detail SRM's recovery process.

Upon the detection of a packet loss, a receiver schedules a repair request - a retransmission request
for the missing packet. This repair request is scheduled for some carefully selected point in time
in the future using a request timeout timer. If a request for the packet is overheard prior to
the expiration of the request timeout timer, the request timeout timer is reset by performing an
exponential backoff. If the packet is received prior to the expiration of the request timeout timer,

55

the scheduled request is canceled. Upon the expiration of the request timeout timer, a request for
the particular packet is multicast to the reliable multicast group and a new request for the given
packet is rescheduled by exponentially backing-off the request timeout timer; thus, SRM gives a
chance for the prior request to result in the recovery of the packet. Thus, request is rescheduled
due to either the reception of a request for the given packet or the request's transmission. Once a
request is rescheduled, it observes a back-off abstinence period; a period during which the request
is not backed-off upon the reception of other requests. The back-off abstinence period prevents
requests from being backed-off multiple times by requests pertaining to the same recovery round.

Using the above scheme, repair requests are scheduled in rounds; that is, all hosts that detect
a loss schedule and may eventually transmit a repair request. If duplicate repair requests are
transmitted during each round of requests, then the scheduled requests at the hosts whose requests
were suppressed, would exponentially back off their requests multiple times. SRM uses a heuristic
to limit the number of times request timeout timers get backed off due to repair requests belonging
to the same round. When it receives a request for a packet for which it has recently backed off the
request timeout timer, it refrains from backing off the request timer again. Thus, presuming that
requests belonging to the same round are received not too far apart in time, SRM backs off the
request timeout timers only once per request round.

If a member of the reliable multicast group receives a request for a packet that it has previously
either sent or received, it schedules a repair reply - a retransmission of the requested packet.
This repair reply is scheduled for some carefully selected point in time in the future using a repair
timeout timer. When the reply timeout timer expires, the requested packet is multicast to the
reliable multicast group. If a repair reply for the packet is overheard prior to the expiration of the
reply timeout timer, the repair reply is canceled.

Once a host either sends or receives a reply for a given packet, it observes a reply abstinence period;
a period during which the host refrains from scheduling a reply for the same packet. Requests that
are received during a packet's reply abstinence period are discarded. The reply abstinence period
prevents multiple requests pertaining to a given recovery round from generating multiple replies
for each packet.

SRM limits the number of packets sent to the multicast group while repairing a loss by suppressing
duplicate repair requests and replies. In particular, SRM employs deterministic and probabilistic
suppression techniques. In the case of repair requests, deterministic suppression is achieved by
having hosts that are closer to the source of the missing packet schedule their requests sooner. A
requestor of a missing packet sets its repair request timer proportionately to its distance estimate
to the source of the missing packet. Thus, hosts that are closer to the source of the missing packet
suppress their descendants in the underlying IP multicast tree.

Probabilistic suppression is achieved by spreading out the repair requests of the hosts that are
equidistant to the source within an interval whose size is again proportional to the requestors'
distance estimates to the source of the missing packet. In particular, a requestor of a missing packet
sets its repair request timer to a point in time that is uniformly chosen within an interval. This
interval's left endpoint is dictated by the deterministic suppression scheme and its right endpoint
is, once again, proportional to the requestor's distance estimate to the source of the missing packet.
This scheme probabilistically limits the number of requests multicast by equidistant requestors by
allowing them to suppress each other.

For example, let h denote a host that has detected the loss of a packet p from the source s. h
schedules its request for the packet p for a point in time in the future that is uniformly chosen
within the interval 2b[Cldhs, (Ci + C 2)dhs], where b is the request's backoff (initially equal to 0),
C 1 , C2 are parameters of the deterministic and probabilistic suppression schemes pertaining to
requests, and dhs is h's distance estimate to the source s of the packet p.

56

Repair replies are scheduled in the same fashion as requests with the exception that the interval
endpoints are set proportionately to the distance estimates between the replier and requestor hosts,
rather than the distance estimates between the requestor and source hosts.

For example, let h' denote a host that is in the process of scheduling a reply to h's request for the
packet p. h' schedules its reply to h's request for the packet p for a point in time in the future that
is uniformly chosen within the interval [Didh'h, (Di + D2)dh'hl, where D1 , D 2 are parameters of the
deterministic and probabilistic suppression schemes pertaining to replies and dh'h is h"s distance
estimate to the requestor h of the packet p.

4.1.2 Session Messages

The reliable multicast group members periodically exchange session messages. These messages
carry transmission state and timing information that allow the prompt detection of packet losses
and the calculation of inter-host distance estimates; within SRM, inter-host distances are quantified
by the one-way transmission latency between hosts. For simplicity, we assume that hosts transmit
session messages with a fixed period. In practice however, so as to limit the overhead associated
with the exchange of session messages, the frequency of session message transmission is reduced as
the size of the reliable multicast group grows.

Receivers detect packet losses by detecting sequence number gaps in the stream of packets received
from each source. However, this approach presumes either that later packets within the sequence
of transmitted packets are received, or that receivers get informed of the transmission progress
of each source through a separate service. Unfortunately, relying solely on the reception of later
packets may result in long recovery latencies. This is evident when the total number of packets
within a sequence is unknown a priori and either long transmission pauses, or long loss bursts are
considered. Session messages mitigate this problem by allowing reliable multicast group members to
exchange transmission progress state, in terms of ADU sequence numbers that they have observed
with respect to each source. Discrepancies in the observed transmission progress for each source
by each host reveal whether and which packets a particular host is missing.

In addition to contributing to packet loss detection, session messages are used to calculate inter-host
distance estimates. Hosts estimate the one-way transmission latencies between them by exchanging
timing information through their session messages. For the purposes of illustration, we demonstrate
how a host h calculates its distance estimate to a host h'. This calculation is initiated when the host
h transmits a session message, p. This session message includes a field containing its transmission
time t. Let t' denote the time the host h' receives p. Upon receiving p, h' records the times at
which p was transmitted and received, i.e., it records a tuple of the form (ta, t'). Subsequently, the
host h' includes the tuple (ta, t') within its next session message, p', where t' corresponds to the
time elapsed since the host h' received p and the time h' transmits p'. Finally, letting tr denote the
point in time that h receives p', h estimates its distance dhh' to h' as (tr - t' - t,)/2 time units.

Although the above scheme for calculating inter-host transmission latencies is simple, it presumes
that inter-host transmission latencies are symmetric - the one way inter-host transmission
latency is estimated as half the round-trip-time (RTT) between hosts. Another drawback of this
scheme is the dependence of its accuracy on the frequency of session message transmission. The
frequency of calculating inter-host distance estimates is dictated by the frequency of session message
transmission. Thus, if the frequency of session message transmission were adjusted based on the
size of the reliable multicast group, then as the group would increase in size the accuracy of the
inter-host distance estimates would drop.

57

Figure 4.1 SRM Parameters

C1, C2, C3 E R 0 Request scheduling parameters.
D 1 , D 2 , D 3 E R>0 Reply scheduling parameters.
DFLT-DIST E R>0 Default inter-host distance estimate.
SESS-PERIOD E R>0 Period of session packet transmission.

4.2 Architecture of the SRM Protocol

In this section, we give an overview of our model of the SRM protocol and its environment.
As in Chapter 3, the physical system is comprised of a set of hosts that communicate through
an underlying network. We encapsulate the behavior of the underlying network by a single
IP component. This component provides the best-effort IP multicast service which is the
communication primitive of the SRM protocol. Resident on each host are two processes: a client
and a reliable multicast process. The client process represents an application that uses the reliable
multicast service. The reliable multicast processes at each host and the underlying IP multicast
service collectively provide the reliable multicast service to the client processes.

Without loss of generality, we assume that there exists only a single reliable multicast ad-
dress/group. Since we assume that there is a single client at each source and a single reliable
multicast address/group, we do not distinguish among the host, reliable multicast process, and
client process when considering membership to the reliable multicast group. In fact, for simplicity
we usually associate the reliable multicast group membership with the host itself, rather that with
the client or the reliable multicast processes.

We model the reliable multicast process running on each host as three interacting components,
each with distinct functionalities. The first component, which we henceforth refer to as the
membership component, manages the host's reliable multicast group membership. In particular,
it handles the join and leave requests of the client process and issues join and leave requests to
the underlying IP multicast service. The second component, which we henceforth refer to as the
IP buffer component, buffers all packets received from and to be transmitted using the underlying
IP multicast service. Finally, the third component, which we henceforth refer to as the recovery
component, incorporates all the functionality pertaining to the transmission, recovery, and delivery
of packets by the reliable multicast service. We proceed by briefly describing the functionality of
each of these components. Figure 4.1 lists the parameters of the reliable multicast process. Each of
these parameters is appropriately introduced within the upcoming descriptions of the components
of the reliable multicast process.

4.2.1 Membership Component

The membership component of the reliable multicast process manages the membership of the host
to the reliable multicast group. In particular, it handles the join and leave requests of the client
and manages the membership of the host to the underlying IP multicast service.

The client initiates the process of joining the reliable multicast group by issuing a join request to the
membership component. In turn, prior to acknowledging this request, the membership component
issues a join request to the underlying IP multicast service. The membership component concludes
that it has successfully joined the IP multicast group when its request to join the IP multicast
group is acknowledged. Once the membership component has established its IP multicast group
membership, it acknowledges the client's join request. The client is considered a member of the
reliable multicast group from the point in time its join request is acknowledged by the membership
component.

58

While the client is in the process of joining the reliable multicast group, the membership component
discards additional client join requests; they are considered superfluous. Client join requests are

also discarded while the client is either already a member of the reliable multicast group, or in the

process of leaving the reliable multicast group.

The client initiates the process of leaving the reliable multicast group by issuing a leave request

to the membership component. Upon issuing a leave request, the client relinquishes its right of
further receiving packets from the reliable multicast service and ceases to be a member of the reliable
multicast group. Subsequently, prior to acknowledging the client's leave request, the membership
component issues a leave request to the underlying IP multicast service. Upon the reception of
a leave acknowledgment from the IP multicast service, the membership component acknowledges
the client's leave request. Once a host leaves and until it rejoins the reliable multicast group, the
membership component simply discards any join and leave acknowledgments it receives from the
IP multicast service.

While the client is in the process of leaving the reliable multicast group, the membership component
discards additional client leave requests; they are considered as being superfluous. Client join
requests are also discarded while the client is in the process of leaving the reliable multicast group.
Client leave requests are also discarded while the client is idle with respect to the reliable multicast
group. Finally, leave requests overrule join requests in the sense that if the membership component
receives a leave request while in the process of joining, then it aborts the process of joining and
initiates the process of leaving the reliable multicast group.

4.2.2 IP Buffer Component

The IP buffer component of the reliable multicast process serves as a buffer between the reliable
multicast process and the underlying IP multicast service. In particular, the IP buffer component
is responsible for: i) buffering the packets it receives from the underlying IP multicast service and
handing them off to be processed by the recovery and/or reporting components, and ii) buffering
and transmitting all the packets that are bound for transmission using the IP multicast service.

Packets received from the underlying IP multicast service are discarded if the host is not a member
of the reliable multicast group. When a host is a member of the reliable multicast group, any
packet received is buffered and, subsequently, handed off for processing to the recovery and the
reporting components. The IP buffer component also buffers the packets generated by the recovery
and reporting components. It subsequently multicasts each such packet using the underlying IP
multicast service.

4.2.3 Recovery Component

The recovery component incorporates all the functionality pertaining to the transmission, recovery,
and delivery of packets by the reliable multicast process. While the host is a member of the
reliable multicast group, the recovery component processes all the packets either sent by the
client or received by the IP buffer component from the underlying IP multicast service. The
recovery component: i) tracks the transmission progress of each source by maintaining per-source
transmission state that records this progress and archiving all ADUs that are either sent or received
by the client, ii) , carries out the exchange of session packets among the members of the reliable
multicast members by processing and periodically transmitting session packets, iii) schedules
retransmission requests for missing packets, and iv) schedules retransmissions of requested packets.

We proceed by briefly describing these responsibilities. Recall that there are four different types

59

of packets: original transmissions (DATA packets), repair requests (RQST packets), repair replies
(REPL packets), and session messages (SESS packets).

Maintaining Transmission State

The recovery component tracks the host's reliable multicast group membership by observing the join
acknowledgments sent by the membership component to the client and the client's leave requests.
The recovery component operates only while the host is a member of the reliable multicast group;
upon leaving the reliable multicast group, the transmission state pertaining to all sources is flushed.

The recovery component tracks the transmission of each source by maintaining per-source trans-
mission state. For each source s, this state involves two sequence numbers corresponding to ADUs
transmitted by s. The first such sequence number for s, henceforth denoted the foremost sequence
number of s, is the sequence number of the ADU contained in the first DATA packet from s to
be processed by the recovery component at the particular host since the host joined the reliable
multicast group. The second sequence number for s, henceforth denoted the hindmost sequence
number of s, is the maximum sequence number of an ADU of s to have been observed by the
recovery component since the host joined the reliable multicast group and set its foremost sequence
number of s. All packets pertaining to earlier ADUs from s than the foremost packet of s are
considered improper and are discarded by the recovery component. All other packets pertaining
to ADUs from s are considered proper and are processed by the recovery component. Thus, the
reliability guarantees provided by the reliable multicast service with respect to a particular source
apply only to proper packets.

Once a host becomes a member of the reliable multicast group, the recovery component begins
processing the packets received either from the client or the underlying IP multicast group. Upon
processing the first DATA packet from a source s, the recovery component initializes the foremost
and hindmost sequence numbers of s to the sequence number of the ADU contained in this DATA
packet. Thereafter, the recovery component updates the hindmost sequence number of s to reflect
the observed transmission progress of s. Any DATA, RQST, and REPL packet pertaining to s
and any session packet may advance the hindmost sequence number of s. The recovery component
is responsible for updating the hindmost sequence number of s based on the transmission state
information contained within any DATA, RQST, and REPL packets pertaining to s. The reporting
component informs the recovery component of any progress in the transmission of the source s
reported by any session packet.

Session Packet Exchange

The recovery component periodically generates session packets and passes them to the IP buffer
component. The IP buffer component is responsible for buffering and subsequently transmitting
these session packets using the underlying IP multicast service. The parameter SESS-PERIOD C R
specifies the period with which hosts generate and transmit session packets. In our treatment of
SRM, we presume that the transmission period of session packets is constant.

We now describe the transmission state and timing information contained in a session packet p of
a host h. First, for each source s that h is aware of, p reports the maximum sequence number
observed by h to have been transmitted by s. If the session packet p reports a maximum sequence
number for the source s, then we say that p is state reporting for s. Second, for each host h' from
which h has received a session packet, p contains a tuple consisting of: i) the transmission time
of the latest session packet of h' to have been received by h, and ii) the elapsed time between the
reception of h's session packet and the transmission of p by h. If p contains such a tuple for a

60

host h', then we say that p is distance reporting for h'. Finally, p contains a field reporting its own

transmission time.

Scheduling Requests

The recovery component maintains a set of scheduled and a set of pending requests. The set of
scheduled requests identifies the packets for which a request has been scheduled and is awaiting
transmission. The set of pending requests identifies the packets for which a request has recently
been either sent or received and for which a retransmission is being awaited.

A host h schedules a request for the packet p by adding an element to its set of scheduled requests.
This element identifies the packet p to be requested, specifies the request's transmission timeout (the
time at which the request is scheduled for transmission), and records the number of times a request
for the given packet has been scheduled. The transmission timeout of p's request is initialized to a
point in time in the future that is uniformly chosen within the interval now + [C1dhs, (C1 + C2)dhs],
where now refers to the then current point in time, C1, C2 are request scheduling parameters, and
dhs is h's distance estimate to the source s of p. If a request for the packet p is received while a
scheduled request for p is awaiting transmission, then the request for p that is already scheduled
is exponentially backed off. This is achieved by: i) resetting its transmission timeout to a point in
time in the future that is uniformly chosen within the interval now +2k[Cldhs, (C 1 +C2)dhs], where
k is the number of requests that have already been scheduled for p, and ii) incrementing the number
of requests, k, that have already been scheduled. Upon the expiration of the transmission timeout
of a scheduled request for the packet p, the recovery component composes a request packet for the
packet p and passes it on to the IP buffer component. The IP buffer component is responsible
for buffering and subsequently transmitting this request packet using the underlying IP multicast
service. Moreover, the recovery component schedules a new request for the packet as if a request had
been received; that is, it sets the request timeout timer by exponentially backing off the previously
set request timeout timer for p.

Once a request for a packet p is either sent or received, a request for p becomes pending. This
pending request identifies the packet p and includes a back-off abstinence timeout. This timeout
specifies the point in time in the future before which the recovery component refrains from backing-
off its scheduled request for the packet p. All requests for p received prior to the expiration of the
back-off abstinence timeout for p are considered to pertain to the prior request round and are
discarded. The back-off abstinence timeout for p is set to a point in time that is 2k C3 4hS time units
in the future, where k is the back-off used to schedule the next (current) request and C3 E R
is the back-off abstinence parameter of our implementation. Back-off abstinence prevents requests
from being backed off by requests pertaining to previous recovery rounds.

Our modeling of back-off abstinence departs slightly from the schemes proposed in the SRM
protocol. In Ref. 12,13, two schemes are proposed for ensuring that requests are backed off only
one time per recovery round. The first scheme involves a back-off timeout as described above.
However, the timeout is set to half the time to the next request. Our use of a parameter for
specifying how long to abstain from backing off allows more tuning freedom. Moreover, setting the
back-off timeout to half the time to the next request allows for the abstinence interval to overlap
the request interval within which the next request was scheduled. This seems to go against the
intention of the abstinence period. Requests received within the request interval, within which the
next request was scheduled, should be considered to be requests of the next round and, thus, result
in the next request being backed off. The second scheme annotates requests with their recovery
round and backs off requests only upon receiving a request pertaining to the same round.

61

Scheduling Replies

The recovery component maintains a set of scheduled and a set of pending replies. The set
of scheduled replies identifies the packets for which a reply has been scheduled and is awaiting
transmission. The set of pending replies identifies the packets for which a reply has recently been
either received or transmitted.

A host h schedules a reply to a request for a packet p by the host h' by adding an element to its
set of scheduled replies. This element identifies the packet p and specifies the reply's transmission
timeout (the time at which the reply is scheduled for transmission). The reply's transmission
timeout is initialized to a point in time in the future that is uniformly chosen within the interval
now + [Dldhh', (D 1 + D2)dhh'], where now refers to the then current point in time, D 1 , D 2 are reply
scheduling parameters, and dhh' is h's distance estimate to h'. Upon the expiration of the timeout
of a scheduled reply for the packet p, a reply packet for p is generated and passed to the IP buffer
component. The IP buffer component is responsible for buffering and subsequently transmitting
this reply packet using the underlying IP multicast service. If a reply for p is received by the host
h while a scheduled reply for p is awaiting transmission, then the scheduled reply at h is canceled.

Once a reply for a packet p is either generated or received by h, a reply for p becomes pending. This
pending reply identifies the packet p and includes a reply abstinence timeout. This timeout specifies
the point in time in the future before which the recovery component refrains from scheduling another
reply for p. The timeout is set to D3dhh' time units in the future, where D 3 E R o is the reply
abstinence parameter of the SRM protocol. Replier abstinence prevents multiple requests pertaining
to a given recovery round of a particular packet from generating multiple replies.

Processing Client and IP Multicast Packets

While the host is a member of the reliable multicast group, the recovery component processes all
packets transmitted by the client and all DATA, RQST, and REPL packets received from the IP
multicast service. The client packets are archived and handed off to the IP buffer component as
DATA packets. The IP buffer component is responsible for buffering and subsequently transmitting
each such DATA packet using the underlying IP multicast service. We proceed by briefly describing
how the recovery component processes DATA, RQST, and REPL packets. Recall that the recovery
component processes only proper packets. All improper packets are discarded.

A DATA packet p is processed as follows. Let s and i denote the source and the sequence number of
the ADU contained in p. If p is the first DATA packet from s to be processed, then i is the foremost
sequence number of s. In this case, the recovery component sets the foremost and hindmost sequence
numbers of s to i. If p is a proper packet, then the ADU contained in p is archived, buffered, and
subsequently delivered to the client. If i is larger than the hindmost sequence number of s, then
the hindmost sequence number of s is set to i and any intervening ADUs are identified as missing.
Finally, any scheduled requests and any scheduled replies for p are canceled.

A RQST packet p is processed as follows. Let s and i denote the source and the sequence number
of the packet requested by p. If the request is for a proper packet that is archived by the recovery
component, then the recovery component attempts to schedule a reply. A reply is scheduled only
if a reply for the requested packet is neither already scheduled, nor pending. Finally, if i is larger
than the hindmost sequence number of s, then the hindmost sequence number of s is set to i and
any intervening ADUs are identified as missing. If the request is for a proper packet that is not
archived by the recovery component and for which no request has already been scheduled, then
the recovery component schedules a second round request as if it were backing off a prior request
scheduled with a back-off of 0.

62

A REPL packet p is processed as follows. Let s and i denote the source and the sequence number
of the ADU contained in p. If this ADU is proper, then a new pending reply is generated for the
given ADU, the ADU is archived, buffered, and subsequently delivered to the client. If i is larger
than the hindmost sequence number of s, then the hindmost sequence number of s is set to i and
any intervening ADUs are identified as missing. Finally, any scheduled requests and replies for p
are canceled.

A SESS packet p is processed as follows. If p corresponds to either the first or the most recently
transmitted session packet from h' to be received by h, then h records both the transmission and the
reception time of p; that is, the time that p was transmitted by h' and the time that it was received
by h. Moreover, for each source s for which p is state reporting, the host h updates its transmission
state. The transmission state for s is updated only when the reported sequence number for s is
greater than that observed up to that point in time by h to have been transmitted by s. In such
cases, the trailing packets are identified as missing.

Finally, if the packet p is distance reporting for h, the recovery component estimates the distance
from h to h' as half the RTT from h to h'. Letting (ta, t') denote the distance report for h and
tr denote p's reception time by h, the recovery component estimates its distance from h to h' as
(tr - t' - ts)/2 time units. Distance estimates are ordered based on the transmission time of the
session packets that initiate their calculation; that is, distance estimates whose calculations are
initiated by more recent session packets are considered more up-to-date. The recovery component
of h updates its distance estimates only when more up-to-date distance estimates are calculated.

After processing a packet, the recovery component schedules a request for any packets that it has
identified as missing.

In our treatment of SRM, the recovery component archives all packets either sent by or delivered to
the client. Thus, we assume that the reliable multicast process has infinite memory. In future work,
we intend to relax this assumption, in particular when the reliable multicast service implementation
is capable of timely packet delivery; in this case, the recovery component need archive only the
packets that have been sent no earlier than an amount of time in the past equal to the delivery
bound guarantee.

4.3 Formal Model of the SRM Protocol

Each of the components of the reliable multicast process at each host h is modeled by a timed
I/O automaton. In particular, the membership component is modeled by SRM-MEMh, the
IP buffer component is modeled by SRM-IPBUFFh, and the recovery component is modeled
by SRM-RECh. The reliable multicast process SRMh, for each host h, is the composition
SRM-MEMh x SRM-IPBUFFh x SRM-RECh. Figure 4.2 depicts how the components of SRM
interact among themselves and with their environment. The client at each host is modeled by the
RM-CLIENTh timed I/O automaton of Chapter 3. The underlying best-effort IP multicast service
is modeled by the IPMCAsT timed I/O automaton. Prior to specifying each of the component
automata, we present several definitions that are used in their specifications.

4.3.1 Preliminary Definitions

Figure 4.3 contains a list of set definitions that specify the format of the various types of packets
used throughout the following sections. The set PRM-CLIENT represents the set of packets that may
be transmitted by the client processes using the reliable multicast service. As defined in Chapter 3,
for any packet p - PRM-CLIENT the operations source(p), seqno(p), and data(p) extract the source,

63

Figure 4.2 Interface of all components involved in the reliable multicast service.
--- ----------------------- ---------------------- 1

crashh

mjoinh rm jih

mjoin-ackh m-join-ackh

mleaveh rm-leaveh

mleave-ack rm-leave-ackh

msendh(p)

mrecvh(p)

process-pkt(p)

rec-msendh(p) rm-sendh(p)

rm-recvh(p)

SRMh
L------------------------------------I J

mdrop(p, Hd)

SRM
L -- j

sequence number, and data segment corresponding to the packet p. For shorthand, we use the
operation id(p) to extract the identifier of p; that is, its source and sequence number pair.

The set PSRM is comprised of all packets whose format is that used by the reliable multicast process.
The format of each packet p E PSRM depends on its type. The type of the packet p, type(p), is
one of the following: DATA, RQST, REPL, and SESS. The type of p denotes whether the packet is an
original transmission, a repair request, a repair reply, or a session packet, respectively. Depending
on its type, the packet p supports a different set of operations.

When the packet p is an original transmission, that is, when type(p) = DATA, p supports the
operations sender(p), source(p), seqno(p), data(p), and strip(p). These operations extract the
sender, source, sequence number, data segment, and ADU corresponding to p. In the case of
original transmissions, it is the case that sender(p) = source(p). When p is a repair request, that
is, when type(p) = RQST, p supports the operations sender(p), source(p), and seqno(p). These
operations extract the sender, source, and sequence number corresponding to the packet p. When
p is a repair reply, that is, when type(p) = REPL, p supports the operations sender(p), requestor(p),
source(p), seqno(p), data(p), and strip(p). These operations extract the sender, requestor, source,
sequence number, data segment, and ADU packet corresponding to p. For DATA, RQST, and REPL
packets, we also use the operation id(p) to extract the identifier of p; that is, its source and sequence
number pair.

When the packet p is a session packet, that is, when type(p) = SESS, p supports the operations

64

Figure 4.3 SRM Packet Definitions

PRM-CLIENT Set of packets such that Vp E PR-MCLIENT:
source(p) E H
seqno(p) E N
data(p) E {0, 1}*
id(p) E H x N : id(p) = (source(p), seqno(p))
suffix(p) = {(s, i) E H x N I source(p) = s A seqno(p) < i}

PR\I-CLIENT[h] {p E PRI-CLIENT I source(p) = h}

PSRNI = Set of packets such that Vp C PSR\I:
type(p) C {DATA, RQST, REPL, SESS}

DATA
sender(p) E H
source(p) C H
seqno(p) E N
data(p) E {0, 1}*
strip(p) E PRI-CLIENT

id(p) E H x N id(p) (source(p), seqno(p))
RQST :

sender(p) E H
source(p) E H
seqno(p) C N
id(p) E H x N id(p) (source(p), seqno(p))

REPL :
sender(p) C H
requestor(p) E H
source(p) C H
seqno(p) E N
data(p) C {0, 1}*
strip(p) C PRI-CLIENT

id(p) C H x N : id(p) (source(p), seqno(p))
SESS :

sender(p) C H
time-sent(p) E R"
dist-rprt?(p) C H
dist-rprt(p, h) E {(t, t') I t, t' C R !}, for all h c H
seqno-rprts(p) C {(s, i) 1 s E H, i E N}

PIPMIcAST-CLIENT Set of packets such that Vp E PIPIcAST-CLIENT:

source(p) C H
seqno(p) E N
strip(p) E {0, 1}*

PIPMCAST = Set of packets such that V pkt E PIPNIcAsT:
strip(pkt) E PIPcAST-CLIENT

intended(pkt) C H
completed(pkt) C H
dropped(pkt) C H

sender(p), time-sent(p), dist-rprt?(p), dist-rprt(p, h), and seqno-rprts(p). The operation sender(p)
extracts the sender of the session packet. The operation time-sent(p) extracts the time the session
packet p was sent. The operation dist-rprt?(p) extracts the set of hosts for which the session
packet is distance reporting. The operation dist-rprt(p, h) extracts the distance report for h within
p; that is, dist-rprt(p, h) corresponds to a tuple comprised of two elements: the time the most
recently observed session packet sent by h was received by the sender of p and the time that
elapsed between the reception of h's session packet by the sender of p and the transmission of
p. The operation seqno-rprts(p) extracts the state reports included in p; that is, seqno-rprts(p)
corresponds to a set of tuples, each of which is comprised of two elements: the source and the
maximum sequence number observed by the sender of p to have been transmitted by this source.

Figure 4.4 contains a list of set definitions used throughout the following sections.

65

Figure 4.4 SRM Set Definitions
SRM-Status = {idle, member, crashed}
Joining = {j oin-rqst-pending, join-pending, join-ack-pending}
Leaving = {leave-rqst -pending, leave-pending, leave-ack-pending}
SRM-Mem-Status = SRM-Status U Joining U Leaving
Action-Pending = {join-rqst-pending, join-ack-pending, leave-rqst-pending, leave-ack-pending}

Pending-Rqsts = {{s,i,t) I s E H,i E N, t E REo}
Scheduled-Rqsts {(s,i,t,k) s E H,i E N,t E R!O,k E N}
Pending-Repis = {s, i, t) I s C H, i E N, t E R>O1
Scheduled-Repis {(s, i, t, q) s, q E H, i E N, t E R>_01

Figure 4.5 The SRM-MEMh Automaton - Signature

Parameters:

h E H

Actions:

input output
crashh mjoinh
rm-joinh mleaveh
rm-leaveh rm-join-ackh
mjoin-ackh rm-leave-ackh
mleave-ackh time-passage

v(t), for t E R>
0

4.3.2 The Membership Component - SRM-MEMh

The SRM-MEMh timed I/O automaton specifies the membership component of the reliable
multicast process. Figures 4.5 and 4.6 present the signature, the variables, and the discrete
transitions of SRM-MEMh-

Variables

The variable now E R> denotes the time that has elapsed since the beginning of an execution
of SRM-MEMh. The variable status captures the status of the host h. It evaluates to one of the
following: idle, j oin-rqst-pending, join-pending, join-ack-pending, leave-rqst -pending,
leave-pending, leave-ack-pending, member, and crashed.

The value idle indicates that the host h is idle with respect to the reliable multicast group; that
is, it is neither a member, nor in the process of joining or leaving the reliable multicast group. The
value join-rqst-pending indicates that SRM-MEMh has received a join request from the client
but has yet to issue a join request to the underlying IP multicast service. The value j oin-pending
indicates that SRM-MEMh has issued a join request to the underlying IP multicast service and
is awaiting a join acknowledgment. The value join-ack-pending indicates that SRM-MEMh has
successfully joined the underlying IP multicast service but has yet to issue a join acknowledgment
to the client. The value member indicates that the host h is a member of the reliable multicast
group. The value leave-rqst-pending indicates that SRM-MEMh has received a leave request
from the client but has yet to issue a leave request to the underlying IP multicast service. The
value leave-pending indicates that SRM-MEMh has issued a leave request to the underlying IP
multicast service and is awaiting a leave acknowledgment. The value leave-ack-pending indicates
that SRM-MEMh has successfully left the underlying IP multicast service but has yet to issue a
leave acknowledgment to the client. The value crashed indicates that the host h has crashed.
While the host h has not crashed, we say that it is operational. Once the host h crashes, none

66

Figure 4.6 The SRM-MEMh Automaton - Variables and Discrete Transitions

Variables:

now E RN0 , initially now = 0
status E SRM-Mem-Status, initially status = idle

Discrete Transitions:

input crashh output mjoin4

eff status := crashed pre status = join-rqst-pending

input rm-joinh eff status join-pending

eff if status idle then output mleaveh

status := join-rqst-pending pre status = leave-rqst-pending

input rm-leaveh eff status leave-pending

eff if status E Joining U {member} then output rm-join-ackh
status := leave-rqst-pending pre status = join-ack-pending

input mjoin-ackh eff status := member

eff if status E Joining then output rm-leave-ackh

status := join-ack-pending pre status = leave-ack-pending

input mleave-ackh eff status := idle

eff if status E Leaving then time-passage v(t)

status := leave-ack-pending pre status 1 Action-Pending
eff now := now + t

of the input actions of SRM-MEMh affect the state of SRM-MEMh and none of the internal and

output actions of SRM-MEMh, except the time passage action, are enabled.

Input Actions

The input action crashh models the crashing of SRM-MEMh. The effects of crashh are to set the

variable status to crashed so as to record the fact that SRM-MEMh has crashed.

The input action rm-joinh models the client's request to join the reliable multicast group. It is

effective only when the host h is idle with respect to the reliable multicast group. If the client

h is already either a member of, or in the process of joining, the reliable multicast group (that

is, status E Joining U {member}), then the scheduling of rm-joinh is superfluous. If the client h

is already in the process of leaving the reliable multicast group (that is, status E Leaving), then

rm-joinh is ignored so as to allow the ongoing process of leaving the reliable multicast group to

complete. When effective, rm-joinh initiates the process of joining the reliable multicast group by

setting the status variable to join-rqst-pending.

The input action rm-leaveh models the client's request to leave the reliable multicast group.

It is effective only when the host h is either a member of, or in the process of joining, the

reliable multicast group. If the host h is either already in the process of leaving, or idle with

respect to the reliable multicast group, then the rm-leaveh action is superfluous. When effective,
rm-leaveh initiates the process of leaving the reliable multicast group by setting the status variable

to leave-rqst-pending.

The input action mj oin-ackh acknowledges that the host h has successfully joined the underlying IP

multicast group. It is effective only when the host h is in the process of joining the reliable multicast

group; that is, when status E Joining. When effective, mjoin-ackh enables the I/O component to

acknowledge the client's join request by setting the status variable to join-ack-pending.

The input action mleave-ackh acknowledges that the host h has successfully left the underlying

IP multicast group. It is effective only when the host h is in the process of leaving the reliable

multicast group; that is, when status E Leaving. When effective, mleave-ackh sets the status

67

variable to leave-ack-pending. Thus, it enables the I/O component to acknowledge the client's
leave request.

Output Actions

SRM-MEMh initiates the process of joining of the underlying IP multicast group by scheduling the
output action mjoinh. This action is enabled whenever the client has effectively requested to join
the reliable multicast group; that is, when status = join-rqst-pending. Its effects are to record
the fact that SRM-MEMh has requested to join the IP multicast group; that is, it sets the status
variable to join-pending. Joining the underlying IP multicast group is not always immediate.
In order for the IP multicast service to forward packets to the host h, it may have to extend the
IP multicast tree to include the host h. The time involved in extending the IP multicast tree to
include the host h heavily depends on the location of the host h and the reach of the current IP
multicast tree.

SRM-MEMh initiates the process of leaving of the underlying IP multicast group by scheduling
the output action mleaveh. This action is enabled whenever the client has effectively requested to
leave the reliable multicast group; that is, status = leave-rqst-pending. Its effects are to record
the fact that SRM-MEMh has requested to leave the IP multicast group; that is, it sets the status
variable to leave-pending.

SRM-MEMh acknowledges the client's request to join the reliable multicast group by scheduling the
rm-join-ackh output action. This action is enabled whenever the join acknowledgment is pending;
that is, status = j oin-ack-pending. Time is not allowed to elapse while a join acknowledgment is
pending. Thus, a join acknowledgement is sent immediately after SRM-MEMh determines that it
has successfully joined the IP multicast group.

SRM-MEMh acknowledges the client's request to leave the reliable multicast group by scheduling
the rm-leave-ackh output action. This action is enabled whenever the leave acknowledgment
is pending; that is, status = leave-ack-pending. Time is not allowed to elapse while a leave
acknowledgment is pending. Thus, a leave acknowledgement is sent immediately after SRM-MEMh
determines that it has successfully left the IP multicast group.

Time Passage

The action v(t) models the passage of t time units. Time is prevented from elapsing while there
are pending actions - either pending requests to join or leave the underlying IP multicast group,
or pending acknowledgments that the client has successfully joined or left the reliable multicast
group. The effects of the v(t) action are to increment the variable now by t time units.

4.3.3 The IP Buffer Component - SRM-IPBUFFh

The SRM-IPBUFFh timed I/O automaton specifies the IP buffer component of the reliable multicast
process. Figures 4.7 and 4.8 present the signature, the variables, and the discrete transitions of
SRM-IPBUFFh.

Variables

The variable now (E R 0 denotes the time that has elapsed since the beginning of an execution
of SRM-IPBUFFh. The variable status captures the status of the host h. It evaluates to one of
the following: idle, member, and crashed. While the host h has not crashed, we say that it is

68

Figure 4.7 The SRM-IPBUFFh Automaton - Signature

Parameters:

h E H

Actions:

input output
crashh process-pkth(p), for p E PSRM

rm-join-ackh msendh(p), for p E PIPMCAST-CLIENT

rm-leaveh time-passage
mrecvh(p), for p E PIP1CAST-CLIENT v(t), for t E R> 0

rec-msendh(p), for p E PSR\

Figure 4.8 The SRM-IPBUFFh Automaton - Variables and Discrete Transitions

Variables:

now C R: O, initially now = 0
status E SRM-Status, initially status = idle
seqno E N, initially seqno = 0
recv-buff C PSRNI, initially recv-buff 0
msend-buff C PIPMCAST-CLIENT, initially msend-buff 0

Discrete Transitions:

input crashh output process-pkth(p)

eff status :- crashed pre status = member A p E recv-buff

input rm-join-ackh eff recn-buff \= {p}

eff if status t crashed then status member output msendh(p)

input rm-leaveh pre status = member A p E msend-buff
eff msend-buff \= {p}

eff if status t crashed then
Reinitialize all variables except now and seqno. time-passage /(t)

input mrecvh(p)
pre status = crashed

mpu mrcvap)V(recv-buff = 0 A rnsend-buf = 0)
eff if status = member then recv-buff U= {strip(p)} eff now := now + t
input rec-msendh(p)

eff if status = member then
msend-buff U= {comp-IPmcast-pkt (h, seqno, p)}
seqno := seqno + 1

operational. Once the host h has crashed, none of the input actions of SRM-IPBUFFh affect the

state of SRM-IPBUFFh and none of the internal and output actions of SRM-IPBUFFh, except the

time passage action, are enabled. The variable seqno E N is a counter of the number of packets

transmitted by SRM-IPBUFFh using the underlying IP multicast service.

The set recv-buff is used to buffer all packets received from the underlying IP multicast service.

The set msend-buff is used to buffer all packets to be multicast using the underlying IP multicast

service.

Input Actions

The input action crashh models the crashing of SRM-IPBUFFh. The effects of crashh are to set

the status variable to crashed, denoting that the host h has crashed. After the host h has crashed,

the SRM-IPBUFFh automaton does not restrict time from elapsing.

The input action rm-join-ackh informs the SRM-IPBUFFh automaton that the host h has joined

the reliable multicast group. If the host h is operational, then the action rm-join-ackh records

the fact that the host h has joined the reliable multicast group by setting the variable status to

member.

The input action rm-leaveh informs the SRM-IPBUFFh automaton that the host h has left the

69

reliable multicast group. If the host h is operational, then the action rm-leaveh reinitializes all the
variables of SRM-IPBUFFh except the variables now and seqno.

The input action mrecvh(p) models the reception of the packet p from the underlying IP multicast
service. If the host h is a member of the reliable multicast group, then the mrecvh(p) action adds
the packet p to the recv-buff buffer. Thus, the contents of the packet p may subsequently be
processed by the reliable multicast service and, when appropriate, delivered to the client.

The input action rec-msendh(p) is performed by the recovery component so as to transmit the
packet p using the underlying IP multicast service. If the host h is a member of the reliable
multicast group, then SRM-IPBUFFh encapsulates h, seqno, and p into a packet pkt, buffers pkt
in msend-buff for transmission using the underlying IP multicast service, and increments seqno.
In effect, the encapsulation of p annotates it with the host h and the value of seqno. Since the
variable seqno is persistent across host joins and leaves, packets transmitted by the SRM-IPBUFFh
automata, for h E H, are unique.

Output Actions

The output action process-pkth(p) models the processing of the packet p by the reporting and
recovery components. It is enabled when the host h is a member of the reliable multicast group
and there is a packet pkt in the recv-buff buffer, such that strip(pkt) = p. Its effects are to remove
the element pkt from the recv-buff buffer.

The output action msendh(p) models the transmission of the packet p using the underlying IP
multicast service. It is enabled when the host h is a member of the group and the packet p is in
the msend-buff buffer. Its effects are to remove the packet p from the msend-buff buffer.

Time Passage

The action v(t) models the passage of t time units. Time is prevented from elapsing while the host
h is operational and either of the buffers recv-buff and msend-buff is non-empty. The effects of the
v(t) action are to increment the variable now by t time units.

4.3.4 The Recovery Component - SRM-RECh

The SRM-RECh timed I/O automaton specifies the recovery component of the reliable multicast
service. Figure 4.9 presents the signature of SRM-RECh, that is, its parameters, and actions.
Figure 4.10 presents the variables of SRM-RECh. Figures 4.11, 4.12, and 4.13 present the discrete
transitions of SRM-RECh. In order to provide the appropriate context, the description of each of
the parameters of SRM-RECh is deferred to appropriate places within the description of its variables
and actions.

Variables

The variable now E R o denotes the time that has elapsed since the beginning of an execution
of SRM-RECh. The variable status captures the status of the host h. It evaluates to one of
the following: idle, member, and crashed. While the host h has not crashed, we say that it is
operational. The variable rep-deadline E R 0 U L denotes the point in time at which the next
session packet is scheduled for transmission. When undefined, the variable rep-deadline is equal to
I .

70

Figure 4.9 The SRM-RECh Automaton - Signature

Parameters:

h E H, C 1 , C 2 , C 3 , D 1 , D 2 , D 3 E RC I 0, DFLT-DIST E R 0 , SESS-PERIOD E R+
Actions:

input internal
crashh schd1-rqsth(s,i), for s E H,i E N
rm-join-ackh send-sessh
rm-leaveh send-rqsth(s,i), for s E H, i E N
rm-sendh(p), for p C PR\1-CLIENT send-replh(s,i), for s C H, i E N
process-pkth(p), for p C PSRMI output

rm-recvh(p), for p E PRI-CLENT
rec-msendh(p), for p E PSRNI

time-passage
v(t), for t E R>

The variable dist-rprt(h') E R 0 x R 0 U I, for each h' E H, h' # h, records the transmission and
the reception times of the most recent session packet of h' to be received by the host h. That is,
for each h' C H, the variable dist-rprt(h') is a tuple of the form (tsent, trcvd), where tsent is the
transmission time of the most recent session packet of h' received by h and trcvd is the time at
which h received this session packet. If the host h has not received a session packet from the host
h' since joining the reliable multicast group, then the variable dist-rprt(h') is undefined; that is,
dist-rprt(h') =1.

The variable dist(h') EE R> x J O, for each h' C H, h' : h, records the most up-to-date estimate of
the distance from h to the host h'. Such distance estimates are ordered by the transmission time of
the session packet of h that initiated their calculation; that is, a distance estimate calculated as a
result of the transmission of a more recent session packet of h is considered more up-to-date. If two
calculations are initiated by the same session packet of h, then the later calculation is considered
more up-to-date. Thus, for each h' E H, the variable dist(h') is a tuple of the form (trprt, tdist),
where trprt is the transmission time of the session packet of h that initiated the calculation of the
particular distance estimate and tdist is the distance estimate obtained as a result of the particular
calculation. The variables dist(h'), for h' C H, h' # h, are initialized to (0, DFLT-DIST), where
DFLT-DIST is the default inter-host distance estimate parameter of SRM-RECh.

Each of the min-seqno(h') E N and max-seqno(h') E N variables, for h' E H, denotes the minimum
and maximum ADU sequence numbers observed to have been transmitted by the host h'. The
variable archived-pkts C PRM-CLIENT X R 0 is comprised of pairs involving the ADUs that have
either been sent by or buffered for delivery to the client at h and the first point in time at
which each ADU has either been sent by or buffered for delivery to the client at h. The variable
to-be-requested? C H x N denotes the set of ADU packets that have been identified as missing and
for which a request has yet to be scheduled. The elements of to-be-requested? are tuples of the form

(s, i), with s E H and i E N denoting the source s and the sequence number i of the missing ADU.

The set pending-rqsts C Pending-Rqsts is comprised of tuples that correspond to packets for which
a request is pending; that is, a request for the particular packet has recently either been sent or
received and a reply is being awaited. The tuples of pending-rqsts are of the form (s,i, t), with
s E H, i E N, t C R>O; s and i represent the source and sequence number of the packet whose
request is pending and t represents the back-off abstinence deadline; that is, the time before which
the request timeout timer for the given packet may not be backed off. A pending request expires
when time elapses past its back-off abstinence timeout. Prior to its expiration, a pending request
is said to be active.

The set scheduled-rqsts C Scheduled-Rqsts is comprised of tuples that correspond to packets for
which a request has been scheduled and is awaiting transmission. The tuples of scheduled-rqsts are

71

of the form (s, i, t, k), with s E H, i E N, t C R 0, k C N; s and i correspond to the source and
sequence number of the packet to be requested, t is the time for which the request is scheduled
for transmission, and k is the number of times a request for the given packet has already been
scheduled.

The set pending-repis C Pending-Repls is comprised of tuples that correspond to packets for which
a reply has recently been either sent or received. The tuples of pending-repis are of the form (s, i, t),
with s C H, i E N, t E R20; s and i correspond to the source and sequence number of the packet for
which a reply has already been either sent or received and t is the abstinence timeout of the reply;
that is, a deadline before which replies for the given packet may not be scheduled by the host h.
A pending reply expires when time elapses past its abstinence timeout. Prior to its expiration, a
pending reply is said to be active.

The set scheduled-repls C Scheduled-Repls is comprised of tuples that correspond to packets for
which a reply has been scheduled and is awaiting transmission. The tuples comprising the set
scheduled-repls are of the form (s,i, t, r), with s, r E H, i C N, t C R20; s and i correspond to the
source and sequence number of the packet to be retransmitted, t is the time for which the reply is
scheduled for transmission, and r is the host whose request induced the scheduling of the particular
reply.

The set to-be-delivered C PRM-CLIENT is used to buffer the packets that are to be subsequently
delivered to the client. The set msend-buff C PSRM is used to buffer the packets that are to
be subsequently multicast using the underlying IP multicast service; that is, it contains the data
packets of the client and the requests and replies of the recovery component to be transmitted by
the host h.

Derived Variables

The derived variable dist?(h') E R20, for h' C H, h' 0 h, is h's current distance estimate to the
host h'.

The derived variable dist-rprt records the transmission and the reception times of the most recent
session packet of all other hosts. It is a set of tuples of the form (h', t,, tr), for h' E H, h' $ h and

tst, C R20, such that dist-rprt(h') #1 and (ts,tr) = dist-rprt (h'). In effect, dist-rprt summarizes
the information recorded by the dist-rprt(h') variables, for all h' C H, h' z h.

The derived variable max-seqno records the transmission progress of all other hosts. max-seqno
is the set of tuples of the form (h', max-seqno(h')), for h' C H, h' 0 h, and max-seqno(h') 1.
In effect, max-seqno summarizes the information recorded by the max-seqno(h') variables, for all
h' c Hh' 0 h.

The derived variable proper? (h'), for h' C H, is the set comprised of the identifiers of the packets
from h' whose sequence numbers are no less than min-seqno(h'). The derived variable window? (h'),
for h' c H, is the set comprised of the identifiers of the packets from h' whose sequence numbers
are no less than min-seqno(h') and no greater than max-seqno(h').

The derived variable archived-pkts? C H x N identifies all the packets for which there is a
corresponding tuple in the set archived-pkts. The derived variable archived-pkts?(h') C H x N,
for h' c H, identifies all the packets from h' for which there is a corresponding tuple in the set
archived-pkts.

The derived variable to-be-requested?(h') C H x N, for h' C H, identifies all the packets from h'
that are in the set to-be-requested?. The derived variable to-be-delivered? C H x N identifies all
the packets for which there is a corresponding tuple in the set to-be-delivered. The derived variable

72

Figure 4.10 The SRM-RECh Automaton - Variables

Variables:

now G RO, initially now = 0
status C SRM-Status, initially status = idle
rep-deadline E R!OU I, initially rep-deadline =I

dist-rprt(h') E R o x Rl!0U I, for all h' C H,h' 0 h, initially dist-rprt(h') =_
dist(h') E R 0 x Rl O, for all h' E H,h' 0 h, initially dist(h') = (0, DFLT-DIST)
min-seqno(h') C N U I, for all h' C H, initially min-seqno(h') =-L, for all h' C H
max-seqno(h') E N U I, for all h' C H, initially max-seqno(h') =_L, for all h' C H
archived-pkts C PR11-CLIENT X R?0, initially archived-pkts 0
to-be-requested? C H x N, initially to-be-requested? = 0
pending-rqsts C Pending-Rqsts, initially pending-rqsts =0
scheduled-rqsts C Scheduled-Rqsts, initially scheduled-rqsts = 0
pending-repls C Pending-Repis, initially pending-repls =0
scheduled-repls C Scheduled-Repis, initially scheduled-repls = 0
to-be-delivered C PP\I-CLIENT, initially to-be-delivered - 0
msend-buff C Psn\1, initially msend-buff 0

Derived Variables:

dist?(h') = d, for d C R 0 , such that dist(h') = (t, d), for some t C R 0, for all h' E H
dist-rprt Uh'EH,h' ph,dist-rprt(h'):-L{(hitsenttcvd) dist-rprt(h) (tsen, trcvd)}
max-seqno = Uh' EH,h'ih,max-seno(h')t-$L {(h', max-seqno(h'))}

for all h' E H, proper? (h') = 0 if min-seqno(h') =L
f{(s, i) E H x N I s = h', min-seqno(h') < i} otherwise

for all h' C H, window? (h') - 0 if min-seqno(h') =_

f{(s,) E H x N I s = h', min-seqno(h') < i < max-seqno(h')} otherwise
archived-pkts? = {(s,i) C H x N I]1p C PRM-CLIENT,t C R 0 : (pt) C archived-pkts A id(p) (s,i)}
archived-pkts? (h') = { (s, i) C archived-pkts? I s = h'}, for all h' E H
to-be-requested?(h') = {(s,i) C to-be-requested ? s = h'}, for all h' E H
to-be-delivered? = {(s,i) C H x N | Bp c to-be-delivered : (s,i) = id(p)}
to-be-delivered? (h') = {(s, i) C to-be-delivered? I s = h'}, for all h' C H
scheduled-rqsts? = {{s,i) E H x N 1 t C R: 0,k C N : (s,i,t,k) E scheduled-rqsts}
scheduled-rqsts? (h') = { (s, i) E scheduled-rqsts?| s = h'}, for all h' E H
scheduled-repls? = {(s,i) E H x N |]t C R:" 0,q E H : (s,i,t,q) E scheduled-repls}
scheduled-repls?(h') = {(s,i) C scheduled-repls? | s = h'}, for all h' C H
pending-rqsts? = {(s, i) E H x N 3] t C R 0 : now < t A (si, t) C pending-rqsts}
pending-repls? = {(s, i) C H x N | 3 t E R 0 : now < t A (s, i, t) C pending-repls}

to-be-delivered?(h') C H x N, for h' E H, identifies all the packets from h' that are in the set
to-be-delivered?.

The derived variable scheduled-rqsts? C H x N identifies all the packets for which there
is a corresponding scheduled request tuple in the set scheduled-rqsts. The derived variable
scheduled-rqsts?(h') C H x N, for h' E H, identifies all the packets from h' whose identifiers
are in the set scheduled-rqsts?. The derived variable scheduled-repls? C H x N identifies all the
packets for which there is a corresponding scheduled reply tuple in the set scheduled-repls.

The derived variable pending-rqsts? C H x N identifies all the packets for which there is an active
pending request; that is, there is a corresponding tuple in the set pending-rqsts whose back-off
abstinence timeout has not yet expired. The derived variable pending-repls? C H x N identifies all
the packets for which there is an active pending reply; that is, there is a corresponding tuple in the
set pending-repls whose abstinence timeout has not yet expired.

Input Actions

The input action crashh models the crashing of the host h. The effects of crashh are to set the
status variable to crashed. Once the host h has crashed, none of the input actions of SRM-RECh
affect its state, none of the internal and output actions of SRM-RECh are enabled, and time is not
restricted from elapsing.

73

The input action rm-join-ackh informs the SRM-RECh automaton that the host h has joined the
reliable multicast group. If the host h is operational, then the rm-join-ackh action records the
fact that the host h has joined the reliable multicast group by setting the variable status to member.
Subsequently, SRM-RECh may transmit, process, and deliver packets. Moreover, the rm-join-ackh
action schedules the transmission of a session packet no later than SESS-PERIOD time units in the
future by setting the rep-deadline variable to a value that is uniformly chosen within the interval
now + (0, SESS-PERIOD]. The parameter SESS-PERIOD specifies the period with which SRM-RECh
transmits session packets.

The input action rm-leaveh informs the SRM-RECh automaton that the host h has left the reliable
multicast group. If the host h is operational, then the action rm-leaveh reinitializes all the variables
of SRM-RECh except the variable now. Subsequently, SRM-RECh automaton ceases transmitting,
processing, and delivering packets, exchanging session packets, and scheduling packet requests and
replies.

The input action rm-sendh(p) models the transmission of the packet p by the client at h using
the reliable multicast service. rm-sendh(p) is effective only when the host h is a member of the
reliable multicast group and the host h is the source of the packet p. If p is the first packet
to be transmitted by the client since it last joined the reliable multicast group, the rm-sendh(p)
action sets the min-seqno(h) variable to the sequence number of p. Otherwise, SRM-RECh ensures

that p corresponds to the next packet awaited; that is, the packet whose sequence number is one

larger than the sequence number of the latest packet transmitted by h. If so, SRM-RECh updates

max-seqno(h), archives p, and generates a DATA packet to subsequently be transmitted to the other

members of the reliable multicast group through the underlying IP multicast service. The operation

comp-data-pkt(p) composes a DATA packet corresponding to the client packet p.

The input action process-pkth(p) models the processing of the packet p by SRM-RECh. The

packet p is processed only when the host h is a member of the reliable multicast group. We proceed

by describing the effects of process-pkth(p) depending on the type of the packet p. When p is
either a DATA, RQST, or REPL packet, we let sp E H and ip E N denote the source and the sequence

number pertaining to the packet p.

First, consider the case where p is a DATA packet. If h is not the source of p and p is the first

packet from sp to be received by h, then the variables min-seqno(sp) and max-seqno(sp) are set

to ip. Following this initial assignment of min-seqno(sp) to ip, all DATA, RQST, and REPL packets
pertaining to ADUs from sp with sequence numbers less than i are considered improper and are

discarded. Conversely, all DATA, RQST, and REPL packets pertaining to ADUs from s, with sequence
numbers equal to or greater than i, are considered proper and are processed.

The processing of packet p proceeds only while it is considered a proper packet. Unless either h
is the source of p or p is already archived, p is archived by adding the tuple {(strip(p), now)} to
archived-pkts. Unless h is the source of p, the ADU contained in p is buffered in to-be-delivered so

that it may subsequently be delivered to the client. Thus, the reliable multicast process does not
deliver packets sent by a client to itself. Moreover, the reliable multicast service may also deliver
the same ADU to the client multiple times. The identifier of the ADU pertaining to p is removed
from the to-be-requested? set and any scheduled requests and replies for the ADU pertaining to p
are canceled. Finally, unless h is the source of p, SRM-RECh adds any trailing missing packets to
the set to-be-requested?, so that a request for each of them may subsequently be scheduled.

Second, consider the case where p is a RQST packet. Once again, p is processed only if it pertains

to a proper ADU. If p pertains to an ADU that has been archived and for which a reply is neither
scheduled, nor pending, then SRM-RECh schedules a retransmission of the requested ADU. This

retransmission is scheduled for a point it time in the future that is chosen uniformly within the

interval now + [Didrepi, (Di +D2)drepi], with drep = dist?(sender (p)). If p pertains to an ADU that

74

Figure 4.11 The SRM-RECh Automaton - Discrete Transitions

input crashh internal send-sess

eff status := crashed pre status =member

input rm-join-ackh eff \\ Compose ses
msend-buff U=

eff if status crashed then { comp-sess-pA
status := member \\ Reset sessi
rep-deadline :G now + (0, SESS-PERIOD] rep-deadline :=

input rm-leaveh internal send-rqst
eff if status : crashed then choose t E R , k E

Reinitialize all variables except now. pre status = member

input rm-sendh(p) At = now A (si

eff if status = member A h = source(p) then eff \\ Compose reqi

(sp,ip) = id(p) sn-ufU

\\ Record foremost DATA packet \\ Back-off sc

if min-seno(sp) =-L then min-seqno(sp) :=ip scheduled-rqsts
if mn-seno~s) I henk, := k + 1; dr

\ Only consider next packet E now + 2 k

vif = ma-seno(sp) + scheduled-rqsts

then \\ A request b

max-seqno(sp) := ip pending-rqsts \=
\\ Archive packet tr := now + 2 k.

archived-pkts U= {(p, now)} pending-rqsts U

\\ Compose data packet internal send-repl
msend-buff U= {comp-data-pkt(p)} choose t G R 0 , q E

output rm-recvh(p) pre status = member

pre status = member A p E to-be-delivered At = now A (si
A(p' E to-be-delivered : eff \\ Compose rep

source(p') = source(p) A seqno(p') < seqno(p)) choose p E PRx

eff to-be-delivered \= {} where (p, t)
msend-buff U=

output rec-msendh(\\ A reply bec
pre status = member A p E msend-buff pending-repls \
eff msend-buff \= {p} trepi := now +

internal schdl-rqsth(si) pending-repis U
\\ Cancel sche

pre status = member A (s, i) E to-be-requested? scheduled-repls'
eff \\ Schedule new request timease vrt)

k, := 1; d, := dist?(s) time-passage v(t)
t, : E now + 2 k,-1 [C d,., (C1 + C2)dr] pre status = crashe
scheduled-rqsts U= {(si,tr, kr)} V(to-be-requeste
\\ Pkt request has been scheduled Amsend-buff
to-be-requested? \= {(s,i)} A(rep-deadlin

A no requests
A no replies s

eff now := now + t

h
A now = rep-deadline
sion packet

t(h, now, dist-rprt, max-seqno)}
)n packet deadline

now + SESS-PERIOD

N

,t, k) E scheduled-rqsts
iest packet
{comp-rqst-pkt(s, i, h)}
heduled request

{(s, i, t, k)}
dist?(s)

[C dr,, (Cl + C2) d,
J= {(s,i,tr,kr)}
ecomes pending

{(s, i, t.) I t. E R 0}
-C 3dr

= {(s,i,tr)}

h(S3i

H

,t, q) E scheduled-repis
ly packet

I-CLIENT, t E R 0

E archived-pkts A id (p) (s,i)

{ comp-repl-pkt (p, q, h)}
omes pending

= {(s, i, t.) I t. E R 0 }
)3 dist?(r)
= {(si,trep1)}
duled reply

\= {(s,i,t,q)}

d
d? = 0 A to-be-delivered = 0
= 0
e =1 Vnow + t < rep-deadline)
scheduled earlier than now + t

cheduled earlier than now + t)

has not been archived, then the effects of process-pkth(p) depend on whether there is a request for

the given ADU already scheduled. If h is not the source of p and there is no request for the ADU of

p already scheduled, then a request for the given ADU is scheduled. This request is scheduled for a

point it time in the future that is chosen uniformly within the interval now + 2[Cidr, (C1 + C2)drl,
with dr = dist?(sp); that is, the request is scheduled as if a first round request is being backed

off. If h is not the source of p, there is a request for the ADU of p already scheduled and there,
are there are no pending requests for the ADU of p still active, then the request for the ADU of

p that is already scheduled is exponentially backed off. When either a new request is scheduled

or an existing request is backed-off, a request for the given ADU becomes pending with a back-off

abstinence timeout equal to now + 2k-C 3 dr, where k is the round of the rescheduled request and

dr = dist?(sp). Finally, unless h is the source of p, SRM-RECh adds any trailing missing packets

to the set to-be-requested?, so that a request for each of them may subsequently be scheduled.

Third, consider the case where p is a REPL packet. The processing of a a REPL packet is similar to

75

Figure 4.12 The SRM-RECh Automaton - Discrete Transitions (Cnt'd)

input process-pkth(p)

where type(p) = DATA
eff if status = member then

(sp,ip) = id(p)
\\ Record foremost DATA packet

if h 0 sp A min-seqno(sp) =1 then

min-seqno(sp) := ip; max-seqno(sp) := ip
\\ Only consider proper packets

if min-seqno(sp) $1 Amin-seqno(sp) < ip then
\\ Archive and deliver packet

if h 5k sp A (sp, ip) i archived-pkts? then
archived-pkts U= {(strip(p), now)}

if h 0 sp then to-be-delivered U= {strip(p)}
\\ Pkt need not be requested

to-be-requested? \= {(sp, ip)}
\\ Cancel any scheduled requests and replies

scheduled-rqsts \= {(sp,ip, t, k) It E R 0, k E N}
scheduled-repls \={(sp, ip, t, q) It E R!O, q E H}
\\ Cancel any pending requests

pending-rqsts \ = { (sp, ip, t) I t E R20}
\\ Discover any trailing missing packets

if h 0 sp A max-seqno(sp) < ip then
to-be-requested? U=

{(sp, i) I i E N, max-seqno(sp) < i < ip}
max-seqno(sp) := ip

input process-pkth(p)

where type(p) = SESS
eff if status = member then

sp := sender(p)
if dist-rprt(sp) =1 then

dist-rprt(sp) (time-sent(p), now)
else

(tsent, trcvd) dist-rprt(sp)
if tset < time-sent(p) then

dist-rprt(sp) := (time-sent(p), now)
if h E dist-rprt?(p) then

(tient ,tdelayed) := dist-rprt(p, h)

(trprt,tdist) := dist(sp)

if trprt < tsent then
t'dt := (now - tdelayed - tsent)/2

dist(sp) := (tse-t, t'git)
foreach (h", i") E seqno-rprts(p) do:

if min-seqno(h") fL then
\\ Discover any trailing missing packets

if h 0 h" A max-seqno(h") < i" then
to-be-requested? U=

{(h",i) i E N, max-seqno(h") < i < i"}
max-seqno(h") := i"

that of a DATA packet. The differences are that p is processed only if it pertains to a proper ADU

and that in addition to the effects of processing a DATA packet, a reply for the given ADU becomes

pending. While this pending reply is active, SRM-RECh does not schedule replies for the ADU

pertaining to p.

Finally, consider the case where p is a SESS packet. Let sp denote the sender of p. If p is either the

first or the most recent session packet of sp to be received by h, then SRM-RECh sets the variable

dist-rprt(sp) to (time-sent(p), now). Thus, SRM-RECh records the reception of a more recent

session packet from the host sp. Moreover, if p is distance reporting for h and the session packet

that initiated this report is at least as recent as the session packet that initiated the calculation

of the current distance estimate to sp, then a new distance estimate to s, is calculated. If the

calculation of the current distance estimate was initiated by the same session packet as the new

calculation, then the new distance estimate is considered more recent since the latency observed

from sp to h is more recent. SRM-RECh records the new distance estimate to sp by appropriately

setting the tuple dist(sp).

SRM-RECh goes through the transmission state reports contained in p to determine whether sp has

observed further progress in the transmission of any of the sources; that is, whether sp has observed

the transmission of later ADU packets by any of the sources. For each state report indicating further

transmission progress, SRM-RECh adds the trailing missing packets to the set to-be-requested?, so

that a request for each of them may subsequently be scheduled, and updates the corresponding

max-seqno variable.

Output Actions

Each output action rm-recvh(p), for p E PRM-CLIENT, models the delivery of the packet p to the

client. It is enabled when the host h is a member of the reliable multicast group and the packet

p is the packet in the to-be-delivered buffer with the smallest sequence number. This ordering

constraint ensures that the foremost packet from each source is delivered to the client prior to

76

Figure 4.13 The SRM-RECh Automaton - Discrete Transitions (Cnt'd)

input process-pkth(p)

where type(p) = RQST
eff if status = member then

(sp,ip) = id(p)

\\ Only consider proper packets

if min-seqno(sp) 01 Amin-seqno(sp) < ip then

if (sp, ip) E archived-pkts? then
if (sp, ip) 1 scheduled-repls?

A (s, ip) 1 pending-repls?
then

\\ Schedule a new reply

q := sender(p)
drepi := dist?(q)
trepi :E now + [Did , (D 1 + D 2)dre p]
scheduled-repls U { sp, ip, trepl , q)}

else
if h : sp then

if (sp, ip) i scheduled-rqsts? then
\\ Schedule a backed-off request

k, := 2; d, := dist?(sp)
t, : E now + 2k- 1 [C 1 dr , (C1 + C2)dr]
scheduled-rqsts U= {(sp,ip,tr,kr)}
\\ Pkt request has been scheduled
to-be-requested? \= {(sp,ip)}
\\ A request becomes pending

pending-rsts \= {(sp, ip, t.) I t. E R 0
}

tr := now + 2k,-lC 3 dr
pending-rqsts U= {(sy, ip, tr)}

input process-pkth(p)

where type(p) = REPL
eff if status = member then

(Spip) = id(p)
\\ Only consider proper packets

if min-seqno(sp) 01 Amin-seqno(sp) <; ip then

\\ A reply becomes pending

pending-repls \= {(sp, ip,t.) I t. E R 0}
trep, := now + D 3 dist?(requestor(p))
pending-repIs U= {(sp,ip, trepL)}
\\ Archive and deliver packet

if h # sp A (sp,ip) V archived-pkts? then
archived-pkts U= {(strip(p), now)}

if h : s p then to-be-delivered U= {strip(p)}
\\ Pkt need not be requested
to-be-requested? \= {(sp, ip)}
\\ Cancel any scheduled requests and replies

scheduled-rsts \= {(sp,ip,t, k) I t E R
0
,k E N}

scheduled-repls \={(sp, ip, t, q) I t E R 0
, q E H}

\\ Cancel any pending requests

pending-rqsts \= {(s,ip, t) I t E R 0}
\\ Discover any trailing missing packets

if h 0 sp A max-seqno(sp) < ip then
to-be-requested? U=

{(sp, i) I i E N, max-seqno(sp) < i < ip}
max-seqno(sp) := ip

else
if (sp,ip) 0 pending-rqsts? then

\\ Backoff scheduled request

choose t E R 0,k E N
where (sP, ip, t, k) c scheduled-rqsts

scheduled-rqsts \ {(sp, ip, t, k)}
kr := k + 1; dr dist?(sp)
tr :E now + 2kr--1 [Cdr, (C1 + C2)d,]
scheduled-rqsts U= {(sp, ip, tr, kr)}
\\ A request becomes pending
pending-rsts \= {(sp, ip, t.) I t. E R> 0}
tr :=now + 2k,-lC3 dr
pending-rqsts U = I{(spI ipI t)}

\\ Discover any trailing missing packets
if h 0 sp A max-seqno(sp) < ip then

to-be-requested? U=
{(sp,i) I i E N, max-seqno(sp) < i < ip}

max-seqno(sp) := ip

any other packets from the particular source.

rm-recv-buff buffer.

Its effects are to remove the packet p from the

Each output action rec-msendh(p), for p E PSRM, hands off the packet p from SRM-RECh to

SRM-IPBUFFh so that it may subsequently be multicast by SRM-IPBUFFh using the underlying

IP multicast service. The precondition of the rec-msendh(p) action is that the host h is a member

of the reliable multicast group and p is in the msend-buff buffer. Its effects are to remove p from

the msend-buff buffer.

Internal Actions

Each internal action schdl-rqsth(s, i), for s E H, s 4 h, i E N, schedules a request for the packet

(s,i). The precondition of the schd1-rqsth(s,i) action is that the host h is a member of the

reliable multicast group and the tuple (s, i) is in the set to-be-requested?. The effects of the

77

schd1-rqsth(s,i) action are to schedule a new request for a point in time in the future that is
chosen uniformly within the interval now + [Cidr, (C1 + C2)d,], with dr = dist?(s), and to remove
the tuple (s, i) from the set to-be-requested?.

The internal action send-sessh models the expiration of the session packet transmission timeout.
The precondition of send-sessh is that the host h is a member of the reliable multicast group
and that the transmission time of the next session packet has arrived; that is, status = member
and now = rep-deadline. send-sessh composes a session packet and adds it to the buffer
msend-buff. The operation comp-sess-pkt(h, now, dist-rprt, max-seqno) composes a SESS packet
from h. Moreover, send-sessh schedules the transmission of the next session packet for a point
in time that is SESS-PERIOD time units in the future by reseting the variable rep-deadline to the
value now + SESS-PERIOD.

Each internal action send-rqsth(s, i), for s E H, i E N, models the expiration of the transmission
timeout of a scheduled request for the packet (s, i). The precondition of send-rqsth(s, i) is
that the host h is a member of the reliable multicast group and a previously scheduled request
for the packet (s, i) has expired; that is, there is a tuple (s, i, t, k) in scheduled-rqsts such that
t = now. Let the tuple (s, i, t, k) be the element of scheduled-rqsts corresponding to the packet

(s, i). send-rqsth(s, i) composes a request packet and adds it to the buffer msend-buff. The
operation comp-rqst-pkt(h, (s, i)) composes a RQST packet from h for the packet (s, i).

Moreover, the request (s, i, t, k) is backed off and a request for the given ADU becomes pending.
The timeout timer of the rescheduled request is set to a point it time in the future that is chosen
uniformly within the interval now + 2 kr - [Cidr, (C1 + C2)dr] and the back-off abstinence timeout
of the pending request is set to now + 2kr-lC 3dr, with kr = k + 1 and d, = dist?(s).

Each internal action send-replh(s, i), for s E H, i E N, models the expiration of the transmission
timeout of a scheduled reply for the packet (s, i). The precondition of send-replh(s, i) is that the
host h is a member of the reliable multicast group and a previously scheduled reply for the packet

(s, i) has expired; that is, there is a tuple (s, i, t, r) in scheduled-repls such that t = now. Let the
tuple (s, i, t, r) be the element of scheduled-repls corresponding to the packet (s, i). send-replh(S, i)
composes a reply packet and adds it to the buffer msend-buff. The operation comp-repl-pkt(h, r, p)
composes a REPL packet from h for the packet p. This reply is annotated with the host r that
induced the particular reply for p.

Moreover, the tuple corresponding to (s, i) is removed from the set scheduled-repls and a tuple
corresponding to (s, i) is added to the set pending-repls. The reply abstinence timeout of this
pending reply is set to now + D 3dist?(r). This pending reply prevents the scheduling of replies for
the given ADU for D 3 dist?(r) time units.

Time Passage

The action v(t) models the passage of t time units. If the host h has crashed, then time is allowed
to elapse. Otherwise, time is prevented from elapsing while either there are packets in the delivery
and IP multicast transmission buffers or there are packets which have been declared missing but
for which a request has yet to be scheduled; that is, while either of the buffers to-be-delivered,
msend-buff, or to-be-requested? is non-empty. Furthermore, time is prevented from elapsing past
the transmission deadline of any scheduled session, request, or reply packets.

4.3.5 The IP Multicast Component - IPMCAST

In this section, we give an abstract specification of the IP multicast service; the IP primitive that
provides best-effort point to multi-point communication. In order to simplify the presentation, we

78

Figure 4.14 The IPMCAST Automaton - Signature

Actions:

input output
crashh, for h E H mjoin-ackh, for h C H

mjoinh, for h C H mleave-ackh, for h E H

mleaveh, for h E H mrecvh(p), for h G H,p E PIPCASTC-CLIENT

msendh(p), for h E H,p C PIPMCAST-CLIENT mdrop(p, Hd), for p E PIPNICAST-CLIENT, Hd C H
internal time-passage

mgrbg-coll(pkt), for pkt E PIP!CAST v(t), for t E R: o

assume that only a single multicast group exists. Furthermore, we abstract away the specifics of

the underlying protocols that collectively provide the IP multicast service. In our model, hosts
join, leave, and send data packets to the IP multicast group by issuing join and leave requests and

by multicasting data packets, respectively. Following the initial service model of IP multicast, a

host need not be a member of the IP multicast group to send messages addressed to the group.

However, a host must join the IP multicast group in order to receive packets addressed to the IP

multicast group. The IP multicast service guarantees that only hosts who are members of the IP

multicast group actually receive IP multicast packets.

Figures 4.14 and 4.15 present the signature, variables, and discrete transitions of the the IPMCAST
timed I/O automaton; an abstract specification of the IP multicast service.

Variables

The variable now E R 0 denotes the time that has elapsed since the beginning of an execution
of IPMCAST. Each variable status(h) E IPmcast-Status, for h E H, denotes the IP multicast

membership status of the host h. The value idle indicates that h is idle with respect to the IP

multicast group; that is, it is neither a member, nor in the process of joining or leaving the IP

multicast group. The value joining indicates that h is in the process of joining the IP multicast

group; that is, the client has issued a request to join the IP multicast group and is awaiting an

acknowledgment of this join request from the IP multicast service. The value leaving indicates

that h is in the process of leaving the IP multicast group; that is, the client has issued a request to
leave the IP multicast group and is awaiting an acknowledgment of this leave request from the IP
multicast service. The value member indicates that h is a member of the IP multicast group. The
value crashed indicates that h has crashed. When the host h has crashed, none of the input actions
pertaining to h affect the state of IPMCAST and none of the locally controlled actions pertaining
to h are enabled. While the host h has not crashed, we say that it is operational.

The set mpkts C PPMCAST is comprised of the tuples that track the transmission progress of the
packets transmitted during the particular execution of IPMCAST. Of course, the size of the intended

delivery set of each transmission progress tuple decreases monotonically as the hosts it consists of
may leave the IP multicast group or crash.

Derived Variables

The derived variable up C H is the set of hosts that are operational; that is, the set of hosts that
have not yet crashed. The derived variable idle C H is a set of hosts that are idle with respect to

the IP multicast group. The derived variable joining C H is a set of hosts that are in the process

of joining the IP multicast group. The derived variable leaving C H is a set of hosts that are in

the process of leaving the IP multicast group. The derived variable members C H is a set of hosts
that are members of the IP multicast group.

79

Figure 4.15 The IPMCAST automaton - Variables and Discrete Transitions

Variables: Derived Variables:

now E R , initially now = 0 up = {h E Hlstatus(h) # crashed}

status(h) E IPmcast-Status, for all h E H, idle = {h E Hlstatus(h) = idle}

initially status(h) = idle, for all h E H joining = {h E Hlstatus(h) = joining}

mpkts C PIPNIcAsT, initially mpkts = 0 leaving = {h E Hlstatus(h) = leaving}
members {h E Hlstatus(h) = member}

Discrete Transitions:

input crashh output mjoin-ackh

eff if h E up then pre h E joining
status(h) := crashed eff status(h) := member
foreach pkt C mpkts do: output mleave-ackh

intended(pkt) \= {h} pre h C leaving
input mj 0 inh eff status(h) := idle

eff if h E idle then output mrecvh(p)
status(h) := joining choose pkt C PIPMCAST

input mleaveh pre pkt E mpkts A p = strip(pkt)

eff if h C joining U members then Ah $ source(p) A h E members\dropped(pkt)

status(h) := leaving eff completed(pkt) u= {h}

foreach pkt C mpkts do: output mdrop(p, Hd)
intended(pkt) \ {hl choose pkt E PIPMCAST

input msendh(p) pre pkt E mpkts A p = strip(pkt)

eff if h E up then A H C members\(completed (pkt) U dropped(pkt))

mpkts U= {(p, members, {h}, 0)} eff dropped (pkt) U= Hd

internal mgrbg-coll(p) time-passage v(t)

choose pkt E PIPCAST pre None
pre pkt C mpkts A p strip(pkt) eff now := now + t

Aintended(pkt) C (completed(pkt) U dropped(pkt))
eff mpkts\= {pkt}

Input Actions

Each input action crashh, for h C H, models the crashing of the host h. The crashh action records

the fact that h has crashed by setting the status (h) variable to crashed. Moreover, the crashh

action removes the host h from the intended delivery set of any packet in the set of pending packets

mpkts.

The input action mjoinh models the request of the client at h to join the IP multicast group. The

mj oinh action is effective only while the host is idle with respect to the IP multicast group. When

effective, the mjoinh action sets the status(h) variable to joining so as to record that the host h

has initiated the process of joining the IP multicast group. If the client is either a member of or in

the process of joining the IP multicast group, then the mjoinh action is superfluous. If the client

is already in the process of leaving the group, then the mj oinh action is discarded so as to allow

the process of leaving the IP multicast group to complete.

The input action mleaveh models the request of the client at h to leave the IP multicast group. The

mleaveh action is effective only while the host is either a member of or in the process of joining the

IP multicast group. When effective, the mleaveh action sets the status(h) variable to leaving so

as to record that the host h has initiated the process of leaving the IP multicast group. Moreover,

the mleaveh action removes the host h from the intended delivery set of any packet in the set of

pending packets mpkts. Leave requests overrule join requests; that is, when a mleaveh action is

performed while the host h is in the process of joining the IP multicast group, its effects are to

abort the process of joining and to initiate the process of leaving the IP multicast group. If the

client is either idle with respect to or already in the process of leaving the IP multicast group, then

the mleaveh action is superfluous.

80

The input action msendh(p) models the transmission by the client at h of the packet p using the IP

multicast service. The msendh(p) action is effective only if the client is operational; recall that a

client need not be a member of the IP multicast group to multicast packets using the IP multicast

service. The effects of the msendh(p) action are to add a tuple corresponding to the transmission

of the packet p to mpkts. This tuple is initialized as follows: its intended delivery set is initialized

to the current members of the IP multicast group, its completed delivery set is initialized to the

host h as if the packet p has already been delivered to the client at the host h, and its dropped set

is initialized to the empty set.

Output Actions

The output action mj oin-ackh acknowledges the join request of the client at h. The mj oin-ackh
action is enabled only when the host is in the process of joining the IP multicast group. Its effects

are to set the status (h) variable to member so as to indicate that the client at h has become a

member of the IP multicast group.

The output action mleave-ackh acknowledges the leave request of the client at h. The action

mleave-ackh is enabled when the host is in the process of leaving the IP multicast group. Its

effects are to set the status(h) variable to idle so as to indicate that the client at h has become

idle with respect to the IP multicast group.

The output action mrecvh(p) models the delivery of the packet p to the client at h. The mrecvh(p)
action is enabled when there is a transmission tuple pkt in mpkts pertaining to p, the host h is not

the source of p, and h is both a member of the IP multicast group and absent from the dropped

set of pkt. We thus presume that the IP multicast communication service does not deliver packets

to their respective sources and that packets may be delivered in duplicate to members of the IP

multicast group. The effects of the mre cvh(p) action are to add the host h to the completed delivery

set of p's transmission progress tuple pkt.

The output action mdrop(p, Hd), for any p E PIPMCAST-CLIENT and Hd C H, models the drop of the

packet p on a link of the underlying IP multicast tree whose descendants are the hosts in the set Hd.
The mdrop(p, Hd) action is enabled when p is a pending packet and Hd is comprised of members

of the IP multicast group for which the delivery of the packet p has neither completed, nor failed

due to prior packet drops. The mdrop(p, Hd) action adds the hosts comprising Hd to the dropped

set of the transmission progress tuple pkt in mpkts pertaining to p.

Internal Actions

The internal action mgrbg-coll(p) models the garbage collection of the packet p. A packet p may

only be garbage collected after all the hosts comprising its intended delivery set either receive the

packet or suffer a loss that prevents the packet from being forwarded to them. The effects of the

mgrbg-coll(p) action are to remove the transmission progress tuple pkt pertaining to p from the

set mpkts.

Time Passage

The time-passage action v(t), for t E R 0 , models the passage of t time units. The action v(t) is

enabled at any point in time and increments the variable now by t time units.

81

Figure 4.16 Timing Diagram of SRM's Loss Recovery Scheme

i t' + 2kC 3 4s t' + 2kC1dhS ts + 2 k (C1 + C2)dh,

It th+
2
, -li dh, th + 2k

1
+C2)dhs h

Requestor h Timeline t,+ dh h

t + dhh'

Replier h' Timeline tth + 1 h th +(+

t, t t, + D3dh h

Request Interval Back-off Abstinence Interval Reply Interval Reply Abstinence Interval

4.4 Analysis of SRM

In this section, we show that our model of the SRM protocol actually implements our reliable

multicast service specification of Chapter 3. According to our model's architecture, the SRM
model involves the SRM processes at each host and the underlying IP multicast service; that is,
the automaton HhEH SRMh X IPMCAST. We define the automaton SRM to be the composition

HheH SRMh x IPMCAST after hiding all output actions that are not output actions of the
specification RM(A), for any A E R 0 U oc; that is, SRM = hidei(HhEH SRMh x IPMCAST),
with <D = out(HhCH SRMh x IPMCAST)\out(RM(A)). SRM is parameterized by the parameters
listed in Figure 4.1.

We let SRMJ and RMs(A), for any A E R1 O U oc, denote the implementation and the specification
of the reliable multicast service each composed with all the client automata; that is, SRMI =

SRM x RMCLIENTS and RMs(A) = RM(A) X RMCLIENTS.

We proceed by presenting several constraints regarding the request and reply scheduling parameters

of SRM. Then, we define some history variables that facilitate the proof that our model of SRM

implements the abstract reliable multicast service specification. We define a relation between the

states of the SRM protocol and the reliable multicast service and prove that this relation is indeed

a timed forward simulation relation. We conclude by showing that the SRM protocol, under certain

constraints, guarantees the eventual and time-bounded delivery guarantees defined in Chapter 3.

4.4.1 Request and Reply Scheduling Parameter Constraints

Figure 4.16 illustrates the behavior of SRM's packet loss recovery scheme. In particular, for any

k E N+, it depicts the transmission of a k-th round request by h, the scheduling of a k + 1-st round

request by h, and the scheduling of a reply to h's k-th round request by a host h'. th is the point in

time at which h schedules its k-th round request, t' is the point in time for which h schedules its

k-th round request, thi is the point in time h' receives h's k-th round request, and t', is the point

in time for which h' schedules its reply to h's k-th round request. dh, is half of h's RTT estimate
to the source s of the packet being recovered, dhh, and dh'h are the actual transmission latencies
between h and h', and dh'h is half of the RTT estimate of h' to h.

82

SRM must ensure that the back-off abstinence intervals do not overlap with request intervals.

From Figure 4.16, this requirement is enforced by imposing the parameter constraint C3 < C1.

Moreover, SRM must ensure that requestors schedule their retransmission requests such that they

succeed the reception of replies pertaining to prior recovery rounds. Prematurely transmitting

requests would result in wasteful recovery traffic. From Figure 4.16, this requirement corresponds

to the satisfaction of the inequalities dhh' + (D 1 + D2)dh'h + dh'h < 2kCldhs, for k c N+.
Presuming that inter-host transmission latencies are fixed and symmetric and that SRM's inter-

host RTT estimates are accurate, these inequalities are satisfied if Di + D 2 + 2 < 2C1. Finally,
SRM must also ensure that a particular round's requests are not discarded by potential repliers

because they are received during the repliers' abstinence periods pertaining to the prior recovery
round. From Figure 4.16, this requirement corresponds to the satisfaction of the inequalities

dhh'+ (D 1 + D2)dh'h + D3dh'h < 2kCldhs + dhh', for k E N+. Presuming that inter-host transmission
latencies are fixed and symmetric and that SRM's inter-host RTT estimates are accurate, these

inequalities are satisfied if Di + D 2 + D3 < 2C,.

The following assumption summarizes the constraints on SRM's parameters.

Assumption 4.1 SRMI's parameters C1, C2, C3, D 1 , D 2 , and D 3 satisfy the following con-

straints: C3 < C1, DI + D2 + 2 < 2 0 1, and Di + D 2 + D3 < 2C1.

To our knowledge, these constraints on SRM's request/reply scheduling parameters, or even similar

ones, have not been expressed to date. In fact, most analyses and simulations presume that no
recovery packets are lost; that is, they presume that the initial recovery round is always successful.

Our timing analysis illustrates that if the parameters are chosen arbitrarily it is possible to cause
either superfluous requests and replies or the failure of a recovery round due to replier abstinence.
Although in practice, due to inaccurate inter-host RTT estimates and varying and non-symmetric
inter-host transmission latencies, superfluous traffic and/or recovery round failure may indeed be
unavoidable, it is still important to realize their tie to SRM's parameters.

4.4.2 History Variables

Figure 4.17 introduces history and derived history variables for the automata SRM-RECh and

SRM, respectively.

The history variables of the SRM-RECh automata, for h E H, are the variables trans-time(p), for
all p E PRM-CLIENT[hl, expected(h') C H x N, for h' E H, and delivered(h') C H x N, for h' c H.
Each trans-time(p) variable, for p E PRM-CLIENT[hI, records the transmission time of the packet p
by the host h. Each expected(h') variable , for h' E H, is comprised of the identifiers of the packets
from h' that the host h expects to deliver since it last joined the reliable multicast group. Each
delivered(h') variable, for h' E H, is comprised of the identifiers of the packets from h' that the
host h has already delivered since it last joined the reliable multicast group. Figure 4.18 specifies
how the actions of SRM-RECh affect these history variables.

The derived history variables of SRM are the set of identifiers of all packets sent since the beginning
of the execution, sent-pkts, the intended delivery set of p, intended(p), for all p E PRM-CLIENT, the
completed delivery set of p, completed(p), for all p c PRM-CLIENT, and the set of active packets,
active-pkts.

4.4.3 Correctness Analysis Preliminaries

In this section, we present several preliminary invariants and lemmas that are later used in the
analysis of the SRMI automaton.

83

Figure 4.17 History and Derived History Variables

History Variables of SRM-RECh:

trans-time(p) E R> 0U I, for all p E PRM-CLIENT[h], initially trans-time(p) =L, for all p E PRM-CLIENT~h]

expected(h') g H x N, for all h' E H, initially expected(h') = 0, for all h' E H
delivered(h') C H x N, for all h' E H, initially delivered(h') = 0, for all h' E H

Derived History Variables of SRM:

sent-pkts = {p E PRM-CLIENT trans-time(p) #L
sent-pkts? = {(s, i) G H x N | 3 p E sent-pkts id(p) = (s, i)}
sent-pkts?(h) = {(s,i) E H x N I s = h A 3 p E sent-pkts : id(p) = (s, i)}, for all h E H
intended(p) = {h E H I id(p) E SRM-RECh.expected(source(p))}, for all p E PRI-CLIENT
completed(p) = {h E H I id(p) E SRM-RECh.delivered(source(p))}, for all p E PRM-CLIENT
active-pkts = {p E PR*M-CLIENT I p C sent-pkts A intended(p) n completed(p) 0 0}

Figure 4.18 SRM-RECh History Variable Assignments

input crashh input rm-sendh(p)
eff ... eff ..

foreach h' E H do: \\ Record foremost DATA packet
expected(h') := 0 if min-seqno(sp) =1 then
delivered(h') := 0 ...

input rm-leaveh expected(h) := suffix(p)

eff if status 7 crashed then if max-seqno(sp) =I
Reinitialize all variables except now. vip = max-seqno(sp) + 1
foreach h' E H do: then

expected(h') := 0
delivered(h') 0 trans-time(p) := now

delivered(h) U= {id(p)}

output rm-recvh(p)
pre ...
eff ...

(sp, ip) := id(p)
if expected(sp) = 0 then

expected(sp) := suffix(p)
delivered(sp) U= {id(p)}

Lemma 4.1 (IP Multicast Transmission Integrity) For any timed trace 0 of IPMCAST, it is
the case that any mrecvh(p) action, for h E H and p E PPMCAST-CLIENT, in 3 is preceded in 3 by a
msendh'(p) action, for some h' E H.

Proof: Let a be any timed execution of IPMCAST such that Q = ttrace(a). Consider a
particular occurrence of an action mrecvh(p) in a, for h E H and p E PIPMCAST-CLIENT. Let

(u, mrecvh(p), u') E trans(IPMCAST) be the discrete transition in a corresponding to the particular
occurrence of the action mrecvh(p) in a. From the precondition of mrecvh(p), it is the case that
there is a packet pkt E u.mpkts, such that p = strip(pkt). However, such a packet may be added
to mpkts only by the occurrence of an action msendh'(p), for some h E H. It follows that the
occurrence of any action mrecvh (p) in a is preceded by the occurrence of an action msendh, (p), for
some h' G H. El

Invariant 4.1 For h, h' E H and any reachable state u of SRM-RECh, it is the case that
u.window?(h') 9 u.proper?(h').

Proof: Follows directly from the definitions of the derived variables SRM-RECh.Window?(h') and
SRM-RECh.proper? (h'). 0

Invariant 4.2 For h, h' E H and any reachable state u of SRM-RECh, if u.status # member, then
u.expected(h') = 0 and u.delivered(h') = 0.

84

Proof: Let a be any finite timed execution of SRM-RECh leading to u. The proof is by induction
on the length n E N of a. For the base case, consider the finite timed execution a of length 0; that is,
a = u. Since u is a start state of SRM-RECh, it follows that u.status = idle, u.expected(h') = 0,
and u.delivered(h') = 0. Thus, the invariant assertion is satisfied in u. For the inductive step,
consider a timed execution a of length k + 1, for k E N. Let ak be the prefix of a containing the

first k steps of a and Uk = ak.lstate. For the step from Uk to a we consider only the actions that
affect the variables status, expected(h'), and delivered(h').

E crashh: the action crashh sets the variable status to crashed and the variables expected(h')

and delivered(h') to 0. Thus, the invariant assertion is satisfied in u.

El rm-join-ackh: if uk.status : crashed, then the action rm-join-ackh sets the variable status

to member. Thus, the invariant assertion is satisfied in u. Otherwise, if uk.status = crashed,
then the action rm-join-ackh does not affect the state of SRM-RECh. Thus, the induction
hypothesis implies that the invariant assertion is satisfied in u.

El rm-leaveh: if uk.status : crashed, then the action rm-leaveh sets the variable status to idle

and the expected(h') and delivered(h') variables to 0. Thus, the invariant assertion is satisfied
in u. Otherwise, if Uk.status = crashed, then the action rm-leaveh does not affect the state of

SRM-RECh. Thus, the induction hypothesis implies that the invariant assertion is satisfied in
U.

El rm-sendh(p), for p E PRM-CLIENT: first, consider the case where -,(uk.status = member A h =

source (p)). In this case, rm-sendh(p) does not affect the state of SRM-RECh. Thus, the induction

hypothesis implies that the invariant assertion holds in u.

Second, consider the case where uk.status = member and h = source(p). Since Uk.status =

member and the rm-sendh(p) does not affect the status variable, it follows that u.status = member.

Thus, the invariant assertion is satisfied in u.

El rm-recvh(p), for p E PRM-CLIENT: the precondition of the action rm-recvh(p) implies that

Uk.status = member. Since the rm-recvh(p) does not affect the status variable, it follows that

u.status = member. Thus, the invariant assertion is satisfied in u.

Invariant 4.3 For h, h' G H and any reachable state u of SRM-RECh, it is the case that:

1. u.mirn-seqno(h') zI<-> u.max-seqno(h') 71 and

2. u.min-seqno(h') 71 -> u.min-seqno(h') < u.max-seqno(h').

Proof: Let a be any finite timed execution of SRM-RECh leading to u. The proof is by induction
on the length n E N of a. For the base case, consider the finite timed execution a of length 0;
that is, a = u. Since u is a start state of SRM-RECh, it follows that a.min-seqno(h) =1 and
u.max-seqno(h) =1. Thus, the invariant assertion is satisfied in u. For the inductive step, consider
a timed execution a of length k + 1, for k C N. Let ak be the prefix of a containing the first k
steps of a and Uk = ak.lstate. For the step from Uk to a we consider only the actions that affect
the variables min-seqno(h') and max-seqno(h').

El rm-leaveh: if uk.status 7 crashed, then the action rm-leaveh sets the variables min-seqno(h')

and max-seqno(h') to I. Thus, the induction assertion is satisfied in u. Otherwise, if

Uk.status = crashed, then the action rm-leaveh does not affect the state of SRM-RECh. Thus,
the induction hypothesis implies that the invariant assertion is satisfied in u.

El rm-sendh(p), for p E PRM-CLIENT, such that source(p) = h': letting (sp,ip) = id(p), we analyze

the effects of rm-sendh(p) by cases. First, consider the case where -'(Uk.status = member A h =

85

sp). In this case, rm-sendh(p) does not affect the variables min-seqno(h') and max-seqno(h').
Thus, the induction hypothesis implies that the invariant assertion is satisfied in u.

Second, consider the case where Uk.status = member and h = sp. Since sp = h', it follows
that h = h' = sp. If p is the foremost packet from sp, that is, uk.min-seqno(sp) =1, then
the rm-sendh(p) action sets both min-seqno(h') and max-seqno(h') to ip. It follows that
u.min-seqno(h') fI, u.max-seqno(h') #1, and u.min-seqno(h') < u.max-seqno(h'). Thus, the
invariant assertion is satisfied in u.

If p is the next packet from sp, that is, uk.max-seqno(h') LI and ip = uk.max-seqno(h') + 1,
then the action rm-sendh(p) does not affect min-seqno(h') and sets max-seqno(h') to
that is, u.min-seqno(h') = uk.min-seqno(h') and u.max-seqno(h') = uk.max-seqno(h') + 1.
Since uk.max-seqno(h') fI, the induction hypothesis implies that uk.min-seqno(h') 01 and

uk.min-seqno(h') < uk.max-seqno(h').

Since i, = uk.max-seqno(h') + 1, it follows that uk.max-seqno(h') < u.max-seqno(h'). Since

uk.min-seqno(h) _ Uk.max-seqno(h'), it follows that u.min-seqno(h') IL, u.max-seqno(h') fL,
and u.min-seqno(h') < u.max-seqno(h').

If p is neither the foremost nor the next packet from sp, then the action rm-sendh(p) does not
affect the variables min-seqno(h') and max-seqno(h'). Thus, the induction hypothesis implies
that the invariant assertion holds in u.

El process-pkth(p), for p E PSRM, such that type(p) = SESS: First, if uk.status f member, then
process-pkth(p) does not affect the state of SRM-RECh. Thus, the induction hypothesis implies
that the invariant assertion holds in u.

Second, consider the case where uk.status = member. In this case, if h = h' or there does not
exist (h', i') E seqno-rprts(p), for i' E N, such that uk.max-seqno(h') < i', then process-pkth(p)
affects neither min-seqno(h') nor min-seqno(h'). Thus, the induction hypothesis implies that
the invariant assertion holds in u.

If h z h' and there exists (h',i') C seqno-rprts(p), for i' E N, such that Uk.min-seqno(h') #1
and uk.max-seqno(h) < i', then process-pkth(p) does not affect min-seqno(h') and sets
max-seqno(h') to i'; that is, u.min-seqno(h') = uk.min-seqno(h') and Uk.max-seqno(h') < i'
u.max-seqno(h').

Since Uk.max-seqno(h') < i' and u.max-seqno(h') = i', it follows that uk.max-seqno(h') <
u.max-seqno(h'). From the induction hypothesis, it is the case that Uk.min-seqno(h) <

Uk.max-seqno(h'). Thus, it follows that m.min-seqno(h') 41, u.max-seqno(h') #1, and
u.min-seqno(h') < u.max-seqno(h'), as needed.

E process-pkth(p), for p E PSRM, such that source(p) = h' and type(p) 7 SESS: letting
(sp, ip) = id(p), we analyze the effects of process-pkth(p) by cases. First, if ak.status z member,
then process-pkth(p) does not affect the state of SRM-RECh. Thus, the induction hypothesis
implies that the invariant assertion holds in u.

Second, consider the case where Uk.status = member. If p is the foremost packet from sp,
that is, type(p) = DATA, h f sp, and Uk.min-seqno(sp) =L, then the action process-pkth(p)
sets both min-seqno(h') and max-seqno(h') to ip. It follows that m.min-seqno(h') 1,
m.max-seqno(h') fI, and u.min-seqno(h') < u.max-seqno(h'), as needed.

If p is not the foremost packet from sp but is proper, that is, Uk.min-seqno(sp) 7I and

uk.mmn-seqno(sp) < i, then the action process-pkth(p) does not affect min-seqno(h') and
may increase the value of max-seqno(h'). It follows that a.min-seqno(h') = uk.min-seqno(h')
and uk.max-seqno(h') < u.max-seqno(h'). Since uk.min-seqno(sp) 7I, the induction hy-
pothesis implies that Uk.min-seqno(h') AL, Uk.max-seqno(h') AL, and Uk.mirni-seqno(h) <

86

uk.max-seqno(h'). Thus, it follows that u.min-seqno(h') 7_L, u.max-seqno(h') #_L, and
u.min-seqno(h') < u.max-seqno(h').

Otherwise, if p is neither the foremost nor a proper packet from sp, then process-pkth(p) does

not affect the variables min-seqno(h') and max-seqno(h'). Thus, the induction hypothesis implies

that the invariant assertion holds in u.

El

Invariant 4.4 For h, h' C H and any reachable state u of SRM-RECh, it is the case that:

1. u. delivered (h') U u. to-be-delivered? (h') C u. archived-pkts? (h') and

2. u.status = member -> u.delivered (h') U u.to-be-delivered ? (h') = u.archived-pkts? (h').

Proof: Let a be any finite timed execution of SRM-RECh leading to u. The proof is by induction

on the length n E N of a. For the base case, consider the finite timed execution a of length 0;
that is, a = u. Since u is a start state of SRM-RECh, it follows that u.status = idle. Thus, the
invariant assertion holds in u. For the inductive step, consider a timed execution a of length k + 1,
for k E N. Let ak be the prefix of a containing the first k steps of a and uk ak.lstate. For
the step from uk to u, we consider only the actions that affect the variables archived-pkts?(h'),
delivered (h'), and to-be-delivered? (h').

E crashh: the action crashh sets the variable status to crashed, initializes the
variables u.delivered(h'), for all h' E H, and does not affect the variables
to-be-delivered?(h') and archived-pkts?(h'), for h' E H; that is, it is the case that
a.delivered(h') C Uk.delivered(h'), a.to-be-delivered?(h') = Uk.to-be-delivered?(h'), and
u.archived-pkts?(h') = Uk.archived-pkts?(h'). Thus, the induction hypothesis implies that
u. delivered (h') U u. to- be-delivered? (h') C u. arc hived-pkts? (h').

El rm-leaveh: if uk.status 7 crashed, then the action rm-leaveh sets the variable status to idle.
Thus, the invariant assertion holds in u.

Otherwise, if Uk.status = crashed, then the action rm-leaveh does not affect the state of
SRM-RECh. It follows that u.status = crashed. Thus, the invariant assertion holds in u.

El rm-sendh(p), for p E PRM-CLIENT, such that source(p) = h': letting (sp,ip) id(p), we analyze
the effects of rm-sendh(p) by cases. First, if '(Uk.status = member A h = sp), then rm-sendh(p)
does not affect the state of SRM-RECh. Thus, the induction hypothesis implies that the invariant
assertion holds in u.

Second, consider the case where uk.status = member A h = sp. If p is either the foremost or the
next packet from h, then rm-sendh(p) archives p and records it as having been delivered. Thus,
the induction hypothesis and the fact that the packet p is both archived and recorded as having
been delivered imply that the invariant assertion holds in u.

Otherwise, if p is neither the foremost nor the next packet from h, then the action rm-sendh(p)
does not affect the variables archived-pkts?(h'), delivered(h'), and to-be-delivered?(h'). Thus,
the induction hypothesis implies that the invariant assertion is satisfied in u.

E rm-recvh(p), for p E PRM-CLIENT, such that source(p) = h': rm-sendh(p) removes id(p) from
to-be-delivered?(h') and adds it to delivered(h'). Thus, the induction hypothesis implies that
the invariant assertion holds in u.

El process-pkth(p), for p E PSRM, such that source(p) = h': letting (spip) = id(p), we analyze
the effects of process-pkth(p) by cases. First, if Uk.status 54 member, then rm-sendh(p) does
not affect the state of SRM-RECh. Thus, the induction hypothesis implies that the invariant
assertion holds in u.

87

Second, consider the case where uk.status = member. We begin by considering the case where
type(p) E {DATA, REPL}. In this case, consider the case where p is either the foremost or a
proper packet from s, and h / sp. In this case, if p has not already been archived, then
process-pkth(p) adds id(p) to both archived-pkts?(h') and to-be-delivered?(h'). This fact and
the induction hypothesis imply that the invariant assertion is satisfied in u. Otherwise, if p has
already been archived, then process-pkth(p) adds id(p) to to-be-delivered?(h') only. Since
id(p) C uk.archived-pkts?(h') and process-pkth(p) does not affect archived-pkts, it follows
that u. archived-pkts? (h') = Uk.archived-pkts?(h') and, thus, id(p) E u.archived-pkts?(h').
Moreover, since process-pkth(p) adds id(p) to to-be-delivered?(h'), it follows that
u.to-be-delivered?(h') = uk.to-be-delivered?(h') U {id(p)}. From the induction hypothesis,
it is the case that uk.archived-pkts?(h') = uk.delivered(h') U uk.to-be-delivered?(h'). Since
process-pkth(p) does not affect delivered(h'), it follows that the invariant assertion holds in u.

Otherwise, if either p is neither the foremost nor a proper packet from s, or h = sP,
process-pkth(p) does not affect archived-pkts?(h'), delivered(h'), and to-be-delivered?(h').
Thus, the induction hypothesis implies that the invariant assertion is satisfied in u.

If type(p) E {RQST, SESS}, then the action process-pkth(p) does not affect the variables
archived-pkts?(h'), delivered(h'), and to-be-delivered?(h'). Thus, the induction hypothesis
implies that the invariant assertion is satisfied in u.

ID

Invariant 4.5 For h, h' E H and any reachable state u of SRM-RECh, it is the case that
u.archived-pkts?(h') C u.window?(h').

Proof: Let a be any finite timed execution of SRM-RECh leading to u. The proof is by induction
on the length n C N of a. For the base case, consider the finite timed execution a of length 0;
that is, a = u. Since u is a start state of SRM-RECh, it is the case that u.min-seqno(h') =1 and
u.archived-pkts?(h') = 0. Since u.min-seqno(h') =L, it is the case that u.window?(h') = 0. Thus,
it follows that u.archived-pkts?(h') C u.window?(h'), as needed. For the inductive step, consider a
timed execution a of length k + 1, for k E N. Let ak be the prefix of a containing the first k steps
of a and 'Uk ak.lstate. For the step from Uk to u we consider only the actions that affect the

variables min-seqno(h'), max-seqno(h'), and archived-pkts?(h').

El rm-leaveh: if uk.status 7 crashed, then the action rm-leaveh reinitializes all the variables

of SRM-RECh except the variable now. Thus, it is the case that u.min-seqno(h') =I and

u.archived-pkts?(h') = 0. Since u.min-seqno(h') =L, it is the case that u.window?(h') = 0.
Thus, it follows that u.archived-pkts?(h') C u.window?(h'), as needed.

Otherwise, if Uk.status = crashed, then the action rm-leaveh does not affect the state of

SRM-RECh. Thus, the induction hypothesis implies that the invariant assertion holds in u.

El rm-sendh(p), for p E PRM-CLIENT, such that source(p) = h': letting (s ,ip) id(p), we analyze

the effects of rm-sendh(p) by cases. First, consider the case where -'(uk.status = member A h =

sp). In this case, rm-sendh(p) does not affect the variables min-seqno(h') and max-seqno(h').
Thus, the induction hypothesis implies that the invariant assertion is satisfied in u.

Second, consider the case where uk.status = member and h = sp. Since sp = h', it follows

that h = h' = sp. If p is the foremost packet from sp, that is, uk.min-seqno(sp) =1, then
the rm-sendh(p) action sets both min-seqno(sp) and max-seqno(sp) to ip and adds the element

(p, now) to archived-pkts. Since uk.min-seqno(sp) =1, it is the case that uk.window?(h') =

0. Thus, the induction hypothesis implies that uk.archived-pkts?(h) = 0. It follows that
u.archived-pkts?(h') = {id(p)}. Moreover, since u.min-seqno(h') = u.max-seqno(h') = iP,

88

it follows that uk.window?(h') = {id(p)}. Thus, if follows that u.archived-pkts?(h') C
u.window?(h'), as needed.

If p is the next packet from sp, that is, Uk.min-seqno(sp) OLI and ip = uk.max-seqno(sp) + 1,
then rm-sendh(p) sets max-seqno(sp) to ip and adds the element (p, now) to
archived-pkts. It follows that u.archived-pkts?(h') = Uk.archived-pkts?(h') U {id(p)}
and u.window?(h') = uk.window?(h') U {id(p)}. From the induction hypothesis,
it is the case that uk.archived-pkts?(h') C uk.window?(h'). Thus, it follows that
u.archived-pkts?(h') C u.window?(h'), as needed.

E1 process-pkth(p), for p E PSRM, such that type(p) E {DATA,REPL} and source(p) = h': letting

(syip) = id(p), we analyze the effects of process-pkth(p) by cases.

First, consider the case where p is the foremost packet from sp; that is, type(p) = DATA,
h # sp, and uk.min-seqno(sp) =1. Since uk.min-seqno(sp) =1, it is the case that

Uk.window?(sp) 0. Thus, the induction hypothesis implies that uk.archived-pkts?(sp) 0.
Since process-pkth(p) sets both variables min-seqno(h') and max-seqno(h') to i, and adds
(strip(p), now) to archived-pkts, it follows that u.archived-pkts?(h') u.window?(sp) = {id(p)}.
Thus, it follows that u.archived-pkts?(h') C u.window?(h').

Second, consider the case where p is not the foremost packet from sp but is proper; that is,
Uk.min-seqno(sp) zI and uk.min-seqno(sp) < ip. In this case, the process-pkth(p) action:
i) adds the element (strip(p), now) to archived-pkts, if h 7 sp A (sp, ip) V uk.archived-pkts?, and
ii) sets max-seqno(sp) to ip, if uk.max-seqno(sp) < ip. It follows that u.archived-pkts?(sp) C

Uk.archived-pkts?(sp)U {id(p)} and uk.window?(sp)U {id(p)} C u.window?(sp). Moreover, from
the induction hypothesis, it is the case that Uk.archived-pkts?(h') C uk.window?(h'). Thus, it
follows that u.archived-pkts?(h') C u.window?(h'), as needed.

El process-pkth(p), for p E PSRM, such that type(p) E {RQST, SESS}. In this case, the
process-pkth(p) does not affect the variable archived-pkts and may add elements to the variable
wrndow?(h') by increasing the value of max-seqno(h'). This fact and the induction hypothesis
imply that u.archived-pkts?(h') C u.window?(h'), as needed.

El

Invariant 4.6 For h, h' C H and any reachable state u of SRM-RECh, it is the case
thatu.to-be-delivered? (h') C u. window?(h').

Proof: Follows directly from Invariants 4.4 and 4.5. El

Invariant 4.7 For h, h' C H and any reachable state u of SRM-RECh, it is the case
thatu.delivered (h') C u.window? (h').

Proof: Follows directly from Invariants 4.4 and 4.5. E

Invariant 4.8 For h E H, p E PRM-CLIENT, and any reachable state u of SRM-RECh, if p C
u.to-be-delivered, then u. min-seqno (source (p)) #I and u.min-seqno (source (p)) < seqno(p).

Proof: From the effects of the process-pkth(p) action, for h E H and p E PSRM, such that
id(p) = (sr, i), it follows that a packet p may be added to to-be-delivered only if h is not the source
of p and p is a proper packet; that is, h : sp, min-seqno(sp) AI, and min-seqno(sp) <p. 0

89

Invariant 4.9 For h,h' e H and any reachable state u of SRM-RECh, it is the case that:

1. u.min-seqno(h') =I z u.expected (h') = 0,
2. u.delivered(h') C u.expected(h'),

3. h = h' A u.status # crashed a u.expected (h') = u.proper? (h'), and

4. u.expected (h') # 0 => u.expected(h') = u.proper? (h')

Proof: Let a be any finite timed execution of SRM-RECh leading to u. The proof is by induction
on the length n E N of a. For the base case, consider the finite timed execution a of length 0;
that is, a = u. Since u is a start state of SRM-RECh, it is the case that u.min-seqno(h') =-L,
u.delivered(h') = 0, u.expected(h') = 0, and u.proper?(h') = 0. Thus, the invariant assertion is
satisfied in u. For the inductive step, consider a timed execution a of length k + 1, for k e N. Let

ak be the prefix of a containing the first k steps of a and Uk ak.lstate. For the step from Uk to
u we consider only the actions that affect the variables min-seqno(h'), delivered(h'), expected(h'),
and proper? (h').

D crashh: the crashh action sets delivered(h') and expected(h') to 0. Thus, the invariant assertion
is satisfied in u.

El rm-leaveh: if uk.status 5 crashed, then the action rm-leaveh reinitializes all the variables of
SRM-RECh except the variable now and sets the variables delivered(h') and expected(h') to 0. It
follows that u.min-seqno(h') =1, u. delivered(h') = 0, u.expected (h') 0, and u.proper?(h') 0.
Thus, the invariant assertion is satisfied in u.

Otherwise, if Uk.status = crashed, then the action rm-leaveh does not affect the state of
SRM-RECh. Thus, the induction hypothesis implies that the invariant assertion is satisfied in
U.

C) rm-sendh(p), for p E PRM-CLIENT, such that source(p) = h': letting (spip) = id(p), we analyze
the effects of rm-recvh(p) by cases. First, if ,'(uk.status = member A h = sp), then rm-sendh(p)
does not affect the state of SRM-RECh. Thus, the induction hypothesis implies that the invariant
assertion holds in u.

Second, consider the case where uk.status = member A h = sp. If p is the foremost packet to
be transmitted by sp; that is, Uk.min-seqno(sp) =1, then rm-sendh(p) sets min-seqno(h') to ip,
sets expected(h') to suffix(p), and adds id(p) to delivered(h'). The induction hypothesis and the
fact that Uk.min-seqno(sp) =1 imply that uk.expected(sp) = 0. Moreover, from the induction
hypothesis it is the case that uk.delivered(sp) C uk.expected(sp). Since uk.expected(sp) = 0,
it follows that uk.delivered(sp) = 0. Thus, from the effects of rm-sendh(p), it follows that
u.expected(sp) = suffix(p) and u.delivered(sp) = {id(p)}. Since id(p) C suffix(p), it follows
that u.delivered(h') C u.expected(h'). Moreover, since u.proper?(h') = suffix(p), it follows that
u.expected(h') = u.proper?(h'). Since u.min-seqno(sp) = ip, u.delivered(h') C u.expected(h'),
and u.expected(h') = u.proper? (h'), it follows that the invariant assertion is satisfied in u.

If p is the next packet from sp, that is, uk.mini-seqno(sp) #1 and ip = Uk.max-seqno(sp) + 1,
then rm-sendh(p) does not affect min-seqno(h'), sets max-seqno(h') to ip, and adds id(p)
to delivered(h'); that is, U.min-seqno(sp) = Uk.min-seqno(sp), u.max-seqno(sp) = ip, and
u.delivered (sp) = Uk.delivered (sp) U {id (p)}.

Since h = h' A Uk.status # crashed, the induction hypothesis implies that Uk.expected(h') =

Uk.proper?(h'). Since rm-sendh(p) affects neither min-seqno(h') nor expected(h'), it follows that
u.proper?(h') = Uk.proper?(h) and m.expected(h') = Uk.expected(h'). Thus, it follows that
u.expected(h') = u.proper? (h'), as needed.

90

From the induction hypothesis, it is the case that uk.delivered(h') C uk.expected(h').

Since i, = uk.max-seqno(sp) + 1 and u.max-seqno(sp) = p, it is the case that

uk.max-seqno(sp) < u.max-seqno(sp). Thus, Invariant 4.3 implies that uk.min-seqno(sp) < ip.
Since uk.min-seqno(sp) < ip, it follows that id(p) E uk.proper?(h'). Since

uk.expected(h') uk.proper?(h'), it follows that id(p) E uk.expected(h'). Since
u.delivered(sp) = uk.delivered(sp) U {id(p)}, uk.delivered(h') C uk.expected(h'),
id(p) E uk.expected(h'), and u.expected(h') uk. expected(h'), it follows that
u.delivered(h') C u.expected(h'). Since u.min-seqno(sp) L, u.delivered(h') g u.expected(h'),
and u.expected(h') u.proper?(h'), it follows that the invariant assertion is satisfied in u.

E1 rm-recvh(P), for p E PRM-CLIENT, such that source(p) = h': letting (sp,ip) = id(p), we analyze
the effects of rm-recvh(p) by cases. First, consider the case where uk.expected(h') = 0. From

the induction hypothesis, it is the case that uk.delivered(h') 9 uk.expected(h'). Thus, it follows
that uk.delivered(h') = 0. Since uk.expected(h') = 0, rm-recvh(p) sets expected(h') to suffix(p)
and adds id(p) to delivered(h'); that is, u.expected(sp) = suffix(p) and u.delivered(sp) {id(p)}.
Since id(p) C suffix(p), it follows that u.delivered(h') C u.expected(h'), as needed.

Since uk.delivered(h') 0, Invariant 4.4 implies that uk.archived-pkts?(h') =

uk.to-be-delivered?(h'). From the precondition of rm-recvh(p), it follows that p is h's foremost

packet from h'; that is, i, = uk.min-seqno(h'). Since suffix (p) = {(s,i) c HxN I sp = sAi < i},
it follows that u.proper?(h') = suffix(p). Thus, it follows that u.expected(h') = u.proper?(h'),
as needed.

Finally, since p C uk.to-be-delivered, Invariant 4.8 implies that uk.min-seqno(sp) #1. Since
rm-recvh(p) does not affect min-seqno(sp), it follows that u.min-seqno(sp) #1. Since

u.min-seqno(sp) L, u.delivered(h') C u.expected(h'), and u.expected(h') = u.proper?(h'), it
follows that the invariant assertion is satisfied in u.

Second, consider the case where uk.expected(h') # 0. In this case, rm-recvh(p) does not

affect min-seqno(sp), does not affect expected(h'), and adds id(p) to delivered(h'); that is,
u.proper?(h') = uk.proper?(h'), u.expected(sp) uk.expected(sp), and u.delivered(sp) =

uk.delivered(sp) U {id(p)}. Since uk.expected(h') / 0, the induction hypothesis implies that

uk.expected(h') = uk.proper?(h'). Since u.proper?(h') = uk.proper?(h'), u.expected(sp) =

uk.expected(sp), it follows that u.expected(h') = u.proper?(h'), as needed.

Since p E uk.to-be-delivered, Invariant 4.4 implies that id(p) G uk.archived-pkts?(h). Thus,
Invariant 4.5 implies that id(p) E uk.window?(h'). By definition it follows that window?(h') C
proper?(h'). Thus, it is the case that id(p) E uk.proper?(h') and, since u.proper?(h') =

uk.proper?(h'), id(p) E u.proper?(h'). Thus, it follows that u.delivered(sp) C u.expected(sp),
as needed.

Finally, since p C uk.to-be-delivered, Invariant 4.8 implies that uk.min-seqno(sp) :4L. Since
rm-recvh(p) does not affect min-seqno(sp), it follows that u.min-seqno(sp) 1. Since it is

the case that u.min-seqno(sp) zI, u.delivered(h') C u.expected(h'), and u.expected(h') =

u.proper? (h'), it follows that the invariant assertion is satisfied in u.

71 process-pkth(p), for p E PSRM, such that source(p) = h': letting (s ,i) = id(p), we analyze

the effects of process-pkth(p) by cases.

First, if type(p) = DATA, uk.status = member, h : sp, and uk.min-seqno(h') =1, then the ac-
tion process-pkth(p) sets min-seqno(h') to i, and affects neither delivered(h') nor expected(h').

Since uk.min-seqno(h') =1, the induction hypothesis implies that uk.expected(h') = 0. More-
over, from the induction hypothesis, it is the case that uk.delivered(h') g uk.expected(h). Thus,
since uk.expected(h') = 0, it follows that uk.delivered(h') = 0. Since process-pkth(p) affects
neither expected(h') nor delivered(h'), it follows that u.expected(h') = 0 and u.delivered(h') = 0.

91

Thus, it follows that u.delivered(h') C u.expected(h'), as needed. Since h 7 sp and sp = h', it
follows that h # h'. Thus, since u.min-seqno(h') #L, u.delivered(h') C u.expected(h'), h : h',
u.expected(h') 0, it follows that the invariant assertion is satisfied in u.

Otherwise, process-pkth(p) does not affect the variables min-seqno(h'), expected(h') and
delivered(h'). Thus, the induction hypothesis implies that the invariant assertion holds in u.

E

Invariant 4.10 Let h E H and u be any reachable state u of SRM-RECh. For any p C PsRM, such
that type(p) E {DATA, REPL} and p C u.msend-buff, it is the case that id(p) C u.archived-pkts?.

Proof: Let a be any finite timed execution of SRM-RECh leading to u. The proof is by induction
on the length n E N of a. For the base case, consider the finite timed execution a of length 0; that
is, a = u. Since u is a start state of SRM-RECh, it is the case that u.msend-buff = 0. Thus, the
invariant assertion is trivially satisfied in u. For the inductive step, consider a timed execution a of
length k+ 1, for k E N. Let ak be the prefix of a containing the first k steps of a and Uk = ak.lstate.
For the step from Uk to u we consider only the actions that affect the variables msend-buff and

archived-pkts.

E1 rm-leaveh: the action rm-leaveh initializes the variables msend-buff and archived-pkts. Thus,
the invariant assertion holds in u.

Cl rm-sendh(p), for p C PRM-CLIENT: the action rm-sendh(p) adds the packet comp-data-pkt(p) to

msend-buff if and only if it adds the element (p, now) to the variable archived-pkts. This fact
and the induction hypothesis imply that the invariant assertion holds in u.

El send-replh(s, i), for s C H and i E N: the action send-replh(s, i) adds the packet pkt =
comp-repl-pkt(h,p), for p E PRM-CLIENT, t c R> , such that (p, t) E archived-pkts and id(p) =

(s,i), to msend-buff. Since id(pkt) E uk.archived-pkts? and the send-replh(si) action does
not affect the variable archived-pkts, it follows that id(pkt) E u.archived-pkts?. The induction
hypothesis and the facts that pkt C u.msend-buff and id(pkt) C u.archived-pkts? imply that the
invariant assertion is satisfied in u.

El process-pkth(p), for p E PSRM, such that source(p) = h': process-pkth(p) does not affect

msend-buff and may only add the element id(p) to archived-pkts?. Thus, the induction
hypothesis implies that the invariant assertion holds in u.

Invariant 4.11 For h E H, p C PRM-CLIENT, and any reachable state u of SRM-RECh, if
p E u.to-be-delivered, then source(p) : h.

Proof: From the effects of the process-pkth(p) action, for h C H and p C PSRM, it follows that a
packet p may be added to to-be-delivered only if source(p) : h. C3

Invariant 4.12 For h, h' E H and any reachable state u of SRM-RECh, if u.expected(h') 4 0, then

a.to-be-delivered?(h') C u.expected(h').

Proof: Suppose that u.expected(h') : 0. Invariant 4.2 implies that u.status = member. Moreover,
Invariant 4.9 implies that u.expected(h') = u.proper?(h'). From Invariant 4.5, it is the case that

u.archived-pkts?(h') C u.window?(h'). Moreover, since u.status = member, Invariant 4.4 implies

that u.to-be-delivered?(h') C u.window?(h'). Since by definition u.window?(h') C u.proper? (h'), it

92

follows that u.to-be-delivered?(h') g u.proper?(h'). Finally, since u.expected(h') = u.proper?(h'),
it follows that u.to-be-delivered? (h') C u.expected(h'). D

Invariant 4.13 For h, h' E H and any reachable state u of SRM-RECh, it is the case that

u.to-be-requested?(h') C u.window?(h').

Proof: Let a be any finite timed execution of SRM-RECh leading to u. The proof is by induction
on the length n E N of a. For the base case, consider the finite timed execution a of length 0;
that is, a = u. Since u is a start state of SRM-RECh, it follows that u.min-seqno(h') =1 and
u.to-be-requested?(h') = 0. Thus, the invariant assertion is satisfied in u. For the inductive step,
consider a timed execution a of length k + 1, for k C N. Let ak be the prefix of a containing the
first k steps of a and Uk ak.lstate. For the step from Uk to a we consider only the actions that
affect the variables min-seqno(h'), max-seqno(h'), and to-be-requested?(h').

El rm-leaveh: if uk.status = crashed, then rm-leaveh does not affect the state of RM-CLIENTh-
Thus, the induction hypothesis implies that the invariant assertion is satisfied in u. Otherwise,
if uk.status 4 crashed, then rm-leaveh reinitializes all the variables of SRM-RECh except the
variable now. It follows that u.min-seqno(h') =1 and u.to-be-requested?(h') = 0. Thus, the
invariant assertion holds in u.

El rm-sendh(p), for p E PRM-CLIENT, such that source(p) = h': letting (sp,ip) = id(p), we analyze
the effects of rm-sendh(p) by cases. First, if -'(uk.status = member A h = sp), then rm-sendh(p)
does not affect the state of RM-CLIENTh. Thus, the induction hypothesis implies that the
invariant assertion is satisfied in u.

Second, consider the case where uk.status = member A h = sp. If Uk.min-seqno(h') =1,
then rm-sendh(p) sets min-seqno(h') and max-seqno(h') to ip. Since uk.min-seqno(h') =-,
it follows that uk.window?(h') = 0. Thus, the induction hypothesis implies that

uk.to-be-requested?(h') = 0. Since rm-sendh(p) does not affect the variable to-be-requested?, it
follows that u.to-be-requested?(h') = 0. Thus, the invariant assertion holds in u.

Otherwise, if Uk.min-seqno(h') fI, then rm-sendh(p) may only increase the value of the vari-
able max-seqno(h') and does not affect the variable to-be-requested?; that is, uk.window?(h') C
u.window?(h') and u. to-be-requested? (h') = Uk.to-be-requested?(h'). Thus, the induction hy-
pothesis implies that the invariant assertion holds in u.

El schd1-rqsth(si), for s E H and i E N, such that s = h': the action schdl-rqsth(S ,i)
removes the element (s,i) from the set uk.to-be-requested? and does not affect min-seqno(h')
and max-seqno(h'). Thus, the induction hypothesis implies that the invariant assertion holds in
U.

El process-pkth(p), for p E PSRM, such that type(p) = DATA and source(p) = h': letting

(s,ip) = id(p), we analyze the effects of the process-pkth(p) action by cases. First, if

Uk.status : member, then process-pkth(p) does not affect the state of SRM-RECh. Thus,
the induction hypothesis implies that the invariant assertion holds in u.

Second, consider the case where Uk.status = member. If h 0 s, and Uk.min-seqno(sp) =1, then
process-pkth(p) sets the variables min-seqno(h') and max-seqno(h') to i, and does not affect
the variable to-be-requested?. Since uk.min-seqno(h') =1, it follows that Uk-.window?(h') = 0.
Thus, the induction hypothesis implies that Uk.to-be-requested?(h') = 0. Since process-pkth(p)
does not affect the variable to-be-requested?, it follows that u.to-be-requested?(h') = 0. Thus,
the invariant assertion holds in u.

If Uk.min-seqno(sp) L, uk.min-seqno(sp) < ip, h 7 sp, and Uk.max-seqno(sp) < ip, then the
action process-pkth(p) adds {(sp,i) I Z E N,uk.max-seqno(sp) < i < i} to to-be-requested?

93

and sets max-seqno(h') to ip. Since uk.min-seqno(h') < ip and process-pkth(p) does not affect
the variable min-seqno(h'), it follows that u.min-seqno(h') ip. Since u.min-seqno(h') < i and
u.max-seqno(h') = i, it follows that {(sp, i) I i E Nu.max-seqno(sp) < i < ip} C u.window(h').
This fact and the induction hypothesis imply that u.to-be-requested?(h') C u.window?(h').

Otherwise, process-pkth(p) does not affect the variables min-seqno(h'), max-seqno(h'), and
to-be-requested?(h'). Thus, the induction hypothesis implies that the invariant assertion holds
in U.

M process-pkth(p), for p E PSRM, such that type(p) E {SESS}: we analyze the effects of the
process-pkth(p) action by cases. First, if uk.status = member, then process-pkth(p) does
not affect the state of SRM-RECh. Thus, the induction hypothesis implies that the invariant
assertion holds in u.

Second, consider the case where uk.status = member. In this case, if h # h', uk.status = member
and there exists (h',i') E seqno-rprts(p), for i' c N, such that uk.ma-seqno(h') < i', then
process-pkth(p) adds {(h',i") | i" E N,uk.max-seqno(h') < i" < i'} to to-be-requested? and
sets max-seqno(h') to i'. Invariant 4.3 and the fact that uk.max-seqno(h') < i' imply that

uk.min-seqno(h') < i'. Since process-pkth(p) does not affect the variable min-seqno(s), it
follows that u.min-seqno(s) < i. Thus, since u.min-seqno(s) < i and u.max-seqno(s) = i, it
follows that {(h',i") I i" E Nuk.max-seqno(h') < i" < i'} C u.window(h'). This fact and the
induction hypothesis imply that u.to-be-requested?(h') C u.window?(h').

Otherwise, if either h = h', uk.status = member, or there does not exist (h', i') E seqno-rprts(p),
for i' C N, such that uk.max-seqno(h') < ', then process-pkth(p) does not affect the variables
min-seqno(h'), max-seqno(h') , and to-be-requested?(h'). Thus, induction hypothesis implies
that the invariant assertion holds in u.

El process-pkth(p), for p E PSRM, such that type(p) G {REPL, RQST} and source(p) = h': letting

(s,ip) = id(p), we analyze the effects of the process-pkth(p) action by cases. First, if

uk.status f member, then process-pkth(p) does not affect the state of SRM-RECh. Thus,
the induction hypothesis implies that the invariant assertion holds in u.

Second, consider the case where uk.status = member. If it is the case that uk.min-seqno(sp) 7_L,
uk.min-seqno(sp) < ip, h $ si, and uk.max-seqno(sp) < ip, then the action process-pkth(p)
adds {(sp,i) Ki N,uk.max-seqno(sp) < i < ip} to to-be-requested? and sets max-seqno(h') to

iP. Since uk.min-seqno(h') < ip and process-pkth(p) does not affect the variable min-seqno(h'),
it follows that u.min-seqno(h') < ip. Thus, since u.min-seqno(h') < i and u.max-seqno(h') = i,
it follows that {(sp,i) I i E N,uk.max-seqno(sp) < i < ip} C u.window(h'). This fact and the
induction hypothesis imply that u.to-be-requested?(h') C u.window?(h').

Otherwise, process-pkth(p) does not affect the variables min-seqno(h'), max-seqno(h'), and

to-be-requested?(h'). Thus, the induction hypothesis implies that the invariant assertion holds
in U.

Invariant 4.14 For h, h' C H and any reachable state u of SRM-RECh, it is the case that

u.scheduled-repls? (h') C u.archived-pkts? (h').

Proof: Let a be any finite timed execution of SRM-RECh leading to u. The proof is by induction
on the length n E N of a. For the base case, consider the finite timed execution a of length 0;

that is, a = u. Since u is a start state of SRM-RECh, it follows that u.scheduled-repls?(h') = 0
and u. archived-pkts? (h') = 0. Thus, the invariant assertion is satisfied in u. For the inductive step,
consider a timed execution a of length k + 1, for k E N. Let ak be the prefix of a containing the

94

first k steps of a and Uk = c.lstate. For the step from Uk to u we consider only the actions that
affect the variables scheduled-repls?(h') and archived-pkts?(h').

E1 rm-leaveh: if uk.status = crashed, then rm-leaveh does not affect the state of RM-CLIENTh.
Thus, the induction hypothesis implies that the invariant assertion is satisfied in u. Otherwise,
if uk.status y crashed, then rm-leaveh reinitializes all the variables of SRM-RECh except the
variable now. It follows that u.scheduled-repls?(h') = 0 and u.archived-pkts?(h') - 0. Thus, the
invariant assertion holds in u.

El rm-sendh(p), for p E PRM-CLIENT, such that source(p) = h', such that (sy,ip) = id(p):
the rm-sendh(p) action does not affect scheduled-repls?(sp) and may add elements
to archived-pkts? (sp); that is, u.scheduled-repls? (h') - .scheduled-repls?(h') and

uk.archived-pkts?(h') C u.archived-pkts?(h'). Moreover, process-pkth(p) affects none of the
variables scheduled-repls? (h') and archived-pkts? (h'), for h' C H, h' # sp. Thus, the induction
hypothesis implies that the invariant assertion holds in u.

E1 send-replh(s, i), for s C H and i C N: the send-replh(s, i) may remove an element from
scheduled-repls?(s) and does not affect archived-pkts?(s). Moreover, process-pkth(p) affects
none of the variables scheduled-repls?(h') and archived-pkts?(h'), for h' C H,h' # s. Thus, the
induction hypothesis implies that the invariant assertion holds in u.

El process-pkth(p), for h E H and p E PSRM, such that (syip) = id(p): if type(p) C {DATA, REPL},
then the process-pkth(p) action may remove the element (sp, ip) from scheduled-repls?(sp) and
may add the element (s, i) to archived-pkts?(sp). Moreover, process-pkth(p) affects none
of the variables scheduled-repls?(h') and archived-pkts?(h'), for h' E H,h' # sp. Thus, the
induction hypothesis implies that the invariant assertion holds in u.

If type(p) RQST, the process-pkth(p) action may add the element (sp,ip) to
scheduled-repls?(sp) only if (sp,ip) e u. archived-pkts? (sp). Moreover, process-pkth(p)
affects none of the variables scheduled-repls?(h') and archived-pkts?(h'), for h' E H,h' # sp.
Thus, the induction hypothesis implies that the invariant assertion holds in u.

Otherwise, if type(p) = SESS, the process-pkth(p) action affects none of the variables
scheduled-repls?(h') and archived-pkts?(h'), for h' E H. Thus, the induction hypothesis implies
that the invariant assertion holds in u.

Invariant 4.15 For h,h' E H and any reachable state u of SRM-RECh, it is the case that
u.scheduled-rqsts? (h') C u.window?(h').

Proof: Let a be any finite timed execution of SRM-RECh leading to u. The proof is by induction
on the length n C N of a. For the base case, consider the finite timed execution a of length 0;
that is, a = U. Since u is a start state of SRM-RECh, it follows that u.min-seqno(h') =1 and
u.scheduled-rqsts?(h') - 0. Thus, the invariant assertion is satisfied in u. For the inductive step,
consider a timed execution a of length k + 1, for k E N. Let ak be the prefix of a containing the
first k steps of a and Uk = ak.lstate. For the step from Uk to a we consider only the actions that
affect the variables min-seqno(h'), max-seqno(h'), and scheduled-rqsts? (h').

El rm-leaveh: if Uk.status = crashed, then rm-leaveh does not affect the state of RM-CLIENTh.
Thus, the induction hypothesis implies that the invariant assertion is satisfied in u. Otherwise,
if Uk.status # crashed, then rm-leaveh reinitializes all the variables of SRM-RECh except the
variable now. It follows that u.min-seqno(h') =1 and u.scheduled-rqsts?(h') = 0. Thus, the

invariant assertion is satisfied in u.

95

El rm-sendh(p), for p E PRM-CLIENT, such that source(p) = h': letting (sp,ip) = id(p), we analyze

the effects of rm-sendh(p) by cases. First, if -(uk.status = member A h = sp), then rm-sendh(p)
does not affect the state of RM-CLIENTh. Thus, the induction hypothesis implies that the

invariant assertion is satisfied in u.

Second, consider the case where uk.status = member A h = sp. If uk.min-seqno(h') =1,
then rm-sendh(p) sets min-seqno(h') and max-seqno(h') to ip. Since uk.min-seqno(h') =-L,
it follows that uk.window?(h') = 0. Thus, the induction hypothesis implies that

uk.scheduled-rqsts?(h') = 0. Since rm-sendh(p) does not affect the variable scheduled-rqsts, it
follows that u.scheduled-rqsts?(h') = 0. Thus, the invariant assertion holds in u.

Otherwise, if uk.min-seqno(h') _L, then rm-sendh(p) may only increase the value of the vari-
able max-seqno(h') and does not affect the variable scheduled-rqsts; that is, uk.window?(h')
u.window?(h') and u.scheduled-rqsts(h') = uk.scheduled-rqsts(h'). Thus, the induction hypothe-
sis implies that the invariant assertion holds in u.

El schd1-rqsth(s,i), for s E H and i C N, such that s = h': schd1-rqsth(s,i) adds the
tuple (s,i) to scheduled-rqsts?(h'). From the precondition of schd1-rqsth(s, i), it follows that

(s,i) E uk.to-be-requested?(h'). Thus, Invariant 4.13 implies that (s,i) E uk-window?(h').
Since schd1-rqsth(s,Zi) does not affect the variables min-seqno(h') and max-seqno(h'), it
follows that u.window?(h') = uk.window?(h'). From the induction hypothesis, it is the case
that uk.scheduled-rqsts?(h') C uk.window?(h'). Since u.window?(h') = uk.window?(h') and
u.scheduled-rqsts?(h') = uk.scheduled-rqsts? (h') U (s, i), it follows that the invariant assertion
hold in u.

El send-rqsth(s,i), for s E H and i E N, such that s = h': from the precondition of the action
send-rqsth(si), it is the case that (si) E uk.scheduled-rqsts?(h'). Since send-rqsth(s8i)
simply backs-off the request scheduled for (s, i), it does not affect min-seqno(h'), max-seqno(h'),
and scheduled-rqsts?(h'). Thus, the induction hypothesis implies that the invariant assertion
holds in u.

El process-pkth(p), for p E PSRM, such that type(p) = DATA and source(p) = h': letting
(s, i) = id(p), we analyze the effects of the process-pkt(p) action by cases. First, if

Uk.status 7 member, then process-pkth(p) does not affect the state of SRM-RECh. Thus,
the induction hypothesis implies that the invariant assertion is satisfied in u.

Second, consider the case where uk.status = member. If p is neither the foremost nor a
proper packet from sp, then process-pkth(p) affects neither of the variables min-seqno(h'),
max-seqno(h'), and scheduled-rqsts?(h'). Thus, the induction hypothesis implies that the
invariant assertion holds in u.

If p is the foremost packet from sp, then process-pkth(p) sets the variables min-seqno(h') and
max-seqno(h') to iP. From the induction hypothesis, it follows that uk.scheduled-rqsts?(h') = 0.
Since process-pkth(p) may only remove elements from scheduled-rqsts?(h'), it follows that
u.scheduled-rqsts?(h') = 0. Thus, the invariant assertion holds in u.

Finally, if uk.min-seqno(sp) fL, then process-pkth(p) may only remove elements from the set
scheduled-rqsts?(h') and increase the value of max-seqno(h'). Thus, the induction hypothesis
implies that the invariant assertion holds in u.

E process-pkth(p), for p E PSRM, such that type(p) = RQST and source(p) = h': letting
(s, i) = id(p), we analyze the effects of the process-pkt(p) action by cases. First, if

uk.status 7 member, then process-pkth(p) does not affect the state of SRM-RECh. Thus,
the induction hypothesis implies that the invariant assertion is satisfied in u.

Second, consider the case where uk.status = member. If p does not pertain to a proper packet,

96

then the action process-pkth(p) does not affect the state of SRM-RECh. Thus, in this case,
the induction hypothesis implies that the invariant assertion holds in u.

If p pertains to a proper packet and h is not the source of p, then process-pkth(p) may add the

tuple id(p) to scheduled-rqsts?(h') and ensures that ip < u.max-seqno(h'). Thus, the induction

hypothesis implies that the invariant assertion holds in u.

C3 process-pkth(p), for p E PSRM, such that type(p) = REPL and source(p) = h': letting

(sp,ip) = id(p), we analyze the effects of the process-pkth(p) action by cases. First, if

Uk.status 7 member, then process-pkth(p) does not affect the state of SRM-RECh. Thus,
the induction hypothesis implies that the invariant assertion is satisfied in u.

Second, consider the case where Uk.status = member. If p is not a proper packet, then the

action process-pkth(p) does not affect the state of SRM-RECh. Thus, the induction hypothesis

implies that the invariant assertion holds in u.

If p is a proper packet, then process-pkth(p) may only remove elements from the variable

scheduled-rqsts?(h') and increase the value of max-seqno(h'). Thus, the induction hypothesis

implies that the invariant assertion holds in u.

El process-pkth(p), for p E PSRM, such that type(p) C {SESS}: the process-pkth(p) action

does not affect the variable scheduled-rqsts?(h'), does not affect the variable min-seqno(h'), and

may only increase the value of max-seqno(h'). Thus, it follows that Uk.scheduled-rqsts?(h') =
u.scheduled-rqsts?(h') and uk.window?(h') C u.window?(h'). Moreover, from the induction

hypothesis, it is the case that uk.scheduled-rqsts?(h') C Uk.window?(h'). Thus, it follows that

u.scheduled-rqsts? (h') C u.window?(h').

El

Invariant 4.16 For h, h' E H and any reachable state u of SRM-RECh, it is the case that

u.to-be-requested? (h') n u.archived-pkts? (h') = 0.

Proof: Let a be any finite timed execution of SRM-RECh leading to u. The proof is by induction

on the length n E N of a. For the base case, consider the finite timed execution a of length 0;
that is, a = u. Since u is a start state of SRM-RECh, it follows that u.to-be-requested?(h') = 0
and u.archived-pkts?(h') = 0. Thus, the invariant assertion is satisfied in u. For the inductive step,
consider a timed execution a of length k + 1, for k E N. Let ak be the prefix of a containing the

first k steps of a and Uk = ak.lstate. For the step from Uk to a we consider only the actions that

affect the variables to-be-requested?(h') and archived-pkts?(h').

El rm-leaveh: if Uk.status = crashed, then rm-leaveh does not affect the state of RM-CLIENTh.
Thus, the induction hypothesis implies that the invariant assertion is satisfied in u. Otherwise,

if Uk.status 7 crashed, then rm-leaveh reinitializes all the variables of SRM-RECh except the

variable now. It follows that u.to-be-requested?(h') = 0 and u.archived-pkts?(h') = 0. Thus, the

invariant assertion holds in u.

C1 rm-sendh(p), for p C PRM-CLIENT, such that source(p) = h', such that (sy, ip) = id(p): we analyze

the effects of rm-sendh(p) by cases. First, if -'(Uk.status = member A h = sp), then rm-sendh(p)
does not affect the state of RM-CLIENTh. Thus, the induction hypothesis implies that the

invariant assertion is satisfied in u.

Second, consider the case where Uk.status = member A h = sp. If p is the foremost packet to be

transmitted by h', that is, Uk-.min-seqno(h') =1, then it follows that Uk-.window?(h') = 0. Thus,
Invariants 4.5 and 4.13 imply that Uk.archived-pkts?(h') - 0 and U'k.to-be-requested?(h') = 0.
If p is the next packet from h', that is, 'k.min-seqno(h') #I and ip = Uk.max-seqno(h') + 1,

97

then it is the case that id(p) 0 uk.window?(h'). Thus, Invariants 4.5 and 4.13 imply that
id (p) V Uk. archived-pkts? (h') and id (p) V Uk. to- be-requested? (h').

In either case the rm-sendh(p) adds id(p) to the variable archived-pkts?(h') and does not
affect to-be-requested?(h'). It follows that u.to-be-requested?(h') = Uk.to-be-requested?(h') and
u.archived-pkts?(h') = uk.archived-pkts?(h') U id(p). From the induction hypothesis, it is
the case that uk.to-be-requested?(h') n uk.archived-pkts?(h') = 0. Since it is the case that
id(p) V uk.to-be-requested?(h'), it follows that u.to-be-requested?(h') n u.archived-pkts?(h') 0.

E1 schd1-rqsth(s, i), for s E Hi E N, such that s = h': the schd1-rqsth(s,%i) action removes
the element (s,i) from to-be-requested?(h') and does not affect archived-pkts?(h'). From the
induction hypothesis, it is the case that uk.to-be-requested?(h')nu.archved-pkts?(h') 0. Thus,
it follows that u.to-be-requested? (h') n u.archived-pkts?(h') = 0, as needed.

E process-pkth(p), for p E PSRM, such that type(p) C {DATA, RQST, REPL}, (s, ip) id(p),
and sp = h': the action process-pkth(p) adds {(sp,i') I i' E N,uk.max-seqno(sp) <
i' < i} to to-be-requested?(h') only if h : sp and uk.max-seqno(sp) < i. Moreover, the
action process-pkth(p) removes (s ,ip) from to-be-requested?(h') whenever it adds it to
archived-pkts? (h').

Invariant 4.5 implies that uk.archived-pkts? nf {(sp, ') i' E N, Uk.max-seqno (sp) < i' < 2} 0.
From the induction hypothesis, it is the case that uk.to-be-requested?(h')nu.archved-pkts?(h') =
0. Thus, it follows that the invariant assertion holds in u.

El process-pkth(p), for p E PSRM, such that type(p) = SESS: we analyze the effects of the
process-pkth(p) action by cases. First, if uk.status # member, then process-pkth(p) does
not affect the state of SRM-RECh. Thus, the induction hypothesis implies that the invariant
assertion holds in u.

Second, consider the case where uk.status = member. In this case, if h # h', uk.status = member
and there exists (h',i') c seqno-rprts(p), for i' E N, such that uk.max-seqno(h') < i', then
process-pkth(p) adds {(h',i") I i" C Nuk.max-seqno(h') < i" < i'} to to-be-requested? and
sets max-seqno(h') to i'. Moreover, from Invariant 4.3 it is the case that uk.Min-seqno(h') <
uk.max-seqno(h'). Thus, by the definition of window(h'), it follows that Uk.window(h') n
{(h', i") I" E N, Uk.max-seqno(h') < i" i'} 0. From the induction hypothesis it is the case
that uk.to-be-requested?(h') n uk.archived-pkts? (h') = 0. Moreover, since the process-pkth(p)
action does not affect the variable archived-pkts? (h'), it is the case that u.archived-pkts?(h') =

uk.archived-pkts?(h'). Thus, it follows that u.to-be-requested?(h') n u.archived-pkts?(h') = 0.

Otherwise, if either h = h', uk.status z member, or there does not exist (h', Z') E seqno-rprts(p),
for i' E N, such that Uk.max-seqno(h') < i', then process-pkth(p) does not affect the variables
min-seqno(h'), max-seqno(h') , and to-be-requested?(h'). Thus, induction hypothesis implies
that the invariant assertion holds in u.

El

Invariant 4.17 For h, h' C H and any reachable state u of SRM-RECh, it is the case that
u.scheduled-rqsts? (h') n u. archived-pkts? (h') = 0.

Proof: Let a be any finite timed execution of SRM-RECh leading to u. The proof is by induction
on the length n C N of a. For the base case, consider the finite timed execution a of length 0;
that is, a = u. Since u is a start state of SRM-RECh, it follows that u.scheduled-rqsts?((h') = 0
and u.archived-pkts?(h') = 0. Thus, the invariant assertion is satisfied in u. For the inductive step,
consider a timed execution a of length k + 1, for k C N. Let ak be the prefix of a containing the

98

first k steps of o and Uk = a.lstate. For the step from Uk to u we consider only the actions that

affect the variables scheduled-rqsts?(h') and archived-pkts?(h').

F1 rm-leaveh: if uk.status = crashed, then rm-leaveh does not affect the state of SRM-RECh-

Thus, the induction hypothesis implies that the invariant assertion is satisfied in u. Otherwise,

if uk.status z crashed, then rm-leaveh reinitializes all the variables of SRM-RECh except the

variable now. It follows that u.scheduled-rqsts?(h') = 0 and u.archived-pkts ?(h') - 0. Thus, the

invariant assertion holds in u.

C1 rm-sendh(p), for p C PRM-CLIENT, such that source(p) = h': letting (sp, ip) = id(p), we analyze

the effects of rm-sendh(p) by cases. First, if -'(uk.status = member A h = sp), then rm-sendh(p)
does not affect the state of RM-CLIENTh. Thus, the induction hypothesis implies that the

invariant assertion is satisfied in u.

Second, consider the case where uk.status = member A h = sp. If p is the foremost packet to be

transmitted by h', that is, uk.min-seqno(h') =1, then it follows that uk.window?(h') 0. Thus,
Invariants 4.5 and 4.15 imply that uk.scheduled-rqsts?(h') - 0 and uk.archived-pkts?(h') = 0.
If p is the next packet from h', that is, uk.min-seqno(sp) #1 and i= u=.max-seqno(sp) + 1,
then it is the case that id(p) V uk.window?(h). Thus, Invariants 4.5 and 4.15 imply that

id(p) V uk.scheduled-rqsts?(h') and id(p) V uk.archived-pkts?(h).

In either case the rm-sendh(p) adds id(p) to the variable archived-pkts?(h') and does not

affect scheduled-rqsts?(h'). It follows that u. scheduled-rqsts? (h') = Uk.scheduled-rqsts?(h') and
u.archived-pkts? (h') - uk.archived-pkts?(h') U id(p). From the induction hypothesis, it is

the case that Uk.scheduled-rqsts?(h) n uk.archived-pkts?(h') = 0. Since it is the case that

id(p) V uk.scheduled-rqsts? (h'), it follows that u.scheduled-rqsts?(h') n u.archived-pkts?(h') - 0,
as needed.

El schdl-rqsth(si), for s E H, i C N, such that s = h': the schd-rqsth(si) action schedules

a request for (s, i) and does not affect archived-pkts?(h'); that is, u.scheduled-rqsts?(h') =

Uk.scheduled-rqsts? (h') U (s, i) and u.archived-pkts? (h') = Uk.archived-pkts? (h').

From the precondition of schd1-rqsth(si), it follows that (s,i) E Uk.to-be-requested?(h').

From Invariant 4.16, it follows that (s,i) ' Uk.archived-pkts?(h'). Since it is the case that

u.archived-pkts? = Uk.archived-pkts?, it follows that (s,i) V u.archived-pkts?(h'). From the

induction hypothesis, it is the case that uk.scheduled-rqsts?(h') n uk.archived-pkts?(h') 0.
Thus, it follows that u.scheduled-rqsts?(h') n u.archived-pkts?(h') 0, as needed.

E send-rqsth(si), for s E H, i E N, such that s = h': from the precondition of send-rqsth(s,i),

it is the case that (s,i) E uk.scheduled-rqsts?(h'). Since send-rqsth(si) simply backs-off

the request scheduled for (s,i), it follows that u.scheduled-rqsts ? (h') = uk.scheduled-rqsts?(h').

Moreover, send-rqsth(s, i) does not affect the variable archived-pkts?(h'). Thus, it follows that

u.archived-pkts?(h') = Uk.archived-pkts?(h'). Thus, the induction hypothesis implies that the

invariant assertion holds in u.

E process-pkth(p), for p C PSRM, such that type(p) E {DATAREPL} and source(p) = h': in this

case, if the process-pkth(p) action archives the packet strip(p), then it also cancels any requests

scheduled for id(p). Thus, the induction hypothesis implies that the invariant assertion holds in
U.

El process-pkth(p), for p E PSRM, such that type(p) = RQST and source(p) = h': in this

case, the process-pkth(p) action schedules a request for id(p) only if h 0 sp and id(p) V

Uk.archived-pkts?(h'). Thus, the induction hypothesis implies that the invariant assertion holds

in u.

99

Invariant 4.18 For h,h' E H and any reachable state u of SRM-RECh, it is the case that
u.to-be-requested?(h') n u.scheduled-rqsts ? (h') = 0.

Proof: Let a be any finite timed execution of SRM-RECh leading to u. The proof is by induction
on the length n C N of a. For the base case, consider the finite timed execution a of length 0; that
is, a = u. Since u is a start state of SRM-RECh, it follows that u.to-be-requested?(h') = 0 and
u.scheduled-rqsts?(h') = 0. Thus, the invariant assertion is satisfied in u. For the inductive step,
consider a timed execution a of length k + 1, for k C N. Let 0Z be the prefix of a containing the
first k steps of a and Uk = ak.lstate. For the step from Uk to u we consider only the actions that
affect the variables to- be-requested? (h') and scheduled-rqsts?(h').

0 rm-leaveh: if uk.status = crashed, then rm-leaveh does not affect the state of SRM-RECh-
Thus, the induction hypothesis implies that the invariant assertion is satisfied in u. Otherwise,
if uk.status = crashed, then rm-leaveh reinitializes all the variables of SRM-RECh except the
variable now. It follows that u.to-be-requested?(h') = 0 and u.scheduled-rqsts?(h') 0. Thus,
the invariant assertion holds in u.

C3 schdl-rqsth(si), for s E H and i E N, such that s = h': from the precondition of the
action schdl-rqsth(s,i), it follows that (s,i) E uk.to-be-requested?(h'). From the induc-
tion hypothesis, it follows that (s,i) ' uk.scheduled-rqsts?(h'). The action schdl-rqsth(s,)
adds the element (s,i) to scheduled-rqsts?(h') and removes it from to-be-requested?(h');
that is, a.to-be-requested?(h') uk. to-be-requested?(h')\{(s, i)} and u.scheduled-rqsts?(h') =

uk.scheduled-rqsts ?(h') U {(s, i)}. Thus, the induction hypothesis implies that the invariant as-
sertion holds in u.

C3 send-rqsth(s, i), for s E H, i E N, such that s = h': from the precondition of send-rqsth(s, i),
it is the case that (s,i) C uk.scheduled-rqsts?(h'). Thus, the induction hypothesis implies
that (s,i) V uk.to-be-requested?(h'). The send-rqsth(si) action does not affect the variable
to-be-requested? (h'). Thus, it follows that u. to-be-requested? (h') = Uk.to-be-requested?(h').
Moreover, since send-rqsth(s,i) simply backs-off the request scheduled for (s,i), it follows
that u.scheduled-rqsts?(h') = uk. scheduled-rqsts? (h'). Thus, the induction hypothesis implies
that the invariant assertion holds in u.

71 process-pkth(p), for p C PSRM, such that type(p) E {DATA,REPL}, (s ,ip) id(p), and
SP = h': we analyze the effects of process-pkth(p) by cases. First, if uk.status 0 member,
then rm-sendh(p) does not affect the state of SRM-RECh. Thus, the induction hypothesis
implies that the invariant assertion holds in u.

Second, consider the case where uk.status = member. If p is either the foremost or
a proper packet from sp, then process-pkth(p) removes (se, i) from to-be-requested?(h')
and scheduled-rqsts?(h') and adds {(sp,i') I i' E Nuk.max-seqno(sp) < i' < ip} to
to-be-requested?(h') only if h : sp and uk.max-seqno(sp) < ip. Invariant 4.15 implies that

uk.scheduled-rqsts?(h') n {(sp, i') i' E Nuk.max-seqno(sp) < i' < ip} =0. Thus, the induction
hypothesis implies that u.to-be-requested?(h') n u.scheduled-rqsts? (h') = 0.

Otherwise, if p is neither the foremost nor a proper packet from sp, process-pkth(p) does not
affect the variables to-be-requested?(h') and scheduled-rqsts ?(h'). Thus, the induction hypothesis
implies that the invariant assertion holds in u.

E process-pkth(p), for p E PSRM, such that type(p) = RQST, (sp,ip) = id(p), and s, = h': we
analyze the effects of process-pkth(p) by cases. First, if uk.status :A member, then rm-sendh(p)
does not affect the state of SRM-RECh. Thus, the induction hypothesis implies that the invariant
assertion holds in u.

Second, consider the case where uk.status = member, p is a proper packet from sP, and
h 0 sp. In this case, if (spip) V uk.scheduled-rqsts?(h'), then the process-pkth(p) action

100

add (s, i) to scheduled-rqsts? (h') by scheduling a request for (sp,ip) and removes (s ,ip)
from to-be-requested?(h'). Moreover, if uk.max-seqno(sp) < ip, then process-pkth(p) adds

(Sp, ')' N, uk.max-seqno(sp) < i' < ip} to to-be-requested?(h'). Invariant 4.15 implies that

uk.scheduled-rqsts ?(h') n {(sp,') Ci' N,uk.max-seqno(sp) < ' < ip} 0. Thus, the induction

hypothesis implies that u.to-be-requested?(h') n u.scheduled-rqsts?(h') - 0.

Otherwise, the process-pkth(p) action does not affect the variables to-be-requested?(h') and
scheduled-rqsts?(h'). Thus, the induction hypothesis implies that the invariant assertion holds

in u.

C) process-pkth(p), for p C PSRM, such that type(p) = SESS: we analyze the effects of the
process-pkth(p) action by cases. First, if uk.status # member, then process-pkth(p) does

not affect the state of SRM-RECh. Thus, the induction hypothesis implies that the invariant
assertion holds in u.

Second, consider the case where uk.status = member. In this case, if h # h', uk.status = member
and there exists (h',i') C seqno-rprts(p), for i' C N, such that uk.max-seqno(h') < ', then
process-pkth(p) adds {(h',i") I i" e N,uk.max-seqno(h') < i" < i'} to to-be-requested?.

Invariant 4.15 implies that uk.scheduled-rqsts?(h') n {(h',i") I i" C N,uk.max-seqno(h') <

i" < i'} 0. Moreover, since the process-pkth(p) action does not affect the variable
scheduled-rqsts?(h'), it is the case that u.scheduled-rqsts?(h') = uk.scheduled-rqsts?(h'). Thus,
it follows that u.to-be-requested?(h') n u.scheduled-rqsts?(h') = 0.

Otherwise, if either h = h', uk.status # member, or there does not exist (h', ') E seqno-rprts(p),
for i' E N, such that uk.max-seqno(h') < i', then process-pkth(p) does not affect the variables
to-be-requested? (h') and scheduled-rqsts?(h'). Thus, the induction hypothesis implies that the
invariant assertion holds in u.

Invariant 4.19 Let u be any reachable state of SRM-RECh. For s E H, i E N, t,t' E RO, and
k G N+, if (s,i,t) E pending-rqsts and (s,i,t',k) C scheduled-rqsts, then t < t'.

Proof: From Assumption 4.1, it is the case that C3 < C1. Thus, the expiration time of the
back-off abstinence period precedes the transmission time of the respective request. 0

Invariant 4.20 Let u be any reachable state of SRM-RECh. For h,s C H and i G N, if
the action send-rqsth(si) is enabled in u, i.e., u.Pre(send-rqsth(s,i)) True, then (s,i) #
u.pending-rqsts?.

Proof: Suppose that u.Pre(send-rqst(s,i)) = True. From the precondition of the action
send-rqsth(s, i), it follows that there exists k E N+ such that (s, i, t', k) E scheduled-rqsts, for t' =

u.now. Invariant 4.19 implies that there does not exist t E R 0 such that (s, i, t) E pending-rqsts
and t' < t. Since t' = u.now, it follows that (s, i) V u.pending-rqsts?. E

Lemma 4.2 Let u,u' E states(SRM1) be any reachable states of SRMI, a be any timed execution
fragment of S RMI, such that u = a.fstate and u' = a.lstate. It is the case that u[S RM].sent-pkts C
u'[SRM].sent-pkts.

Proof: Follows from a simple induction on the length of the timed execution fragment acu, of
SRM1 leading from u to u'. The key to this proof is that, for any p E PRM-CLIENT, the variable
trans-time(p) is affected only by the action rm-sendh(p), for h = source(p), and this action may
set it only to a value other than I. 0

101

Invariant 4.21 Let u E states(SRMI) be any reachable state of SRM1 . For any s E H and
i,i' E N, i i', if (s,i) E u[SRM].sent-pkts?(s) and (s,i') E u[SRM].sent-pkts?(s), then it is the
case that (s,i") E u[SRM].sent-pkts?(s), for any i" G N, i i" K i'.

Proof: Follows directly from Lemma 3.3 and the fact that, for any p E PRM-CLIENT, the
variable trans-time(p) may only be set by SRM1 to a value other than _L by the rm-sendh(p),
for h = source (p). 0

Lemma 4.3 Let s, h E H, i E N, and u C states(SRM1) be any reachable state of SRMI, such that

(s,i) E u[SRM-REChl.archived-pkts?. Moreover, let a be any timed execution fragment of SRM1
that starts in u, does not contain a rm-leaveh action, and ends in some u' G states(SRM1). Then,
it is the case that (s,i) E u'[SRM-REChI.archived-pkts?.

Proof: Follows from a simple induction on the length of a. The key point of the induction is
that none of the actions of SRM-RECh, except the action rm-leaveh which is absent in a, either
remove elements from or initialize the set SRM-RECh-archived-pkts?. C1

Lemma 4.4 Let h F H, i E N, and u F states(SRMI) be any reachable state of SRM1 ,
such that u[SRM-MEMh -status = crashed. Moreover, let a be any timed execution fragment
of SRM1 that starts in u and ends in some u' E states(SRMI). Then, it is the case that
u'[SRM-MEMh.status = crashed.

Proof: Follows from a simple induction on the length of a. The key point of the induction is that,
once the host h has crashed, i) none of the input actions of SRM-MEMh, except the action crashh
which sets the SRM-MEMh.status variable to the value crashed, affect the state of the SRM-MEMh
automaton, and ii) none of the locally controlled actions, except the time passage action which does
not affect the SRM-MEMh.status variable, are enabled. El

Lemma 4.5 Let s, h F H, i F N, and u F states(SRMI) be any reachable state of SR.M1 , such
that (s,i) F u[SRM-RECh].scheduled-rqsts?. Moreover, let a be any timed execution fragment of
SRM1 that starts in u, does not contain a rm-leaveh action, and ends in some u' F states(SRMI).
Then, either (s,i) E u'[SRM-RECh].scheduled-rqsts? or (s,i) E u'[SRM-REChI.archived-pkts?.

Proof: Follows from a simple induction on the length of a. The key points of the induc-
tion are that: i) whenever the elements of SRM-RECh.scheduled-rqsts pertaining to (si) are
removed from SRM-RECh.scheduled-rqsts then an element pertaining to (s,i) is added to either
SRM-RECh.scheduled-rqsts or (s,i) E SRM-RECh.archived-pkts?, and ii) from Lemma 4.3, none of
the actions of SRM-RECh, except the action rm-leaveh which is absent in a, remove elements from
the set SRM-RECh.archived-pkts?. El

Lemma 4.6 Let sh F H, i E N, t F R O, k F N+, and u F states(SRMi) be any reachable state
of SRM 1 , such that u[SRM-REChl. status = member and (s, i, t, k) E u[S RM-REChl.scheduled-rqsts.
Moreover, let a be any timed execution fragment of SRM1 that starts in u, contains neither
crashh nor rm-leaveh actions, and ends in some u' E states(SRM,), such that t < u'.now and

(s, i, t', k') E u'[SRM-RECh].scheduled-rqsts, for t' F R 0 and k' F N+. Then, it is the case that
k < k'.

102

Proof: Invariant 4.17 and Lemmas 4.3 and 4.5 imply that in any state u" in a it is the case that

(s, i) c u"[SRM-RECh].scheduled-rqsts?. However, since (s, i, t, k) E u[SRM-RE Ch.scheduled-rqsts,
t < u'.now and time is not allowed to progress past the scheduled transmission time of any request,
it follows that the request for (s, i) is rescheduled for transmission in a for a point in time no

earlier than u'.rnow. The only actions that may reschedule the request for (s, i) are the actions
send-rqsth(s,i) and process-pkth(p), for p E PSRM, such that id(p) = (s,i) and type (p) = RQST.
Whenever either of these actions reschedule the request for (s, i), they increment the element of

the tuple corresponding to the round count. D

Lemma 4.7 The occurrence of either a send-rqsth(s, i), or send-replh(s, i) action, for h, s E H,
and i N, in any admissible timed execution a of SRM1 is instantaneously succeeded in a by the

occurrence of either a crashh, rm-leaveh, or rec-msendh(p) action, for p E PSRM, id(p) = (s i),
and type(p) equal to either RQST, or REPL, respectively.

Proof: We consider the case of a send-rqsth(s,i) action; the case of a send-replh(s,i)
action is analogous. The send-rqsth(s, i) action adds a RQST packet for (s, i) to the variable

SRM-RECh.msend-buff. Moreover, SRM-RECh prevents time from elapsing while h is operational

and the buffer SRM-RECh.msend-buff is non-empty; that is, while SRM-RECh.status : crashedA
SRM- RECh.msend-buff 0 0.

Lemma 4.8 The occurrence of an action rec-msendh(p), for h E H and p C PSRM, in any

admissible timed execution a of SRM1 is instantaneously succeeded in a by the occurrence of either

a crashh, rm-leaveh, or msendh(pkt) action, for pkt G PIPMCAST-CLIENT, such that strip(pkt) = p.

Proof: The rec-msendh(p) action adds an element to the variable SRM-IPBUFFh.msend-buff.

Moreover, SRM-IPBUFFh prevents time from elapsing while SRM-IPBUFFh.status 0 crashed A

SRM-IPBUFFh.msend-buff # 0. D

Lemma 4.9 The occurrence of an action mrecvh(pkt), for h C H and pkt E PIPMCAST-CLIENT,
in a state u c states(SRMi) in any admissible timed execution a of SRM1 , such that

u[SRM-IPBUFFh].status = member, is instantaneously succeeded in a by the occurrence of either a

crashh, rm-leaveh, or process-pkth(p) action, for p E PSRM, such that p = strip(pkt).

Proof: Since u[SRM-IPBUFFhI.status = member, the particular occurrence of the

mrecvh(pkt) action adds the element strip(pkt) to the variable SRM-IPBUFFh-recv-buff.
Moreover, SRM-IPBUFFh prevents time from elapsing while SRM-IPBUFFh-status 0

crashed A SRM-IPBUFFh.recv-buff 0 0. 0

Lemma 4.10 Let a be any admissible execution of SRM1 containing the discrete transition

(u,r,u'), for u,u' c states(SRM1), h E H, p E PRM-CLIENT, (spip) = id(p), and 7r

rm-sendh(p). If either u[SRM-RECh].min-seqno(sp) =1 or u[SRM-RECh].min-seqno(sp) L
Aip = u[SRM-REChl.max-seqno(sp) + 1, then the discrete transition (u,7,u') is instantaneously
succeeded in a by the occurrence of either a crashh, rm-leaveh, or rec-msendh(pkt) action, for
pkt E PSRM, such that pkt = comp-data-pkt(p).

Proof: Suppose that either u[SRM-REChl -min-seqno(sp) =1 or u[SRM-RECh].min-seqno(sp) I
and ip = u[SRM-RECh].max-seqno(sp) + 1. Then, the discrete transition (u,w,u') adds the

103

element pkt to SRM-RECh.msend-buff. Moreover, SRM-RECh prevents time from elapsing while

SRM-RECh.status :A crashed A SRM-RECh.msend-buff $ 0. C

We now present some invariants pertaining to the SRMJ automaton.

Invariant 4.22 For h E H and any reachable state u of SRM 1 , it is the case that:

1. u[RM-CLIENTh -status = idle - u[SRM-MEMh].status = idle,

2. u[RM-CLIENTh.status = member # u[SRM-MEMh.status = member,

3. u[RM-CLIENTh].status = crashed a u[SRM-MEMh].status = crashed,

4. u[RM-CLIENTh.status = joining a u[SRM-MEMh -status C Joining, and

5. u[RM-CLIENTh.status = leaving a u[SRM-MEMh.status E Leaving.

Proof: Let a be any finite timed execution of SRM1 leading to u. The proof is by induction on
the length n E N of a. For the base case, consider the finite timed execution a of length 0; that

is, a = u. Since u is a start state of SRMI, it is the case that u[RM-CLIENTh -status = idle
and u[SRM-MEMh.status = idle. Thus, the invariant assertion is satisfied in u. For the inductive

step, consider a timed execution a of length k + 1, for k C N. Let ak be the prefix of a containing

the first k steps of a and Uk ak.lstate. For the step from uk to u we consider only the actions

that affect the variables RM- CLIENTh. status and SRM-MEMh. status.

El crashh: the action crashh sets both variables RM-CLIENTh.status and SRM-MEMh.status to

the value crashed. Thus, the invariant assertion holds in u.

E1 rm-joinh: from the precondition of the rm-joinh action, it follows that

Uk[RM-CLIENTh.status idle. From the induction hypothesis it follows that

uk[SRM-MEMhI status = idle. Thus, the action rm-joinh sets RM-CLIENTh.status to joining
and SRM-MEMh.status to join-rqst-pending; that is, u[RM-CLIENTh.status = joining and
u[SRM-MEMh].status E Joining. It follows that the invariant assertion holds in u.

E mjoinh: from the precondition of the mjoinh action, it follows that uk[SRM-MEMh.status C
Joining. From the induction hypothesis it follows that uk[RM-CLIENTh.status = joining.
The action mjoinh sets the variable SRM-MEM/,.status to join-pending and does not affect

the variable RM-CLIENTh.status. Thus, it is the case that u[SRM-MEMh.status E Joining and

u[RM-CLIENTh -status = joining. It follows that the invariant assertion holds in u.

E mjoin-ackh: we first consider the case where uk[SRM-MEMh -status V Joining. In this case,
mjoin-ackh affects neither RM-CLIENTh.status nor SRM-MEMh.status. Thus, the induction

hypothesis implies the invariant assertion in u.

Second, we consider the case where uk[SRM-MEMh].status E Joining. In this case,
mjoin-ackh sets the variable SRM-MEMh.status to join-ack-pending and does not affect

RM-CLIENTh.status. Since uk[SRM-MEMh.status E Joining, the induction hypothesis
implies that uk[RM-CLIENTh.status = joining. Moreover, since mjoin-ackh does not affect

RM-CLIENTh.status, it follows that u[RM-CLIENTh].status = joining. Thus, the invariant
assertion holds in u.

El rm-join-ackh: from the precondition of rm-join-ackh, it follows that ak[SRM-MEMh -status C
Joining. From the induction hypothesis it follows that ak[RM-CLIENTh -status = joining.
Thus, the rm-join-ackh action sets both SRM-MEMh.status and RM-CLIENTh.status to

member. It follows that the invariant assertion holds in u.

El rm-leaveh: the reasoning for this action is analogous to that of rm-joinh.

El mleaveh: the reasoning for this action is analogous to that of mjoinh.

104

E3 mleave-ackh: the reasoning for this action is analogous to that of mjoin-ackh.

El rm-leave-ackh: the reasoning for this action is analogous to that of rm-join-ackh.

C1

Invariant 4.23 For h C H and any reachable state u of SRMj, it is the case that

u[RM-CLIENTh].seqno = u[SRM-REChl.max-seqno(h).

Proof: Let a be any finite timed execution of SRMI leading to u. The proof is by induction
on the length n E N of a. For the base case, consider the finite timed execution a of length
0; that is, c = u. Since u is a start state of SRMI, it follows that u[RM-CLIENTh].seqno =1

and u[SRM-RECh].max-seqno(h) =1. Thus, the invariant assertion is satisfied in u. For the
inductive step, consider a timed execution a of length k + 1, for k C N. Let Ok be the prefix of 01
containing the first k steps of a and Uk = ak.lstate. For the step from Uk to U, we consider only
the rm-sendh(p) action, since this is the only action that affects the variables RM-CLIENTh.seqno
and SRM-RECh.max-seqno(h).

From the precondition of rm-sendh(p), it is the case that uk[RM-CLIENThI.status = member,
source(p) = h, and either Uk[RM-CLIENThI.seqno =1 or seqno(p) = uk[RM-CLIENTh].seqno + 1.
The effects of rm-sendh(p) are to set RM-CLIENTh.seqno to seqno(p).

Since uk[RM-CLIENThI.status = member, Invariant 4.22 implies that Uk[SRM-RECh].status -

member. From the induction hypothesis, it is the case that Uk[RM-CLIENThI.seqno -

uk[SRM-RECh].max-seqno(h). Thus, it is the case that either uk[SRM-REChl.max-seqno(h) =1
or seqno(p) = uk[SRM-RECh].max-seqno(h) + 1. In either case, the rm-sendh(p) sets
SRM-RECh.max-seqno(h) to seqno(p). Thus, it follows that u[RM-CLIENTh.seqno
u[SRM-REChl.max-seqno(h).

Invariant 4.24 For h e H and any reachable state u of SRMI, it is the case that:

1. u[SRM-MEMh].status = crashed u n[SRM-IPBUFFh.status = crashed
Au[SRM-MEMh.status = member a u[SRM-IPBUFFh]. status = member and

2. u[SRM-MEMh.status = crashed 4 u[SRM-RECh.status crashed
Au[SRM-MEMh.status = member 4 u[SRM-RECh].status member.

Proof: We prove that u[SRM-MEMh].status= crashed 4 u[SRM-IPBUFFh].status = crashed A
u[SRM-MEMh.status = member 4 u[SRM-IPBUFFhI.status = member; the proof of the second
claim is analogous.

Let a be any finite timed execution of SRMI leading to u. The proof is by induction on the
length n E N of a. For the base case, consider the finite timed execution a of length 0; that
is, cz = U. Since u is a start state of SRMI, it follows that u[SRM-MEMh.status = idle and
u[SRM-IPBUFFh].status = idle. Thus, the invariant assertion is satisfied in u. For the inductive
step, consider a timed execution a of length k + 1, for k C N. Let ck be the prefix of ci containing
the first k steps of a and Uk = ak.lstate. For the step from Uk to u, we consider only the actions
that affect the variables SRM-MEMh.status and SRM-IPBUFFh.status.

El crashh: the action crashh sets both variables SRM-MEMh.status and SRM-IPBUFFh.status to
the value crashed. Thus, the invariant assertion holds in u.

El rm-joinh: from the precondition of rm-joinh, it follows that Uk[RM-CLIENTh -status = idle.
Thus, Invariant 4.22 implies that Uk[SRM-MEMh.status = idle. Since

105

uk[SRM-MEMh.status V' {crashed,member}, the induction hypothesis implies that

Uk [SRM-IPBUFFh].status V' {crashed, member}.

Since rm-joinh sets SRM-MEMh.status to join-rqst-pending, it follows that
u[SRM-MEMh -status V {crashed,member}. Since rm-joinh does not affect the vari-
able SRM-IPBUFFh.status, it follows that u[SRM-IPBUFFh].status V' {crashed,member}.
Thus, it follows that the invariant assertion holds in u.

El mjoinh: from the precondition of mjoinh, it follows that uk[SRM-MEMh].status E Joining; that
is, uk[SRM-MEMh.status V' {crashed,member}. Thus, the induction hypothesis implies that

Uk [SRM-IPBUFFh.status ' {crashed, member}.

Since the action mjoinh sets the variable SRM-MEMh.status to join-pending, it follows that
u[SRM-MEMh.status V {crashed,member}. Moreover, since mjoinh does not affect the variable

SRM-IPBUFFh.status, it follows that u[SRM-IPBUFFhI.status ' {crashed,member}. Thus, it
follows that the invariant assertion holds in u.

E mjoin-ackh: first, consider the case where uk[SRM-MEMh.status V Joining. Since in this
case mjoin-ackh affects neither SRM-MEMh.status nor SRM-IPBUFFh.status, the induction

hypothesis implies that the invariant assertion holds in u.

Second, consider the case where Uk[SRM-MEMh].status E Joining. Since

Uk [SRM-MEMhI. status V' {crashed, member}, the induction hypothesis implies that

Uk [SRM-IPBUFFhI. status V' {crashed, member}. Since Uk [SRM-MEMhI. status E Joining,
the action mjoin-ackh sets SRM-MEMh.status to join-ack-pending; that is,
u[SRM-MEMh.status V {crashed,member}. Since mjoinh does not affect the variable
SRM-IPBUFFh.status, it follows that u[SRM-IPBUFFh].status V {crashed,member}. Thus, it
follows that the invariant assertion holds in u.

El rm-join-ackh: from the precondition of rm-join-ackh, it is the case that

uk[SRM-MEMh.status E Joining. Since uk[SRM-MEMh.status V' {crashed,member},
the induction hypothesis implies that Uk[SRM-IPBUFFhI.status V {crashed, member}.

The action rm-join-ackh sets SRM-MEMh.status to member. Since uk[SRM-IPBUFFh -status #
crashed, it also sets SRM-IPBUFFh.status to member. It follows that the invariant assertion

holds in u.

El rm-leaveh: from the precondition of rm-leaveh, it is the case that uk[RM-CLIENTh -status =

member. Thus, Invariant 4.22 implies that uk[SRM-MEMh.status = member. Moreover, the

induction hypothesis implies that uk[SRM-IPBUFFh].status = member.

Since uk[SRM-MEMh.status = member, the rm-leaveh action sets SRM-MEMh.status
to leave-rqst-pending and SRM-IPBUFFh.status to idle. Thus, it is the case that

u[SRM-MEMh].status V {crashed, member} and u[SRM-IPBUFFh]. status V' {crashed, member}.
Thus, it follows that the invariant assertion holds in u.

El mleaveh: the reasoning for this action is analogous to that of mjoinh.

E mleave-ackh: the reasoning for this action is analogous to that of mjoin-ackh.

El rm-leave-ackh: from the precondition of the action rm-leave-ackh, it

is the case that uk[SRM-MEMh.status = leave-ack-pending. Since

uk[SRM-MEMh -status V {crashed,member}, the induction hypothesis implies that

Uk [SRM-IPBUFFhI. status V {crashed, member}.

The action rm-leave-ackh sets SRM-MEMh.status to idle and does not affect the variable
SRM-IPBUFFh.status. Thus, it follows that u[SRM-MEMh].status V' {crashed,member} and
u[SRM-IPBUFFh].status V {crashed,member}. Thus, it follows that the invariant assertion

holds in u.

106

El

Invariant 4.25 For h c H and any reachable state u of SRMI, it is the case that, for any packet

p C u[SRM-REChl.msend-buff:

1. type(p) = SESS V (h', ') E seqno-rprts(p), (h', ') E u[SRM-REChl.window?(h'), and

2. type(p) 4 SESS = id(p) E u[SRM-REChl.window?(source(p)).

Proof: Let a be any finite timed execution of SRMI leading to u. The proof is by induction on

the length n E N of a. For the base case, consider the finite timed execution a of length 0; that

is, a = u. Since u is a start state of SRMI, it is the case that u[SRM-REChl.msend-buff = 0.
Thus, the invariant assertion is trivially satisfied in u. For the inductive step, consider a timed

execution a of length k + 1, for k E N. Let ak be the prefix of a containing the first k steps of a

and n= ak.lstate. For the step from Uk to a we consider only the actions of SRM1 that affect

the variables SRM-RECh. msend- buff, SRM-RECh.min-seqno(h'), and SRM-RECh.max-seqno(h'),
for all h' E H.

El rm-leaveh, for h C H: the action rm-leaveh reinitializes the variables SRM-RECh.msend-buff,
SRM-RECh.min-seqno(h'), and SRM-RECh.max-seqno(h'), for all h' C H. Thus, the invariant

assertion is trivially satisfied in u.

El rm-sendh(p), for h E H and p E PRM-CLIENT, such that (spip) id(p): from the

precondition of rm-sendh(p), it is the case that u4[RM-CLIENThI.status member

and either uk[RM-CLIENThI.seqno =_ or iip = uk[RM-CLIENThI.seqno + 1.
Since Uk[RM-CLIENTh -status = member, Invariants 4.22 and 4.24 imply that

Uk[SRM-RECh.status = member. Moreover, Invariant 4.23 implies that either

uk[SRM-RECh1.max-seqno(sp) =1 or ip = uk[SRM-RECh].mar-seqno(sp) + 1.

Thus, the rm-sendh(p) action adds pkt = comp-data-pkt(p) to SRM-RECh.msend-buff

and id(p) to SRM-RECh.window?(sp). It follows that uk[SRM-REChI.window?(sp) C

u[SRM-REChI.window?(sp). Moreover, the rm-sendh(p) action does not affect the

SRM-RECh.window?(h') variables, for h' E H, h' 4 sp.

The induction hypothesis and that facts type(pkt) = DATA, id(pkt) = id(p), and id(p) C

u[SRM-REChl.window?(sp), imply that the invariant assertion is satisfied in u.

El rec-msendh(p), for h C H and p C PRM-CLIENT: the rec-msendh(p) removes p from

SRM-RECh.msend-buff and does not affect the SRM-RECh.window?(h') variables, for h' C H.

Thus, the induction hypothesis implies that the invariant assertion is satisfied in u.

El send-rqsth(s,i), for s C H and i E N: from the precondition of send-rqsth(si), it

follows that (s,i) C Uk[SRM-RECh.scheduled-rqsts?(s). Thus, Invariant 4.15 implies that

(s,i) E Uk[SRM-RECh .window?(s). Since the send-rqsth(si) action does not affect the

variables SRM-RECh.min-seqno(s) and SRM-RECh.max-seqno(s), it does not affect the variable

SRM-RECh.window?(s). Since (s,i) C uk[SRM-REChI.window?(s), it follows that (s,i) C

u[SRM-REChl.window? (s).

The send-rqsth(si) action adds a packet pkt E PSRM, such that type(pkt) = RQST and

id(pkt) = (s,i), to SRM-RECh.msend-buff. Moreover, the send-replh(s,i) action does not

affect the SRM-RECh.window?(h') variables, for h' E H, h' # s. The induction hypothesis and

the fact that (s, i) E u[SRM-RECh .window?(s) imply that the invariant assertion is satisfied in
U.

El send-replh(si), for s E H and i E N: from the precondition of send-replh(si),
it follows that (s,i) E Uk[SRM-RECh].scheduled-repls?(s). Thus, Invariant 4.14 implies

107

that (s,i) C uk[SRM-REChl.archived?(s). Moreover, Invariant 4.5 implies that (s,i) E
Uk[SRM-RECh].window?(s). Since the send-rqsth(si) action does not affect the vari-
ables SRM-RECh-min-seqno(s) and SRM-RECh.max-seqno(s), it does not affect the variable
SRM-RECh.window?(s). Since (s,i) E uk[SRM-REChI.window?(s), it follows that (s,i) E
u[SRM-REChl .window?(s).

The send-replh(si) action adds a packet pkt E PSRM, such that type(pkt) = REPL and
id(pkt) = (s,i), to SRM-RECh.msend-buff. Moreover, the send-replh(s,i) action does not
affect the SRM-RECh.window?(h') variables, for h' E H, h' # s. The induction hypothesis and
the fact that (s, i) c u[SRM-RECh .window?(s) imply that the invariant assertion is satisfied in
U.

71 send-sessh: the send-sessh action adds a packet pkt E PSRM to SRM-RECh-msend-buff,
such that type(pkt) = SESS and seqno-rprts(pkt) = Uk[SRM-RECh].max-seqno. Since
seqno-rprts(pkt) = uk[SRM-RECh .max-seqno, it follows that, for any (s,i) E seqno-rprts(pkt),
it is the case that i = uk[SRM-RECh].max-seqno(s). Thus, Invariant 4.3 implies that

Uk[SRM-RECh].min-seqno(s) < i. It follows that (s,i) E uk[SRM-REChI.window?(s). Since
send-sessh affects neither SRM-RECh-min-seqno(s) nor SRM-RECh.max-seqno(s), it follows
that (s, i) c u[SRM-REChl.window?(s).

The induction hypothesis and the fact that, for any (s, i) E seqno-rprts(pkt), it is the case that

(s, i) E u[SRM-REChl.window?(s), imply that the invariant assertion is satisfied in u.

El process-pkth(p), for h E H and p E PSRM: the process-pkth(p) action does not
affect the variable SRM-RECh.msend-buff and may only add elements to the variables
u[SRM-REChl.window?(h'), for h' c H. Thus, it follows that u[SRM-RECh].msend-buff =

Uk [SRM-REChl. msend-buff and Uk[SRM-RECh].window?(h') C u[SRM-REChl.window?(h'), for
h' E H. Thus, the induction hypothesis implies that the invariant assertion is satisfied in u.

El

Invariant 4.26 For any reachable state u of SRM1 , it is the case that, for all h, h' E H,
u[SRM-REChl.window? (h') C u[SRM].sent-pkts?(h').

Proof: Let a be any finite timed execution of SRM1 leading to n. The proof is by strong induction
on the length n E N of a. For the base case, consider the finite timed execution a of length 0; that
is, a = u. Since u is a start state of SRMI, it is the case that u[SRM-REChl.window?(h') 0
and u[SRM].sent-pkts?(h') = 0, for all h, h' C H. Thus, the invariant assertion is trivially satisfied
in u. For the inductive step, consider a timed execution a of length k + 1, for k C N. Let ak
be the prefix of a containing the first k steps of a and Uk = ak.lstate. For the step from uk
to u we consider only the actions of SRMI that affect the variables SRM-RECh.min-seqno(h'),
SRM-RECh.maz-seqno(h'), and SRM.sent-pkts?(h'), for all h, h' E H.

E rm-leavem, for m c H: the action rm-leavem reinitializes the variables
SRM-RECm.min-seqno(m') and SRM-RECm.max-seqno(m'), for all m' C H,
and does not affect the variables SRM.sent-pkts?(m'), for all m' E H. Thus,
it follows that u[SRM-RECm].window?(m') C u[SRM].sent-pkts?(m'), for all
m' C H. Moreover, the action rm-leavem does not affect any of the variables
SRM-RECn.min-seqno(m'), SRM-RECn.max-seqno(M'), and SRM.sent-pkts?(m'), for
n c H, n m and m' E H. Thus, from the induction hypothesis it is the case that
u[SRM-REC,].window?(m') C u[SRM].sent-pkts?(m'), for n C H,n # M and m' C H. It
follows that u[SRM-RECh].window?(h') C u[SRM].sent-pkts?(h'), for all h,h' E H.

El rm-sendm(p), for m E H and p E PRM-CLIENT: from the precondition of rm-sendm(p), it is
the case that Uk[RM-CLIENTmI.status = member and either Uk[RM-CLIENTm].seqno =L or

108

seqno(p) = uk[RM-CLIENTm].seqno + 1. Since Uk[RM-CLIENTmI.status = member, Invari-
ants 4.22 and 4.24 imply that Uk[SRM-RECm].status = member. Moreover, Invariant 4.23 im-
plies that either uk[SRM-RECm].max-seqno =1 or seqno(p) = 'U[SRM-RECm].max-seqno +
1. Thus, the rm-sendm(p) action adds the element id(p) to SRM-RECm.window?(m) and
SRM.sent-pkts?(m); that is, u[SRM-RECm.].window?(m) = Uk[SRM-RECm .window?(M) U
{id(p)} and u[SRM].sent-pkts?(m) = Uk[SRM].sent-pkts?(m) U {id(p)}. From the induction

hypothesis, it is the case that uk[SRM-RECm].window?(m) C Uk[SRM].sent-pkts?(m). Thus, it
follows that u[SRM-RECm].window?(m) C u[SRM.sent-pkts?(m).

The rm-sendm(p) action does not affect the variables SRM-RECm.window?(m'),
SRM-RECm'.window?(m") SRM.sent-pkts?(m'), for all m' E H,m' f m and m" E H. Thus,
the induction hypothesis implies that u[SRM-RECm].Window?(m') Q u[SRM].sent-pkts?(m')

and u[SRM-RECm'].window?(m") C u[SRM].sent-pkts?(m"), for all m' G H,m' 5 m and

M" c H.

It follows that u[SRM-REChl.window? (h') C u[SRM].sent-pkts? (h'), for all h, h' E H.

CJ process-pktm(p), for m c H and p c PSRM, such that type(p) E {DATA}: let sp E H and

ip E N be the source and the sequence number, respectively, of the packet p. From the
precondition of process-pktm(p), it follows that p E uk[SRM-IPBUFFmI.recv-buff. Since

the only action that may add p to the variable SRM-IPBUFFm.recv-buff is mrecvm(pkt), for
pkt E PPMCAST-CLIENT, such that strip(pkt) = p, it follows that the action process-pktm(p) is

preceded in a by an action mrecvm(pkt). Let (U2,mrecvm(pkt),ui) be the discrete transition in

a/z corresponding to the particular occurrence of the action mrecvm(pkt). Lemma 4.1 implies
that the action mrecvm(pkt) is preceded in ak by an action msendm'(pkt), for some m' c H. Let

(u4, msendm' (pkt), U3) be the discrete transition in ak corresponding to the particular occurrence

of the action msendm' (pkt). From the precondition of the action msendm' (pkt), it follows that
pkt E u4[SRM-IPBUFFm'].msend-buff. The only action that may add pkt to the variable

SRM-IPBUFFm'.msend-buff is the action rec-msendm'(p). Thus, an action rec-msendm'(p)
precedes u 4 in ak. Let (a 6 ,rec-msendm'(p), a 5) be the discrete transition in ak corresponding

to the particular occurrence of the action rec-msendm' (p). From the precondition of the action

rec-msendm'(p), it follows that p E U6 [SRM-RECm'I.msend-buff-

Invariant 4.25 implies that id(p) C U6 [SRM-RECm'].window? (sp). From the induction
hypothesis, it is the case that U6 [SRM-RECm].window?(sp) C u6 [SRM].sent-pkts?(sp).

Since id(p) E U6 [SRM-RECm'.window?(sp) and U6 [SRM-RECm'].window?(sp) C

U6 [SRM].sent-pkts?(sp), it follows that id(p) E U6 [SRM.sent-pkts?(sp). Thus, Lemma 4.2

implies that id(p) E uk[SRM].sent-pkts?(sp). Since process-pktm(p) does not affect the

variable SRM.sent-pkts?(sp), it follows that u[SRM.sent-pkts?(sp) = Uk[SRM].sent-pkts?(sp).
Thus, it is the case that id(p) E u[SRM].sent-pkts?(sp).

We now consider the effects of the process-pktm(p) action. If M sp
and uk[SRM-RECm].min-seqno(sp) =_L, then the process-pktm(p) action sets

both SRM-RECm.min-seqno(sp) and SRM-RECm.max-seqno(sp) variables to

tP. Thus, it follows that u[SRM-RECml.window?(sp) = (sp, ip). Since
u[SRM-RECm].window? (sp) = {(sp,ip)} and id(p) E u[SRM].sent-pkts?(sp), it follows

that u[SRM-RECm].window?(sp) C u[SRMI.sent-pkts?(sp).

If m : sp, uk[SRM-RECm].min-seqno(sp) :_L, and uk[SRM-RECm].max-seqno(sp) < tp,
then the process-pktm(p) action does not affect the variable SRM-RECm.min-seqno(sp)

and sets the variable SRM-RECm.max-seqno(sp) to ip. From the induction hypoth-

esis, it is the case that Uk[SRM-RECm].window?(sp) C uk[SRM].sent-pkts?(sp).
It follows that (sp, Uk [SRM-RECm].min-seqno(sp)) E Uk[SRM].sent-pkts?(sp).
Since process-pktm(p) does not affect the variable SRM-RECm.min-seqno(sp),

109

it is the case that u[SRM-RECm].min-seqno(sp) Uk[SRM-REC]. min-seqno(sp).

Thus, it follows that (sp,u[SRM-RECm].min-seqno(sp)) c u[SRM].sent-pkts?(sp).
Since (sP, u[SRM-RECm].min-seqno(sp)) c u[SRM].sent-pkts?(sP) and

(sP,u[SRM-RECm].max-seqno(sp)) E u[SRM].sent-pkts?(sp), Invariant 4.21 implies that
u[SRM-RECm].Window?(sp) C u[SRM].sent-pkts?(sp).

Otherwise, process-pktm(p) does not affect the variables SRM-RECm.min-seqno(sp),
SRM-RECm.max-seqno(sp), and SRM.sent-pkts?(sp). Thus, the induction hypothesis implies
that u[SRM-RECm].Window?(sp) C u[SRM].sent-pkts?(sp).

Moreover, the process-pkt(p) action does not affect the variables SRM-RECm.window?(m'),
SRM-RECn.window?(n'), and SRM.sent-pkts?(n'), for all m' E Hm' : sp, n E H,n m,
and n' E H. Thus, the induction hypothesis implies that u[SRM-RECmI.window?(m') C
u[SRM].sent-pkts?(m') and u[SRM-REC,].window?(n') C u[SRM].sent-pkts?(n'), for all m' E
Hm' 4 sp, n c H, n$ m, and n' E H.

Thus, it follows that u[SRM-RECh]-window?(h') C u[SRM].sent-pkts?(h'), for all h,h' E H.

D process-pktm(p), for m G H and p E PSRM, such that type(p) E {RQST,REPL}: let sp E H
and ip E N be the source and the sequence number, respectively, of the packet p. From
the precondition of process-pktm(p), it follows that p E uk[SRM-IPBUFFmI.recv-buff. Since
the only action that may add p to the variable SRM-IPBUFFm.recv-buff is mrecvm(pkt), for
pkt e PPMCAST-CLIENT, such that strip(pkt) = p, it follows that the action process-pktm(p) is
preceded in a by an action mrecvm(pkt). Let (U2 , mrecvm(pkt), u1) be the discrete transition in

ak corresponding to the particular occurrence of the action mrecvm(pkt). Lemma 4.1 implies
that the action mrecvm(pkt) is preceded in ak by an action msendm' (pkt), for some m' E H. Let

(U4, msendm' (pkt), iU3) be the discrete transition in ak corresponding to the particular occurrence
of the action msendm'(pkt). From the precondition of the action msendm' (pkt), it follows that
pkt C u4 [SRM-IPBUFFm].msend-buff. The only action that may add pkt to the variable
SRM-IPBUFFm'.msend-buff is the action rec-msendm'(p). Thus, an action rec-msendm'(p)
precedes U4 in ak. Let (U6 , rec-msendm'(p), a5) be the discrete transition in ak corresponding
to the particular occurrence of the action rec-msendm' (p). From the precondition of the action
rec-msendm,(p), it follows that p E U6[SRM-RECm' 1.msend- buff.

Invariant 4.25 implies that id(p) C U6 [SRM-RECm'].window?(Sp). From the induction
hypothesis, it is the case that U6[SRM-RECm'.window?(sp) C u6 [SRM].sent-pkts?(sp).
Since id(p) C u6 [SRM-RECm']. window?(sp) and U6 [SRM-RECm'] .window?(sp) C
u6 [SRM].sent-pkts?(sp), it follows that id(p) E u 6 [SRM].sent-pkts?(sp). Thus, Lemma 4.2
implies that id(p) C uk[SRM].sent-pkts?(sp). Since process-pktm(p) does not affect the
variable SRM.sent-pkts?(sp), it follows that u[SRM].sent-pkts?(sp) = Uk[SRM].sent-pkts?(sp).
Thus, it is the case that id(p) E u[SRM].sent-pkts?(sP).

We now consider the effects of the process-pktm(p) action. If M Z SP,
Uk[SRM-RECm].min-seqno(sp) '-L, and Uk[SRM-RECm].ma-seqno(sp) < ip, then
the process-pktm(p) action does not affect the variable SRM-RECm.min-seqno(sp)
and sets the variable SRM-RECm.max-seqno(sp) to ip. From the induction hy-
pothesis, it is the case that Uk[SRM-RECmI.window?(sp) C uk[SRM].sent-pkts?(sp).
It follows that (sp, Uk[SRM-RECm.min-seno(sp)) C Uk [SRM].sent-pkts? (sp).
Since process-pktm(p) does not affect the variable SRM-RECm.min-seqno(sp),
it is the case that u[SRM-RECmI.min-seqno(sp) = Uk[SRM-RECm .min-seqno(sp).

Thus, it follows that (sPu[SRM-RECm].min-seqno(sp)) E u[SRM].sent-pkts?(sp).
Since (sp, u[SRM-RECm].min-seqno(sp)) E u[SRM].sent-pkts?(sp) and

(spu[SRM-RECm].max-seqno(sp)) c u[SRM .sent-pkts?(sp), Invariant 4.21 implies that
u[SRM-RECm].window? (sp) C u[SRM].sent-pkts?(sp).

110

Otherwise, process-pktm(p) does not affect the variables SRM-RECm.min-seqno(sp),
SRM-RECm .max-seqno(sp), and SRM.sent-pkts?(sp). Thus, the induction hypothesis implies

that u[SRM-RECm].window?(sp) C u[SRM].sent-pkts?(sp).

Finally, the process-pktm(p) action does not affect the variables SRM-RECm.window?(m'),
SRM-REC,.window?(n'), and SRM.sent-pkts?(n'), for all m' E H,m' : sp, n E H,n : m,
and n' C H. Thus, the induction hypothesis implies that u[SRM-RECm].window?(m') C
u[SRM].sent-pkts?(m') and u[SRM-RECn].window?(n') C u[SRM].sent-pkts?(n'), for all m' E
H,m' 4 sp, n E H,n i m, and n' E H.

Thus, it follows that u[SRM-REChI-window?(h') C u[SRMI.sent-pkts?(h'), for all h, h' C H.

EJ process-pktm(p), for h E H and p E PSRM, such that type(p) E {SESS}: From the

precondition of process-pktm(p), it follows that p E Uk[SRM-IPBUFFm].recv-buff. Since
the only action that may add p to the variable SRM-IPBUFFm.recv-buff is mrecvm(pkt), for

pkt E PIPMCAST-CLIENT, such that strip(pkt) = p, it follows that the action process-pktm(p) is

preceded in a by an action mrecvm(pkt). Let (u 2 ,mrecvm(pkt), ui) be the discrete transition in

ak corresponding to the particular occurrence of the action mrecvm(pkt). Lemma 4.1 implies
that the action mrecvm(pkt) is preceded in ak by an action msendm' (pkt), for some mn' E H. Let

(u4, msendm' (pkt), u3) be the discrete transition in ak corresponding to the particular occurrence
of the action msendm' (pkt). From the precondition of the action msendm' (pkt), it follows that
pkt E u4 [SRM-IPBUFFm,. msend-buff. The only action that may add pkt to the variable
SRM-IPBUFFm'.msend-buff is the action rec-msendmi(p). Thus, an action rec-msendm'(p)
precedes u4 in ak. Let (u6 , rec-msendm'(p), u5) be the discrete transition in ajz corresponding
to the particular occurrence of the action rec-msendm' (p). From the precondition of the action

rec-msendm'(p), it follows that p C U6 [SRM-RECm' .msend-buff.

For any (h", i") E seqno-rprts(p), such that h" : M, uk[SRM-RECm].min-seqno(h") _L, and

Uk[SRM-RECm].max-seqno(h") < i", the process-pktm(p) action does not affect the variable
SRM-RECm.min-seqno(h") and sets the variable SRM-RECm.max-seqno(h") to i". From the in-

duction hypothesis, it is the case that uk[SRM-RECmI.Window?(h") C Uk[SRM.sent-pkts?(h").

It follows that (h",Uk[SRM-RECm]. min-seqno(h")) E Uk[SRM].sent-pkts?(h"). Since
process-pktm(p) does not affect the variable SRM-RECm.min-seqno(h"), it is the case
that u[SRM-RECm].min-seqno(h") = Uk[SRM-RECm].min-seqno(h"). Thus, it follows that

(h", u[SRM-RECmI].min-seqno(h")) E u[SRM].sent-pkts?(h").

Invariant 4.25 implies that (h", i") E U6 [SRM-RECm'1.window?(h"). From the induction
hypothesis, it is the case that U6[SRM-RECm'1.window?(h") C u6 [SRM].sent-pkts?(h").

Since (h", i") E U6[SRM-RECm' .window?(h") and U6[SRM-RECm'].window?(h") C

u6 [SRM].sent-pkts?(h"), it follows that (h",i") E U6[SRM].sent-pkts?(h"). Thus, Lemma 4.2
implies that (h",i") E uk[SRM].sent-pkts?(h"). Since process-pktm(p) does not affect the
variable SRM.sent-pkts?(h"), it follows that u[SRM].sent-pkts?(h") = Uk[SRM].sent-pkts?(h").

Thus, it is the case that (h", i") E u[SRM].sent-pkts?(h").

Since (h", u[SRM-RECmJ min-seqno(h")) E u[SRM].sent-pkts?(h") and
(h", u[SRM-RECm].max-seqno(h")) E u[SRM. sent-pkts? (h"), Invariant 4.21 implies

that u[SRM-RECm].window?(h") C u[SRM].sent-pkts?(h").

Otherwise, For any (h",i") E seqno-rprts(p), such that it is not the case that h" : m,
Uk[SRM-RECm].Min-seqno(h") $1, and Uk[SRM-RECm].max-seqno(h") < i", the
process-pktm (p) action does not affect the variables SRM-RECm.min-seqno(h"),
SRM-RECm.max-seqno(h"), and SRM.sent-pkts?(h"). Thus, the induction hypothesis implies
that u[SRM-RECm].window? (h") C u[SRM].sent-pkts?(h").

Finally, the process-pktm(p) action does not affect the variables SRM-RECn.window?(n') and

111

SRM.sent-pkts?(n'), for all n E H, n 24 m, and n' G H. Thus, the induction hypothesis implies
that u[SRM-REC,].window?(n') C u[SRM].sent-pkts?(n'), for all n E H,n 4 m and n' E H.

Thus, it follows that u[SRM-RECh].window?(h') C u[SRM].sent-pkts?(h'), for all h, h' E H.

0l

Invariant 4.27 For any reachable state u of SRM1 , it is the case that, for all h, h' E
u[SRM-RECh].archived-pkts? (h') C u[SRM].sent-pkts?(h').

Proof: Follows directly from Invariants 4.5 and 4.26.

H,

El

Invariant 4.28 For h, h' E H and any reachable state u of SRM 1 , it is the case that
u[SRM-REChl.to-be-delivered?(h') C u[SRM].sent-pkts?(h').

Proof: Follows directly from Invariants 4.4 and 4.27. El

4.4.4 Correctness Analysis

In this section, we show that our reliable multicast implementation SRMI indeed implements the
reliable multicast service specification RMs(oc).

We begin by defining a relation R from SRM1 to RMs(A), for any A E k> 0 U oc.

Definition 4.1 Let R be the relation between states of SRM1 and RMs(A), for any A G R 0 U 00,
such that for any states u and s of SRM1 and RMs(A), respectively, (u, s) E R provided that, for
all h, h' 6 H and p E PRM-CLIENT, such that (sp, ip) = id(p), it is the case that:

s.now = u.now

s [RM-CLIENTh].status u[RM-CLIENTh -status

s[RM-CLIENThI.seqno u[RM-CLIENTh .seqno

idle if u[SRM-MEMh .status = idle

joining if u[SRM-MEMhI status E Joining

s[RM(A)].status(h) leaving if u[SRM-MEMh].status C Leaving

member if u[SRM-MEMh.status = member

crashed if u[SRM-MEMhI. status = crashed

s[RM (A)]. trans-time (p) = u[SRM-REC,,]. trans-time (p)

s[RM(A)]. expected(h, h') u[SRM-RECh. expected(h')

s[RM(A)].delivered(h, h') = u[SRM-RECh].delivered(h')

The following lemma states that the relation R of Definition 4.1 is a timed forward simulation
relation from SRMI to RMS(oo).

Lemma 4.11 R is a timed forward simulation relation from SRM1 to RMs(oo).

Proof: We must show that: i) if u C start(SRMI), then there is some s E start(RMs(oc)) such
that (u, s) E R, and ii) if u is a reachable state of SRMI, s is a reachable state of RMS(oo) such

112

that (u, s) E R, and (u, 7r, u') E trans(SRMI), then there exists a timed execution fragment 1 of

RMs(oo) such that: a.fstate = s, ttrace(a) = ttrace(ugru'), the total amount of time-passage in a
is the same as the total amount of time-passage in uiru', and (u', s') c R, for s' = a.lstate.

The satisfaction of the start condition is straightforward. For the step, we consider only the actions

in acts(SRMI) that affect the variables of SRMI that are used in R to obtain the corresponding

state in RMs(oo). Moreover, since the client automata RM-CLIENTh, for all h C H, are identical

in both SRM1 and RMS(oo), we do not consider the effect of the actions of SRMI on the state

of the client automata. Thus, we consider only the actions of the SRM component of SRMI that
affect the variables of SRM that are present in R.

E1 crashh, for any h E H: the corresponding execution fragment of RMs(oo) is comprised solely of
the crashh action. The crashh action of SRMI simply sets the variable u[SRM-MEMh].status to

crashed and resets u[SRM-RECh].expected(h') and u[SRM-REChl.completed(h'), for all h' C H.

It is straightforward to see that the crashh action of RMS(oo) mirrors these effects. Thus, it

follows that (U', s') E R.

0 rm-joinh, for any h E H: the corresponding execution fragment of RMs(oo) is comprised solely

of the rm-joinh action. It is straightforward to see that the effects of the rm-joinh action in

the specification correspond to those in the implementation.

El mjoinh, for any h C H: the corresponding execution fragment of RMs(oo) is the empty
timed execution fragment. Since the mjoinh action is enabled in state u, it follows that

u[SRM-MEMh.status E Joining. Thus, R implies that s[RM(oo)].status(h) = joining. The

effects of the mjoinh action are to set the status variable to join-pending. It follows that

U'[SRM-MEMh].status C Joining. Since the corresponding execution fragment of RMs(oo) is the
empty timed execution fragment it is the case that s' = s and s'[RM(oo)].status(h) = joining.

Thus, it follows that (u', s') c R.

E mjoin-ackh, for any h E H: the corresponding execution fragment of RMs(oo) is the
empty timed execution fragment. The mjoin-ackh action affects the state of the SRM-MEMh
automaton only when the host h is in the process of joining the reliable multicast group; that
is, u[SRM-MEMh].status E Joining. Thus, R implies that s[RM(oo)].status(h) = joining. The
effects of the mjoin-ackh action are to set the status variable to join-ack-pending. It follows
that u'[SRM-MEMh].status E Joining. Since the corresponding execution fragment of RMs(oc)
is the empty timed execution fragment it is the case that s' = s and s'[RM(oc)].status(h) =
joining. Thus, it follows that (u', s') C R.

E rm-leaveh, for any h E H: the corresponding execution fragment of RMs(oc) is comprised solely
of the rm-leaveh action. From the precondition of the rm-leaveh action in the RM-CLIENTh
automaton, it follows that u[RM-CLIENTh].status = member. Thus, Invariant 4.22 implies that
u[SRM-MEMh.status = member and, since (u, s) E R, it is the case that s[RM(oc)].status(h) =

member.

Since u[SRM-MEMh.status = member, the rm-leaveh action of SRMJ sets the status variable
of SRM-MEMh to leave-rqst-pending. The rm-leaveh action of RMs(oo) sets the status(h)

variable of RM(oo) to leaving. Thus, it follows that u'[SRM-MEMh].status E Leaving and
s'[RM(oo)].status(h) = leaving, as required by R.

Moreover, the rm-leaveh action of SRM1 resets the expected and delivered packet sets of
SRM-RECh; that is, u'[SRM-REChl.expected(h') = 0 and U'[SRM-REChl.delivered(h') = 0,
for all h' E H. Similarly, the rm-leaveh action of RMs(oc) also resets the variables
expected(h,h') and delivered(h,h'), for h' E H; that is, s'[RM(oo)].expected(h, h') = 0 and
s'[RM(oo)].delivered(h, h') = 0, for h' C H. Thus, it follows that (U', s') E R.

E mleaveh, for any h C H: the corresponding execution fragment of RMs(oc) is the empty

113

timed execution fragment. Since the mleaveh action is enabled in state u, it follows that
u[SRM-MEMh].status E Leaving. Thus, R implies that s[RM(oo)].status(h) = leaving.
The effects of the mleaveh action of SRMI are to set the status variable of SRM-MEMh to
leave-pending. It follows that u'[SRM-MEMh.status C Leaving. Since the corresponding
execution fragment of RMs(oo) is the empty timed execution fragment it is the case that s' = s
and s'[RM(oo)].status(h) leaving. Thus, it follows that (u', s') E R.

E1 mleave-ackh, for any h E H: the corresponding execution fragment of RMs(O-) is the
empty timed execution fragment. The mleave-ackh action affects the state of the SRM-MEMh
automaton only when the host h is in the process of leaving the reliable multicast group; that is,
u[SRM-MEMh.status E Leaving. In this case, R implies that s[RM(oo)].status(h) = leaving.
The effects of the mleave-ackh action of SRMJ are to set the status variable of SRM-MEMh to
leave-ack-pending. It follows that u'[SRM-MEMh.status E Leaving. Since the corresponding
execution fragment of RMs(oc) is the empty timed execution fragment it is the case that s' = s
and s'[RM(oc)].status(h) leaving. Thus, it follows that (u', s') C R.

El rm-join-ackh, for any h E H: the corresponding execution fragment of RMS(oc) is comprised
solely of the rm-join-ackh action. We begin by showing that the rm-join-ackh action of
RMs(oo) is enabled in s. The precondition of the rm-join-ackh action of SRMJ implies
that u[SRM-MEMh.status E Joining. Since (u, s) E R, it follows that s[RM(oo)].status(h)
joining. Thus, it follows that the rm-join-ackh action of RMs(oo) is enabled in s.

The rm-join-ackh action of SRM1 sets the status variable of SRM-MEMh to member. Similarly,
the rm-join-ackh action of RMs(oo) sets the status(h) variable of RM(oc) to member. Thus,
it follows that (u', s') E R.

El rm-leave-ackh, for any h E H: the corresponding execution fragment of RMs(oc) is comprised
solely of the rm-leave-ackh action. We begin by showing that the rm-leave-ackh action of
RMs(oc) is enabled in s. The precondition of the rm-leave-ackh action of SRMJ implies
that u[SRM-MEMh].status E Leaving. Since (u, s) E R, it follows that s[RM(oo)1.status(h) =
leaving. Thus, it follows that the rm-leave-ackh action of RMs(oo) is enabled in s.

The rm-leave-ackh action of SRM1 sets the status variable of SRM-MEMh to idle. Similarly,
the rm-leave-ackh action of RMS(oc) sets the status(h) variable of RM(oC) to idle. Thus, it
follows that (u', s') C R.

E rm-sendh(p), for any h C H and p E PRM-CLIENT: the corresponding execution fragment of
RMs(oc) is comprised solely of the rm-sendh(p) action. Let sp and ip denote the source and
sequence number of p, respectively.

From the precondition of the rm-sendh(p) action of SRMI, it follows that
u[RM-CLIENThI.status member and h sp. Invariant 4.22 implies that
u[SRM-MEMh.status member and, since (u, s) C R, it is the case that
s[RM(oo)].status (h) = member.

We consider the effects of rm-sendh(p) according to whether p is the foremost packet
from h. First, consider the case where p is the foremost packet from h; that is,
u[SRM-RECh1-min-seqno(sp) =_L. In this case, the rm-sendh(p) action of SRMI sets the
expected set from h to the set suffix(p), adds id(p) to the set of delivered packets from h, and
records the transmission time of p.

Since it is the case that u[SRM-RECh].min-seqno(sp) =L, Invariant 4.9 implies that
u[SRM-REChl.expected(h) = 0. Since (u,s) C R, it follows that s[RM(oc)].expected(h, h) = 0.
Thus, the rm-sendh(p) action of RMs(oc) matches the effects of the rm-sendh(p) action of
SRM1 . It follows that (u', s') E R.

114

Second, consider the case where p is not the foremost packet from h; that is,
U[SRM-RECh1.min-seqno(sp) fL. In this case, Invariant 4.23 and the precondition of

rm-sendh(p) imply that i, = u[SRM-RECh]-max-seqno(sp) + 1. Thus, the rm-sendh(p) action

of SRM1 records the transmission time of p and adds id(p) to the set of delivered packets from

h.

Since it is the case that ip = u[SRM-RECh].max-seqno(sp) + 1, Invariant 4.3 implies that

u[SRM-RECh]-min-seqno(sp) < ip. Thus, it follows that id(p) E u[SRM-RECh.proper?(h).

Since u[SRM-MEMh.status = member, Invariant 4.9 implies that u[SRM-REChl. expected(h) =
u[SRM-RECh].proper?(h). Thus, it follows that id(p) C u[SRM-REChl.expected(h). Since

(u, s) C R, it is the case that s[RM(oo)].expected(h, h) = u[SRM-RECh].expected(h). Thus,
it follows that id(p) C s[RM(oo)].expected(h, h). Thus, the rm-sendh(p) action of RMs(oo) also
records the transmission time of p and adds p to the set of delivered packets from h. Thus, it

follows that (u', s') E R.

E rm-recvh(p), for any h E H and p C PRM-CLIENT: the corresponding execution fragment of

RMs(oo) is comprised solely of the rm-recvh(p) action. Let sp and i, denote the source and

sequence number of p, respectively.

We first show that the rm-recvh(p) action of RMs(oo) is enabled in s. From the precon-

dition of the rm-recvh(p) action of SRMI, it follows that u[SRM-REChl. status = member
and p C u[SRM-REChl.to-be-delivered. Invariant 4.24 implies that u[SRM-MEMh]. status =
member and, since (u,s) C R, it follows s[RM(oo)].status(h) = member. Since p E
u[SRM-RECh].to-be-delivered, Invariant 4.11 implies that h 4 source(p). Moreover, In-

variant 4.28 implies that p E u[SRMI.sent-pkts. Since (u, s) E R, it follows that p E
s[RM(oo)].sent-pkts.

We proceed by showing that s satisfies the last two terms in the precondition of the rm-recvh(p)
action of RMs(oo). Since the delivery delay parameter A is equal to oc for the RMs(oo)
automaton, s[RM(oo)] trivially satisfies the term expected(h, sp) = 0= rnow < trans-time(p)+A.

Finally, we show that s[RM(oc)] satisfies the term expected(h, sp) z 0 re id(p) c expected(h, sp).

Suppose that it is the case that s[RM(oo)].expected(h, sp) = 0. Since (u, s) C R, it follows that
u[SRM-REChl.expected(sp) # 0. Thus, since p E u[SRM-RECh].to-be-delivered, Invariant 4.12
implies that id(p) C u[SRM-RECh -expected(sp). Finally, since (u, s) E R, it follows that
id(p) C s[RM(oo)].expected(h,sp), as needed.

The rm-recvh(p) action of SRMj sets the expected set of packets from sp to the set suffix(p),
unless already non-empty, and adds p to the set of delivered packets from sp. The rm-recvh(p)
action of RM(oo) matches these effects. Thus, it follows that (U', s') E R.

D v(t), for any t C R>O: the corresponding execution fragment of RMs(oo) is comprised solely of
the v(t) action. Since the effects of the v(t) actions of the SRMI and the RMS(oC) automata
are identical, it suffices to show that the v(t) action is enabled in s. Since the delivery delay
parameter A is equal to oc for the RMs(oo) automaton, the term now + t < trans-time(p) + A
of the precondition of the v(t) action of RMs(oo) is satisfied for all p C PRM-CLIENT. Thus, it
follows that the v(t) action of RMS(oo) is enabled in s.

Theorem 4.12 SRM1 < RMs(oc)

Proof: Follows directly from Lemma 4.11. El

115

4.4.5 Timeliness Analysis Preliminaries

Preliminary Definitions

Suppose p E PRM-CLIENT, pkt E PSRM, and a is an admissible timed execution of SRMI that
contains the transmission of p; that is, a contains the action rm-sends,(p), for sp = source (p). For
pkt E PSRM, we say that pkt pertains to p if type(pkt) E {DATA, RQST, REPL} and id(pkt) = id(p).
We let PSRM[p] denote the elements of PSRM that pertain to p. We let the number of packet
drops in a pertaining to p, denoted a.drops(p), be the number of packet drops suffered by packets
pertaining to p; that is, a. drops (p) is the number of occurrences of an action mdrop(pkt', Hd) in a,
for pkt' E PIPMCAST-CLIENT and Hd C H, such that strip(pkt') E PSRM[pJ.

We let aexecsk(SRMI), for k C N+, be the set of admissible timed executions of SRMI in which
the number of drops suffered by IP packets pertaining to the transmission and, potentially, the
recovery of any packet p E PRM-CLIENT is at most k. That is, a E aeXecsk(SRMI) if and only if
a.drops(p') < k, for any packet p' E PRM-CLIENT transmitted in a. Finally, we let attracesk(SRMI)
be the traces of all executions of SRM1 in aeXecsk(SRMI).

We let the transmission time of p in a, denoted a.trans-time(p), be the point in time in a at
which p is transmitted; that is, the time of occurrence of rm-send,(p) in a. Since packets are

transmitted by the clients of the reliable multicast service at most once (Lemma 3.2), it follows
that the transmission time of any packet transmitted in any admissible timed execution of SRM1

is well-defined and unique.

Execution Definitions

We proceed by defining several constraints on admissible executions of SRMI. These constraints

facilitate the statement of conditional claims regarding the timely transmission of packets for SRM1 .

Let d, d E R 0 , such that d > 0, d > 0, and d < d. The following constraint specifies the set of

executions of SRMI in which the transmission latency between any two hosts h, h' E H, h 0 h' is

bounded from below and above by d and d, respectively.

Constraint 4.1 (Bounded Multicast Transmission Latency) Let a be any admissible timed
execution of SRM1 and h, h' be any two distinct hosts in H. The transmission latency incurred by

any packet multicast using the IP multicast service by h and received by h' in a lies in the interval

[d, d]; that is, if p E PIPMCAST-CLIENT is a packet multicast by h in a, then the time elapsing from
the time of occurrence of the action msendh(p) to that of any action mrecvh'(p) lies in the interval
[d,d].

The following constraint specifies the set of executions of SRM1 in which the fate of any packet
transmitted using the IP multicast service is resolved within d time units.

Constraint 4.2 (Bounded Multicast Transmission Resolution) Let a be any admissible ex-
ecution of SRM1 containing the discrete transition (Ur, U'), for u,u' G states(SRMI), p E

PIPMCAST-CLIENT, sP = source(p), and 7r = msend8,(p). Then, for all h E u[IPMCAST].members, h f
sp, either a crashh, mleaveh, mrecvh(p), or mdrop(p, Hd), for Hd C H, h E Hd, action occurs no
later than d time units after the particular occurrence of the discrete transition (u, , u') in a.

The following constraint specifies the set of executions of SRMI in which the inter-host distance

estimates of any host always lie in the interval [d,]. The satisfaction of this constraint requires

that DFLT-DIST E [d,a].

116

Constraint 4.3 (Bounded Inter-host Distance Estimates) Let a be any admissible timed

execution of SRM1 . For any state u of SRM1 in a, the inter-host distance estimates of the

recovery component of each reliable multicast process of SRM1 lie in the interval [d,d]; that is,
u[SRM-RECh.dist?(h') E [d,a], for all h,h' E H,h 0 h'.

Letting DET-BOUND E R 0 , such that d < DET-BOUND, the following constraint specifies the set of

executions of SRMI in which the delay in detecting packet losses is bounded by DET-BOUND.

Constraint 4.4 (Bounded Detection Latency) Let a be any admissible timed execution of

SRMI. Let p G PRM-CLIENT be any packet transmitted in a, id(p) = (si), and h C H, h sp.

Moreover, let u be any state of SRM1 in a such that a.trans-time(p) + DET-BOUND < u.now.

Then, if id(p) G u[SRM-REChI.expected(sp), then either id(p) E u[SRM-RECh].archived-pkts?(sp)

or id(p) E u[SRM-RECh .scheduled-rqsts?.

Let timely-aexecs(SRMI), for A E R 0 , be the set of all admissible timed executions of SRMJ

in aexecs(SRMr) that satisfy Constraints 4.1, 4.2, 4.3, and 4.4. Let timely-attraces(SRMI) be

the traces of all the executions of SRMI in timely-aexecs(SRMI). Let timely-aexecsk(SRMI),
for k E N+, be the subset of aeXecsk(SRMI) comprised of all admissible timed executions of

SRMI that satisfy Constraints 4.1, 4.2, 4.3, and 4.4; that is, for k E N+, timely-aexecsk(SRMI) =

aeXecsk(SRMI) n timely-aexecs(SRM1). Moreover, let timely-attracesk(SRMI) be the traces of all

executions of SRMj in timely-aeXecsk(SRMI).

The following two constraints specify the set of executions of SRMI in which none of the hosts

either crash or leave the reliable multicast group, respectively.

Constraint 4.5 (No Crashes) Let a be any admissible timed execution of SRM1 . None of the

hosts crash in a; that is, for any h E H, no crashh actions occur in a.

Constraint 4.6 (No Leaves) Let a be any admissible timed execution of SRM1 . None of the

hosts leave the reliable multicast group in a; that is, for any h E H, no rm-leaveh actions occur

in a.

Let recoverable-aexecs(SRMI) be the set of all admissible timed executions of

SRMI in aexecs(SRMI) that satisfy Constraints 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6.
Let recoverable-attraces(SRMI) be the traces of all the executions of SRMI in
recoverable-aexecs(SRMI). Let recoverable-aexecsk(SRMI), for k C N+, be the

subset of aeXecsk(SRMI) comprised of all admissible timed executions of SRMI

that satisfy Constraints 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6; that is, for k E N+,
recoverable-aexecsk (SRMI) = aeXecsk(SRMI) n recoverable-aexecs (SRMI). Moreover, let

recoverable-attracesk(SRMI) be the traces of all executions of SRMI in recoverable-aeXecsk(SRMI).

The following constraint specifies the set of executions of SRMj in which the source of each packet
transmitted does not crash and remains a member of the reliable multicast group for at least

AL E R 0 time units past the transmission of the given packet. Thus, each source is capable of
replying to retransmission requests for at least AL time units past each packet's transmission time.

The parameter AL is presumed to correspond to the upper bound on the transmission latency of

any packet transmitted within an admissible timed execution of SRMI that satisfies this constraint.

Constraint 4.7 (AL-Source Recoverable) Let AL E R 0 and a be any admissible timed

execution of SPRM 1 . For any packet p E PRM-CLIENT transmitted in a, the source h E H of p

117

neither crashes nor leaves the reliable multicast group for at least AL time units past the point
in time p is transmitted; that is, for any discrete transition (U, ru'), for u, u' E states(SRMI),
h c H, p G PRM-CLIENT, and 7r = rm-sendh(p), and the earliest state u" E states(SRMI) in a, such
that u <' u" and u.now + AL < U".now, it is the case that the timed execution fragment ano" of

a leading from u to u" contains neither crashh nor rm-leaveh actions.

Let AL-src-recoverable-aexecs(SRMI), for some AL E R O, be the set of all admissible timed

executions of SRM1 in aexecs(SRMI) that satisfy Constraints 4.1, 4.2, 4.3, 4.4, and 4.7, for
some AL E R 0 . Let AL-src-recoverable-attraces(SRMI) be the traces of all the executions

of SRM1 in AL-src-recoverable-aexecs(SRMI). Let AL -src-recoverable-aexecsk (S RMI), for k C
N+, be the subset of aexecsk(SRMI) comprised of all admissible timed executions of SRMI
that satisfy Constraints 4.1, 4.2, 4.3, 4.4, and 4.7, for some AL E R>0 ; that is, for k C
N+, AL -src-recoverable-aexecsk (SRMI) = aexecsk(SRMj) n AL-src-recoverable-aexecs (SRMI).
Moreover, let AL-src-recoverable-attracesk(SRMI) be the traces of all executions of SRM1 in

AL-src-recoverable-aexecsk(SRM1).

Lemma 4.13 For any AL E Iko and k E N, it is the case that:

1. recoverable-aexecs (SRM1) C AL -src-recoverable-aexecs (SRMI) and

2. recoverable-aexecsk (SRM1) C AL -src-recoverable-aexecsk (S RMI).

Proof: Follows directly from the definitions of the admissible timed execution sets of SRMI
recoverable-aexecs (SRMI), AL -src-recoverable-aexecs (SRMi), recoverable-aexecsk (SRM1), and

AL-src-recoverable-aexecsk(SRMI), for AL E R 0 and k E N. 71

Lemma 4.14 For any AL E I 0 and k E N, it is the case that:

1. recoverable-attraces (SRM1) C AL -src-recoverable-attraces (SRMI) and

2. recoverable-attraces k (S RM1) C AL -src-recoverable-attracesk (SRMI).

Proof: Follows directly from Lemma 4.13. El

The following constraint specifies the executions of SRMI in which, when any packet p is detected

as missing by any host h, there exists another host h' that has either sent or received the packet

and is capable of retransmitting it for at least AR c I0o time units past the point in time h detects

the loss of p; that is, h' remains a member of the reliable multicast group for AR time units past
the point in time h detects the loss of p. The parameter AR is presumed to correspond to the delay
in recovering each packet; that is, the time elapsing from the point in time the loss of a packet is
detected and a request for the given packet is scheduled, to the point in time the given packet is
received and delivered to the client.

Constraint 4.8 (AR-Recoverable) Let AR G R 0 and a be any admissible timed execution of
SRMI. Let h,s E Hh # s, i E N, and (u,7r,u') be any discrete transition of SRMI in a, for
Uu' states(SRMI) and r E acts(SRM1), such that (si) u[SRM-REChl.scheduled-rqsts? (s)
and (s,i) G U'[SRM-REChJ.scheduled-rqsts? (s). Moreover, let u" e states(SRMi) be the earliest
state in a such that U'.now +AR < u".now and au'w" be the timed execution fragment of a leading

from a' to u". Then, there exists h' c Hh' : h such that (s,i) E u'[SlRM-RECh' .delivered(s) and
the timed execution fragment aufut contains neither crashh, nor rm-leaveh, actions.

118

Let AR-recoverable-aexecs(SRMI), for some AR E R 0 , be the set of all admissible timed

executions of SRMI in aexecs(SRMI) that satisfy Constraints 4.1, 4.2, 4.3, 4.4, and 4.8, for some

AR E R 0 . Let AR-recoverable-attraces(SRMI) be the traces of all the executions of SRMI in

AR-recoverable-aexecs(SRMI). Let AR-recoverable-aexecsk(SRMI), for k E N+, be the subset of

aexecsk(SRMI) comprised of all admissible timed executions of SRMI that satisfy Constraints 4.1,
4.2, 4.3, 4.4, and 4.8, for some AR c R>0 ; that is, for k E N+, AR-recoverable-aexecsk(SRM1)

aexecsk(SRMI) n AR-recoverable-aexecs(S RMI). Moreover, let AR-recoverable-attracesk(SRM I)
be the traces of all executions of SRMI in AR-recoverable-aexecsk(SRMI).

Lemma 4.15 For any AR E R; 0 and k E N, it is the case that:

1. recoverable-aexecs (SRM1) C AR-recoverable-aexecs (SRMI) and

2. recoverable-aexecsk (S RM1) C AR-recoverable-aexecsk (S RM).

Proof: Follows directly from the definitions of the admissible timed execution sets of SRMI

recoverable-aexecs (SRM1), AR-recoverable-aexecs (S RMI), recoverable-aexecsk (S RMI), and

AR-recoverable-aexecsk(SRMI), for AR C R 0 and k E N. EJ

Lemma 4.16 For any AR G R 0 and k G N, it is the case that:

1. recoverable-attraces (S RM1) C AR -recoverable-attraces (S RMI) and

2. recoverable-attraces k (SRM1) C AR-recoverable-attraces k (SRM1).

Proof: Follows directly from Lemma 4.15. El

Let a' be any timed execution fragment of SRMI that contains the transmission of a packet

p E PRM-CLIENT and in which some host h E H neither crashes nor leaves the reliable multicast

group; that is, a' contains the action rm-send,(p), for sp = source(p), and a' contains neither

crashh nor rm-leaveh actions, for some h e H. We say that the host h detects the loss of p in

a' if it schedules a request for p E PRM-CLIENT in a'. If the host h detects the loss of p in a',
then we let a'.det-timeh(p) denote the point in time in a' at which h detects the loss of p. We
let a'.det-latencyh(p) denote the loss detection latency of p for h in a'; that is, the time elapsing
from the time p is transmitted to the time the host h detects the loss of p in a'. Supposing that h

receives p is a' following the point in time at which h detects the loss of p, we let a'.rec-latencyh(p)
denote the loss recovery latency of p for h in a'; that is, the time elapsing from the time the host

h detects the loss of p to the time it receives p in a'.

When a host h E H schedules a request for p E PRM-CLIENT with a back-off of k - 1, for any k E N+,
we say that it initiates a k-th recovery round for p. Each recovery round (except the first) also

initiates a back-off abstinence period. Any request for p received during this back-off abstinence
period is discarded. If the packet p is received while a scheduled request for p by h is awaiting
transmission, then the scheduled request is canceled. Once the back-off abstinence period expires,
either the reception of a request for p or the transmission of the scheduled request for p by h
initiates the k + 1-st recovery round of h for p. In this case, we let the k-th round request of h for p
be the request for p upon whose reception or transmission the host h initiates the k + 1-st recovery
round for p. Moreover, we define the completion time of the k-th recovery round for p of h to be

the point in time at which h either receives p or initiates its k + 1-st recovery round for p.

Suppose that a host h' E H receives the k-th round request of h for p while it is a member of the

reliable multicast group and after archiving the packet p. When h' receives this request, either i) a

reply for p is already scheduled, ii) a reply for p is already pending, or iii) a reply for p is neither

119

scheduled, nor pending. When a reply for p is already scheduled, h's request for p is discarded. In
this case, the reply that is already scheduled at h' is considered to be the reply pertaining to the
k-th round request of h for p. When a reply for p is already pending, h's request for p is discarded.
In this case, the reply that is pending at h' is considered to be the reply pertaining to the k-th
round request of h for p. When a reply for p is neither scheduled, nor pending, h' schedules a
reply for p. In this case, the reply that is either received or transmitted by h' and that results in
the cancellation of the reply scheduled by h' for p is considered to be h"s reply to the k-th round
request of h for p.

Preliminary Lemmas

Lemma 4.17 Let a be any admissible timed execution of SRM1 that satisfies Constraint 4.1
and contains the occurrence of a discrete transition (u, 7, u'), for u, u' c states(SRMI), h C H,
p E PIPMCAST-CLIENT, and 7 mrecvh(p). Then, any mrecvh'(p) action, for h' C H, in a occurs no
earlier and no later than d - d time units from the discrete transition (u, , u') in a.

Proof: Let (w, 7r, w'), for w, w' c states(SRMI), p E PIPMCAST-CLIENT, Sp = source(p), and
7r = msend (p), be the discrete transition in a involving the transmission of p. Constraint 4.1
implies that the time elapsing from the time of occurrence of the action msend,, (p) to that of any
action mrecvh' (p), for h" E H, h" : sp, lies in the interval [d, d]. Thus, any two such actions that
occur in a are separated in time by at most d - d time units. El

Lemma 4.18 Let a be any admissible timed execution of SRM1 that contains the transmission
of a packet p E PRM-CLIENT. For any state u C states(SRMI) in a, if u.trans-time(p) #I, then
u. trans-time (p) = a. trans-time (p).

Proof: The only action that sets the variable trans-time(p) is the action rm-send,(p), for
SP = source(p). By Lemma 3.2, the action rm-sends,(p) occurs only once in a. Let (w, 7r, w'),
for w, w' E states(SRMI), p EPIPMCAST-CLIENT, Sp = source(p), and r = msends,(p), be the discrete
transition in a involving the transmission of p. By the definition of a.trans-time(p), it follows that
a.trans-time(p) = w.now. The action rm-sends,(p) sets the variable trans-time(p) to the value of
now. It follows that w'.trans-time(p) = a.trans-time(p).

Since the action rm-sendp (p) occurs in a only once, it follows that, for any w_, w' E a, such
that w_ <c, w and w' <, w', it is the case that w-.trans-time(p) =1 and w'.trans-time(p) =
w'.trans-time(p). Since w'.trans-time(p) = a.trans-time(p), it follows that w'.trans-time(p) =
a.trans-time(p). 0

Lemma 4.19 Let h, h' C H, a E aexecs(SRMI), u, u' E states(SRMI) be any states in a,
such that u <C u', and acu' be the finite execution fragment of a leading from u to u'. If
u[SRM-REChl.expected(h') # 0 and a, contains neither crashh nor rm-leaveh actions, then
it is the case that u[SRM-REChl.expected(h') = u'[SRM-REChl.expected(h').

Proof: Suppose that u[SRM-REChl-expected(h') : 0 and auu, contains neither crashh nor
rm-leaveh actions. The proof is by induction on the length n C N of auu,. For the base case,
consider a finite execution fragment aus, of length n = 0. Since a = u', it trivially follows that
u[SRM-REChl expected (h') = u'[SRM-REChl . expected (h').

For the inductive step, consider an execution fragment auu, of length n = k +1. Let ak be the prefix
of ao', involving the first k steps and uk = ak.lstate. Suppose that u[SRM-REChl expected(h') z 0

120

and auu, contains neither crashh nor rm-leaveh actions. The induction hypothesis implies that

u[SRM-RECh]. expected (h') = Uk [SRM-RECh. expected (h').

Now, consider the step from Uk to u'. The only actions of SRM-RECh that may affect the vari-

able SRM-RECh.expected(h') are the actions crashh, rm-leaveh, rm-sendh(p), and rm-recvh(p),
for p E PRM-CLIENT- Since auu contains neither crashh nor rm-leaveh actions, the step from

Uk to u' is neither a crashh nor a rm-leaveh action. The action rm-sendh(p) affects the vari-

able SRM-RECh.expected(h') only when h' = h = source(p) and SRM-RECh.expected(h') =

0. The action rm-recvh(p) affects the variable SRM-RECh.expected(h') only when h' =
source(p) and SRM-RECh.expected(h') = 0. Since u[SRM-REChl.expected(h') f 0, the step

from Uk to u' does not affect the variable SRM-RECh.expected(h'). Thus, it is the case that

Uk [SRM-REChl. expected (h') = u'[SRM-RECh]. expected (h'). Since u[SRM-RECh. expected (h')

Uk [SRM-REChl. expected (h') and Uk[SRM-REChI. expected (h') = t'[SRM-RECh]. expected (h'), it fol-
lows that u[SRM-REChl. expected (h') = u'[SRM-REChl. expected (h'). D

Lemma 4.20 Let h, h' E H, a G aexecs (SRMI), u, u' E states (SRMi) be any states in a, such

that u <0 u', and au,' be the execution fragment of a leading from u to u'. If ace& contains

neither crashh nor rm-leaveh actions, then it is the case that u[SRM-RECh].expected(h') C
u'[SRM-RECh]. expected (h').

Proof: Suppose that au, contains neither crashh nor rm-leaveh actions. If it is the case

that u[SRM-REChl.expected(h') = 0, then it trivially follows that u[SRM-REChl.expected(h') C
u'[SRM-REChl.expected(h'). Otherwise, if u[SRM-RECh].expected(h') : 0, then Lemma 4.19
implies that u[SRM-RECh].expected(h') = u'[SRM-RECh].expected(h'). It follows that

u[SRM-REChl. expected (h') C u'[SRM-REChl. expected (h'). 0

Lemma 4.21 Let h, h' E H, a E aexecs(SRMI), u,u' e states(SRMI) be any states in a, such

that u a u', and auu' be the finite execution fragment of a leading from u to u'. If auu' contains

neither crashh nor rm-leaveh actions, then it is the case that u[SRM-REChl.delivered(h') C
a'[SRM-REChl.delivered(h').

Proof: Suppose that the finite execution fragment au,, contains neither crashh nor rm-leaveh
actions. The fact that u[SRM-REChl.delivered(h') C u'[SRM-REChl.delivered(h') follows by
induction on the length n E N of auu, after recognizing that all the actions, except the actions
crashh and rm-leaveh, may only add elements to the variable SRM-RECh.delivered(h'). E

Lemma 4.22 Let p E PRM-CLIENT and a be any admissible timed execution of SRMj in
timely-aexecs(SRMj) that contains the transmission of p. Let (w,ir,w'), for w,w' E states(SRMI),
SP = source(p), and r = rm-send,(p), be the discrete transition of SRM1 involving the trans-

mission of p using the reliable multicast service. For any states u,u' of SRM1 in a, such that

w' " u 0 u', let aoz' be the timed execution fragment of a leading from u to u'. For any k c N+
and h E H, h f sp, suppose that ana' contains neither crashh nor rm-leaveh actions and h sched-

ules k-th and k + 1-st round requests for p in auut. Let tk, tk+1 E R 0 be the points in time in auu/
at which the host h schedules its k-th and k + 1-st round requests for p, respectively. Then, it is the
case that tk+1 tk + 2 k-1(C1 + C 2)d.

Proof: This follows from the fact that time in the SRM-RECh automaton is not allowed to elapse
past the transmission time of any scheduled request. Constraint 4.3 implies that the k-th round
request is scheduled for transmission no later than tk + 2 k-1 (C1 + C2)d. Thus, if no request is

121

received by h prior to the time at which its k-th round request for p is scheduled for transmission,
then h transmits its k-th round request. Thus, h either sends or receives its k-th round request for
p no later than tk + 2 k-1(01 + C2)d.

Corollary 4.23 Let p E PRM-CLIENT and a be any admissible timed execution of SRMI in
timely-aexecs(SRMj) that contains the transmission of p. Let (w,7r,w'), for w,w' E states(SRMI),
p E PRM-CLIENT, sP = source(p), and 7 = rm-sends,(p), be the discrete transition of SRM1 involving
the transmission of p using the reliable multicast service. For any states u, u' of SRM1 in a, such
that w' <' u C u ', let auu' be the timed execution fragment of a leading from u to u'. For any
k E N+ and h c H, h # sp, suppose that auu' contains neither crashh nor rm-leaveh actions and
contains the discrete transition in which h detects the loss of p. Moreover, suppose that, following
the detection of p in ozu,, h schedules a k + 1-st round request for p in auu,. Let tk+1 G R>0 be the
point in time in aou' at which the host h schedules its k + 1-st round request for p. Then, it is the
case that tk+1 < au,.det-timeh(p) + (2 k - 1)(C1 + C 2)d.

Proof: Follows from Lemma 4.22 and the fact that h detects the loss of p at the point in time
when it first schedules a request for p. According to the SRM-RECh automaton, the first request
scheduled for a packet is either a 1-st or 2-nd round request for the given packet. E

Lemma 4.24 Let p E PRM-CLIENT and a be any admissible timed execution of SRM1 in
timely-aexecs(SRM1) that contains the transmission of p. Let (w,ir,w'), for w,w' E states(SRMI),
sP = source(p), and w = rm-send,(p), be the discrete transition of SRM1 involving the trans-
mission of p using the reliable multicast service. For any states u,u' of SRM1 in a, such that
w' <' u a u', let ana' be the timed execution fragment of a leading from u to u'. For any k E N+
and h E H, h 7 sp, suppose that auu' contains neither crashh nor rm-leaveh actions and h sched-
ules k-th and k + 1-st round requests for p in auu,. Let tk, tk+1 E R>0 be the points in time in auu,
at which the host h schedules its k-th and k + 1-st round requests for p, respectively. Then, it is the
case that tk + 2 k~1C3d < tk+1-

Proof: Constraint 4.3 implies that the k-th round back-off abstinence period expires no earlier
than 2k- 1 C3 d time units past tk; that is, no earlier than tk + 2k-1C 3d in a. The k-th round request
of h for p is scheduled for transmission for a point in time no earlier than tk + 2k-ICId. Thus,
Assumption 4.1 implies that the k-th round request is scheduled for transmission at a point in time
that succeeds tk + 2k-1C 3 d in a.

The host h schedules its k + 1-st round request for p when it either sends or receives its k-
th round request for p; that is, upon the occurrence of either a send-rqsth(s, i) action, such
that (s,i) = id(p), or a process-pkth(pkt) action, for pkt E PSRM, such that id(pkt) = id(p)
and type(pkt) = RQST. In the case of a send-rqsth(si) action, Invariant 4.20 implies that if
the send-rqsth(s, i) action is enabled, then a request for p is not pending. In the case of a
process-pkth(pkt) action, the effects of the action process-pkth(pkt) imply that the k-th round
request for p is backed-off only while a request for p is not pending.

It follows that the point in time at which the host h either sends or receives its k-th round request
for p succeeds the expiration time of the back-off abstinence period of the k-th round request of h
for p; that is, tk + 2k-1C 3 d < tk+1- 0

Let kqst = [log 2 (d - d) - log 2 (C3 d)]. The following lemma states that, under Constraints 4.1, 4.2,
4.3, and 4.4, k*qst is the number of requests that must be scheduled before the back-off abstinence
periods become large enough to ensure that the request pertaining to one round is distinct from the

122

Figure 4.19 Timing Diagram Demonstrating Non-distinct Consecutive Round Requests

tk+1 tk+1 + 2kC3dhS tk+1 + 2k Cldhs tk+1 + 2k(C 1 + C2)dhs

I I tjk + 2 1C1dh tk + 2 kC +C2)dh,, tk+2

Requestor

h
Timeline

Requestor h' Timeline

I Request Interval Back-off Abstinence Interval Reply Interval Reply Abstinence Interval

request pertaining to the next (and, consequently, any following) round. Consider for instance the

timing diagram depicted in Figure 4.19. The figure portrays the scenario in which a request from

h' is received in duplicate by h. Thus, the requests pertaining to the k-th and k + 1-st recovery

rounds are in fact a single request that is received by h in duplicate. Lemma 4.17 implies that

duplicate requests may be received within at most a - d time units. Since requests received during

abstinence periods are discarded, k*st is the number of requests that must be scheduled before the

back-off abstinence periods become large enough to ensure that any duplicates of a round's request

are received prior to the expiration time of the particular round's back-off abstinence period.

Lemma 4.25 Let p E PRM-CLIENT and a be any admissible timed execution of SRMJ in

timely-aexecs(SRMI) that contains the transmission of p. Let (w, r, w'), for w, w' E states(S RMI),
sP = source(p), and 7r = rm-sends,(p), be the discrete transition of SRM1 in a involving the trans-

mission of p using the reliable multicast service. For any states u, u' of SRM 1 in a, such that w' <,

u < u', let auu be the timed execution fragment of a leading from u to u'. Moreover, let h G H be

any member of the reliable multicast group in u, such that id(p) G u[SRM-RECh].expected(sp) and

id(p) V u[SRM-RECh].scheduled-rqsts?.

For k C N+, k ;> k*,,, suppose that au,, contains neither crashh nor rm-leaveh actions, h

schedules k-th and k + 1-st round requests for p in auu', and h either sends or receives its k-th

and k + 1-st round requests for p at the points in time tk+1,tk+2 CI RI1 in auu,.

Then, the k-th and k + 1-st round requests of h for p are distinct.

Proof: It suffices to show that the back-off abstinence period pertaining to the k-th round request

of h for p expires no earlier than the latest point in time h may receive any duplicate of the request

pertaining to its k-th round request for p.

Let tk, tk+1 E R 0 be the points in time in a at which h schedules its k-th and k + 1-st round

requests for p. From Lemma 4.24, the back-off abstinence period pertaining to k-th round request

of h for p expires no earlier than tk+1 + 2k C3d. From Lemma 4.17, h may receive a duplicate of its

k-th round request for p no later than tk+1 - (d - d).

Since k*,,s = [log 2(d - d) - log 2 (C34)] and k > krqst, it follows that tk+1 + (- d) tk+1 + 2k C 3d.

Since h either sends or receives its k + 1-st round request for p after the point in time tk+1 + 2k C 3d

and h may receive a duplicate of its k-th round request for p no later than tk+1 + (d - d), it follows

that the requests pertaining to the k-th and k + 1-st round requests of h for p are distinct. 0

123

Lemma 4.26 Let p E PRM-CLIENT and a be any admissible timed execution of SRM1 in
timely-aexecs(SRMI) that contains the transmission of p. Let (w, 7r, w'), for w,w' G states(S RMI),
sP = source(p), and r = rm-send,(p), be the discrete transition of SRM1 involving the transmis-
sion of p using the reliable multicast service. For any states u, u' of SRM1 in a, such that w' <,
u <0 u', let a,,' be the timed execution fragment of a leading from u to u'. For any k G N+ and
h, h' E H, h :A h', suppose that u[SRM-MEMh].status = member, u[S RM-MEMhi -status = member,
auu, contains neither crashh, rm-leaveh, crashh', nor rm-leavehi actions, h schedules k-th and
k + 1-st round requests for the packet p in auu,, h either sends or receives its k-th round request
for p and schedules its k + 1-st round request for p at the point in time tk+1 E R in auu/, and

tk+1 + d < u'.now. Then, h' may receive the k-th round request of h for p no later than tk+1 + d
in a.

Proof: The host h either sends or receives its k-th round request for p and schedules its k + 1-
st round request for p upon the occurrence of either a send-rqsth(s,i) or a process-pkth(pkt)
action, where id(pkt) = id(p) and type(pkt) = RQST. We consider there two cases separately.

First, in the case of a send-rqsth(si) action, Constraints 4.5 and 4.6 and Lemmas 4.7 and 4.8
imply that the send-rqsth(s,Zi) action is instantaneously followed by a msendh(pkt') action, for
pkt' E PIPMCAST-CLIENT, such that id(strip(pkt')) = id(p) and type (strip(pkt')) = RQST. Furthermore,
Constraint 4.1 implies that h' receives this request within at most a time units.

Second, in the case of a process-pkth(pkt) action, a mrecvh(pkt') action, for pkt' E PIPMCAST-CLIENT,

such that pkt = strip(pkt'), instantaneously precedes process-pkth(pkt). Lemma 4.17 implies
that h' may only receive this request within at most d - d time units from the occurrence of the
mrecvh(pkt') action. El

Lemma 4.27 Let p E PRM-CLIENT and a be any admissible timed execution of SRM1 in
timely-aexecs(SRMI) that contains the transmission of p. Let (w,7r,w'), for w,w' E states(S RM1),
S= source(p), and 7r = rm-sends,(p), be the discrete transition of SRM1 involving the trans-
mission of p using the reliable multicast service. For any states u,u' of SRM1 in a, such that
w' <c u <' u', let anuu be the timed execution fragment of a leading from u to u'. For any k E N+
and h, h' E H, h # h', suppose that u[SRM-MEMh.status = member, u[SR.M-MEMhI.status =
member, id(p) c u[SRM-RECh'].archived-pkts?, auu, contains neither crashh, rm-leaveh, crashh',
nor rm-leaveh' actions, h' receives a request for p from h at time t' E R 0 in anuu, and
t' + (D 1 + D 2)d < u'.now. Then, the reply of h' pertaining to this particular request of h for
p is either sent or received by h' no later than t' + (D 1 + D 2)d in a.

Proof: Constraint 4.3 implies a reply is scheduled for transmission no later than (D1 + D 2)d time
units past its scheduling time. When h' receives the request of h for p, a reply for p is either already
scheduled, already pending, or neither scheduled nor pending. We consider each of these scenarios
separately.

First, if a reply for p is already scheduled, its transmission time is no later than t' + (D 1 + D 2)d in
a. Thus, if either an original transmission or a reply for p is not received by h' by the scheduled
transmission time of this reply, then the host h' transmits this reply. It follows that the reply of
h' pertaining to the particular request of h for p is either sent or received by h' no later than the
point in time t' + (D 1 + D 2)d in a.

Second, if a reply for p is already pending, then the reply of h' pertaining to the particular request
of h for p has already been either sent or received; that is, the reply of h' pertaining to the particular
request of h for p has been either sent or received by h' no later than t'.

124

Finally, if a reply for p is neither scheduled nor pending, then the reply of h' pertaining to the

particular request of h for p is scheduled for no later than t' + (D1 + D 2)d. In either scenario, the

reply of h' pertaining to the particular request of h for p is either sent or received by h' no later

than t' + (D 1 + D 2)d in a. 0

Lemma 4.28 Let p c PRM-CLIENT and a be any admissible timed execution of SRM1 in

timely-aexecs(SRMI) that contains the transmission of p. Let (w,,,w'), for w,w' E states(SRMI),
sP source(p), and ir = rm-sends,(p), be the discrete transition of SRM1 involving the trans-

mission of p using the reliable multicast service. For any states u, u' of SRM1 in a, such that

w' <' u ' u', let auu' be the timed execution fragment of a leading from u to u'. For any k E N+
and hh' c Hh f h', suppose that u[SRM-MEMh.status = member, u[SRM-MEMh'].status =

member, id(p) c u[SRM-RECh'l.archived-pkts?, auu' contains neither crashh, rm-leaveh, crashh',
nor rm-leaveh, actions, h' receives a request for p from h at time t' E R 0 in auui, and

t' + (D 1 + D 2)d + d - d + D 3d < u'.now. Then, the reply abstinence period of the reply of h'

pertaining to this particular request of h for p expires no later than t' + (D 1 + D 2)d + d - d + D 3d
in a.

Proof: Lemma 4.27 implies that the reply period pertaining to the particular request of h for p
expires no later than the point in time t' + (D1 + D 2)d. Thus, the reply of h' pertaining to the

particular request of h for p may be either sent or received no later than t' + (D 1 + D 2)d.

First, consider the case in which h' sends a reply pertaining to the particular request of h for p.

Such a reply is sent no later than t'+ (D 1 + D 2)d. Constraint 4.3 implies that the reply abstinence

period corresponding to such a reply expires no later than t' + (D 1 + D 2 + D 3)d.

Second, consider the case in which h' receives a reply pertaining to the particular request of h for

p prior to transmitting its own reply. Such a reply is received by h' no later than t' + (D 1 + D 2)d.
Lemma 4.17 implies that any duplicates of this reply may be received within at most a - d time

units. Thus, such duplicates are received by h' no later than t'+ (Di +D 2)d+d - d. Thus, the reply
abstinence period pertaining to any such duplicate expires no later than t'+(D1 +D 2)d+d-d+D3d.

Let k ep= [log2 [(D1 + D2 + D3 + 3)d - 2d1 - log 2 (C3d)]. The following lemma states that, under

Constraints 4.1, 4.2, 4.3, and 4.4, kepi is the number of requests that must be scheduled before the

back-off abstinence periods become large enough to ensure that the reply pertaining to a particular

round is distinct from that pertaining to the next (and, consequently, any following) round.

Lemma 4.29 Let p E PRM-CLIENT and a be any admissible timed execution of SRM1 in

timely-aexecs(SRMI) that contains the transmission of p. Let (w,, w'), for w,w' E states(SRMI),
SP = source(p), and 7r = rm-send,(p), be the discrete transition of SRM1 in a involving

the transmission of p using the reliable multicast service. For any states u, u' of SRM1 in

a, such that w' <C u C u ', let auu' be the timed execution fragment of a leading from

u to u'. Moreover, let q,r C H,q : r be any members of the reliable multicast group in

u, such that id(p) E u[SRM-RECql.expected(sp), id(p) 0 u[SRM-RECql.scheduled-rqsts?, and

id(p) E u[SRM-RECr -delivered(sp).

For k e N+,k > k*,,, suppose that au,, contains neither crashq, rm-leaveq, crashr, nor

rm-leave, actions, q schedules k-th, k + 1-st, and k + 2nd round requests for the packet p in

auu,, q either sends or receives its k-th and k + 1-st round requests for p at the points in time

tk+1,tk+2 CE R O in ozu,, r receives the k-th and k + 1-st round requests of q for p in aeuu, and r
either sends or receives the replies pertaining to the k-th and k + 1-st round requests of q for p in

125

Figure 4.20 Timing Diagram Demonstrating Non-distinct Consecutive Round Replies

Ik+1 : tk+1 + 2kC 3dqs

I I
t
k + 2 -Cjdqs I tk + 2 k1 + C2)dqs

Requestor q Timeline

Requestor q' Timeline tqI

Replier r Timeline
+

Ster R + D3R

Replier r' Timeline tri

I lRequest Interval $ Back-off Abstinence Interval NEReply Interval M Reply Abstinence Interval

Then, the replies of r pertaining to the k-th and k + 1-st round requests of q for p are distinct.

Proof: It suffices to show that the reply abstinence period pertaining to r's reply to the k-th

round request of q for p expires prior to the time at which r receives the k + 1-st round request of

q for p.

Let tk, tk+1 E R 0 be the points in time in a at which q schedules its k-th and k+1-st round requests

for p. From Lemma 4.26, r receives the k-th round request of q for p no later than tk+1 + d. From

Lemma 4.28, the abstinence period of the reply of q to the k-th round request of q for p expires no

later than tk+1 + d + (D1 + D2)d + (d - d) + D3A.

From Lemma 4.24, q either sends or receives its k + 1-st round request after the point in time

tk+1+2kC3 d. From Lemma 4.17, r receives this request after the point in time tk+1+ 2 kC 3d-(dd).

Since k)rp = [log 2[(DI + D2 + D3 + 3)a - 2d] - log 2(C3d)] and k ;> k*, it follows that

tk+1 + d+ (D1 + D2)d+(d - d) +D 3A tk+ + 2kC 3 d- (d-d).

Since r receives the k + 1-st round request of q for p after the point in time tk+1 + 2kC 3d - 2 + d

and tk+1 + + (D 1 + D 2)2 + d - d + D 3d < tk+1 + 2kC3d - d + d, it follows that r receives the

k + 1-st round request of q for p after the expiration of the abstinence period of the reply of r to

the k-th round request of q for p. It follows that the replies of r to the k-th and k + 1-st round

requests of q for p are distinct. El

Let k* = max(krqt, k, J) = [log 2 [(Di + D2 + D3 + 3)d - 2d] - log 2 (C3d)l and REC-BOUND(k) =

[(2 k - 1)(C1 + C2) + Di + D 2 + 2]a, for k E N+. The following lemma states that, for k E N+,

the recovery of any packet in an admissible execution a E timely-aexecsk(SRMI) involves at most

126

k* + k recovery rounds. Following the k*-th recovery round, the requests and replies of any host's
recovery rounds are distinct. Thus, the k*-th and each subsequent recovery round may fail only
due to at least one packet drop; that is, the drop of either the particular round's request or the

particular round's reply. Since the number of packet drops pertaining to the recovery of any packet
in a is at most k, it follows that at most k* + k recovery rounds are needed to recover any packet

in a.

Lemma 4.30 Let k E N+, p E PRM-CLIENT, and a be any admissible timed execution of

SRM1 in timely-aexecsk(SRMI) that contains the transmission of p. Let (w,w,w'), for w,w' E
states(SRM1), sp = source(p), and r = rm-sends,(p), be the discrete transition of SRM1 in a
involving the transmission of p using the reliable multicast service. Suppose that the host h E H

schedules a request for p following the transmission of p in a. Let u E states(SRMI) be the first
state in a such that id(p) E u[SRM-RECh.scheduled-rqsts?(sp), u' E states(SRMI) be any state in
a such that u.now + REC-BOUND(k* + k) < u'.now, and auu' be the timed execution fragment of a
leading from u to u'. Suppose that auu' contains neither crashh nor rm-leaveh actions, there exists

a host h' E Hh' - h, such that id(p) E u[SRM-RECh'1.delivered(sp), and auu, contains neither
crashh', nor rm-leaveh' actions. Then, it is the case that id(p) c u'[SRM-REChI.delivered(sp).

Proof: Since a E timely-aexecsk(SRMI), it contains at most k packet drops pertaining to the
transmission and recovery of p. Thus, it follows that at most k packet drops may occur during
the recovery of p by h. Lemmas 4.5 and 4.6 imply that following the state a in a, the host h
continues initiating recovery rounds for p until it is recovered. We proceed by showing that the
host h recovers p by the completion time of its k* + k-st recovery round for p.

Consider the interaction of h and h' pertaining to h's recovery of p. From Lemma 4.29, the replies
of h' to the k*-th and any subsequent round requests of h for p are distinct. Thus, the k*-th and all
subsequent recovery rounds of h for p may fail due to the loss of either the round's request or the
round's reply; that is, the k*-th and each subsequent recovery rounds of h for p account for at least
one packet drop. It follows that at most k* + k recovery rounds are required for h to successfully
recover p.

Corollary 4.23, Lemma 4.27, and Constraint 4.1 imply that h completes its k* + k-st recovery round
no later than REC-BOUND(k* + k) time units past the point in time at which it schedules its first
request for p. Since u is the first state in a such that id(p) E SRM-RECh-scheduled-rqsts?(sp) and
u.now + REC-BOUND(k* + k) < u'.now, it follows that h receives p prior to u' in a. Lemma 4.21
implies that id(p) E u'[SRM-REChl.delivered(sp). El

Lemma 4.31 Let p E PRM-CLIENT and a be any admissible timed execution of SRM1 in
timely-aexecs(SRM1) that contains the transmission of p. Let (w, r,w'), for w,w' E states(SRM1),
sP = source(p), and 7 = rm-send,(p), be the discrete transition of SRM1 involving the transmis-
sion of p using the reliable multicast service. Let h G H, u, u' be any states of SRM1 in a, such
that w'.now + d < u.now and u <K u', and aeu, be the timed execution fragment of a leading from
u to u'. If id(p) E a'[SRM-RECh.expected(sp), then acu' contains neither crashh nor rm-leaveh
actions.

Proof: Suppose that id(p) E u'[SRM-RECh].expected(sp). Let (sp, i') E
a'[SRM-REChl.expected(sp) be the earliest packet of sp expected by h in a'; that is, for
any i" E N, such that (sp,i") E u'[SRM-RECh]-expected(sp), it is the case that i' < i". Let

p' E PRM-CLIENT be the packet transmitted in a such that id(p') = (sr, i').

Let (V, r,7v'), for v,v' E states(SRMI), and w = acts(SRMI), be the latest discrete tran-
sition of SRM1 in a prior to state u' in which the variable SRM-RECh.expected(sp) is set

127

from 0 to the value u'[SRM-REChl.expected(sp); that is, v[SRM-REChl.expected(sp) = 0 and
v'[SRM-REChl.expected(sp) = u'[SRM-REChj.expected(sp) and there is no discrete transition fol-

lowing (v, -, v') and preceding u' in a that sets the variable SRM-RECh.expected(sp) to a set other

than 0.

Since the actions of SRMI may either reinitialize the variable SRM-RECh.expected(sp), or set its
value from the value 0 to a set other than 0, it follows that the timed execution fragment av/'/ of
a leading from v' to u' contains neither crashh nor rm-leaveh actions.

Moreover, since the time passage action does not affect the variable SRM-RECh.expected(sp), it
follows that the action 7r leading from v to v' is not a time passage action. Thus, it is the case that
v.now = '.now. Since only either the original transmission of p' or the reception of the original
transmission of p' may result in setting SRM-RECh-expected(sp) to u[SRM-REChl.expected(sp),
Constraint 4.1 implies that v.now = v'.now < a.trans-time(p') + d. Moreover, Lemma 3.3
and Theorem 4.12 imply that a.trans-time(p') < a.trans-time(p). Since v.now = v'.now <
a.trans-time(p') + d, a.trans-time(p') < a.trans-time(p), and a.trans-time(p) + d < u.now, it
follows that v'.now < u.now. Thus, it follows that v' <, u.

Since v' <C U, u < u ', and av,,, contains neither crashh nor rm-leaveh actions, it follows that

aus, contains neither crashh nor rm-leaveh actions. E

Lemma 4.32 Let p E PRM-CLIENT and a be any admissible timed execution of SRM1 in
timely-aexecs(SRM1) that contains the transmission of p. Let (w, -,w'), for w,w' E states(SRMj),
s= source(p), and i = rm-send,(p), be the discrete transition of SRM1 in a involving the trans-
mission of p using the reliable multicast service. Let h E H, u, u' be any states of SRM1 in a, such

that w'.now + d < u.now and u <C a'. If id(p) E u'[SRM-REChl.expected(sp), then it is the case

that id(p) E u[SRM-REChl. expected (sr).

Proof: Suppose that id(p) c a'[SRM-RECh.expected(sp). Lemma 4.31 implies that the timed
execution fragment aus, of a leading from u to u' contains neither crashh nor rm-leaveh actions.

Thus, Lemma 4.19 implies that u[SRM-REChI.expected(sp) = u'[SRM-RECh.expected(sp). Since
id(p) E u'[SRM-RECh].expected(sp), it follows that id(p) e u[SRM-RECh1.expected(sp). El

Lemma 4.33 Let k E N+, AL = DET-BOUND + REC-BOUND(k* + k), p E PRM-CLIENT, and a be
any admissible timed execution of SRM1 in AL-src-recoverable-aexecsk (SRMI) that contains the
transmission of p. Let (w, 7r,w'), for w,w' C states(SRMI), sp = source(p), and w = rm-send,(p),
be the discrete transition of SRM1 in a involving the transmission of p using the reliable multicast

service. For any state w" of SRM1 in a, such that w'.now + AL < w".now, let a,,' be the timed
execution fragment of a leading from w' to w". If h E w".intended(p), then it is the case that

h G w".completed(p).

Proof: Suppose that h E w".intended(p). Since h E w".intended(p), it follows that id(p) E
W" {S RM-RECh. expected (sr).

Let u E states(SRMI) be the earliest state in a, such that w'.now +a< u.now. Let (u_,v(t),u),
for u- E states(SRM1) and t E R 0 , t > 0, be the discrete transition in a leading to the particular
occurrence of u in a. Since a is the earliest state in a, such that w'.now + d < u.now, it
follows that ua.now K w'.now + d. Let u' E states(SRMI) be the earliest state in a, such that
w'.now + DET-BOUND < u'.now. Let (a',iv(t'), '), for u'_ E states(SRM1) and t' E R 0 , t' > 0, be
the discrete transition in a leading to the particular occurrence of a' in a. Since a' is the earliest

state in a, such that w'.now +DET-BOUND < u'.now, it follows that a'_ .now < w'.now +DET-BOUND.

Since a < DET-BOUND, it follows that ua , a'.

128

Since d < DET-BOUND and id(p) E w"[SRM-RECh].expected(sp), Lemma 4.32 implies
that id(p) E u'[SRM-RECh.expected(sp). Thus, Constraint 4.4 implies that either
id (p) c u'[SRM-REChl.archived-pkts?(sp) or id(p) E u'[SRM-RECh].scheduled-rqsts?.

First, consider the case where id(p) E U'[SRM-REChl.archived-pkts?(sp). Since
id(p) G u'[SRM-REChl. expected (sp), id(p) E u'[SRM-RECh].archived-pkts?(sp), and the
v(t') action affects neither SRM-RECh-expected(sp) nor SRM-RECh.archived-pkts?(sp), it follows
that id(p) C u'_[SRM-RECh .expected(sp) and id(p) E u' [SRM-RECh].archived-pkts?(sp). Since
id(p) E u' [SRM-REChl. expected (sp) and, consequently, u' [SRM-RECh] .expected (sp) : 0,
Invariant 4.2 implies that u' [SRM-RECh.status member. Thus, Invariant 4.4
implies that u' [SRM-RECh .delivered(sp) U U' [SRM-RECh .to-be-delivered?(sp)

u' [SRM-REChi.archived-pkts?(sp). However, from the precondition of
v(t'), it follows that U'_[SRM-REChI.to-be-delivered?(sP) = 0. Since
id(p) C a' [SRM-RECh .arc hived-pkts?(sp), u' [S RM-REChl .delivered(sp) U
u' [SRM-RECh -to-be-delivered? (sP) U_ [SRM-RECh].archived-pkts?(sp), and
u' [SRM-RECh].to-be-delivered?(sp) = 0, it follows that id(p) E u' [SRM-RECh -delivered(sp).
Since v(t') does not affect SRM-RECh.delivered(sp), it follows that id(p) C
u' [SRM-RECh] .delivered (sp).

Moreover, Lemma 4.31 implies that the timed execution fragment ao',, of a leading from u'
to w" contains neither crashh nor rm-leaveh actions. Thus, Lemma 4.21 implies that id(p) C
W"[S RM-REChl .delivered(sp); that is, h E w". completed (p).

Second, consider the case where id(p) E u'[SRM-RECh].scheduled-rqsts?. Let v E states(SRMi)
be the earliest state in a, such that v , u' and for any state v' E states(SRMI) in a, such that
v <a v')', it is the case that id(p) c v'[SRM-RECh].scheduled-rqsts?.

Since the discrete transition leading from u' to u' is a time passage action, which does not affect
the variable SRM-RECh.scheduled-rqsts?, it follows that id(p) E u' [SRM-REChj.scheduled-rqsts?.

Thus, it follows that v <, a'_ . Since u'_ .now < w'.now + DET-BOUND, it follows that v.now <
w'.now + DET-BOUND.

Since for any state v' E states(SRMI) in a, such that v 0 v' 0 u', it is the case that
id(p) C v'[SRM-RECh].scheduled-rqsts? and the crashh and rm-leaveh actions reinitialize the
variable SRM-RECh.scheduled-rqsts?, it follows that the timed execution fragment ao', of a leading
from v to u' contains neither crashh nor rm-leaveh actions.

Thus, since neither avu' nor au'w" contain either crashh or rm-leaveh actions, it follows that avw"
contains neither crashh nor rm-leaveh actions.

Let u" C states(SRMI) be the earliest state in a, such that w'.now + AL < u".now. Let

(u"., v(t"), u"), for u". states(SRMI) and t" E R>O, t" > 0, be the discrete transition in a leading
to the particular occurrence of u" in a. Since u" is the earliest state in a, such that w'.rnow + AL <
U".now, it follows that u" .now < w'.now + AL. Since AL = DET-BOUND + REC-BOUND(k* + k) and
REC-BOUND(k* + k) > 0, it follows that u < u' < U".

Since a C AL-src-recoverable-aeXecsk(SRMI), Constraint 4.7 implies that the timed execution
fragment aow" of a leading from w to u" contains neither crash, nor rm-leave, actions.

Moreover, the precondition of rm-send,(p) implies that id(p) V w[SRM].sent-pkts?. Thus,
Invariants 4.15 and 4.26 imply that id(p) V w[SRM-REChl.scheduled-rqsts?. It follows that w <0 v.
Since w <0 v and awu" contains neither crash,, nor rm-leave,, actions, it follows that the timed
execution fragment avu, of a leading from v to u" contains neither crash, nor rm-leave8 , actions.

Since ama" contains neither crash8 , nor rm-leave, actions, w <e w/
id(p) C w'[SRM-RECs,].delivered(sp), and w' <, v <, w", Lemma 4.21 implies that
id(p) E v[SRM-REC8,].delivered(sp).

129

Since v.now < w'.now + DET-BOUND and w'.now + AL < U".now, it follows that v.now +
REC-BOUND(k*+k) < u".now. Thus, Lemma 4.30 implies that id(p) E u"[SRM-RECh.delivered(sp).

Since U" is the earliest state in a, such that w'.now + AL < ".now, it follows that " <;, w". Since
v <a U', < U' <a U"f, Uf <a w", and avw" contains neither crashh nor rm-leaveh actions, it
follows that the timed execution fragment act/wi of a leading from U" to w" contains neither crashh
nor rm-leaveh actions. Since id(p) E u"[SRM-REChI.delivered(sp) and au"w" contains neither
crashh nor rm-leaveh actions, Lemma 4.21 implies that id(p) E w"[SRM-REChI.delivered(sp);
that is, h c w".completed(p). E

Lemma 4.34 Let k C N+, AR = REC-BOUND(k* + k), AL = DET-BOUND + REC-BOUND(k* + k), p c

PRM-CLIENT, and a be any admissible timed execution of SRM I in AR-recoverable-aexecsk(SRMI)
that contains the transmission of p. Let (wIww'), for w,w' G states(SRMI), sp = source(p), and
7w = rm-sends,(p), be the discrete transition of SRM1 in a involving the transmission of p using
the reliable multicast service. For any state w" of SRM1 in a, such that w'.now + AL < w".now,
let a&'," be the timed execution fragment of a leading from w' to w". If h E w".intended(p), then
it is the case that h G w".completed(p).

Proof: Suppose that h E w".intended(p). Since h C w".intended(p), it follows that id(p) c
w" [SRM-RECh]. expected (sp).

Let u E states(SRMI) be the earliest state in a, such that w'.now +a < u.now. Let (u_, v(t),u),
for u- C states(SRMI) and t E R 0, t > 0, be the discrete transition in a leading to the particular
occurrence of u in a. Since u is the earliest state in a, such that w'.now + d < u.now, it
follows that u_.now < w'.now + . Let u' c states(SRMI) be the earliest state in a, such that
w'.now + DET-BOUND < u'.now. Let (U'_, v(t'),u'), for u'_ E states(SRMI) and t' C R 0 ,t' > 0, be
the discrete transition in a leading to the particular occurrence of a' in a. Since ' is the earliest
state in a, such that w'.now +DET-BOUND < '.now, it follows that a'_ .now < w'.now +DET-BOUND.
Moreover, since d < DET-BOUND, it follows that u <, a'.

Since d < DET-BOUND and id(p) c w"[SRM-RECh].expected(sp), Lemma 4.32 implies
that id(p) C a'[SRM-R.ECh1.expected(sp). Thus, Constraint 4.4 implies that either
id(p) E U'[SRM-REChl.arc hived-pkts?(sp) or id(p) E a'[S RM-REChl. scheduled-rqsts?.

First, consider the case where id(p) E a'[SRM-REChl.archived-pkts?(sp). Since
id(p) E a'[SRM-REChl -expected (sp), id(p) E a'[SRM-RECh .arc hived-pkts?(sp), and the
v'(t') action affects neither SRM-RECh.expected(sp) nor SRM-RECh.archived-pkts?(sp), it follows
that id(p) E u'_[SRM-RECh].expected(sp) and id(p) E u'_[SRM-RECh].archived-pkts?(sp). Since
id(p) C '_[SRM-REChl.expected(sp) and, consequently, ' [SRM-REChI.expected(sp) -A 0,
Invariant 4.2 implies that '_ [SRM-REChl.status member. Thus, Invariant 4.4
implies that a' [SRM-REChl.delivered(sp) U U' [SRM-REChI.to-be-delivered?(sp) =
a' [SRM-REChI.archived-pkts?(sp). However, from the precondition of
v(t'), it follows that U'_[SRM-RECh.to-be-delivered?(sP) = 0. Since
id(p) E a' [SRM-RECh .archived-pkts?(sP), U' [SRM-REChl.delivered(sp) U
a' [SRM-RECh .to-be-delivered?(sP) =' S[RM-REChl.archived-pkts?(sp), and
a' [SRM-REChl . to-be-delivered? (sp) = 0, it follows that id(p) E a'_[SRM-RECh].delivered(sp).
Since v(t') does not affect SRM-RECh.delivered(sp), it follows that id(p) E
a' [SRM-RECh .delivered (sp).

Moreover, Lemma 4.31 implies that the timed execution fragment ao'w" of a leading from a'
to w" contains neither crashh nor rm-leaveh actions. Thus, Lemma 4.21 implies that id(p) E
w"[SRM-REChl.delivered(sp); that is, h C w".completed(p).

130

Second, consider the case where id(p) E U'[SRM-RECh].scheduled-rqsts?. Let v C states(SRMI)
be the earliest state in a, such that v <C U' and for any state v" E states(SRMI) in a, such that
V C' v" , a ', it is the case that id(p) E v"[SRM-RECh].scheduled-rqsts?. The precondition of
rm-sends,(p) implies that id(p) ' w[SRM].sent-pkts?. Thus, Invariants 4.15 and 4.26 imply that
id(p) V w[SRM-RECh].scheduled-rqsts?. It follows that w <, v.

Let (v,7,v), for v- E states(SRMI) and 7r E acts(SRMI), be the discrete transition in a
leading to the particular occurrence of v in a. By the definition of v, it follows that id(p) g
v _[SRM-RECh.scheduled-rqsts?.

Since the discrete transition leading from u' to u' is a time passage action, which does not affect
the variable SRM-RECh.scheduled-rqsts?, it follows that id(p) E u'_[SRM-RECh1.scheduled-rqsts?.
Thus, it follows that v <C U'_. Since u' .now < w'.now + DET-BOUND, it follows that v.now <
w'.now + DET-BOUND. Since v.now < w'.now + DET-BOUND and w'.now + AL < w".now, it
follows that v.now + AR < w".now. Let v' E states(SRMI) be the earliest state in a, such
that v.now + AR < v'.now. By the definition of v', it is the case that v' 0 w".

Since for any state v" E states(SRMI) in a, such that v < v " < u', it is the case that
id(p) E v"[SRM-RECh].scheduled-rqsts? and the crashh and rm-leaveh actions reinitialize the
variable SR.M-RECh.scheduled-rqsts?, it follows that the timed execution fragment ar, of a leading
from v to u' contains neither crashh nor rm-leaveh actions. Since neither ace, nor au'w" contain
either crashh or rm-leaveh actions, it follows that avw, contains neither crashh nor rm-leaveh
actions. Thus, since v' <, w" and aevw contains neither crashh nor rm-leaveh actions, the timed
execution fragment av,/ of a leading from v to v' contains neither crashh nor rm-leaveh actions.

Since id(p) V v_[SRM-RECh].scheduled-rqsts?, id(p) E v[SRM-RECh].scheduled-rqsts?, and v' is
the earliest state in a, such that v.now + AR < v'.now, Constraint 4.8 implies that there exists
h' c H, h' 4 h such that id(p) E v[SRM-RECh'1.delivered(sp) and the timed execution fragment
arv contains neither crashh, nor rm-leaveh, actions. Let h' E H, h' A h be any such host.

Since id(p) V v [SRM-RECh]. scheduled-rqsts?, id(p) G v[SRM-RECh .scheduled-rqsts?,
aOV' contains neither crashh, rm-leaveh, crashh,, nor rm-leaveh, actions,
id(p) E v[SRM-RECh'1.delivered(sP), v.now + AR < v'.now, Lemma 4.30 implies that
id(p) E v'[SRM-RECh1 .delivered(sp).

Since v' <' w" and aevw contains neither crashh nor rm-leaveh actions, it follows that

the timed execution fragment avw of a leading from v' to w" contains neither crashh nor

rm-leaveh actions. Since id(p) E v'[SRM-RECh1.delivered(sp), Lemma 4.21 implies that id(p) C

w"[SRM-RECh1.delivered(sp); that is, h G w".completed(p). 71

4.4.6 Static Timeliness Analysis

In this section, we show that when hosts neither crash nor leave the reliable multicast group and
the number of packet drops pertaining to the transmission and, potentially, the recovery of any
packet is bounded, SRMj implements RMS(AL), for a particular AL C l O. In particular, we
show that any timed trace of SRMI in the set recoverable-attracesk(SRMI), for some k E N, is also
a timed trace of the specification automaton RMS(AL), for AL = DET-BOUND+REC-BOUND(k* +k).
Thus, given Constraints 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6 and assuming that the number of packet
drops pertaining to the transmission and, potentially, the recovery of any packet is bounded by k,
SRM1 implements the timely reliable multicast service specification RMS(AL)-

The proof of this claim involves showing that the relation R of Definition 4.1 is a timed
forward simulation relation from SRM1 to RMs(AL), under the aforementioned constraints and

assumptions. The key part of the proof involves showing the correspondence of the time-passage

131

steps. In particular, we show that active packets are delivered to all the hosts is their intended
delivery sets within AL time units.

Theorem 4.35 Let k E N+ and AL = DET-BOUND + REC-BOUND(k* + k). Then, it is the case that
recoverable-attraces k (SRM1) C attraces(RMs(AL))-

Proof: It suffices to show that the relation R of Definition 4.1 is a timed forward simulation
relation from SRM1 to RMS(AL), for any execution in the set recoverable-attracesk(SRMI).

The proof that R is indeed a timed forward simulation relation is identical to that of Lemma 4.11
with the exception that in this case showing the correspondence of the time passage transitions is
nontrivial.

Consider any discrete transition (u, 7r, u') G trans(SRMi), where 7r = v(t), for some t E R 0 , that
occurs in any admissible execution of SRMI in the set recoverable-attracesk(SRMI). It suffices
to show that, for any reachable state s of RMS(AL) such that (u,s) E R, there exists a timed
execution fragment a of RMS(AL) such that a.fstate = s, a.lstate = s', ttrace(a) = ttrace(uiru'),
the total amount of time-passage in a is the same as the total amount of time-passage in uwu', and

(u', s') C R.

Let s be any reachable state of RMS(AL) such that (u, s) E R. The timed execution fragment
of RMs(AL) corresponding to the step (u, 7,u') is comprised solely of the v(t) action. We must
show that the v(t) action is enabled in s; that is, we must show that, for any active packet
p E s.active-pkts, it is the case that either s.now + t < s.trans-time(p) + AL or s.intended(p) C
s.completed(p). Since (u, s) E R, it suffices to show that, for any active packet p E u.active-pkts, it
is the case that either u.now + t < u.trans-time(p) + AL or u.intended(p) C u.completed(p).

Consider any active packet p C u.active-pkts. It suffices to show that if u.trans-time(p) + AL <
u.now + t, then u.intended(p) C u.completed(p). Suppose that u.trans-time(p) + AL < u-now + t.
It suffices to show that for any host h E u.intended(p), it is the case that h E u.completed(p).

Let h E H be any host in u.intended(p). Since the action v(t) of SRMI does not affect
the derived history variable intended(p), it follows that h E u'.intended(p). Moreover, since
u.trans-time(p) + AL < u.now + t and the action v(t) increments the now variable by t time
units, it follows that u.trans-time(p) -AL < U'.now. Since AL = DET-BOUND+ REC-BOUND(k* + k),
u.trans-time(p) + AL < u'.now, and h E u'.intended(p), Lemmas 4.18, 4.33, and 4.13 imply that
h E u'.completed(p). Since the action v(t) of SRMI does not affect the derived history variable
SRM.completed(p), it follows that h C u.completed(p). 0

4.4.7 Dynamic Timeliness Analysis

We begin this section by showing that when sources remain members of the reliable multicast
group for an amount of time AL = DET-BOUND + REC-BOUND(k* + k) past the transmission
of any packet they send using the reliable multicast group, SRMI implements RMS(AL). In
particular, we show that any timed trace of SRMJ in the set AL-recoverable-attraCesk(SRMI), for

AL = DET-BOUND + REC-BOUND(k* + k) and some k E N, is also a timed trace of the specification
automaton RMS(AL). Thus, given Constraints 4.1, 4.2, 4.3, 4.4, and 4.7 and assuming that the
number of packet drops pertaining to the transmission and, potentially, the recovery of any packet
is bounded by k, SRMj implements the timely reliable multicast service specification RMS(AL)-
The proof of this claim is analogous to the proof of Theorem 4.35.

Theorem 4.36 Let k C N+ and AL = DET-BOUND + REC-BOUND(k* + k). Then, it is the case that

AL-src-recoverable-attracesk(SRMI) C attraces(RMs(AL))-

132

Proof: The proof is analogous to that of Theorem 4.35.

We strengthen the above result by weakening our assumption that sources neither crashing nor
leaving the reliable multicast group. In particular, we show that SRMI implements RMS(AL), for

AL = DET-BOUND + REC-BOUND(k* + k), if whenever a host h E H detects the loss of any packet

p E PRM-CLIENT, there exists a host h' E H, h' : h that has already delivered p and remains a
member of the reliable multicast group for at least AR = REC-BOUND(k* + k) time units. That
is, given Constraints 4.1, 4.2, 4.3, 4.4, and 4.8 and assuming that the number of packet drops
pertaining to the transmission and, potentially, the recovery of any packet is bounded by k, SRMJ
implements the timely reliable multicast service specification RMS(AL). The proof of this claim is
analogous to the proof of Theorem 4.35.

Theorem 4.37 Let k E N+, AR = REC-BOUND(k*+k), and AL = DET-BOUND+REC-BOUND(k*+k).
Then, it is the case that AR-recoverable-attracesk(SRMI) C attraces(RMs(AL))-

Proof: The proof is analogous to that of Theorem 4.35. E

133

71

134

Chapter 5

Packet Loss Locality

In this chapter, we make the case for exploiting packet loss locality in the loss recovery of
reliable multicast protocols, such as SRM [13]. We claim that packet loss locality in IP multicast
transmissions can be exploited by simple caching schemes. In such schemes, receivers cache
information about the recovery of recently recovered packets and use this information to expedite

the recovery of subsequent losses. We present a methodology for estimating the potential
effectiveness of caching within multicast loss recovery. By applying this methodology to the IP
multicast transmission traces of Yajnik et al. [41] and observing that IP multicast losses exhibit
substantial locality, we establish that caching can be very effective.

5.1 Introduction

Recently, numerous retransmission-based reliable multicast protocols have been proposed [13, 16,
19,20, 34, 35]. The challenge in designing such protocols lies in the requirements to scale to large
multicast groups, to cater to a dynamic membership and network, and to minimize the recovery
overhead. Most retransmission-based reliable multicast protocols treat losses independently and
blindly repeat the recovery process for each loss. We propose the extension of reliable multicast
protocols with caching schemes in which receivers cache information about the recovery of recently
recovered packets and use this information to expedite the recovery of subsequent losses. Such
schemes have the potential of substantially reduce recovery latency and overhead, in particular
when packet losses exhibit locality - the property that losses suffered by a receiver at proximate
times often occur on the same link of the IP multicast tree.

In this chapter, we present a methodology for estimating the degree to which IP multicast losses
exhibit locality and quantifying the potential effectiveness of caching in multicast loss recovery.
Our methodology involves evaluating the performance of a caching-based loss location estimation
scheme. In this scheme, each receiver caches the locations of its most recent losses whose locations
it has identified and estimates that its next loss occurs at the location that appears most frequently
in this cache. We consider a loss location estimate to be a hit if it matches the location of the loss.
The hit rate achieved by each receiver is an indication of the degree to which the losses suffered by
each receiver exhibit locality. A shared hit corresponds to the case when the loss location estimates
of all receivers sharing a loss are hits; that is, all such receivers estimate the same loss location and
this loss location is correct. The shared hit rate indicates the potential effectiveness of a caching
scheme that relies on the collaboration and coordination of all receivers that share losses.

We apply our evaluation methodology to the IP multicast transmission traces of Yajnik et al. [41]
and observe the hit rates achieved by our loss location estimation scheme as a function of: the

135

cache size, the delay in detecting losses, the delay in identifying a loss's location, and the precision
of the loss location identification. As the delays in detecting losses and in identifying their locations
increase, caches become populated by the locations of less recent losses and loss location estimates
are made based on less recent information. Knowledge of the IP multicast tree topology may
improve the precision with which the locations of losses are identified.

Our analysis reveals that the losses in the traces of Yajnik et al. exhibit substantial locality. The
per-receiver hit rates achieved by our loss location estimation scheme in most cases exceed 40% and
often exceed 80%. The shared hit rates range from 10% to 80% when the loss location identification
is topology-oblivious and from 25% to 90% when it is topology-aware. The shared hit rates for
a cache of size 10 exceed 35% (70%) for half the traces when the loss location identification
is topology-oblivious (respectively, topology-aware). These observations suggest that exploiting
packet loss locality through caching within either existing or novel reliable multicast protocols has
the potential of substantially reducing recovery latency and overhead.

Recent studies of IP multicast transmission losses [1, 15,41,42] have investigated whether losses in
the multicast setting exhibit temporal and spatial correlation. Temporal correlation refers to the
degree to which losses are bursty and spatial correlation refers to degree to which losses are pairwise
shared between receivers. All such studies observe that although packet losses are clearly not
independent, they exhibit low temporal and spatial correlation. Our observations do not contradict
these results. Loosely speaking, these studies examine whether the loss of consecutive (or, close-by)
packets is correlated whereas we examine whether the location of consecutive (or, close-by) losses
is correlated. Notably, packet loss locality can be exploited in multicast loss recovery.

This chapter is organized as follows. Section 5.2 illustrates how caching can be incorporated within
SRM in order to exploit locality. In Section 5.3, we present the IP multicast transmission trace data
that we use in this chapter and describe how we interpret and represent it. Section 5.5 presents our
analysis of locality and the effectiveness of caching in multicast loss recovery. Section 5.6 concludes
the chapter and suggests future work directions.

5.2 Exploiting Locality Through Caching

In this section, we illustrate how caching can be used to exploit packet loss locality within the
Scalable Reliable Multicast (SRM) protocol [13].

Packet recovery in SRM is initiated when a receiver detects a loss and schedules a retransmission
request to be multicast in the near future. If the packet is received prior to the transmission of the
scheduled request, then the scheduled request is canceled. If a request for the packet is received prior
to the transmission of the scheduled request, then the scheduled request is postponed (suppressed
and rescheduled). Upon receiving a request for a packet that has been received, a receiver schedules
a retransmission of the requested packet (reply). If a reply for the same packet is received prior
to the transmission of the scheduled reply, then the scheduled reply is canceled (suppressed). All
requests and replies are multicast. SRM minimizes duplicate requests and replies using suppression.
Unfortunately, suppression techniques delay the transmission of requests and replies so that only
few (and, optimally, single) requests and replies are transmitted for each loss.

We propose enhancing SRM with a caching-based expedited recovery scheme [24]. This scheme
operates roughly as follows. Each receiver caches the requestor and replier of the most recently
recovered packet. A receiver considers itself to be optimal when its cached requestor is itself. Upon
detecting losses, in addition to scheduling requests as is done in SRM, optimal receivers immediately
unicast requests to their cached repliers. Upon receiving such a request, a receiver immediately
multicasts a reply for the requested packet. A cache hit corresponds to the case when the unicast

136

request is sent to a receiver that is capable of retransmitting the packet. Since unicast requests and
the resulting retransmissions are not delayed for purposes of suppression, the recovery resulting
from a hit incurs minimum latency. Moreover, it may suppress any requests and replies scheduled
by SRM's recovery scheme, thus limiting the recovery overhead to one unicast request and one
multicast reply. In the case of a miss, the recovery of a packet is carried out as prescribed by
SRM's recovery scheme. The overhead associated with a miss is a single unicast request.

The above simple caching-based expedited recovery scheme associates loss locations with the
requestor-replier pairs that recover the respective packets. This scheme may turn out to be too
crude, in the sense that many requestor-replier pairs get associated with particular loss locations.
To obtain more precise loss location identification, we propose employing a router-assisted scheme
where routers annotate packets so that turning point routers [19, 34] are exposed. Turning points
identify the subtrees of the IP multicast tree that are affected by each loss; thus, they identify
loss locations precisely. This information can be used to associate sets of requestor-replier pairs to
particular locations; thus, improving the effectiveness of caching.

SRM is highly resilient to group membership and network topology changes. Unfortunately, such
resilience comes at the expense of performance. In static environments, other protocols [7,16,19,
34, 35] may outperform SRM by either a priori choosing designated repliers, arranging receivers
in hierarchies, or extending the functionality of IP multicast routers so as to intelligently forward
recovery packets. Our proposed caching-based expedited recovery scheme can substantially improve
SRM's performance when the group membership and the network topology are static. Moreover, it
may partially bridge the performance gap between SRM and hierarchical or router-assisted schemes,
while still retaining SRM's resilience to dynamic environments.

Of course, many variations on the above caching scheme may be considered: caching several of
the most recent requestor-replier pairs and choosing to recover from the most frequent such pair,
multicasting the expedited request, etc. Moreover, similar caching schemes may benefit either other
existing or novel reliable multicast protocols in similar ways.

5.3 IP Multicast Traces and Their Representation

We represent IP multicast traces by per-receiver sequences each of which indicates the locations at
which the losses suffered by the particular receiver occur. We consider two such representations.
The first representation is oblivious to the underlying IP multicast tree topology and identifies
the location of each loss with the set of receivers that share the loss of the particular packet.
The second representation takes into consideration the underlying IP multicast tree topology and
identifies the location of each loss with an estimate of the actual link of the IP multicast tree that
is responsible for the loss. We begin this section by describing the IP multicast trace data that we
use throughout this chapter. We then describe how we interpret the trace data and produce our
two trace representations.

5.3.1 Trace Data

We use 14 IP multicast transmission traces of Yajnik et al. [411. These traces involve single-source
IP multicast transmissions each originating in the World Radio Network (WRN), the UC Berkeley
Multimedia Seminar (UCB), or the Radio Free Vat (RFV). In these IP multicast transmissions,
packets are transmitted from the source at a constant rate. These packets are disseminated along
an IP multicast tree to a subset of 17 research community hosts spread out throughout the US and
Europe. These hosts constitute the receivers of the IP multicast transmission.

137

Table 5.1 IP Multicast Traces of Yajnik et al. [41].

Source # of Tree Period Duration # of # of
& Date Rcvrs Depth (msec) (hr:mirn:sec) Pkts Losses

1 RFV960419 12 6 80 1:00:00 45001 24086
2 RFV960508 10 5 40 1:39:19 148970 55987
3 UCB960424 15 7 40 1:02:29 93734 33506
4 WRN950919 8 4 80 0:23:31 17637 10276
5 WRN951030 10 4 80 1:16:02 57030 15879
6 WRN951101 9 5 80 0:55:40 41751 18911
7 WRN951113 12 5 80 1:01:55 46443 29686
8 WRN951114 10 4 80 0:51:23 38539 11803
9 WRN951128 9 4 80 0:59:56 44956 33040
10 WRN951204 11 5 80 1:00:32 45404 16814
11 WRN951211 11 4 80 1:36:42 72519 44649
12 WRN951214 7 4 80 0:51:38 38724 20872
13 WRN951216 8 3 80 1:06:56 50202 37833
14 WRN951218 8 3 80 1:33:20 69994 43578

The data collected from each of the IP multicast transmissions involves per-receiver sequences
each of which indicates which packets were received and the order in which they were received
by the respective receiver. These per-receiver sequences do not include the packet reception
times. Yajnik et al. also provide the IP multicast tree topology for each of the IP multicast
transmissions. This topology is presumed to be static (fixed) throughout the duration of the IP
multicast transmission. Table 5.1 lists the source, date, number of receivers, IP multicast tree depth,
packet transmission period, transmission duration, number of packets transmitted, and number of
losses suffered for each of the 14 traces. For more information regarding the traces, see [41].

Henceforth in this chapter, we focus our attention on a single generic IP multicast transmission
trace. This generic trace is intended to correspond to any single IP multicast transmission trace of
Yajnik et al. [41]. Let k E N be the finite number of packets transmitted during the IP multicast
transmission. Moreover, let R be the finite set of receivers of the IP multicast transmission.
For I = {1,... , k} and i E I, we refer to the i-th packet transmitted during the IP multicast
transmission as packet i.

As is traditionally done in the literature [1, 15,41,42], we represent the trace data by per-receiver
binary sequences of length k. For i E I and r C R, the i-th element of the binary sequence
pertaining to receiver r indicates whether receiver r suffered the loss of the packet i. We represent
these per-receiver binary sequences as a mapping loss : R -+ (I -* {0, 1}), where:

fI if receiver r suffered the loss of packet i, and
loss (r)(i) = (5.1)

{0 otherwise.

We represent the IP multicast tree, along which the k packets of the IP multicast transmission are
disseminated, as a tuple T = (N, s, L) consisting of a set of nodes N, a root node s C N, and a set
of directed edges L C N x N. The elements N, s, and L of T are further constrained to form a
directed tree rooted at s in which all edges in L are directed away from s, there is a unique simple
path from s to each other node in N, and the elements of R are exactly the leaf nodes of the tree

(and, consequently, R C N).

In terms of the physical entities involved in the IP multicast transmission, the root node s

138

corresponds to the source of the IP multicast transmission, the internal nodes of T correspond to the
IP multicast capable routers of the network that are used to disseminate the packets transmitted
by s, and the leaf nodes of T correspond to the receivers of the IP multicast transmission. The
edges of T correspond to the communication links that connect the source, routers, and receivers
of the IP multicast transmission. Some edges of T may also correspond to series of communication
links; that is, we abstractly represent chains of communication links as single communication links.
Thus, T is absent of edge chains. We henceforth often refer to the edges of T as links.

For n E N, we define Nn C N to be the set of nodes in the subtree of T rooted at n, with N, = N
and N, {r}, for r E R. We define R, C R to be the set of leaf nodes in the subtree of T rooted
at n, with R, = R and Rr {r}, for r E R. For any I = (n, n') E L, we define R, g R to be the set
of leaf nodes Rn', with RI = {n'}, when n' E R. Moreover, we define LI g L to be the set of edges
in the subtree of T rooted at n', with Li = 0, when n' E R. Finally, we define spath(n,rn') C L, for
n E N and n' E Nn, to be the set of edges of T that make up the unique simple path in T leading
from n to n', with spath (n, n) = 0.

5.3.2 Virtual Link Trace Representation

Our first representation is oblivious to the underlying IP multicast transmission tree. We identify
the location at which a packet is dropped with the set of receivers that share the loss of the given
packet. We henceforth refer to set of receivers that share the loss of a particular packet as the
packet's loss pattern.

For i E I, we define the loss pattern of packet i, denoted loss-patt(i), as follows:

loss-patt(i) = {r E R I loss(r)(i) = 1} (5.2)

Note that, when a packet i E I is successfully received by each receiver in R, it is the case that
loss-patt(i) = 0.
Although many of the loss patterns observed in the trace data result from losses on multiple links
of the underlying IP multicast tree, we attribute each distinct loss pattern to a loss on a single
virtual link, which we identify with the loss pattern itself. Henceforth, we use V-LINK = P(R) to
denote the set of all virtual links pertaining to the IP multicast tree T.

Although virtual links do not correspond to actual links of the IP multicast tree, the loss patterns
corresponding to two virtual links may be used to infer whether one is conceptually downstream or
upstream of the other within a supposed virtual IP multicast tree. In particular, since losses closer
to the source of the IP multicast tree affect a larger number of receivers, when the loss pattern of
one virtual link is a subset of the loss pattern of another, we can infer that the former virtual link
is conceptually downstream of the latter.

More precisely, letting 1,1' G V-LINK, we say that the virtual link I is downstream (upstream) of
the virtual link ' when 1 C ' (respectively, I D '). We use the notation I -a 1' (1 >- ') to denote
that I is downstream (respectively, upstream) of 1'. Moreover, we say that 1 is either equal to
or downstream of (either equal to or upstream of) ' when I C 1' (respectively, 1 D '). We use
the notation I -- 1' (1 > ') to denote that the virtual link I is either equal to or downstream of

(respectively, either equal to or upstream of) the virtual link 1'. When 1 and 1' are neither equal to
nor upstream/downstream of each other, we say that they are incomparable.

Given the above definition of virtual links, we represent the IP multicast transmission trace by
per-receiver sequences of length k whose elements identify the virtual links, i.e., loss patterns, on
which the losses suffered by respective receivers occur. In particular, for r E R and i C I, if the

139

receiver r suffered the loss of the packet i, then the i-th element of the sequence pertaining to r
identifies the virtual link on which the loss of packet i occurred.

We define the virtual link trace representation to be the mapping v-link : R - (I -> V-LINK U 1),
such that, for r c R and i I,

v-link(r)(i) {loss-patt(i) if loss(r)(i) = 1, and (53)
1 otherwise.

For r E R and i E I, v-link(r)(i) z 0 if and only if receiver r suffered the loss of packet i; that is,
v-link(r)(i) : 0 if and only if loss(r)(i) = 1.

5.3.3 Concrete Link Trace Representation

Our second representation takes into account the underlying IP multicast transmission tree. In
particular, we represent the IP multicast transmission trace by per-receiver sequences of length k
whose elements are estimates of the links of the IP multicast tree responsible for the loss of the
respective packets by the respective receivers.

We define the set of concrete links, C-LINK, to be set of links L of the IP multicast tree T. As in
the case of virtual links, for 1, 1' E C-LINK, we use the notation I -< I' (>- ') to denote that I is
downstream (respectively, upstream) of 1'. In the case of concrete links, the notion of downstream
and upstream is dictated by the IP multicast tree. In particular, a link I' is downstream of I if
i' E Ll and I' is upstream of I if I E Lp. We use the notation I - ' (I > I') to denote that the
virtual link I is either equal to or downstream of (respectively, either equal to or upstream of) the
virtual link 1'. When I and l' are neither equal to nor upstream/downstream of each other, we say
that they are incomparable.

We define the concrete link trace representation to be the mapping c-link : R -4 (I -* C-LINK U 1),
such that, for r E R and i E L, c-link(r)(i) is an estimate of the link responsible for the loss of
packet i by receiver r, if receiver r suffered the loss of packet i, and c-link(r)(i) =1, otherwise.
The rest of this section is devoted to precisely defining the mapping c-link.

To begin, given the IP multicast tree T and the trace data loss(r)(i), for r E R and i C I,
we estimate the set of links on which each packet is dropped. Several steps are involved in this
estimation. We first define a random process that models the dissemination of a packet throughout
the IP multicast tree T. Then, we estimate the link loss probability of each link I E L of the IP
multicast tree; that is, the probability with which the link 1 drops packets. Finally, we estimate
the set of links on which each packet is dropped. In particular, we define the link loss combination
mapping link-comb : I -* P(L), such that, for i E I, link-comb(i) is an estimate of the set of links
of the IP multicast tree on which the packet i is dropped while being disseminated throughout T.
Recalling that, for s, r E N, spath(s, r) is the set of links that make up the unique simple path in
T leading from s to r, we define c-link(r)(i), for r E R and i E I, as follows:

(l if {l} = spath(s, r) n link-comb(i), andc-link (r)(i) = (5.4)
_I if spath(s, r) n link-comb(i) = 0.

For r E R and i E I, it is the case that c-link(r)(i) #1 if and only if receiver r suffered the loss of
the packet i; that is, c-link(r)(i) fl if and only if loss(r)(i) = 1.

We proceed by describing in detail the various steps leading up to the definition of the mapping
c-link.

140

IP Multicast Transmission Process

As is commonly done in the literature [2, 3, 41], we model the dissemination of a single packet

throughout the IP multicast tree T as a parameterized random process MCASTT[a], where the
parameter a of type L -+ [0, 1] is a mapping from links to link loss probabilities. For any link
1 = (n, n') C L, a(l) is the probability with which a packet that is received by n is dropped while
being forwarded from n to n' along I - conversely, 1 - a(l) is the probability with which a packet
that is received by n is successfully forwarded from n to n' along 1.

The process MCASTT[a] disseminates the packet from the root s of T to the leaf nodes R of T
according to the link loss probability mapping a. The outcome of the random process MCASTT[a]
consists of the values of the random variables Xn E {0, 1}, for n E N. Each random variable Xn,
for n E N, indicates whether the node n received the packet transmitted; that is, X, 1 indicates
that n received it and Xn = 0 indicates that n did not receive it.

The values of the random variables X, for n E N, are calculated based on the link loss probability
mapping a as follows: X, = 1 and, for all I = (n, n') E L, it is the case that:

0 if Xn = 0,
X = 0 with probability a(l), if Xn = 1, and (5.5)

1 with probability 1 - a(l), if Xn = 1.

The loss pattern Y C R resulting from the transmission of the packet using MCASTT[a] is, thus,
the set of receivers {r E R I X, = 0}.

Estimating Link Loss Probabilities

We model the complete IP multicast transmission resulting in the given trace as k repetitions of the
same random process MCASTT[], for some particular value & of the link loss probability mapping
parameter a. Given the IP multicast transmission tree topology T and the observed trace data
loss(r)(i), for r E R and i E I, we can estimate the link loss probability mapping & either by the
method of Yajnik et al. [41] or the maximum-likelihood estimator method of Ciceres et al. [2]. We
briefly describe the method of Yajnik et al. [41]; the method of Ciceres et al. [2], although more
accurate, is substantially more involved.

For any n E N, we define k, to be the number of packets lost by all the receivers in R, (the
receivers that are descendants of the node n in T); that is,

kn = |{i E I I Rn C loss-patt(i)}| (5.6)

For 1 = (n, n') E L, the link loss probability &(l) is defined as:

kn, - kn(57&(l) = ~ ~(5.7)
k - kn

Presuming that it is much more likely for a packet to be dropped on I rather than on all downstream
paths from n', k,, - k, is the number of packets dropped on 1. Similarly, presuming that it is much
more likely for a packet to be dropped upstream of n than on all downstream paths from n, k - k,
is the number of packets that are received by and forwarded downstream of n. Thus, &(l) is an
estimate of the ratio between the number of packets that are dropped on 1 and the number of
packets successfully received by and forwarded downstream of n.

It is important to note that, since we use the same random process to model the dissemination of all

141

the packets of the IP multicast transmission, we are indeed presuming that the loss characteristics
of the links of the IP multicast tree T remain the same throughout the IP multicast transmission.

The method of Yajnik et al. [41] is known to yield biased link loss probability estimates [2].
However, for the IP multicast traces of Yajnik et al. [41], both the method of Yajnik et al. [41] and
the maximum-likelihood estimator method of Caceres et al. [2] yield similar link loss probability
estimates. Throughout this chapter, we use the link loss probability estimates yielded by the
method of Yajnik et al.

Estimating Loss Locations

In this section, we use the the IP multicast transmission process MCASTT[] and the observed
trace data loss(r)(i), for r E R and i E I, to define the mapping link-comb : I -* P(L); that is, to
estimate the set of links of the IP multicast tree T that are responsible for the losses suffered by
each receiver of the IP multicast transmission.

To begin, let Y(i) 9 R, for i E I, denote the loss pattern resulting from the i-th repetition of
the IP multicast transmission process MCASTT[&]. The loss pattern Y(i) may result from several
transmission scenarios; that is, scenarios in which the packet i is successfully forwarded on some
links and dropped on others. For example, the loss pattern R may result either from losses on all
the links leaving the source, from losses on each of the links leading to each of the receivers, or
from losses on another combination of links.

Each transmission scenario resulting in Y(i) may be identified by the set of links C(i) C L on which
the packet i is dropped. For any link I = (n, n') c C(i), where n, n' e N, the packet i must have
been successfully forwarded on the links leading from s to n - since the packet i was dropped by 1,
n must have received the packet i. Moreover, since the packet i is dropped on 1, it is not received by
n' and, thus, it is not forwarded on any of the links that form the subtree rooted at n'. Thus, C(i)
uniquely identifies a particular transmission scenario, i. e., a particular outcome of the IP multicast
transmission process MCASTT[&]. Since the set of links on which a packet is dropped uniquely
identifies a packet's transmission scenario, we use this set of links to identify such a scenario. We
refer to a set of links that identifies a particular scenario as a link loss combination.

We proceed by calculating the probability with which the link loss combination C(i) of the packet
i is a particular link loss combination C C L given that the loss pattern Y(i) of the packet i is a
particular loss pattern Y C R.

First, we define CT C P(L) to be the set of all link loss combinations that are consistent with the
IP multicast transmission tree T. CT consists of the sets of links in which no link is downstream
of another link in the set; that is,

CT {C C L |V 1,1' E C,1' V Li} (5.8)

recalling that L, C L, for I C L, denotes the set of links that are downstream of the link I in T.

For any loss pattern Y C R, we define CT(Y) to be the set of link loss combinations that result in
the loss pattern Y; that is,

CT(Y) = {C G CT I Y = UiEcRi} (5.9)

recalling that R C R, for I C L, denotes the set of receivers that are downstream of the link I in T.

The probability PrMCASTT[6] [C(i) = C] that C(i) is a particular link loss combination C E CT is

142

given by:

(5.10)PrMCASTT[6] [C(i) = C] = fJ &(l) Q (1 - &(I'))
ICC l'EUC

with UC = L\(C UjCC LI). The probability PrMCAST[&] [C(i) = Cl is equal to the product of the
probabilities that the i-th packet is dropped on each of the links in C and successfully forwarded

on each of the links that are neither links in C nor downstream of any of the links in C.

The probability PrMCASTT[61] [Y(i) = Y] that Y(i) is a particular loss pattern Y C R is equal to the
sum, over all link loss combinations C C CT(Y) that result in the loss pattern Y, of the probability
that C(i) is the link loss combination C; that is,

PrMCASTT[&] [Y(= Y] C
C'ECT(Y)

PrMCASTT[1] [C(i) = C']

Thus, for any C E CT and Y C R, the probability PrMCASTT[&] [C(i) = C Y(i) = Y] that C(i)
is a particular link loss combination C E CT, given that the loss pattern Y(i) is a particular loss
pattern Y C R, is given by:

PrMCAST [z] [0() C I Y = PrMCASTT [] [C(i) = C A Y(i) Y]
T[&] PrMCASTT[] [Yi = Y1

PrMCASTTA[] [Y(i) = Y I C(i) C] PrMCASTT[] [0(i) = C]
PrMCASTT[&] [Y(]) Y1

(5.12)

However, letting Y' C R be
case that:

PrMCASTT[6] [Y(i) = Y

the loss pattern resulting from the link loss combination C, it is the

I C(= C] =I ifY=Y'
0 otherwise

Thus, it follows that:

PrMCASTT[] [(i) C Y(i) Y1 =

PrMCASTT 6 [C(i)zC]

PrMcASTT[[Y(i[)-Y]

0

We now describe how we probabilistically choose a particular link loss combination C E
CT(loss-patt(i)) to represent the transmission scenario pertaining to the packet i. We define the
link loss combination sequence link-comb to be the mapping link-comb : I -+ P(L) that identifies
the link loss combination chosen to represent the transmission scenario pertaining to each packet.
The probabilistic choice of a particular link loss combination to represent the transmission scenario
of each packet i, for i C I, is based on the probability of occurrence of each link loss combination
resulting in the loss pattern loss-patt(i). In particular, for i C I, we define link-comb(i) as follows:

link-comb(i) = C, with probability PrMcAsTT[61 [C(i) = C I Y(i) = loss-patt(i)],

for all C C CT(loss-patt(i)).
(5.15)

For 13 out of the 14 IP multicast transmission traces of Yajnik et al. [41], more than 90% of the link
combinations probabilistically chosen by Equation (5.15) have probabilities of occurrence (given by

143

(5.11)

(5.13)

iftYeris

otherwise
(5.14)

Equation (5.14)) that exceed 95% and that are often very close to 100%. For the remaining trace,
85% of the chosen link combinations have probabilities of occurrence that exceed 98%. Thus, our
estimates of the links responsible for the losses suffered by each receiver are predominantly accurate.

To conclude, recalling that spath(s, r), for s, r E N, is the set of links that make up the unique
simple path in T leading from s to r, we define c-link(r)(i), for r e R and i E I, as follows:

() I if {l} = spath(s, r) n link-comb(i), andc-link (r)(i) =(5.16)
1 otherwise.

For r E R and i C I, it is the case that c-link(r)(i) L if and only if receiver r suffered the loss of the
packet i; that is, c-link(r)(i) #1 if and only if loss(r)(i) = 1. If receiver r has received the packet
i, then the packet i must have successfully been forwarded on each of the links on the path from
the source s to r. It follows that spath(s, r) n link-comb(i) = 0 and, consequently, c-link(r)(i) = I.
Conversely, if r has suffered the loss of the packet i, then the packet i has been dropped on a single
link I E L on the path from s to r. It follows that spath(s, r)fnlink-comb(i) = {l} and, consequently,
c-link(r)(i) = 1.

5.4 Caching-Based Loss Location Estimation

During our generic IP multicast transmission, packets are transmitted by the source s and
disseminated throughout the IP multicast tree T to the set R of receivers. Since packets may
be dropped by the links of the IP multicast tree, the receivers may not receive all the packets
transmitted by the source. In this section, we propose a caching-based loss location estimation
scheme through which receivers estimate during the IP multicast transmission the locations of the
losses they suffer.

To begin, we presume that receivers employ loss detection and loss location identification schemes.
We presume that the loss detection scheme allows receivers to detect whether they have suffered
the loss of individual packets, possibly with some delay. We presume that the loss location
identification scheme allows receivers to identify the locations at which their losses occur, possibly
with some additional delay. Here, the notion of a loss location is not limited to that of virtual
or concrete links as introduced in Sections 5.3.2 and 5.3.3. Different implementations of the loss
location identification scheme may identify loss locations in different ways. The precision of this
identification depends on the loss location information that the scheme is able to gather during
the IP multicast transmission. In SRM, for instance, receivers may identify the location of a loss
by the receivers (requestor and replier pair) that carry out the recovery of the particular packet,
2. e., the first receiver to request the packet's retransmission and the first receiver to retransmit the
packet. In router assisted reliable multicast protocols, receivers may be able to identify the exact
links (or estimates of the links) on which losses occur.

Throughout this chapter, we consider two loss location identification schemes. The first loss location
identification scheme is topology-oblivious and imprecisely identifies loss locations by their loss
patterns. We model the behavior of this scheme by adopting the virtual link trace representation
and presuming that the loss location identification scheme is accurate, i.e., that it identifies loss
locations by the virtual links responsible for the respective losses as prescribed by the virtual link
trace representation. The second loss location identification scheme is topology-aware and precisely
identifies loss locations by the links of the IP multicast tree on which the losses occur. We model
the behavior of this scheme by adopting the concrete link trace representation and presuming
that the loss location identification scheme is accurate, i.e., that it identifies loss locations by
the concrete links responsible for the respective losses as prescribed by the concrete link trace

144

representation. Since the first loss location identification scheme is topology-oblivious and the

second is topology-aware, we claim that they correspond to lower and upper precision bounds on
any real-life implementation of a loss location identification scheme.

Our proposed caching-based loss location estimation scheme operates as follows. During the IP
multicast transmission, each receiver caches the locations of its most recent losses whose locations
it has identified using its loss location identification scheme. Upon detecting a loss, a receiver
estimates the location of this loss to be the most frequent loss location in its cache; that is, the
location responsible for the largest number of recent losses suffered by the given receiver. Since
loss locations are identified by the loss location identification scheme, the precision of this caching-
based loss location estimation scheme is dictated by the precision of the loss location identification
scheme.

As explained in Section 5.2, receivers may benefit from loss location estimates by using them to
streamline the recovery of losses and, possibly, reduce recovery latency and overhead. An accurate
loss location estimate may allow a receiver to infer the set of receivers that have received and are
thus capable of retransmitting the given packet. Thus, as opposed to sending a retransmission
request to the whole group, a receiver suffering a loss may address its retransmission request to
one or more of the receivers estimated to be capable of retransmitting the packet. A loss location
estimate that overestimates the extent of the loss may lead the receiver to attempt to recover the
given packet from receivers that are further away than required, thus unduly increasing recovery
latency. Finally, a loss location estimate that underestimates the extent of the loss may lead the
receiver to attempt to recover the packet from receivers that share the loss, thus preventing the
successful recovery of the loss.

We claim that the accuracy of our proposed caching-based loss location estimation scheme is an
indication of the degree to which IP multicast losses exhibit locality. We also claim that it is an
indication of the potential benefit of incorporating a caching-based loss recovery scheme within
either an existing or a novel reliable multicast protocol. Finally, we claim that the adoption of
the virtual and the concrete link trace representations yields lower and upper bounds, respectively,
on the performance of a caching-based loss recovery scheme that uses loss location estimates to
guide the loss recovery. This claim ensues from the fact that the adoption of the virtual and
the concrete link trace representations yields lower and upper loss location identification precision
bounds, respectively.

In the rest of this section, we precisely define our proposed caching-based loss location estimation
scheme and the metrics we will subsequently use to evaluate its performance. We first describe the
notation that we use to denote the times at which receivers detect the losses they suffer and the
times at which they identify the locations of these losses. We then define our caching-based loss
location estimation scheme. Finally, we define the metrics that we will subsequently use to evaluate
both its accuracy and the potential benefit of incorporating a caching-based loss recovery scheme
within either an existing or a novel reliable multicast protocol.

5.4.1 Loss Detection and Loss Location Identification

In this section, we describe the notation that we use to denote the points in time at which each
receiver detects the losses it suffers and identifies their respective locations. In order to estimate
these loss detection and loss location identification times, we need to know the packet reception
times. Since the IP multicast traces of Yajnik et al. [41] contain no timing information, we presume
that all the packets received by each receiver incur the same transmission latency. Thus, since
packets are transmitted periodically, we presume that each receiver is slated to receive packets
periodically. We refer to the times at which each receiver is slated to receive IP multicast packets

145

as time slots. We identify each such time slot by the identifier of the respective packet; that is, we
say that a receiver is slated to receive packet i G I at time slot i.

We now introduce two mappings dtime : R -+ (I -+ I U 1) and itime : R -+ (I -+ I U 1). The
first mapping dtime satisfies the following constraints:

1. For r E R and i C I, dtime(r)(i) =L if loss(r)(i) = 0 and dtime(r)(i) E I otherwise.

2. For r E R and i E I, dtime(r)(i) :A 1 i < dtime(r)(i).

3. For r E R and i, i' E I, such that dtime(r)(i) fI, dtime(r)(i') 4I, and i < ', it is the case
that dtime(r)(i) < dtime(r)(i').

For r E R and i E I, dtime(r)(i) identifies the time slot at which receiver r detects the loss of
packet i. The first constraint on dtime dictates that receivers associate loss detection times only
with packets that they have lost. The second constraint dictates that receivers detect losses no
earlier than the expected reception times of the respective packets. The third constraint dictates
that losses are detected in the order in which the respective packets were transmitted.

The mapping dtime depends on the loss detection scheme employed by the receivers. Since each
of the following sections will be considering different loss location identification schemes, we defer
the definition of dtime to those sections.

The second mapping itime satisfies the following constraints:

1. For r E R and i E I, itime(r)(i) =1 if loss(r)(i) = 0 and itime(r)(i) C I otherwise.

2. For r E f and i E I, itime(r)(i) L 4 dtime(r)(i) < itime(r)(i).

3. For r E R and i,i' E I, such that itime(r)(i) 71, itime(r)(i') zI, and i < i', it is the case
that itime(r)(i) < itime(r)(i').

For r C R and i E I, itime (r)(i) identifies the time slot at which receiver r identifies the loss location
of packet i. The first constraint on itime dictates that receivers associate loss location identification
times only with packets that they have lost. The second constraint dictates that receivers identify
loss locations no earlier than the points in time at which the respective losses are detected. The
third constraint dictates that the loss locations are identified in the order in which the respective
packets were transmitted.

Again, the mapping itime depends on the loss location identification scheme employed by the
receivers. Since each of the following sections will be considering different loss location identification
schemes, we defer the definition of itime to those sections.

5.4.2 Loss Location Estimation

Since our caching-based loss location estimation scheme is independent of the adopted trace
representation (be that the virtual link, the concrete link, or any other analogous representation),
we present our caching-based loss location estimation scheme using a generic link set and a
corresponding generic link trace representation. We let LINK be this generic set of links on which
losses may occur and link : R -+ (I -+ LINK U 1) be the mapping that identifies the links on
which the losses suffered by the respective receivers occur. In the case of the virtual link trace
representation, LINK and link correspond to V-LINK and v-link, respectively. In the case of the
concrete link trace representation, LINK and link correspond to C-LINK and c-link, respectively.

At any time slot i E I, a receiver r C R has cached the locations of its most recent losses
whose locations it has identified. Letting m C N+ denote the size of the cache of r, we define
isetm(r)(i) C I to be the set of the m most recent losses suffered by r whose locations it has
identified prior to time slot i; that is,

isetm(r)(i) = largestm ({i' E I itime(r)(i') E I A itime (r)(i') < i}) (5.17)

146

where, for S C N, largestm(S) denotes the set of the m largest elements of S, if ISI ;> m, and the
set S, otherwise.

Let CACHE be the set of subsets of I x LINK in which there is at most one element corresponding
to each index i E I; that is, in each subset of I x LINK in CACHE there do not exist two elements
(i, 1), (i', ') E I x LINK such that i = i' and I : 1'.

For r E R and i E I, we define cache(r)(i) E CACHE to be the contents of the cache of r at time
slot i; that is,

cache (r)(i) = {(i', link (r)(i')) E I x LINK I i' E isetm(r)(i)} (5.18)

In particular, at time slot dtime(r)(i), when receiver r detects the loss of the packet i, the contents
of the cache of r are cache(r)(dtime(r)(i)).

For C' E CACHE and L' E P(LINK), we define the function most-frequent : CACHE x P(LINK) -

P(LINK) as follows:

most-frequent (C', L') = argmax {(i, 1) C C' = l'} , (5.19)
' EL'

where, for a non-empty finite set Z and a function f : Z N, argmaxzEz f(z) {z E Z I V z' E
Z : f(z') < f(z)}. The set most-frequent(C', L') is comprised of the links in L' that appear most
frequently in the tuples stored in the cache C'.

Moreover, we define the function most-recent : CACHE x P(LINK) -+ P(LINK) as follows:

most-recent (C', L') = argmax max i'. (5.20)
l'EL' i'E{iCI (il')EC'}

Out of all the packets in C' dropped on links in L', the link most-recent(C', L') is the link in L' on
which the most recent packet was dropped.

Finally, we define the loss location estimate mapping est-link : R -+ (I -+ LINK U 1) such that, for
r C R and i E I,

I if loss(r)(i) = 1

Acache(r)(dtime(r)(i)) f 0

A{l} = most-recent (cache (r) (dtime (r) (i)),(5.21)
most-frequent(cache (r) (dtime (r) (i)), LINK)),

and

I otherwise.

Thus, for r E R and i C I, if loss(r)(i) = 1 and cache(r)(dtime(r)(i)) f 0, then the link estimated
by receiver r to be responsible for the loss of the packet i is the link occurring most frequently in its
cache at the point in time when the loss of the packet i is detected, i.e., the point in time dtime (r)(i).
Ties among links that populate the cache with equal cardinality are resolved by choosing the link
on which the most recent loss, among all the losses occurring on contending links, occurs.

Loss Location Estimate Classification

For r E R and i E I, such that link(r)(i) L and est-link(r)(i) IL, we classify the loss location
estimate est-link(r)(i) as:

e high, if link(r)(i) -< est-link(r)(i),

147

" accurate, if est-link(r)(i) = link(r)(i),

* low, if est-link(r)(i) -< link(r)(i), and

" incomparable, otherwise.

We collectively refer to high, low, and incomparable link loss estimates as inaccurate.

Conceptually, a loss location estimate is high when the estimated location is upstream of the actual
loss location. Since a loss at a location upstream of the actual loss location affects a larger subtree
of the IP multicast tree, a high loss location estimate overestimates the extent of the loss. A loss
location estimate is low when the estimated location is downstream of the actual loss location.
Since a loss at a location downstream of the actual loss location affects a smaller subtree of the
IP multicast tree, a low loss location estimate underestimates the extent of the loss. Incomparable
loss location estimates may only arise in the case of the virtual link trace representation where loss
locations are identified by the sets of receivers affected by the respective losses. When either the
estimated or the actual loss locations are the result of simultaneous losses on multiple links of the
IP multicast tree, the estimated and actual loss locations may be incomparable; that is, they may
be neither equal, nor strict supersets or subsets of each other. In the case of the concrete link trace
representation, each loss suffered by each receiver is identified by a single link of the IP multicast
tree on the path from the source to the respective receiver. Since such links are always comparable,
estimated and actual loss locations are never incomparable.

In a caching-based loss recovery scheme that uses loss location estimates to guide the recovery of
losses, a high loss location estimate may lead a receiver to request the packet's retransmission from
a receiver that is unnecessarily far away. Although the receiver of this request will presumably be
capable of retransmitting the packet, the resulting recovery would incur unduly latency. Conversely,
a low loss location estimate may lead a receiver to request the packet's retransmission from a receiver
that has shared the given loss. Since the receiver of this request is incapable of retransmitting the
packet, the packet's recovery would fail. In the case of an incomparable loss location estimate, it is
unclear whether the packet's retransmission request will be addressed to a receiver that is capable
of retransmitting the packet. It is thus questionable whether packet loss recoveries instigated by
incomparable loss location estimates lead to successful loss recoveries.

Per-Receiver Hits and Per-Receiver Hit Rate

We consider accurate (inaccurate) loss location estimates to be cache hits (misses, respectively).
For r E R, we let losses(r) C I and hits(r) C I, denote the set of losses suffered by r and the set
of losses suffered by r whose locations are accurately estimated by r, respectively; that is,

losses(r) = {i E I loss(r)(i) = 1} (5.22)

hits(r) = {i c losses(r) I est-link(r)(i) = link(r)(i)} (5.23)

For r E R, we define the hit rate of receiver r, denoted hit-rate(r), to be the ratio of the number of
hits to that of losses for r; that is,

hit-rate (r) = .lis(r) 1 (5.24)
losses(r)|

We claim that the per-receiver hit rate is an indication of the degree to which the losses suffered
by individual receivers exhibit locality.

148

Consistent and Inconsistent Estimates

We define the set of all the losses suffered during the IP multicast transmission, denoted losses, as
follows:

losses {(i, l) E I x LINK 13 r c R, link(r)(i) = l}. (5.25)

A tuple (i, 1) E I x LINK is in the set losses if the packet i was dropped on link 1 while being
disseminated throughout the IP multicast tree. Since a single packet may be dropped on multiple
links, the set losses may include several tuples pertaining to a single packet.

We refer to the scenarios in which the loss location estimates of all the receivers that share a loss
are accurate as consistent accurate estimates. We define the set of consistent accurate estimates,
denoted cons-acc-ests, as follows:

cons-acc-ests = {(i, l) E losses (
V r E R : link (r) (i) = {1} = est-link (r) (i) = link (r) (i)}

In the case of a consistent accurate estimate, the extent of the loss is accurately estimated by
all receivers affected by the loss. In terms of a caching-based loss recovery scheme that uses loss
location estimates to guide the recovery of losses, retransmission requests would presumably be
addressed to receivers that are capable of retransmitting the packet and the recovery of the packet
is successful. Furthermore, by not overestimating the extent of the loss, retransmission requests
would presumably be addressed to the closest receivers capable of retransmitting the packet. Thus,
the resulting recovery would incur the minimum recovery latency.

We refer to scenarios that do not constitute consistent accurate estimates and in which the loss
location estimates of all the receivers affected by the loss are either high or accurate as consistent
high estimates. We define the set of consistent high estimates, denoted cons-high-ests, as follows:

cons-high-ests = {(i, l) E losses\cons-acc-ests |
V r E R : link (r)(i) = I 4 link (r)(i) -_ est-link (r)(i)}

In the case of a consistent high estimate, some (possibly, all) of the receivers sharing the loss
overestimate and no such receiver underestimates its extent. In terms of our supposed caching-
based loss recovery scheme, retransmission requests would presumably be addressed to receivers
that are part of a larger subtree of the IP multicast tree than required. Consequently, the recovery
would be exposed to a larger region of the IP multicast tree than required and would incur unduly
latency.

We refer to scenarios in which the loss location estimates of all the receivers that share a loss are low
as consistent low estimates. We define the set of consistent high estimates, denoted cons-low-ests,
as follows:

cons-low-ests {(i, 1) G losses |
V r C R : link (r)(i) = I 4 est-link (r)(i) - link (r)(i)}

In such scenarios, retransmission requests of our supposed caching-based loss recovery scheme would
be addressed to receivers that share the loss and would consequently fail.

Finally, we refer to the remaining scenarios as inconsistent estimates. We define the set of
inconsistent estimates, denoted incons-ests, as follows:

incons-ests = losses\(cons-acc-ests U cons-high-ests U cons-low-ests) (5.29)

149

In the case of an inconsistent estimate, the receivers affected by the loss estimate that the loss occurs
on a combination of upstream, accurate, downstream, and, possibly, incomparable locations. The
outcome of inconsistent estimates in terms of the loss recovery process depends on precisely how loss
location estimates are used by the recovery scheme at hand. In particular, it depends on which of
the receivers affected by the loss participate in the recovery by transmitting retransmission requests
and whether such requests are based on either upstream, accurate, downstream, or incomparable
loss location estimates.

Shared Hit Rate and Estimated Recovery Rate

We refer to consistent accurate estimates as shared hits and we define the shared hit rate, denoted
shared-hit-rate, to be the ratio of the number of shared hits and the number of losses. More
precisely, we define the shared hit rate, shared-hit-rate E [0, 1], as follows:

shared-hit-rate = cons-aec-ests (5.30)
|lossesI

We now estimate the number of losses that would be successfully recovered by a caching-based loss
recovery scheme that uses the loss location estimates to guide the recovery of losses. As mentioned
above, recoveries that are based on either consistent accurate or consistent high estimates are
presumably successful. Conversely, packet loss recoveries based on consistent low estimates are
presumably unsuccessful. The success or failure of a recovery based on inconsistent estimates
depends on which of the affected receivers participate in the recovery process by transmitting a
retransmission request and whether their loss location estimates are either high or accurate.

Since both consistent accurate and consistent high estimates result in successful recoveries, we define
the consistent estimate recovery rate, denoted cons-est-rec-rate, to be the ratio of the number of
consistent accurate and high estimates to the total number of losses. More precisely, we define the
consistent estimate recovery rate, cons-est-rec-rate E [0, 1], as follows:

cons-estc rate -cons-acc-ests U cons-high-ests (5.31)
| lossesI

For each loss resulting in an inconsistent estimate, we calculate the ratio of the number of receivers
that share the loss and produce either accurate or high estimates and the total number of receivers
that share the given loss. This ratio corresponds to the probability with which the given packet is
successfully recovered. Thus, we define the number of successful recoveries instigated by inconsistent
estimates, denoted incons-est-rec-count, to be the sum of these ratios. More precisely, we define
7ncons-est-rec-count E R 0 as follows:

r 1 z{r c R | link (r)(i) = I A link (r)(i) -< est-link(r)(i)}|

o|(il{Eincos-ests {r E R j link(r)(i) =(532)

We define the inconsistent estimate recovery rate, denoted incons-est-rec-rate, to be the ratio of the
number of successful recoveries instigated by inconsistent estimates to the total number of losses.
More precisely, we define the inconsistent estimate recovery rate, incons-est-rec-rate E [0, 1], as
follows:

incons-est-rec- count
zncons-est-rec-rate losses (5.33)

150

Figure 5.1 Example of a Lossy IP Multicast Transmission.

S

2

3 4 5 6

Finally, we define the overall recovery rate, denoted rec-rate, to be the estimate of the ratio of losses
that would be successfully recovered by our supposed caching-based loss recovery scheme. More
precisely, we define the recovery rate, rec-rate E [0, 1], as follows:

rec-rate = cons-rec-rate + incons-rec-rate (5.34)

5.4.3 Discussion

In the case of the virtual link trace representation, a loss location estimate is a hit only if the
receiver accurately estimates the virtual link responsible for the loss, i. e., the exact set of receivers
that share the loss. In terms of the loss recovery process, however, a receiver need not estimate
this exact set in order to benefit from a caching-based loss recovery scheme.

Consider, for instance, the lossy IP multicast transmission scenario shown in Figure 5.1. In this
scenario, the source, which is the root of the IP multicast tree, transmits a packet and this packet
is dropped on two distinct links of the IP multicast tree. Receivers 3 and 4 can recover the packet
from receiver 1 and receivers 5 and 6 can recover the packet from receiver 2. Were receivers 3 and
4 to estimate that the loss is shared by receivers 3 and 4 only, they would thus be able to recover
the packet from receiver 1. Analogously, were receivers 5 and 6 to estimate that the loss is shared
by receivers 5 and 6 only, they would be able to recover the packet from receiver 2. Since the
loss pattern corresponding to the given scenario involves the receivers 3, 4, 5, and 6, the scenario
in which receivers 3 and 4 estimate the loss location to be the virtual link {3, 4} and receivers 5
and 6 estimate the loss location to be the virtual link {5, 6} would be deemed as leading to an
unsuccessful recovery - the loss location estimates of all receivers affected by the losses would be
considered low.

This example demonstrates that the performance of our loss location estimation scheme in the case
of the virtual link representation may underestimate the expected effectiveness of caching within a
multicast loss recovery scheme.

While adopting the virtual link trace representation may lead to us underestimating the benefit
of incorporating caching in a multicast loss recovery scheme, adopting the concrete link trace

151

Figure 5.2 Example of a Lossy IP Multicast Transmission.

LS

4

1 2

representation may lead to us overestimating it. This is due to several reasons. Firstly, by adopting
the concrete link trace representation and presuming that loss locations are accurately identified, we
essentially presume that each receiver is capable of identifying the exact links of the IP multicast
tree responsible for the losses it suffers. In practice, however, such precision in identifying loss
locations may not be realistic.

Secondly, even precise loss location estimates may not always result in optimal loss recovery.
Consider, for instance, the transmission scenario depicted in Figure 5.2. In this scenario, the packet
being transmitted is dropped on two distinct links leading to receivers 1 and 2. The receivers 3 and
4 are capable of retransmitting the packet and are equidistant from the receivers 1 and 2. Even
when receivers 1 and 2 accurately estimate the links on which the packet is dropped, receiver 1 may
request the packet from 3 and 2 may request it from 4, leading to two retransmissions. Although
for the concrete link trace representation such estimates are considered hits, they do not lead to
the desired recovery behavior involving a single request and a single reply.

5.5 Evaluating the Effectiveness of Caching

In this section, we analyze the performance of our caching-based loss location estimation scheme
introduced in Section 5.4. We present and compare the performance of our loss location estimation
scheme for several cache sizes. A cache of size 1 estimates that a loss occurs on the location of the
most recent loss whose location has been identified. A cache of infinite size records the location
of all prior losses whose locations have been identified. Estimates made based on an infinite cache
correspond to the most frequent loss location identified by the receiver up to that point in the trace.

We analyze the performance of our loss location estimation scheme using both the virtual and
the concrete link trace representations. As noted above, the virtual link representation may
underestimate the expected effectiveness of caching in multicast loss recovery, while the concrete
link representation may overestimate it. Our analysis indicates that the IP multicast transmission
traces of Yajnik et al. [41] exhibit substantial locality and that caching within multicast loss recovery
can indeed be very effective.

152

In Section 5.5.1, we present the per-receiver hit rates achieved by our caching-based loss location
estimation scheme under the assumption that the detection of losses and the identification of
their locations are both immediate. In Section 5.5.2, we present the per-receiver hit rates under
the assumption that losses are detected upon the receipt of later packets and their locations
are identified immediately. In Section 5.5.3, we evaluate the performance of our loss location
estimation scheme as the delay in identifying loss locations increases. In Section 5.5.4, we observe
the distribution of loss location estimate scenarios among consistent high, accurate, low, and
incomparable estimates. While in Sections 5.5.1 through 5.5.3, we consider caches of size 1, 10, and
infinity, in Section 5.5.5 we analyze the effect of the cache size on the shared hit rates.

5.5.1 Immediate Detection/Immediate Identification

We present the per-receiver hit rates achieved by our caching-based loss location estimation scheme,
under the assumption that the detection of losses and the identification of their locations are both
immediate; that is, we assume that the loss location estimation scheme is aware of the location of
all losses that precede the loss whose location is being estimated.

In particular, we define dtime(r)(i) E I and itime(r)(i) E I U I, for r E R and i E I U I, as
follows:

fi if loss (r)(i) = 0, and
dtime (r)(i) = .(5.35)

otherwise.

itime (r)(i) dtime (r)(i) (5.36)

Figure 5.3 presents the per-receiver hit rates for the virtual link trace representation for 6 out of
the 14 traces. The per-receiver hit rates for the rest of the traces are similar. Each of the graphs
in Figure 5.3 depict the per-receiver hit rates achieved using cache sizes of 1, 10, and infinity.

We observe that the cache of size 10 outperforms the cache of size 1 in most cases. As observed
by the multicast loss studies of [1, 15,41,42], IP multicast transmissions involve a few highly lossy
links that generate a large percentage of the losses and a large number of slightly lossy links. The
larger the cache size, the less susceptible it is to sporadic losses (due to slightly lossy links) that
may interrupt long sequences of losses on the same location (due to highly lossy links).

We also observe that caches of size 1 and 10 often outperform the infinite cache size. In fact, the
infinite cache size performs as well as the others only for receivers whose losses are predominantly
due to single locations. Consider, for instance, the hit rates achieved by receivers 2 and 3 of
trace WRN951128. The caches of size 1 and 10 substantially outperform the infinite cache size for
receiver 2. In the case of receiver 3, the hit rates achieved by caches of size 1 and 10 are comparable
to those achieved by the infinite cache size. Figure 5.4 depicts the loss distributions for receivers 2
and 3 of trace WRN951128; that is, the percentage of losses suffered by each receiver that occur
on each loss location. The loss percentages are shown in log scale. Three loss locations account for
large percentages of the losses suffered by receiver 2. In this case, smaller cache sizes that can adapt
quicker to changing loss conditions outperform the infinite cache. Conversely, the losses suffered by
receiver 3 occur predominantly on a single location. In this case, the infinite cache size estimates
that all losses occur at the highly lossy location and thus performs similarly to the smaller cache
sizes.

Figure 5.5 presents the per-receiver hit rates for the concrete link trace representation for the same
6 traces. Again, the per-receiver hit rates for the rest of the traces are similar. The per-receiver hit
rates for the concrete link trace representation are substantially higher than those for the virtual
link trace representation. This is not surprising given the fact that in the case of the concrete

153

Figure 5.3 Virtual Link Trace Representation - Immediate Detection/Identification.

Trace RFV960419 Trace RFV960508 Trace UCB960424
100 100 100

90- 90- 90-

80- 80- 80-

70- 70- 70-

60 - 603 60

1 - -50 - 50

400- - -40

30 - 30 30

C0a 20 20 i 0e 1

10 ElCache Size = 10 - Cache Size = 10[- Cache Size = 11 ICache Size= 1Cch 0ie 10 Cache Size =

1 2 3 4 5 6 7 8 9 11 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8v9 10 11 12 13 14 15
Receiver Receiver Receiver

Trace WRN951113 Trace WRN951128 Trace WRN951211
100 100 100

90- 90- 90-

80 - 80- 80 -

70- 70- 70 -

60- - 60- 60-

Cc 505- 650

S40- 0 0

30- 0 0

20Cache Size =1 20 Cache Size = 1 20 Cache Size =I

10- Cache Size= 10 10 Cache Size=10 10 Cache Size=10
- Cache Size =- m Cache Size = - Cache Size =

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 R 5eie 6 7 8 9 1 2 3 4 5Re6ive7 8 9 10 11
Receiver Receiver Receiver

Figure 5.4 Virtual Link Trace Representation - Per-receiver Loss Distributions, Receivers 2 &

3, Trace WRN951128.
Trace WRN951128, Receiver 02 Trace WRN951128, Receiver 03

100 100

10 10

U))

o 0
-J 1 7:...J i. ...

0.1 0.1

0 . 1 0 . 1..

0.10 1 10 20 30 40 0.10 10 2 0 30 40
Loss Location ID Loss Location ID

link representation each receiver suffers losses due to a small number of distinct locations - equal

to the path length from the source to each receiver. Moreover, in the case of the concrete link

trace representation, loss patterns resulting from simultaneous losses on highly lossy links are not

misinterpreted as losses occurring at distinct locations; rather, each receiver attributes each loss to

one of the IP multicast tree links that are on the path from the source to itself.

5.5.2 Delayed Detection/Immediate Identification

The packet loss locality exhibited in the previous section may not be exploitable, since losses may

not be immediately detectable by the affected receivers. In many reliable multicast protocols,

154

Figure 5.5 Concrete Link Trace Representation - Immediate Detection/Identification.
Trace RFV960419

io

I:
Ii

Cch Size =CacheSz= 10
SCache Size=

1 2 3 4 5 6 7 8 9 10 11 12
Receiver

Trace WRN951113
100

90-

80-

70 -

60

50 - --

40

30

20 Cache Size= 1

10 CacheSize=10m Cache Size = -

1 2 3 4 5 6 7 8 9 10 11 12
Receiver

90

80

70

. 60

S50

40

30

20

10

2 3 4 5 6 7 8 9
Receiver

100 Trace RFV960508

90-

80

70

60

50-

40-

30-

20 Cactie Size I
10 Cache Size= 10

[- Cache Size=
0

1 2 3 4 5 6 7 8 9 10
Receiver

Trace WRN951128

90-

80-

70 -

60-

50 -- - - -

40

30 -

20 Cache Size= 1
10 -Cache Size10

[Cache Size

5 6 7 8 9 10 11
Receiver

receivers detect losses upon the receipt of later packets. Thus, when a receiver suffers a loss burst,
it detects all the losses that are part of the burst all at once upon the receipt of the first packet

following the loss burst. In this section, we observe the effect of delayed loss detection. In particular,
we assume that: i) losses are detected upon the receipt of a later packet (delayed detection), and

ii) the loss location estimation scheme is aware of the location of all losses that are detected earlier

than the detection time of the loss whose location is being estimated (immediate identification).

In particular, we define dtime(r)(i) E I U 1 and itime(r)(i) E I U I, for r E R and i E I, as

follows:

dtime(r)(i) =
{ if loss(r)(i) = 0, and (5.37)

min{i' E I i <i' A loss(r)(i') = 0} otherwise.

itime(r)(i) = dtime(r)(i) (5.38)

Figure 5.6 presents the per-receiver hit rates of our loss location estimation scheme for the virtual

link trace representation of 6 out of the 14 traces. By comparing the hit rates presented in

Figures 5.3 and 5.6, we observe that the delay in detecting losses heavily affects the per-receiver

hit rates of some traces; the trace RFV960508 is the most heavily affected trace and achieves the

lowest hit rates of all 14 traces. This effect is due to loss bursts. With immediate detection, the

estimate of the location of trailing losses within a burst is based on the location of the leading losses

of the burst. In contrast, when losses are detected upon the receipt of a later packet, the losses

that are part of the burst are detected simultaneously and their locations are all estimated based

on the locations of losses suffered prior to the burst. Thus, the (in)correct estimate of the losses

that are part of long loss bursts heavily affects the estimate hit rates.

Consider for instance the hit rates of receivers 3 and 4 of trace RFV960419. Figure 5.7 depicts the

distribution of losses across loss bursts of increasing length for receivers 3 and 4 of trace RFV960419,

i.e., the percentage of losses that are part of loss bursts of increasing lengths. The loss percentages

155

Trace UCB960424

90-

80 -

70 -

60-

50-

40 -

301

20
Cache Size =10- Cache Size= 10

SCache Size= =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Receiver

Trace WRN951211

90-

80-

70

60 -

50-

40 -

300

-0] Cache Size 1
10Cache Size= 10

El]Cache Size-

I

cc
8_

1 2 3 41

Figure 5.6 Virtual Link Trace Representation - Delayed Detection/Immediate Identification.

100 Trace: RFV960419
100

90-

80-

70-

60 -

50-

40-

30-

20- Cache Size =

10 Cache Size =10
0A Cache Siz

1 2 3 4 5 6 7 8 9 10 11 12
Receiver

Trace: WRN951113

100

_R

Trace: RFV960508

-I - -n --
90

80

70

60

50

40

30

ae 0
10Cache Size = 10I Cace iz

-i- I
1 2 3 4 5 6 7 8 9

Receiver
Trace: WRN951 128

90- 90

80- 80

70- 70

60- 60-

50- s -50-

40 40-

30- 30-

20- Cach 'ze 1 20-CceSz=1
10 Ca chSze 1 10 ache Sze 10

Cache Size = Cache Size =
0R 1 2 3 4 5 6 7eve 8 9 10 11 12 0R 1 2 3 4 R5eie 6 7 8 9

10

cc

Trace: UCB960424
100

90-

80-

70-

60-

50 - - - -

40
-

30 -

20 Cache Size = 1
10 .. Cache Size =10

01 [-1 f= Cache Size = -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Receiver

Trace: WRN951211

90-

80-

70-

60
-

50-

40

30-

20M Cache Size = 1

10 Cache Size=10
[Cache Size =

1 2 3 4 5 6 7 8 9 10 11
Receiver

Figure 5.7 Loss Distribution wrt Burst Length, Receivers 3 & 4, Trace RFV960419.

Trace: RFV960419, Receiver: 03, # Losses: 2464

3 4 6
Length of Loss Burst

U)(D

0
-0
0

17 21 32

100

10

0.1

0.01

Trace: RFV960419, Receiver: 04, # Losses: 5845

................
...................- ...

......
.........................-...

............... .
..................

........................... q

............ ..
.......

1 2 3 4 5 6 7 24 6372050
Length of Loss Burst

are shown in log scale. Receiver 3 suffers predominantly isolated losses. Conversely, receiver 4

suffers a couple of long loss bursts. The adverse effect of these loss bursts on the hit rate of

receiver 4 is evident when one compares receiver 4's hit rates in Figures 5.3 and 5.6. The hit rates

of receiver 3 are barely affected by the delayed detection, while those of receiver 4 are nearly cut

in half.

The adverse effect of the delay in detecting losses suggests that it would be beneficial to design

schemes for detecting losses sooner. SRM's exchange of session messages is one such scheme. Session

messages are used by receivers to periodically advertise the per-source transmission progress they

have observed. Thus, receivers may discover losses by detecting discrepancies in the observed

transmission progress of the receivers. When packets are transmitted at a fixed frequency, as is

done in audio and video transmissions, an alternative approach may be to track the inter-packet

156

76
cc

100

10

CO

0

0.1

0.01

1

Figure 5.8 Concrete Link Trace Representation - Delayed Detection/Immediate Identification.
Trace: RFV96041 9 Trace: UCB960424

100 ~Trace: RFV960419 ...
100

90-

80-

70-

60-

7 50 - -
cc

40-

30

20 Cache Sze

101 Cache Size:=' 0
10 ~ ~ Ii~~ Cach ie1

1 2 3 4 5 6 7 8 9 10 11 12
Receiver

Trace: WRN951113
100

90-

80-

70-

60-

c 50 -

S40-

301

20 -Cache Size =

10 ElCache Size=1
Cache Size= .

1 2 3 4 5 7 r 8 9 10 11 12
Receiver

Trace: RFV960508
100

90

80

70

60

; 50

40

30

2 0Cache Size =
10 Cache Size =10

1 2 3 4 5 6 7 8 9 10
Receiver

Trace: WRN951 128

11

100 IUU

90 - 90-

80- 80-

70- 70-

v 60 - 60 -

50 -6 50 -

40- 40-30i 30-
CacheSize 1 2

0 Cache Sze 10 10
Cache Size= -

1 2 3 4 5 6 7 8 9
Receiver

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Receiver

Trace: WRN951211

-IIII CacheSize 1
Cache Sze 10
Cache Size = -

0R 1 2 3 4 5Re6ive7 8 9 10 11

delays and to declare a packet missing when its arrival with respect to its predecessor has exceeded

some jitter threshold. In order for such schemes to allow the early detection and recovery of packets,

session and recovery packets must avoid the congested links responsible for the loss burst by, for

example, using a source-based IP multicast tree implementation [37].

Early detection schemes may potentially allow the reliable multicast protocol to identify the location

of the leading losses of a burst sooner, thus benefiting the location estimate of the trailing losses

of the burst. Alternatively, it may be beneficial to treat all the losses that are part of particular

loss bursts collectively. For instance, upon detection of a loss burst, a receiver could recover the

first loss of the burst and, subsequently, recover the remaining losses of the burst in the manner in

which the first loss of the burst was recovered.

Figure 5.8 presents the hit rates of our loss location estimation scheme for the concrete link trace

representation for the same 6 traces. The effects of delayed loss detection for the concrete link

loss representation are similar to, yet less severe than, those observed for the virtual link loss

representation.

5.5.3 Delayed Detection/Delayed Identification

In this section, we observe the degree to which the delay in identifying a loss's location affects

the per-receiver hit rates of our loss location estimation scheme. We define the loss location

identification delay to be the time that elapses from the time a loss is detected to the time its

location is identified. We only consider delays that are multiples of the IP multicast transmission

period AT E R>0 ; that is, the identification delay is always presumed to be an integral number

Ai E N of time slots.

In particular, for r G R, i E I, and an identification delay of AiAT time units, we define

157

100 Trace: UCB960424
100

90-

80

70-

60-

50 - - -

X:40 -

30-

420 - I~ CacheSize= 1
10 Cache Sze 0

Cache Size = -
I

n

Figure 5.9 Virtual Link Trace Representation
cache of size 1 (Trace WRN951030).

Trace: WRN951030, Receiver: 02, Cache Size: 1
100-

90-

80-

70-

60-

50-

40-

30-

20-

10-

0-

I

--- Immediate Identification
- Delayed Identification

500 1000 1500 2000 2500 3000 3500 4000
Delay (msec)

- Estimation hit rates wrt loss identification delay,

Trace: WRN951030, Receiver: 05, Cache Size: 1

80 -

70 -

S60-

50-

40

30-

20-

10- - - - Immediate Identification
- Delayed Identification

0 '
500 1000 1500 2000 2500 3000 3500 4000

Delay (msec)

dtime(r)(i) E I U I and itime(r)(i) E I U I as follows:

dtime (r)(i)

itime(r)(i)

{I if loss(r)(i) = 0, and

min{i' E I i < i' A loss(r)(i') 0} otherwise.

{I if loss (r)(i

dtime (r)(i) + Ai otherwise.

(5.39)

(5.40)
*) = 0, and

We first consider the virtual link trace representation. Figures 5.9 and 5.10 present the hit rates
of a couple of receivers of trace WRN951030 with respect to the loss location identification delay
for caches of size 1 and 10, respectively. These plots depict the per-receiver hit rates that are least
and most affected by the loss location identification delay for the given trace. The plots for the
remaining receivers and traces are similar. The dashed lines correspond to the hit rates achieved
with delayed detection and immediate loss location identification (presented in Figure 5.6).

Figures 5.9 and 5.10 present the hit rates obtained for a delay of up to 4 seconds. We presume
that a loss's location can be identified within the amount of time required to recover from a loss.
Several reliable multicast protocols, such as SRM [13] and LMS [34], recover from the vast majority
of losses well within 3-4 round-trip-times (RTTs), on average. Thus, presuming a 1 second RTT
upper bound, a 4 second upper bound on the location identification delay is reasonable.

We observe that the hit rates of the loss location estimation scheme only slightly decrease as the
loss location identification delay increases and the available loss location information becomes less
recent. This is because 4 seconds is a short enough time interval for locality to still hold. The
hit rates achieved with a cache of size 1 are more sensitive to the loss location identification delay.
This is because the larger cache sizes favor the estimation of more lossy locations (links); that is,
locations (links) that are probabilistically better candidates for being liable for losses.

We now consider the concrete link trace representation. Figures 5.11 and 5.12 present the hit rates
of a couple of receivers of trace WRN951030 as a function of the loss location identification delay
for caches of size 1 and 10, respectively. Again, these plots depict the per-receiver hit rates that
are least and most affected by the loss location identification delay for the given trace. The effects
of delayed loss location identification for the concrete link trace representation are similar to those
observed for the virtual link trace representation.

158

F

cc

Figure 5.10 Virtual Link Trace Representation
delay, cache of size 10 (Trace WRN951030).

Estimation hit rates wrt loss identification

Trace: WRN951030, Receiver: 02, Cache Size: 10
100-

90-

80-

70-

F 60

0 50 -

2 40

30-

20-

10-

0-

100-

90-

80-

70-

60-

S50 -

40

30

20

- - - Immediate Identification
- Delayed Identification

500 1000 1500 2000 2500 3000 3500 4000
Delay (msec)

10

0

Figure 5.11 Concrete Link Trace Representation
delay, cache of size 1 (Trace WRN951030).

Trace: WRN951030, Receiver: 10, Cache Size: 10

V

- - - Immediate Identification
- Delayed Identification

500 1000 1500 2000 2500 3000 3500 4000
Delay (msec)

Estimation hit rates wrt loss identification

Trace: WRN951030, Receiver: 02, Cache Size: 1 Trace: WRN951030, Receiver: 07, Cache Size: 1
100r

60

50-

40-

30-

20-

10 --- Immediate Identification
0 Delayed Identification

500 1000 1500 2000 2500 3000 3500 4000
Delay (msec)

a,

90-

80-

70-

60-

50-

40 -

30 -

20-

- - - Immediate Identification
- Delayed Identification

500 1000 1500 2000 2500 3000 3500 4000
Delay (msec)

5.5.4 Loss Location Scenario Distribution

In this section, we observe the distribution of loss location estimates among consistent high,
accurate, low, and incomparable estimates. Throughout this section, we assume that losses are
detected upon the receipt of later packets and that loss location identification is immediate; that
is, in this section, we let dtime(r)(i) E I U _L and itime(r)(i) E I U I, for r G R and i C I, be
defined as in Section 5.5.2.

We first consider the virtual link trace representation. Figure 5.13 presents the distribution of
the estimates of our loss location estimation scheme among consistent high/accurate/low and
inconsistent estimate types. With a cache of size 10, the shared hit rates always exceed 10%
and exceed 35% for half the traces.

We now present the average distribution of the inconsistent estimates of Figure 5.13 among
high, accurate, and low estimates. For each inconsistent estimate produced by our loss location
estimation scheme in each trace, we compute the percentage of receivers that share the loss and

159

100-

90-

80-

70k

F.,

a)

10

Figure 5.12 Concrete Link Trace Representation - Estimation hit rates wrt loss identification

delay, cache of size 10 (Trace WRN951030).

Trace: WRN951030, Receiver: 02, Cache Size: 10
100

90

80

70

(D

M

--- Immediate Identification
- Delayed Identification

0'
500 1000 1500 2000 2500 3000 3500 4000

Delay (msec)

Trace: WRN951030, Receiver: 05, Cache Size: 10

60

50-

40

30

20-

10- - - - Immediate Identification

- Delayed Identification
500 1000 1500 2000 2500 3000 3500 4000

Delay (msec)

Figure 5.13 Virtual Link Trace Representation - Consistent High/Accurate/Low and Inconsis-

tent Estimate Percentages.

Consistent High Predictions Consistent Accurate Predictions

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Trace

Consistent Low Predictions

U)
0

0

80

100

90-

80-

70-

60

50

40:

30

20--

10

Cache Size = 1
Cache Size = 10

[-j Cache Size

I-

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Trace

Inconsistent Predictions
10n

90

80

70

60

50

40

30

20

10

V 1 2 3 4 5 6 7 8
Trace

9 10 11 12 13 14

1 UU

90-

80

70

0

0

60

50

40

30

20

10

0

Cache Size = 1
Cache Size= 10

f Cache Size

-ii

1 2 3 4 5 6 7 8
Trace

9 10 11 12 13 14

160

100-

90-

80-

70-

0

cc

60-

50-

40-

30-

20-

10

Cache Size= 1
Cache Size= 10

-[- Cache Size =

-.

0

180

100

90

80

70

60

50

40

30

20

10

L

Cach e Size = 1
Cache Size = 10

Q Cache Size =
- ah Sz =

-.

- -. L nd

U)
0
U)

0
-J

Figure 5.14 Virtual Link Trace Representation - Average Distribution of Inconsistent Estimates.

Average Distribution of Inconsistent Predictions, Cache Size = 1 Average Distribution of Inconsistent Predictions, Cache Size = 10 Average Distribution of Inconsistent Predictions, Cache Size = Inf
100100 100

o0 80 80 80
.. 2

&60 - - 60 60

040 - 440
04

20 -Accurate Accurate Accurate
-High -High -High

m Low 1 Low (~] Low

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Trace Trace Trace

estimate upstream, accurate, or downstream locations. The averages of these percentages over all

inconsistent estimates in each trace are presented in Figure 5.14. The distributions in Figure 5.14

do not add up to 100% because some of the loss location estimates are incomparable to the actual

loss locations. The receivers that produce upstream and accurate estimates often account for more

than half of the receivers sharing the loss. This indicates that more than half of the losses resulting

in inconsistent estimates may be recovered through a caching-based expedited recovery scheme.

We now consider the concrete link trace representation. Figure 5.15 presents the distribution of

the estimates among consistent high, accurate, low and inconsistent types. The shared hit rate is

substantially higher in the case of the concrete rather than the virtual link trace representation.

The shared hit rates for all cache sizes exceed 25% for all traces. For most of the traces, the cache

of size 10 outperforms the cache of size 1. Moreover, its shared hit rate exceeds 70% for half the

traces. The infinite cache performs similarly to the cache of size 10. This indicates that, in the case

of the concrete link trace representation, a single loss location is responsible for a large percentage

of the losses suffered by most of the receivers.

We expect that as the size of the reliable multicast group increases and as the IP multicast

transmissions become longer-lived, i) several links will be responsible for large percentages of the

losses suffered by individual receivers, and ii) the links responsible for a large percentage of the

losses suffered by individual receivers will change over time. Smaller cache sizes would in such

cases be preferable so as to adapt quicker to changing loss characteristics and accommodate either

multiple or a highly varying number of lossy links.

Figure 5.16 presents the average distribution of the inconsistent estimates of Figure 5.15 among

high, accurate, and low estimates. Since loss locations in the concrete link trace representations

are never incomparable, the distributions in Figure 5.15 always add up to 100%. Once again, the

receivers that produce upstream and accurate estimates often account for more than half of the

receivers sharing the loss.

A comparison of Figures 5.13 and 5.15 suggests that the precise identification of the links on which

losses occur may be highly beneficial to the effectiveness of caching. Reliable multicast protocols

that feature local recovery schemes may be particularly suitable both for precisely identifying the

links on which losses occur and for effectively exploiting this information by recovering from losses

locally.

Figure 5.17 presents the recovery rate of a caching-based loss recovery scheme as estimated by

Equation (5.34) for each of the trace representations and cache sizes of 1, 10, and infinity. For

both trace representations, the estimated percentage of losses that are successfully recoverable by

a caching-based scheme is substantial. In the case of the virtual link trace representation, at least

65% of the losses in each trace are recoverable through a caching-based scheme. For more than half

of the traces, this percentage is above 85%. In the case of the concrete link trace representation,

161

Figure 5.15 Concrete Link Trace Representation - Consistent High/Accurate/Low and Incon-

sistent Estimate Percentages.

Consistent High Predictions Consistent Accurate Predictions
100 100C

Cache Size = 1 Cache Size = 1
90 Cache Size = 10 90 Cache Size = 10
80 Cache Size = - 80 Cache Size =

70 - 70-

gD60 60-

_ 50 050-

40- 40

30- 30

20-- 20---

10 10

0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Trace Trace
Consistent Low Predictions Inconsistent Predictions

100 100
ache Size ache Size = 1

90 Cache Size = 10 90- Cache Size = 10

80 Cache Size = 80 Q Cache Size

70- - 70--

60 -D 60
CA) Cl)
0 0_j 50- - 50-

0j5 q.

40 40

30- 30

20 - 20

10 - 10

100
1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Trace Trace

Figure 5.16 Concrete Link Trace Representation - Average Distribution of Inconsistent Esti-
mates.

Average Distribution of Inconsistent Predictions, Cache Size = I Average Distribution of Inconsistent Predictions, Cache Size = 10 Average Distribution of Inconsistent Predictions, Cache Size = Int

80

& 60

o 40

20

a'

2 80
.2

'00

60 40

0 Accurt 20 Accurate
[High - High = Low mLow

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Trace

01 2 3 4 5 6 7 8 9 10 11 12 13 14
Trace

162

Figure 5.17 Virtual and Concrete Link Trace Representations - Percentage of Successful

Expedited Recoveries.

Virtual Link Trace Representation; Successfull Recoveries
100

90

80 - -

70
co
W 60-
U)
Ci)
0
- 50-

0
,o 40- ---

30-

20- Cache Size = 1

10- Cache Size= 10
Cache Size =

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Trace

Ci,
a)
Ci,
U)
0

0

10

Concrete Link Trace Representation; Successfull Recoveries
00

90-

80

70

60

50-

40-

30-

20-

10-

0

at least 75% of the losses in each trace are recoverable

than half of the traces, this percentage is above 95%.

2 34

Cache Size =1

Cache Size = 10
SCache Size=

5 6 7 8 9 10 11 12 13 14
Trace

through a caching-based scheme. For more

5.5.5 Optimal Cache Size

Finally, we examine the effect of the cache size on the shared hit rate, again assuming that losses

are detected upon the receipt of later packets and that loss location identification is immediate;
that is, in this section, we let dtime(r)(i) E I U 1 and itime(r)(i) E I U I, for r E R and i E I, be

defined as in Section 5.5.2.

Figure 5.18 presents the shared hit rates of our caching-based loss location estimation scheme for

the virtual link trace representation for different cache sizes. We present the plots for 6 out of

the 14 traces; the plots for the other traces are similar. Since an infinite cache size results in a

estimation scheme that adapts slowly to changing loss conditions and performs poorly in the case

of multiple highly lossy links, we restrict ourselves to relatively small cache sizes.

For many of the traces, the shared hit rate increases with the size of the cache and the infinite cache

size outperforms the finite-size caches. Since larger cache sizes favor locations that are responsible
for frequent losses, it follows that, for these traces, a large percentage of the losses occur on few

links. For others traces, e.g., UCB960424 and WRN951128, finite cache sizes outperform the infinite

cache. Overall, caches of modest size, e.g., 11, perform reasonably well for most of the traces.

Figure 5.19 presents the shared hit rate of the loss location estimation scheme for the concrete link

trace representation for different cache sizes. Again, we present the plots for 6 out of the 14 traces;
the plots for the other traces are similar.

Again, for many of the traces, the shared hit rate increases with the cache size. However, for some

traces finite caches outperform the cache of infinite size. Overall, caches of modest size, e.g., 11 or

15, perform reasonably well for most of the traces.

In summary, caches of modest size, e.g., 11 or 15, perform well for most of the traces and both

trace representations. This indicates that a caching-based loss recovery scheme would be effective

and implementable without prohibitive resource requirements.

163

I.

Figure 5.18 Virtual Link Trace Representation - Consistent accurate hit rates wrt cache size.

Trace RFV960419 Trace RFV960508
100 100 1Ub

90- 90- 90

80- 80- 80

70- -
7 0 70

60- 60 -60

50- 50 -50

40- 240- 40

3 Enii 30 U)ihh30h
10- 10

10-1 3 5 71 9.1 1 1 11 i 152 9 9m
0

1 3 5 7 9 11 15 21 29 39 Inf
Cache Size

Trace WRN951 113

0 1 3 5 7 9h 11 15 21 29 39 Inf
Cach Size

Trace WRN951 128

90- 90- 90

80- 80- 80-

7070 70

60- 60- 2 60-

40 240- 240-

30- U)30 30-

20- 20- 20-

10 0 10101 3 5 7I U I l 9 11 15I 21 29 39I IIt
1 3 5 7 9 1ache 5 21 29 39 Inf 1 3 5 7 9 11 15 21 29 39 lot

Cache Size

1 3 5 7 9 11 15 21 29 39 lot
" 1 3 5 7 9ah 11 15 21 29 39 INf

Cache Size
Trace WRN95121 1

1 3 5 7 9 11 15 21 29 39 lo
Cache Size

Figure 5.19 Concrete Link Trace Representation - Consistent accurate hit rates wrt cache size.

Trace RFV960419 Trace RFV960508
100 100 100

90- 90- 90 -

80- 80- 80-

70 70 70

60- 60 2 60-

50 -50 50-

40 240 2 40-

30- 300

20 20 2010- 10 100

1ra3e57V9 01 5 2 9 3 f1 3 5 7 9 1 52 9 3 o

S 1 3 5 7 C9h 11 15 21 29 39 Inf
Cache Size

Trace WRN951113
100

90-

80-

70-

60-

50-40111111
30-

20-

10-

1 3 5 7 C9h 11 15 21 29 39 Inf
Cache Size

Trace WRN951128
100

90-

80-

70-

±D 60-

±50-

240-

U)30-

20

10

1 3 5 7 9 11 15 21 29 39 Inf
Cache Size

I

U)

Trace UCB960424

1 3 5 7 9 11 S5 21 29 39 Inf
Cache Size

Trace WRN951 211

90-

80

70-

60-

50

40-

20 fl
1 3 5 7 9 11 15 21 29 39 Inf

Cache Size

164

Trace UCB960424

Cn

8n

I-

CO

(D

U)

1 3 5 7 1Cache 5 21 29 39 Inf

I

.

5.6 Summary, Conclusions, and Future Work

In this chapter, we proposed exploiting packet loss locality within existing or novel reliable multicast
protocols through caching. We presented a methodology for estimating the potential effectiveness
of caching in multicast loss recovery. Our methodology involved analyzing the performance of a
caching-based loss location estimation scheme. We applied our methodology to the IP multicast
transmission traces of Yajnik et al. [41] and observed that packet loss locality is indeed substantial.

Presuming immediate loss detection and loss location identification, per-receiver hit rates in most
cases exceeded 40% and often exceeded 80%. The delay in detecting losses did not substantially
affect the per-receiver hit rates, except in the cases where the receivers suffer long loss bursts. The
delay in identifying the locations of losses did not substantially affect the hit rates of individual
receivers. In most cases, a cache of size 10 outperformed a cache of size 1. The infinite cache
performed similarly to the cache of size 10 only when the losses suffered by individual receivers
occur predominantly at single locations.

We also observed substantial shared hit rates. In the case of the virtual link trace representation,
shared hit rates ranged from 10% to 80%. The shared hit rate for a cache size of 10 exceeded 35%
for half the traces. In the case of the concrete link trace representation, shared hit rates ranged
from 25% to 90%. The shared hit rate for a cache size of 10 exceeded 70% for half the traces. In
our analysis of the effect of cache size on the shared hit rate, caches of modest sizes, e.g., 11 or 15,
achieved high shared hit rates for most of the traces and both trace representations.

Most importantly, our estimate of the percentage of losses that would be recoverable through a
caching-based recovery scheme was estimated at 65% (75%) for the virtual (respectively, concrete)
link trace representation. This suggests that a caching-based loss recovery scheme can be very
effective.

The work presented in this chapter may be extended in several directions. First, our methodology
can be applied to IP multicast transmissions of larger group size and longer duration. Such work
will reveal whether the effectiveness of caching scales. Second, caching schemes that exploit locality
can be designed and incorporated in either existing or novel reliable multicast protocols. Finally, the
effectiveness of such schemes can be evaluated through simulation or deployment and compared
to the expected effectiveness indicated by our observations. The following chapter presents the
caching-enhanced SRM protocol (CESRM), which exploits packet loss locality through a caching-
based expedited recovery scheme.

165

166

Chapter 6

Caching-Enhanced Scalable Reliable
Multicast

In this chapter, we present the Caching-Enhanced Scalable Reliable Multicast (CESRM) protocol.
CESRM augments the functionality of SRM with a caching-based expedited recovery scheme that
exploits packet loss locality in IP multicast transmission losses. CESRM's expedited recovery
scheme operates in parallel to SRM's recovery scheme. In this scheme, each receiver caches the
requestor/replier pairs that carry out the recovery of its recent losses. The requestor and the
replier of the requestor/replier pair that appears most frequently in a receiver's cache, henceforth
referred to as the expeditious requestor and expeditious replier, respectively, are responsible for
expeditiously recovering each new loss. Thus, upon detecting a loss, if a receiver considers itself
to be the expeditious requestor, then it initiates an expedited recovery for the given packet by
unicasting an expedited request to the expeditious replier. The transmission of this expedited
request is not delayed. Upon receiving this request, the expeditious replier immediately multicasts
the requested packet. Since neither expedited requests nor expedited replies are delayed, packets
that are successfully recovered by CESRM's expedited recovery scheme incur minimal recovery
latency. When a packet's expedited recovery fails, CESRM falls back onto SRM's recovery scheme.
By using SRM's recovery scheme as a fall-back recovery scheme, CESRM recovers from losses no
later than SRM; that is, CESRM's recovery latency is bounded from above by SRM's recovery
latency.

In CESRM, hosts opportunistically attempt to recover new losses in the manner in which recent
losses were recovered. Thus, CESRM's expedited recovery scheme effectively operates in the spirit
of the caching-based loss location estimation scheme introduced in Chapter 5. In the case of
CESRM, however, the location of a particular loss is identified by the requestor/replier pair that
carries out its recovery.

This chapter is organized as follows. To begin, after informally describing its functionality, we
present a formal model of the CESRM protocol. We then carry out correctness and timeliness
analyses of CESRM. These are analogous to the ones carried out for the SRM protocol in
Chapter 3. The correctness analysis states that CESRM delivers appropriate packets to appropriate
members of the reliable multicast group. The timeliness analysis states that, under certain
timeliness and faultiness assumptions, CESRM guarantees the delivery of the appropriate packets
to the appropriate members of the reliable multicast group within a finite amount of time. We
also state the worst-case recovery latency incurred by either successful expedited recoveries or
successful non-expedited first-round recoveries of CESRM. The substantial difference in the recovery
latency afforded by such recoveries demonstrates the performance advantage of CESRM's expedited
recovery scheme. Finally, we use trace-driven simulations to evaluate CESRM's performance and

167

compare it to that of SRM.

6.1 Overview of Functionality of CESRM

CESRM extends SRM's loss recovery scheme by caching the optimal requestor/replier pair capable
of repairing each prior loss and using this information to expedite the requests and replies of future
losses. CESRM enhances the SRM's functionality in two ways: i) each member of the reliable
multicast group maintains an optimal requestor/replier cache which is comprised of the optimal
requestor/replier pair used to recover each recent loss, and ii) members that are deemed optimal
requestors initiate the expedited recovery of future losses by unicasting requests to the optimal
repliers upon the detection of a loss; subsequently, such requests induce the immediate multicast
retransmission of the requested packets. We proceed by briefly describing CESRM's functionality
beyond that of SRM's.

The determination of the optimal requestor/replier pairs is carried out as receivers overhear the
request and replies multicast during the recovery of each loss. Requests are annotated with the
requestor's distance estimate to the source of the packet. Replies are annotated with the requestor
that induced the given reply, this requestor's distance estimate to the source of the packet, and
the replier's distance estimate to the requestor that induced the given reply. The optimality of
a given requestor/replier pair is based on the estimated recovery delay afforded by the given
requestor/replier pair. We choose to represent the recovery delay as the sum of the distance
estimate from the requestor to the source and twice the distance estimate from the requestor to
the replier (inter-host distances are presumed to be symmetric). This measurement estimates the
time that elapses from the transmission of the packet that results in the requestor detecting the
given loss to the time the loss is recovered through a retransmission of the packet.

6.1.1 Expedited Recovery

Upon detecting that a packet p is missing, a host h schedules a request for p to be multicast as
is done in the SRM protocol. In addition to scheduling this request for p, the host consults the
optimal requestor/replier pair cache so as to determine whether it should also schedule an expedited
request for the missing packet. If h is considered to be the optimal requestor for packets from the
source of p, then it schedules the transmission of an expedited request for p for a point in time
RQST-DELAY time units in the future. The transmission of an expedited request is delayed so as to
avoid the transmission of extraneous requests when packets are temporarily presumed missing due
to packet reordering.

Upon receiving an expedited request for a packet p, a host h immediately transmits an expedited
reply for p provided it has previously either sent or received p, and a reply for p is neither scheduled,
nor pending.

6.1.2 Maintaining the Optimal Requestor/Replier Selection

CESRM maintains per-source optimal requestor/replier pair caches which are comprised of the
optimal requestor/replier pairs used to recover packet losses from the respective source. For
simplicity, we presume that hosts archive the optimal requestor/replier pairs for all packets
recovered. An implementation of CESRM would limit the size of each cache. The cache size would
then constitute a parameter of the CESRM protocol. In addition to the optimal requestor/replier
pair, each cache entry also records the distance of the optimal requestor to the packet's source and
the distance of the optimal replier to the optimal requestor.

168

The optimal requestor/replier pair of a particular packet from a particular source is initially set
upon the reception of a reply for the given packet. All replies are annotated with the requestor that
induced them, this requestor's distance estimate to the packet's source, and the replier's distance
estimate to the particular requestor. Upon receiving a reply for a particular packet, if an optimal

requestor/replier pair for the given packet is not yet cached, then the requestor/replier pair of the
reply is considered to be optimal and is cached. If an optimal requestor/replier pair is already
cached, then the requestor/replier pair of the reply is considered optimal and replaces the cached
pair only if the recovery delay it affords is smaller than that afforded by the cached requestor/replier
pair. The recovery delay afforded by a requestor/replier pair is estimated as the sum of the distance
estimate from the requestor to the source and the round-trip distance from the requestor to the
replier.

CESRM uses two additional message types to maintain its optimal requestor/replier caches:
requestor and replier updates. Suppose that a host h receives an expedited reply from the host r
for a packet p. Moreover, suppose that the requestor inducting this reply is host q. After updating
the cache based on the recovery delay afforded by the requestor/replier pair (q, r), h determines
whether it is a preferable requestor for p than q by comparing the recovery delay afforded by the
requestor/replier pair (h, r) to that afforded by (q, r). If the recovery delay afforded by (h, r) is
smaller than that afforded by (q, r), then h schedules the transmission of a requestor update - a
message whose purpose is to inform the multicast group members that h is a preferable requestor
for p than q. Requestor updates are scheduled in the fashion in which SRM schedules requests. In
our example, the requestor update is annotated with h, h's distance estimate to the source s, of p,
r, and r's distance estimate to h; that is, presuming symmetric inter-host distances, the requestor
update is annotated with the tuple (h, dhs, r, dhr), where dhsp is h's distance estimate to s, and

dhr is h's distance estimate to r.

If another requestor update is received prior to the scheduled transmission of the requestor update,
then the scheduled requestor update is canceled. If no such update is received prior to the scheduled
transmission time of the requestor update, then this update is multicast and (h, r) is recorded in
h's cache as the optimal requestor/replier pair for p.

A host h' handles the reception of a requestor update for a packet p as follows. If h' suffered the
loss of the original transmission of p, has since recovered p, and the requestor/replier pair of p is
preferable to the requestor/replier pair already cached for p, then h' replaces its cached pair for p
with the requestor/replier pair of p. Otherwise, h' discards the requestor update for p.

Now we describe the use of replier updates. Suppose that a host h receives an expedited reply from
the host r for a packet p. Moreover, suppose that h received the original transmission of p; that
is, h is capable of retransmitting p. Moreover, suppose that the requestor that induced this reply
is host q. Upon receiving this expedited reply, h determines whether it is a preferable replier than
r by comparing the recovery delay afforded by the requestor/replier pair (q, h) to that afforded
by (q, r). If the recovery delay afforded by (q, h) is smaller than that afforded by (q, r), then h
schedules the transmission of replier update - a message whose purpose is to inform the multicast
group members of a preferable replier for p. Replier updates are scheduled in the fashion in which
SRM schedules replies. In our example, the replier update is annotated with q, q's distance to
the source of p, h, and h's distance to q; that is, the replier update is annotated with the tuple
(q, dqsp, h, dhq), where dqp is q's distance estimate to sp and dhq is h's distance estimate to q.

If h receives another replier update for p prior to the transmission of the replier update it has
scheduled for p, then it cancels its own replier update. If no such update is received prior to the
scheduled transmission time of the replier update scheduled by h, then this update is multicast and
(q, h) is recorded in h's cache as the optimal requestor/replier pair for p.

A host h' handles the reception of a replier update for a packet p as follows. If h' suffered the

169

loss of the original transmission of p, has since recovered p, and the requestor/replier pair of p is
preferable to the one already cached by h' for p, then h' replaces its cached pair for p with the
requestor/replier pair of p. Otherwise, h' discards the requestor update for p.

6.1.3 Deducing the Optimal Requestor/Replier Pairs

Several strategies may be used to ascertain the optimal requestor/replier pair for a particular packet
loss based on the archived requestor/replier pairs of recent losses. We begin by describing perhaps
the simplest such strategy, which we refer to as the most recent loss strategy. In this strategy, the
optimal requestor/replier pair for the given loss is chosen to be the pair for the most recent packet
that was lost and, subsequently, recovered. In effect, this scheme presumes that the loss occurred
at the same location as the loss that was most recently suffered and, subsequently, recovered. The
rationale behind this scheme is that if indeed a loss occurs at the same location as the loss that was
most recently suffered and, subsequently, recovered, then it may be recovered in the same manner.

More sophisticated strategies may take into account the cached requestor/replier pairs of a fixed
number of most recent packets that have been lost and, subsequently, recovered. In effect, such
a scheme caches the requestor/replier pairs of a fixed number of losses and uses this information
to deduce the optimal requestor/replier pair for a new loss. One possible strategy in deducing the
optimal requestor/replier pair for a new loss, which we refer to as the most frequent loss strategy,
is to choose the pair that appears most frequently in the replier/requestor pair cache.

It is plausible that more sophisticated strategies may be able to better ascertain the optimal
requestor/replier pair for a particular loss. For purposes of simplicity, in this chapter we model and
analyze the most recent loss strategy. Our work focuses on the demonstration of our modeling and
analysis techniques rather than the design of the best performing optimal requestor/replier pair
selection strategy.

6.2 Formal Model of the CESRM Protocol

In this section, we present a formal model for the CESRM protocol. Since CESRM is a caching-
enhanced version of SRM, it shares many of SRM's components. Figure 6.1 depicts the interaction
of the components of CESRM and the environment. The client at each host is modeled by the
RM-CLIENTh timed I/O automaton of Chapter 3. The reporting and membership components
of Chapter 4 carry over unchanged to the specification of the CESRM protocol. The remaining
components of SRM presented in Chapter 4 are enhanced so as to capture the enhanced functionality
of CESRM. We proceed to specify the enhancements pertaining to the IP buffer component of
SRM, the recovery component of SRM, and to the IP automaton. In the upcoming definitions and
TIOA models of CESRM's components, the parts pertaining to SRM are typeset in gray and those
pertaining to CESRM are typeset in black.

6.2.1 Preliminary Definitions

Figure 6.2 presents a list of set definitions that are used in the specification of the CESRM protocol.
The sets Pending-Rqsts, Scheduled-Rqsts, Pending-Repis, and Scheduled-Repls are comprised of
tuples corresponding to all possible pending requests, scheduled requests, pending replies, and
scheduled replies, respectively. The tuples comprising the set Scheduled-Repls differ from those
comprising the Scheduled-Repls set in Chapter 4. In the case of our specification of the CESRM
protocol, such tuples include an additional component that corresponds to the distance estimate
from the requestor of the packet to the packet's source.

170

e 6.1 Interface of all components involved in the reliable multicast service.

Figure 6.2 CESRM Preliminary Definitions

Recovery-Tuples = H x R!O x H x R:O
Expedited-Rqsts = {si,t, rec-tpl) I s E H,i E N, t G R 'O, rec-tpl E Recovery-Tuples}

Rqst-Updates = {(s,i,t, rec-tpl) I s E H,i E N, t E R O, rec-tpL E Recovery-Tuples}
Repl-Updates = {(s,i,t,rec-tpl) I s E H,i E N,t E RO,rec-tpl E Recovery-Tuples}

The set Recovery- Tuples is comprised of the set of all possible optimal recovery tuples. Such tuples

consist of the optimal requestor, an estimate of this requestor's distance to the source of the packet

in question, the optimal replier, and an estimate of this replier's distance to the optimal requestor.

The sets Expedited-Rqsts, Rqst-Updates, and Repl-Updates are comprised of all tuples of the form

(s, i, t, rec-tpl), where s E H, i E N, t C R O , and rec-tpl C Recovery- Tuples. Such tuples specify

the time t at which either an EXP-RQST, RQST-UPDATE, or REPL-UPDATE control packet pertaining

to the recovery of the packet (s, i) is scheduled for transmission and the optimal requestor/replier

pair rec-tpl pertaining to this recovery.

Figure 6.3 presents a list of set definitions that specify the format of the various types of packets

used in our specification of the CESRM protocol. The set PRM-CLIENT represents the set of packets

171

Figur
-~ crashh

- -- - - - - - - - - -II

rm joiflhmjoinh rm joinh

mjoin-ackh m-join-ackh

mleaveh rm-leaveh

mleavI-ack rm-leave-ackh

msendh(p)

mreCVh(p) 6'

usendh(p)

ureCVh(p)

process-pkth P)

rec-msendh(p) rm-sendh(p)

rec-usendh(h p n rm-reCVh(P

CESRMh

mdrop(p, Hd)

udrop(p)

CESRM

- - - - - - -- - - - - - - - - - - - - - - - - - - -

that may be transmitted by the client processes using the reliable multicast service. This set of
packets is identical to that defined in Chapter 4. The set PCESRM is comprised of all packets whose
format is that used by the reliable multicast process. The format of each packet p E PCESRM

depends on its type type(p).

DATA and SESS packets are unchanged from those defined in Chapter 4. RQST packets for the
CESRM protocol are augmented with the additional operation dist2src (p). This operation extracts
the distance of the sender of the request (the requestor) to the source of the packet being requested.
REPL packets for the CESRM protocol are augmented with the additional operation rec-tpl(p). This
operation extracts the recovery tuple pertaining to the particular reply.

In addition to the packet types of Chapter 4, we introduce the following additional packet types:
EXP-RQST, EXP-REPL, RQST-UPDATE, and REPL-UPDATE.

When the packet p is an expedited request, that is, when type(p) = EXP-RQST, p supports the
operations sender(p), source(p), seqno(p), id(p), and rec-tpl(p). These operations extract the
sender, source, sequence number, identifier, and optimal recovery tuple of p, respectively. The
optimal recovery tuple of p corresponds to the optimal recovery tuple known to the sender of p at
the point in time when the transmission of p was scheduled.

When the packet p is an expedited request, that is, when type(p) = EXP-REPL, p supports the
operations sender(p), requestor(p), source(p), seqno(p), id(p), data(p), strip(p), and rec-tpl(p).
These operations extract the sender, requestor, source, sequence number, identifier, data segment,
ADU packet, and optimal recovery tuple of p, respectively.

When the packet p is either a request or a reply update, that is, when
type(p) E {RQST-UPDATE, REPL-UPDATE}, p supports the operations sender(p), source(p),
seqno(p), id(p), and rec-tpl(p). These operations extract the sender, source, sequence number,
identifier, and optimal recovery tuple of p, respectively.

6.2.2 The IP Buffer Component - CESRM-IPBUFFh

The CESRM-IPBUFFh timed I/O automaton specifies the IP buffer component of the reliable
multicast process. Figures 6.4 and 6.5 present the signature, the variables, and the discrete
transitions of CESRM-IPBUFFh. The CESRM-IPBUFFh automaton augments the functionality
of the SRM-IPBUFFh automaton of Section 4.3.3. In this section, we only describe the aspects
of CESRM-IPBUFFh that pertain to its unicast functionality; that is, the interaction with
CESRM-RECh and IP pertaining to the transmission of unicast packets.

Variables The set usend-buff is used to buffer all packets to be unicast using the underlying IP
service.

Input Actions The input action urecvh(p) models the reception of the unicast packet p from the
underlying IP service. If the host h is a member of the reliable multicast group, then the urecvh(p)
action decapsulates the packet p and adds the result to the recv-buff buffer. Thus, the contents
of the packet p may subsequently be processed by the other components of the reliable multicast
process.

Each input action rec-usendh(h',p) is performed by the recovery component at h so as to unicast
the packet p using the underlying IP service to the host h'. If the host h is a member of the
reliable multicast group, then CESRM-IPBUFFh encapsulates h, seqno, h', and p into a unicast
packet, buffers this packet in usend-buff for unicast transmission using the underlying IP service,
and increments seqno. In effect, the encapsulation of p annotates it with the host h, the value

172

Figure 6.3 CESRM Packet Definitions

R,~j) <' 5<'1' "'-'FSS EPRQST, EXP-REPL, RQST-UPDATE, REPL-UPDATE!

-',AY. AEXP-RQST:
I;serzder(p) e H

I source(p) E H
seqno(p) E N

J 'd(p) E H x N id(p) (source(p), seqno(p))
g r 'p) = {0 1 Erec-tpl(p) Recovery- TupLes

DATA :))EXP-REPL:
sender(p) E H

~ Ureqtiestor(p) E H
it Hsource(p) E H

seqno(p) E N
''u rIJJ. C~CC.[-(C49data(p) E {O, 1}*

dtst2src(p) C IR 0 strip(p) E PRM-CLIENT

id(p) G H x N : id(p) (source(p), seqno(p))
"--'p 1 Prec-tpl(p) E Recovery- Tuples

C RQST-UPDATE:
f IT : sender(p) E H

C'- Hsource(p) E H
) seqno(p) E N

id(p) E H x N id(p) = (source(p), seqno(p))

'Pnde IC p ICBCYC4rec-tpl(p) E Recovery-Tuples
rec-tpl(p) E Recovery- Tupes REPL-UPDATE:
E) 5 sender(p) E H

fj Nsource(p) E H

dC ')?" ,seqno(p) E N
'p '; id(p) E H x N : id(p) (source(p), seqno(p))

C" '' " rec-tpl(p) E Recovery-Tuples

jIPUTCAST-CLIENT Set of packets such that VP C IPLCAST- CLIENT:

e source(p) E H

seqno(p) C N
dest(p) E H

strip(p) E {0,1}*

/44 '(Cl) 4 3H

Cn --- yk) 44'.

0opeedpi

droped~pA

173

Figure 6.4 The CESRM-IPBUFFh Automaton Signature

Actios

(put utpu)I t

ex-joi-ac m np C

usendh(p), for p E PIPUCAST-CLIENT

7,r ecv (f im-sse
urecvh(p), for p G PIPUCAST-CLIENT

r -gn C - :"p- enP
rec-usendh(h',p), for h' E H, h' 0 h,p E PCESRM

Figure 6.5 The CESRM-IPBUFFh Automaton - Variables and Discrete Transitions

r a Ii d

usend-buff C PIPCAST-CLIENT initially usend-buff 0

input rec-usendh (h',p)

iff a'us :: crased eff if status = member then
usend-buff U= {comp-IPucast-pkt(h, seqno, h',p)}
seqno := seqno + 1

utQIIput process-pk p
iput rileave' presttu =memrber., n IT

eff if s crashed then ef

4o.utput mse-
in1P u t ax P- p

utr if siaul =i ;member then 'Tobp

input urecvh(p) output usendh(p)
efif if status = member then recv-buff U= { strip(p)} pre status = member A p E usend-buff

input reC-"send) eff usend-buff \ {p}

.dp-(-.i) pre t =I c rasl- h ed 4
r A usend-buff 0 u; s

Sft

of seqno, and the destination host h'. Since the variable seqno is persistent across host joins and
leaves, packets transmitted by the CESRM-IPBUFFh automata, for h E H, are unique.

Output Actions The output action usendh(p) models the transmission of the
the underlying IP unicast service. It is enabled when the host h is a member of
the packet p is in the usend-buff buffer. Its effects are to remove the packet p from

buffer.

packet p using
the group and
the usend-buff

6.2.3 The Recovery Component - CESRM-RECh

The CESRM-RECh timed I/O automaton specifies the recovery component of the reliable multicast
service. Figure 6.6 presents the signature of CESRM-RECh, that is, its parameters, and actions.
Figure 6.7 presents the variables of CESRM-RECh. Figures 6.8, 6.10, 6.11, 6.12, and 6.13 present
the discrete transitions of CESRM-RECh. Since the CESRM-RECh automaton is an enhancement

174

Figure 6.6 The CESRM-RECh Automaton - Signature

Par rm Aor

h I / C C C DD (KiDLT-DIST,RQST-DELAY Fs-RI

Actions:

nput intcrnal

pro-p 1r ea- ef send-exp rqst(s,), forsE H,N
send-rqst-updateh(s, i), for s E H, i E N
send-repl-updateh(s, i), for s E H, i E N

Output
rm-recv.,p 01 p, as

rec-usendh(h',p), for h' E H, h' f h,p C PCESRM
time-passage

of the SRM-RECh automaton of Section 4.3.4, we only describe the functionality of CESRM-RECh
beyond that of SRM-RECh. Once again, in order to provide the appropriate context, the description

of each of the parameters of CESRM-RECh is deferred to appropriate places within the description

of its variables and actions.

Variables

Each set usend-buff(h') C PCESRM, for h' E H, h' f h, is used to buffer the packets that are to be

subsequently unicast to h' using the underlying IP service. More precisely, the set usend-buff(h')

is comprised of the expedited requests to be unicast by the reliable multicast process at h to the

host h'.

The variable recovered-pkts? C H x N identifies the packets that have been received as either REPL

or EXP-REPL packets; that is, packets whose original transmissions have been lost but have since

been recovered.

The sets expedited-rqsts C Expedited-Rqsts, rqst-updates C Rqst- Updates, and Repl- Updates C

Repl- Updates are comprised of tuples that identify the packets for which either expedited requests,
request updates, or reply updates, respectively, have been scheduled for transmission. Tuples

comprising these sets identify each packet, its scheduled transmission time, and the optimal

requestor/replier pair pertaining to the recovery of the given packet.

Each of the variables rec-tpl(h', i') E Recovery-Tuples U I, for h' E H, h' = h and i' E N, identifies

the optimal requestor/replier pair for the packet (h', i'). The variable rec-tpl(h', i') is defined,
i.e., not equal to -, only if the packet (h', i') is a proper packet that has been recovered and,
consequently, whose optimal requestor/replier pair has been determined.

Input Actions

As in the case of the SRM-RECh automaton, the input action process-pkth(p) models the

processing of the packet p by CESRM-RECh. The packet p is processed only when the host h is a

member of the reliable multicast group. We proceed by describing the effects of process-pkth(p)
depending on the type of the packet p. In our description of the effects of process-pkth(p), we only

describe the additional effects to those of the process-pkth(p) action of SRM-RECh. Throughout

175

Figure 6.7 The CESRM-RECh Automaton - Variables

4ii li P J d j

v4. e n-0)'.

usend-buff(h') C PCESRM, for all h' E H, h' # h, initially usend-buff= 0, for all h' E H, h' f h
recovered-pkts? C H x N, initially recovered-pkts? = 0
expedited-rqsts C Expedited-Rqsts, initially expedited-rqsts =0

rqst-updates C Rqst-Updates, initially rqst-updates 0
repl-updates C Repi-Updates, initially repl-updates = 0
rec-tpl(h',i') E Recovery-Tuples U I, for h' E H, h' 0 h and i' E N, initially rec-tpl =-L, for h' E H, h' : h and ' E N

cs {- |l' h

ta g ttep .s

4' dqsdq

recovered-pkts t (h) (s,pi) C recovered-pkts?)s h'}, for all h' E H

expedited- rqs ts~ { (s, i) E H x N 13B t E IR 0, rec-tpl c Recovery- Tuples (s, ' t, rec-tp1) E expedited- rqsts}

rqst-updatesh(h') (si) E H X N 13 t C R 0 ,rec-tpl E Recovery-Tples (s t rec tpl) E rqst-updates}, for all h' H

repl-updatesr(h') {(si) E H x N 1 t E IR srec-tpl E Recovery-Tuples (s, t, rectpl) C repl-updates}, for all h' c H

our presentation of the effects of process-pkth(p), we let s -E H and ip C N denote the source

and the sequence number pertaining to the packet p.

First, consider the case where p is a DATA packet. In addition to the effects of the process-pkth(p)

action Of SRM-RECh, the process-pkth(p) of CESRM-RECh cancels any expedited requests for

the packet p that are scheduled for transmission.

Second, consider the case where p is a RQST packet. In this case, the effects of the process-pkth(p)

action mimics the effects of the process-pkth (p) action of SRM-RE~h with the exception that

when the request alerts the loss of the packet (sp, ip) and h considers itself to be the optimal

requestor for (sr, ip), the process-pkth(p) action also schedules the transmission of an expedited

request for (sr, i1,). The scheduling of an expedited request in this case is not necessary. The sender

of the packet p has already detected the loss of (sr, ip) and is possibly a preferable requestor for

(sp, ip). The alternative decision of opting out of recovering the packet (sp, ip) expeditiously is also

176

plausible strategy for the CESRM protocol.

Third, consider the case where p is a REPL packet. In addition to the effects of the process-pkth(p)
action of SRM-RECh, the process-pkth(p) of CESRM-RECh cancels any expedited requests for
the packet p that are scheduled for transmission and updates the optimal requestor/replier pair

for the packet (sp, ip). If p is a packet that has been recovered by h and the optimal recovery
tuple cached at h for p is either undefined or affords a worse recovery latency than the recovery
tuple annotating p, then process-pkth(p) sets the optimal recovery tuple for (sp, ip) to the one
annotating p and cancels any scheduled requestor and replier updates for (sr, i). These updates
pertain to the requestor/replier tuple that has just been replaced and is, thus, considered to be
stale.

Fourth, consider the case where p is a EXP-RQST packet. The packet p is processed only when
the host h is a member of the reliable multicast group and the packet p is a proper packet; that
is, when status = member and min-seqno(sp) 4 Amin-seqno(sp) < ip, where (sp,ip) = id(p).
If h considers itself to be the optimal replier for (se, i), the packet (sr, i) is archived at h,
and there are no pending replies for (sr, i), then h cancels any scheduled replies for (sp, ip)
and schedules the immediate transmission of an expedited reply for (s, i). In particular, the
process-upkth(p) action composes an expedited reply packet for (s i) and adds it to the buffer
msend-buff. The operation comp-exp-repl-pkt(sp, ip, rec-tpl) composes an EXP-REPL packet from h
for (se, i). Moreover, the process-upkth(p) action adds a tuple corresponding to (sp, ip) to the set
pending-repis. The reply abstinence timeout of this pending reply is set to now + D3drq, where dq
is the distance estimate from the optimal replier r to the optimal requestor q of the given expedited
recovery; namely, dq is the distance estimate from r to the host q whose expedited request induced
the particular expedited reply for (sp, ip).

Fifth, consider the case where p is a EXP-REPL packet. In addition to the effects pertaining to
a REPL packet of the process-pkth(p) action of SRM-RECh, the process-pkth(p) cancels any
expedited requests for p that are scheduled for transmission, updates the optimal recovery tuple for

(sP, ip), and, when appropriate, schedules the transmission of either a requestor or a replier update
packets. If the packet (sp, ip) has been recovered at h and either the cached optimal recovery tuple
for (sr, i) is undefined or it affords a worse recovery latency than the recovery tuple annotating
p, then process-pkth(p) sets the optimal recovery tuple for (s ,i) to the one annotating p and
cancels any scheduled requestor and replier updates for (sp,ip). These updates pertain to the
requestor/replier tuple that has just been replaced and is, thus, considered to be stale. Moreover, if
no requestor updates are scheduled for transmission, h is different from the requestor q of the cached
optimal recovery tuple for (sr, i), and h is preferable to q in terms of the afforded recovery latency,
then process-pkth(p) schedules the transmission of a requestor update packet. This control packet
is used to inform the members of the reliable multicast group that shared the loss of (sr, i) of a
preferable requestor/replier pair.

If h has received the original transmission of the packet (s, in), that is, the packet (sr, i) has been
archived but is not recorded as having been recovered by h, no replier updates are scheduled for
transmission, h is different from the replier r of the cached optimal recovery tuple for (se, i), and h
is a preferable replier to r in terms of the afforded recovery latency, then process-pkth(p) schedules
the transmission of a replier update packet. This control packet is used to inform the members of
the reliable multicast group that shared the loss of (sr, i) of a preferable requestor/replier pair.

Sixth, consider the case where p is a RQST-UPDATE packet. The packet p is only processed when the
host h is a member of the reliable multicast group and the packet (sP, ip) is proper. If p is a packet
that has been recovered at the host h and either the optimal recovery tuple for p is undefined or it
affords a worse recovery latency than the recovery tuple annotating p, then process-pkth(p) sets
the optimal recovery tuple for (sr, i) to the one annotating p. Moreover, if there is a scheduled

177

Figure 6.8 The CESRM-RECh Automaton - Discrete Transitions

input Crasha

10put rm-leave

eff if' -tisarashed then

in~tr -ein d pi ,l ara m .

e ff i f st eoer c fonep) thenl

Recordi f, remcot DATIA oaclket

t II

th n

Copsed(pce

output nn-recv J

pre saa ebrAp6t ed e

outpu it rec-msen~dr.p

output rec-usendh(h ,p)

pre status = member A p E usend-buff(h')
eff usend-buff (h') \= {p}

replier update that affords worse recovery latency, then process-pkth(p) cancels this update. The

action process-pkth(p) also cancels any scheduled requestor updates; such updates are suppressed

by the requestor update being processed in the spirit of SRM. Finally, process-pkth(p) adds

any trailing missing packets to the set to-be-requested?, so that a request for each of them may

subsequently be scheduled.

Finally, the effects of the action process-pkth(p) when p is a REPL-UPDATE packet are analogous

to those of a RQST-UPDATE packet.

Output Actions

Each output action rec-usendh(h',p), for h' E H, h' : hp E PCESRM, hands off the packet p

from CESRM-RECh to CESRM-IPBUFFh so that it may subsequently be unicast to h' using the

underlying IP service. The precondition of the rec-usendh(h',p) action is that the host h is a

member of the reliable multicast group and p is in the usend-buff(h') buffer. Its effects are to

remove p from the usend-buff(h') buffer.

Internal Actions

The effects of the action schd1-rqsth(s, i), for s C H, s = h, i E N, are augmented so as to

schedule an expedited request for the packet (s, i). Such a request is scheduled in addition to one

scheduled as part of the original SRM protocol. The operation opt-rec-tpl(s) determines the optimal

requestor/replier pair for the source s given the archive of optimal requestor/replier pairs for each

of the packets that have been recovered so far; the optimal requestor/replier pairs are recorded by
the variables rec-tpl(s, i'), for i' E N. In this chapter, we designate the recovery tuple of the most

recent packet that has been recovered by h to be the optimal recovery tuple; that is, we assume a

cache of size 1. In particular, throughout this chapter, we let opt-rec-tpl(s) = rec-tpl(s,i*), where

i* = max{i' E N | rec-tpl(s,i') #I -}.

Once the optimal requestor/replier pair for the packet (s, i) has been determined, if the host h

178

Figure 6.9 The CESRM-RECh Automaton - Discrete Transitions (Cont'd)

input process-pkt

where typ p D A TA
uf F if s s= Memb-er then

\Renconidfoeros DrATA packets

Uf h. sgo i si-inosi then
:hivel, nd d evr packet

if f) pk, then

if a y d ta r
P r \ es di | t be "(k i s

cc an pein r eaests r' -es

\\Cncel any, sheduled epdtdrqet

(dqsp dqsp'

exped ied -rqt \ {i s C ,,i- ', et pii) |

\\ Cancel aychedRedoeype}te s

exedte-rst ?~{sitrctl

ept ed-q \ IIR
0 ip , rec-tpl) I eoey-ul

hnput process-Piktt (P
where p(p=E

ci irf .tii .m .m ..e then

if m e then

if h J,. i' p then

ti t. hui

dit

if i bein then

Discover any rail ing mi packets

0:1 1 0 1 sii.'i

is the optimal requestor, then it schedules the transmission of an expedited request for (s, i) for

a point in time that is RQST-DELAY time units in the future. Expedited requests are delayed in

this fashion so as to prevent the premature transmission of expedited requests when packets are

temporarily considered missing due to the reordering of packets within the transmission stream

from the source.

Each internal action send-exp-rqsth(s, i), for s E H, i C N, models the expiration of the

transmission timeout of a scheduled expedited request for the packet (s, i). The precondition

of send-exp-rqsth(s, i) is that the host h is a member of the reliable multicast group and a

previously scheduled expedited request for the packet (s, i) has just expired; that is, there is

a tuple (s, i, t, rec-tpl) in expedited-rqsts such that t = now. Let the tuple (s, i, t, rec-tpl) be

the element of expedited-rqsts corresponding to the packet (s, i). send-exp-rqsth(s, i) composes

an expedited request packet and adds this packet to the buffer usend-buff. The operation

comp-exp-rqst-pkt(s,i, rec-tpl) composes an EXP-RQST packet for the packet (s,i). Finally, the

action send-exp-rqsth(s, i) removes the tuple corresponding to (s, i) from the set expedited-rqsts.

Each internal action send-rqst-updateh(s,i), for s E H,i E N, models the expiration of

the transmission timeout of a scheduled request update for the packet (s,i). The precondi-

tion of send-rqst-updateh(si) is that the host h is a member of the reliable multicast group

and a previously scheduled request update for the packet (s, i) has just expired; that is, there

is a tuple (s,i,t,rec-tpl) in rqst-updates such that t = now. send-rqst-updateh(s,i) sets

the rec-tpl(s, i) variable to the recovery tuple rec-tpl pertaining to the particular request up-

date, composes a request update packet, and adds it to the buffer msend-buff. The oper-

ation comp-rqst-update-pkt(s,i,rec-tpl) composes a RQST-UPDATE packet from h for the packet

(s, i). Finally, the action send-rqst-updateh(s, i) removes the tuple (s, i, t, rec-tpl) from the set

rqst-updates.

Each internal action send-repl-updateh(si), for s E H, i E N, models the expiration of the

179

Figure 6.10 The CESRM-RECh Automaton - Discrete Transitions (Cont'd)

where

cffif
;ppe'p) RQsT

-,,,nrJ =mmer then..A

if m1-1gos kk Ihinyo p)i h
ift

eh

s-ched-ue a nev rep]y
d, := dist2src(p)

qdqs

i;, ! I)

-ft.hth-

Schedule a bakdoirequest

P!-L reqo.uect ha1 be.en 11chIIed-aul .e d

a ..ce. V. n
R reuest become pelnding

\\ Schedule an expedited request

if opt-rec-tpl(sp) #1 then
(q,dqs,r,drq) := opt-rec-tpl(sp)
if h = q then

t := now + RQST-DELAY
expedited-rqsts U=

{(sp, ip, t, (q, dqs, r, drq))}
clse

'-ackoff s -h-duled r euest

Sone .+ . +Cne

Dicvran, trai ing. missing p a c t z
if t s/ msgn ithe

C 1(30ue

transmission timeout of a scheduled request update for the packet (s, i). The precondition and the

effects of a send-repl-updateh(s, i) action are analogous to those of the send-rqst-updateh(s, i)
action described above.

Time Passage

The action v(t) models the passage of t time units. If the host h has crashed, then time is allowed to
elapse. Otherwise, time is prevented from elapsing while either there are packets in the delivery, IP
unicast, and IP multicast transmission buffers or there are packets which have been declared missing

180

jinput prcs- (P)

where Lye 't EpL

eff if fl'..I. meb h heI

i 4ly s r packets

\\Mrel becomnes pendi.ng

\\ Jrc.ie and dlir p)ackt
if t i 4hen

recovered-pkts? U= {(sp, ip)}

iPkt nednt berequestdto-b~regsted {{ . p v

an s ce requests anr p

Q)dqsp ',qsp

\\ l Cc e a ny pendi: requ 1ests

Dascvrany tra,:ilingF m ssn)a cke ts
if t h

\\ Cancel any scheduled expedited requests
expedited-rqsts \ = {{(sp,ip, t, rec-tpl) I

t E R!O, rec-tpl E Recovery-Tuples}
\\ Update requestor/replier state
if (Sp, ip) E recovered-pkts? then

if rec-tpl(sp,ip) =L
V rec-time(rec-tpl(p)) < rec- time (rec- tpl (sp, ip))

then
rec-tpl(sp,ip) := rec-tpl(p)
\\ Cancel any requestor updates
rqst-updates \= {(sp, ip, t, rec-tpl) I
t E R O, rec-tpl E Recovery-Tuples}

\\ Cancel any replier updates
repl-updates \= {(sp, ip, t, rec-tpl)

t C R 0, rec-tpl C Recovery- Tuples}

Figure 6.11 The CESRM-RECh Automaton - Discrete Transitions (Cont'd)

input process-pkth(p)

where type(p) = EXP-RQST
eff if status = member then

(sp,ip) = id(p)
\\ Only consider proper packets
if min-seqno(sp) 1 Amin-seqno(sp) < ip then

(q, dqsp, r, drq) := rec-tpl(p)

\\ Expedite a reply

if h = r A (sp,ip) E archived-pkts?
A(sp, ip) J pending-repls?

then
\\ A reply becomes pending

pending-repls \= {(sp, ip, t.) I t. E R :O}
trepi := now + D3drq
pending-repis U= {(sp, ip, trepi)}
\\ Cancel any scheduled replies

scheduled-repis \=

{(sp, ip, t, q, dqsp) I t, dqs,, E R , q E H}

\\ Compose EXP-REPL packet

msend-buff U=
{comp-exp-rep-pkt (sp, ip, rec-tpl(p)}

\\ Discover any trailing missing packets

if h # s$ A max-seqno(sp) < ip then
to-be-requested? U=

{(sp, i) I i C N, max-seqno(sp) < i < ip}
max-seqno(sp) := ip

input process-pkth(p)

where type(p) = EXP-REPL
eff if status = member then

(sp, ip) = id(p)
\\ Only consider proper packets
if min-seqno(sp) $1 Amin-seqno(sp) < ip then

\\ A reply becomes pending
pending-repls \= {(sp, ip, t.) I t. E Rc 0}
trpi := now + D 3 dist?(requestor(p))
pending-repls U= {(sp, ip, trepi)}
\\ Archive and deliver packet
if h $ sp A (sp,ip) 0 archived-pkts? then

recovered-pkts? U= {(sp, ip)}
archived-pkts U = {(strip(p), now)}

if h : sp then to-be-delivered U= {p}
\\ Pkt need not be requested
to-be-requested? \= {(sp, ip)}
\\ Cancel any requests/replies
scheduled-rqsts\= {(sp, ip, t, k) I t E R 0

, k E N}
scheduled-repis \=

{(sp, ipt, q, dqsp) I t, dqs, E R 0 , q E H}
\\ Cancel any pending requests
pending-rqsts \= {(sp, ip, t) I t E R 0 }
\\ Discover any trailing missing packets
if maz-seqno(sp) < ip then

to-be-requested? u=
{(sp,i) I i E N, max-seqno(sp) < i < ip}

max-seqno(sp) := ip
\\ Cancel any scheduled expedited requests
expedited-rqsts \= {(sp, ip, t, rec-tpl) I

t E R 0, rec-tpL E Recovery-Tuples}
if (sp,ip) E recovered-pkts? then

if rec-tpl(sp,ip) =1I
V rec-time(rec-tpl(p)) < rec-time(rec-tpl(sp,ip))

then
rec-tpl(sp,ip) := rec-tpl(p)
\\ Cancel any requestor updates
rqst-updates \= {(sp, ip, t, rec-tpl) I

t E R 0 , rec-tpl E Recovery-Tuples}
\\ Cancel any replier updates
repl-updates \ {(s, ip, t, rec-tpl) I

t E R !0 , rec-tpl E Recovery-Tuples}
(q, dqs,, r, drq) := rec-tpl(sp, ip)
if (sp,ip) i rqst-updates? A h : q then

\\ Schedule a requestor update
cand-rec-tpl := (h, dist?(sp), r, dist?(r))
cand-rec-time := rec-time(cand-rec-tpl)
curr-rec-tpl := rec-tpl(sp,ip)
curr-rec-time := rec-time(curr-rec-tpl)
if cand-rec-time < curr-rec-time then

drqst := dist?(sp)
trqst :E now + [Cidrqst, (C1 + C2)dq.,t]
rqst-updates U { s , ip, trqst, cand-rec-tpl)}

(q,dqsp,r,drq) := rec-tpl(p)
if (sp,ip) E archived-pkts? \ recovered-pkts? then

if (sp,ip) I repl-updates? A h $ r then
\\ Schedule a replier update
cand-rec-tpl := (q, dqs, h, dist?(q))
cand-rec-time := rec-time(cand-rec-tpl)
if cand-rec-time < rec-time(rec-tpl(p)) then

drepl := dist?(q)

trepi : E now + [Didrept ,(DI + D2)drepl]
repL-updates U= { (sp, ip, trepi, cand-rec-tpl)}

181

Figure 6.12 The CESRM-RECh Automaton - Discrete Transitions (Cont'd)

input process-pkth(p)

where type(p) = RQST-UPDATE
eff if status = member then

(sp,ip) = id(p)
\\ Only consider proper packets
if min-seqno(sp) #- Amin-seqno(sp) < ip then

if (sp,ip) E recovered-pkts? then
\\ Update requestor state
if rec-tpl(sp,ip) =1

Vrec-time(rec-tpl(p)) < rec-time(rec-tpl(sp,ip))
then

rec-tpl(sp,ip) := rec-tpl(p)
\\ Remove worse replier update

if (sp,ip) E repl-updates? then
choose t E R>!O, rec-tpl E Recovery-Tuples

where (sP,ip,t,rec-tpl) E repl-updates
rec-time = rec-time(rec-tpl)
if rec-time(rec-tpl(p)) < rec-time then

repl-updates \= {(sp, ip, t, rec-tpl)}
\\ Cancel any requestor updates
rqst-updates\= {(sp,it,rec-tpl) I
t E R>!, rec-tpl G Recovery-Tuples}

\\ Discover any trailing missing packets
if max-seqno(sp) < ip then

to-be-requested? U=
{(sp, i) I i E N, max-seqno(sp) < i < ip}

max-seqno(sp) := ip

input process-pkth(p)

where type(p) = REPL-UPDATE
eff if status = member then

(sp,ip) = id(p)
\\ Only consider proper packets
if min-seqno(sp) AI Amin-seqno(sp) < ip then

if (sp,ip) E recovered-pkts? then
\\ Update replier state
if rec-tpl(sp,ip) =1

V rec-time(rec-tpl(p)) < rec-time(rec-tpl(sp,ip))
then

rec-tpl(sp,ip) := rec-tpl(p)
\\ Remove worse requestor update
if (sp,ip) E rqst-updates? then

choose t E R 0 , rec-tpl E Recovery-Tuples
where (sp, ip, t, rec-tpl) E rqst-updates

rec-time = rec-time(rec-tpl)
if rec-time(rec-tpl(p)) < rec-time then

rqst-updates \ = {{(sp, ip, t, rec-tpl)}
\\ Cancel any replier updates
repl-updates \= {(sp,i p,t, rec-tpl)|

t E R> 0, rec-tpl E Recovery- Tuples}
\\ Discover any trailing missing packets
if max-seqno(sp) < ip then

to-be-requested? U=
{(sp, i) I i E N, max-seqno(sp) < i < ip}

max-seqno(sp) := ip

but for which a request has yet to be scheduled; that is, while either the buffer to-be-delivered, the

buffer msend-buff, the buffer msend-buff, or the set to-be-requested? is non-empty. Furthermore,
time is prevented from elapsing past the scheduled transmission time of any requests, replies,
expedited requests, request updates, and reply updates.

6.2.4 The IP Component - IP

In this section, we augment our abstract specification of the underlying IP multicast service

IPMCAST of Chapter 4 to provide the IP unicast service, i.e., the best-effort point-to-point

communication service. Figures 6.14 and 6.15 present the signature, the variables, and the actions

of the TIOA model IP of the IP service component that provides both multicast and unicast

communication. We proceed by only describing the additions to the specification of the IPMCAST

automaton of Chapter 4.

The set upkts C PIPUCAST-CLIENT is comprised of the packets that have been unicast and are pending

delivery to their respective recipients. The action usendh(p), for p E PIPUCAST-CLIENT, models the

unicast transmission of the packet p by the host h. When the host h is operational, the usendh(p)
action adds the packet p to the set of pending unicast packets upkts. The action udrop(p), for

p E PIPUCAST-CLIENT, models the loss of the packet p. Its effects are to remove p from the set of

pending unicast packets upkts. The action urecvh(p), for p E PIPUCAST-CLIENT, models the reception

of the unicast packet p. The precondition of urecvh(p) is that h is operational, h is the intended

recipient of p, and that p is a pending unicast packet. Its effects are to remove p from the set of

pending unicast packets upkts.

182

Figure 6.13 The CESRM-RECh Automaton - Discrete Transitions (Cont'd)

internal sch-d11rqst a6)
pre e ,Jd s =: ember -r).

efi v-e d UL e r ,T el G 't

2"''

\\ Schedule an expedited request
if opt-rec-tpl(s) 01 then

(qdqsrldrq) :- opt-rec-tpl(s)
if h q then
t now + RQST-DELAY
expedited-rqsts U= (s, it, (q, dqs, r, drq))}

interiual ni~

p a re emerhsbe shdl

-o-b -n u s d \=) {1s, i 't

e f (op"re-seso pL then

(qnsfd r := o -e -t s

xp i -rss e= {1si,, sq y ,re))} c .da..

'SS-PERTiOD

internal send--rqL
choose t

pr tt memle r

eff Coyupoke :--eqmesn pafckIel

resess-e paet

internal send- rqat ,

-p1, dq, E st(s)

C p < Iy Y)a,

hoose 1 .- PWhesrs b'e'o'

bA t = nw ct?(qd yt

;'k d C EI>

eff ompoe eqes pacerd w

i , 0.

msendbug = { cm,-qs -kt . ,di ()}

Cancel scheduLd reqy

scheule mpJ, d) s

Figure 6.14 The IP Automaton

internal send-exp-rqsth(si)

choose t E R O, rec-tpl E Recovery-Tuples
pre status = member

At = now A (s, i, t, rec-tpl) E expedited-rqsts
eff (q,dqs,r,drq) = rec-tpl

\\ Compose EXP-RQST packet
usend-buff(r) U= {comp-exp-rqst-pkt(s, i, rec-tpl)}
\\ Expedited request completed

expedited-rqsts \= {(s, i, t, rec-tpl)}

internal send-rqst-update (s, i)

choose t E R :, rec-tpL G Recovery-Tuples
pre status = member

At = now A (s,i,t, rec-tpl) G rqst-updates
eff \\ Update optimal requestor/replier pair

rec-tpl(s,i) := rec-tpl
\\ Compose RQST-UPDATE packet
msend-buff U= { comp-rqst-update-pkt (s, i, rec-tpl)}
\\ Request update completed
rqst-updates \= {(s, i, t, , rec-tpl)}

internal send-repl-updateh(s,i)

choose t C R !, rec-tpl E Recovery-Tuples
pre status = member

At = now A (s,i,t, rec-tpl) E repl-updates
eff \\ Update optimal requestor/replier pair

rec-tpl(s,i) := rec-tpl
\\ Compose REPL-UPDATE packet

msend-buff U= {comp-repl-update-pkt(s, i, rec-tpl)}
\\ Reply update completed
repl-updates \= {(s, i, t, , rec-tpl)}

pre c-rash-ed

si S- 10A (Ah'EH,h' husend-buff (h) 0)

A no exp-rqsts scheduled earlier than now + t
" no rqst-updates scheduled earlier than now + t
A no repl-updates scheduled earlier than now + t)
A r ua s d d r n + t

- Signature

:Actions-

inpIt outpu:t

rj,) nh fot /Z 11 l a e-c f

r-H urecvh(p), for h E H,p E PIPMCAST-CLIENT

usendh(p), for h E H,p E PIPUCAST-CLIENT eC.

nd Fn udrop(p), for p E PIPICAsT-CLIENT

mgrb-col FpT) P! r pk imne-passage

183

Figure 6.15 The IP automaton Variables and Discrete Transitions

id n tial 0Div Hd ar ia rsd

upkts C PIPCAST-CLIENT, initially upkts 0
nnb.,i

n~~ ~i p tcr ,

(nput.r)s output j c
alf if 4 pte r onn

input m 0 n, ;5f i Itus~ := de

Sif input urecvh(p)

pre h E up A h = dest(p) A p upkts
iput al e a") eeff upkts\ {p}

Of i f: 'N. r then

1 oreach10 pkt o;IO do. choose Y 4
ini wied~v inpre p

input usendh(p) eff

eff if h E up then input udrop(p)
upktsUG { p}

pre p E upkts
inpUt msend; 0 eff upkts \ {p}

ifl i f P, I -ni tmher l

prr No

aff BOw n.

6.3 CESRM Correctness

In this section, we analyze the correctness of our model of the CESRM protocol against the reliable

multicast service specification of Chapter 3.

As in the case of the SRM protocol, our model of the CESRM protocol involves the CESRM

processes at each host and the underlying IP multicast service; that is, the automaton

HhCH CESRMh x IP, where CESRMh = CESRM-MEMh x CESRM-IPBUFFh x CESRM-RECh-
We define the automaton CESRM to be the composition HhEH CESRMh x IP after hiding all

output actions that are not output actions of the specification RM(A), for any A E R 0 U 00; that

is, CESRM = hide.(HhEH CESRMh x IP), with 4D = out(HhEH CESRMh x IP)\out(RM(A)).

Furthermore, we let CESRMI and RMs(A), for any A E R O U oc, denote the implementation

and the specification of the reliable multicast service each composed with all the client automata;

that is, CESRMI = CESRM x RMCLIENTS and RMs(A) = RM(A) X RMCLIENTS.

The correctness analysis of CESRMI follows precisely the correctness analysis of SRMI in

Chapter 4. We proceed by adapting the correctness analysis of SRMI presented in Section 4.4

to the specifics of CESRMI.

184

6.3.1 Correctness Analysis Preliminaries

In this section, we adapt the invariants and lemmas of Section 4.4.3 to the CESRMj automaton.
The proofs of most such invariants and lemmas carry over from Section 4.4 practically unchanged.
The key to this realization is that: i) the effects of a process-pkth(p), for p E PCESRM, such
that type(p) = EXP-RQST, is analogous to the processing of a RQST packet and the transmission
of a reply to this request, and ii) the effects of a process-pkth(p), for p E PCESRM, such that
type(p) = EXP-REPL, is analogous to the processing of a REPL packet.

We begin by stating the transmission integrity property of the IP component along the lines of
Lemma 4.1. This property states that any packet that is received by a client of the IP component
must have previously been transmitted by a client of the IP component.

Lemma 6.1 (IP Transmission Integrity) For any timed trace 3 of IP, it is the case that:

1. any mrecvh(p) action, for h E H andp G PPMCAST-CLIENT, in 3 is preceded in 0 by a msendh'(p)
action, for some h' G H, and

2. any ureCvh(p) action, for h c H and p E PIPUCAST-CLIENT, in 3 is preceded in 3 by a usendh'(p)
action, for some h' G H.

Proof: The proof of the first claim is identical to the proof of Lemma 4.1. The proof of the second
claim is analogous.

Let a be any timed execution of IP such that 3 = ttrace(a). Consider a particular occurrence of
an action urecvh(p) in a, for h E H and p E PIPUCAST-CLIENT. Let (u,urecvh(p),U') E trans(IP)
be the discrete transition in a corresponding to the particular occurrence of the action urecvh(p)
in a. From the precondition of urecvh(p), it is the case that p E u.upkts. However, p may be
added to upkts only by the occurrence of an action usendh' (p), for some h E H. It follows that the
occurrence of any action urecvh(p) in a is preceded by the occurrence of an action usendh'(p), for
some h' G H. C)

Invariant 6.1 For h, h' G H and any reachable state u of CESRM-RECh, it is the case that
u.window?(h') C u.proper?(h').

Proof: Follows directly from the definitions of the derived variables CESRM-RECh.window?(h')
and CESRM-RECh.proper?(h'). El

Invariant 6.2 For h, h' G H and any reachable state u of CESRM-RECh, if u.status : member,
then u.expected(h') = 0 and m.delivered(h') = 0.

Proof: The proof is identical to that of Invariant 4.2. El

Invariant 6.3 For h, h' E H and any reachable state u of CES RM-RECh, it is the case that:

1. u.min-seqno(h') 416 u.max-seqno(h') 4- and

2. m.min-seqno(h') #1 - =.min-seqno(h') < u.max-seqno(h').

Proof: The proof is identical to that of Invariant 4.3. El

Invariant 6.4 For h, h' G H and any reachable state u of CES RM-RECh, it is the case that:

185

1. u. delivered (h') U u. to-be-delivered? (h') C u. arc hived-pkts? (h') and

2. u.status = member z: u.delivered (h') U u.to-be-delivered? (h') = u.archived-pkts? (h').

Proof: The proof is identical to that of Invariant 6.4. 71

Invariant 6.5 For h, h' C H and any reachable state u of CESRM-RECh, it is the case that
u.archived-pkts? (h') C u.window?(h').

Proof: The proof is similar to the induction used in the proof of Invariant 6.5. In this case, we must
also consider the discrete transitions involving a process-pkth(p) action, for p E PCESRM, such
that type (p) E {EXP-RQST, EXP-REPL, RQST-UPDATE, REPL-UPDATE}; the other actions introduced in
CESRM-RECh do not affect the variables min-seqno(h'), max-seqno(h'), and archived-pkts?(h'). In
the case of a EXP-RQST packet, the process-pkth(p) action does not affect archived-pkts?(h') and
may only increase max-seqno(h'). In the case of a EXP-REPL packet, the effects of process-pkth(p)
with respect to the variables min-seqno(h'), max-seqno(h'), and archived-pkts?(h') are similar to
those in the case of a REPL packet. In the case of either a RQST-UPDATE or a REPL-UPDATE packet, the
process-pkth(p) action does not affect archived-pkts?(h') and may only increase max-seqno(h').
Thus, it follows that the invariant assertion holds following the processing of either EXP-RQST,
EXP-REPL, or RQST-UPDATE, REPL-UPDATE packets. El

Invariant 6.6 For h, h' E H and any reachable state u of CESRM-RECh, it is the case
thatu.to-be-delivered? (h') C u.window? (h').

Proof: Follows directly from Invariants 6.4 and 6.5. El

Invariant 6.7 For h, h' E H and any reachable state u of CESRM-RECh, it is the case
thatu.delivered(h') C u.window? (h').

Proof: Follows directly from Invariants 6.4 and 6.5. El

Invariant 6.8 For h C H, p E PRM-CLIENT, and any reachable state u of CESRM-RECh, if
p G u.to-be-delivered, then u.min-seqno(source(p)) $1I and u.min-seqno(source(p)) < seqno(p).

Proof: The proof is identical to that of Invariant 4.8. El

Invariant 6.9 For h, h' E H and any reachable state u of CESRM-RECh, it is the case that:

1. u.min-seqno(h') =-L > u.expected(h') = 0,
2. u.delivered(h') C u.expected(h'),

3. h = h' A u.status : crashed > u.expected(h') = u.proper? (h'), and

4. u.expected(h') # 0 => u.expected(h') = u.proper?(h')

Proof: The proof is identical to that of Invariant 4.9; the effects of processing a EXP-REPL
packet are identical to those of processing a REPL packet with respect to the relevant variables of
CESRM-RECh. E

186

Invariant 6.10 Let h E H and u be any reachable state u of CES RM-RECh. For any p C PCESRM,

such that type(p) G {DATA, REPL} and p E u.msend-buff , it is the case that id(p) E u.archived-pkts?.

Proof: The proof is identical to that of Invariant 4.10. C]

Invariant 6.11 For h E H, p E PRM-CLIENT, and any reachable state u of CESRM-RECh, if
p C u.to-be-delivered, then source(p) : h.

Proof: From the effects of the process-pkth(p) action, for h E H and p E PCESRM, it follows that
a packet p may be added to to-be-delivered only if source(p) # h. El

Invariant 6.12 For h, h' E H and any reachable state u of CESRM-RECh, if u.expected(h') #0,
then n.to-be-delivered?(h') C u.expected(h').

Proof: The proof is identical to that of Invariant 4.12.

Invariant 6.13 For h, h' E H and any reachable state u of CESRM-RECh, it is the case that
u.to-be-requested? (h') C u.window? (h').

Proof: The proof is similar to the induction used in the proof of Invariant 4.13. In this
case, we must also consider the discrete transitions involving a process-pkth(p) action, for

p E PCESRM, such that type(p) E {EXP-RQST, EXP-REPL, RQST-UPDATE, REPL-UPDATE}; the other
actions introduced in CESRM-RECh do not affect the variables to-be-requested?(h'), min-seqno(h'),
and max-seqno(h'). In the case of EXP-RQST, EXP-REPL, RQST-UPDATE, and REPL-UPDATE packets,
the process-pkth(p) action adds elements to to-be-requested?(h') only when trailing missing
packets are discovered. In such cases, it also increases the value of max-seqno(h') to account for the
packets that is has detected to have been transmitted by h'. Thus, following such a process-pkth(p)
action, the invariant assertion still holds. C)

Invariant 6.14 For h, h' C H and any reachable state u of CESRM-RECh, it is the case that
u. scheduled-repls? (h') C u.archived-pkts?(h').

Proof: The proof is similar to the induction used in the proof of Invariant 4.14. In this case, we
must also consider the discrete transitions involving a process-pkth(p) action, for p E PCESRM,

such that type(p) E {EXP-RQST, EXP-REPL}; the other actions introduced in CESRM-RECh do not
affect the variables scheduled-repls?(h') and archived-pkts?(h'). In the case of an EXP-RQST packet,
the process-pkth(p) action may only remove elements from scheduled-repls? (h') and may only add
elements to archived-pkts? (h'). From the induction hypothesis, it follows that the invariant assertion
holds following the particular process-pkth(p) action. In the case of a EXP-REPL packet, the effects
of process-pkth(p) with respect to the variables scheduled-repls?(h') and archived-pkts?(h') packet
are identical to those in the case of a REPL packet. Thus, it follows that the invariant assertion
holds following the particular process-pkth(p) action. 0

Invariant 6.15 For h, h' C H and any reachable state u of CESRM-RECh, it is the case that
u.scheduled-rqsts? (h') C u.window?(h').

187

Proof: The proof is similar to the induction used in the proof of Invariant 4.14. In this
case, we must also consider the discrete transitions involving a process-pkth(p) action, for p E

PCESRM, such that type(p) C {EXP-RQST, EXP-REPL, RQST-UPDATE, REPL-UPDATE}; the other actions
introduced in CESRM-RECh do not affect the variables scheduled-rqsts?(h') and window? (h'). In
the case of either EXP-RQST, RQST-UPDATE, or REPL-UPDATE packets, the process-pkth(p) action
does not affect scheduled- rqsts?(h') and may only add elements to window? (h'). Thus, the induction
hypothesis implies that the invariant assertion holds following the occurrence of process-pkth(p).
In the case of a EXP-REPL packet, the process-pkth(p) action may only remove elements from
scheduled-rqsts?(h') and may only add elements to window?(h'). Thus, the induction hypothesis
implies that the invariant assertion holds following the occurrence of process-pkth(p)- C

Invariant 6.16 For h, h' E H and any reachable state u of CESRMJ, it is the case that
u[CESRM-RECh .recovered-pkts? (h') C u[CESRM-REChl.arc hived-pkts? (h').

Proof: Follows by a simple induction on the length of any finite admissible execution of
CESRMj leading to u. The key point to the induction is that the only actions that affect
the variable CESRM-RECh.recovered-pkts?(h') are the actions rm-leaveh and process-pkth(p)
action, for p E PCESRM, such that type(p) C {REPL, EXP-REPL}. The action rm-leaveh reinitializes
the variables CESRM-RECh.recovered-pkts?(h') and CESRM-RECh.archived-pkts? (h'). Thus, the
invariant assertion holds following the occurrence of rm-leaveh. In the case of the process-pkth(p)
action, whenever process-pkth(p) adds id(p) to CESRM-REChrecovered-pkts?(h'), it also adds
it to CESRM-RECh.archived-pkts?(h'). Thus, the induction hypothesis implies that the invariant
assertion holds following the occurrence of process-pkth(P).

Invariant 6.17 For h, h' E H and any reachable state u of CESRMJ, it is the case that
u[CESRM-REChl.repl-updates?(h') C u[CESRM-REChl.window?(h').

Proof: Follows by a simple induction on the length of any finite admissible execution of
CESRMI leading to u. The key point to the induction is that the only actions that affect the
variable CESRM-RECh.repl-updates?(h') are the actions rm-leaveh and process-pkth(p) action,
for p C PCESRM, such that type(p) = EXP-REPL. The action rm-leaveh reinitializes the variables
CESRM-RECh. repl-updates? (h') and CESRM-RECh.window?(h'). Thus, the invariant assertion
holds following the occurrence of rm-leaveh. The process-pkth(p) action may add id(p) to
CESRM-RECh.repl-updates?(h') only if id(p) E CESRM-RECh.recovered-pkts? (h'). Invariants 6.16
and 6.5 imply that id(p) c CESRM-RECh.window?(h'). Thus, the induction hypothesis implies
that the invariant assertion holds following the occurrence of process-pkth(p). C

Invariant 6.18 For h, h' E H and any reachable state u of CESRMJ, it is the case that
u[CESRM-RECh .rqst-updates?(h') C u[CESRM-REChl.window?(h').

Proof: Follows by a simple induction on the length of any finite admissible execution of
CESRMI leading to u. The key point to the induction is that the only actions that affect the
variable CESRM-RECh.rqst-updates?(h') are the actions rm-leaveh and process-pkth(p) action,
for p E PCESRM, such that type(p) = EXP-REPL. The action rm-leaveh reinitializes the variables
CESRM-RECh.rqst-updates?(h') and CESRM-RECh.window?(h'). Thus, the invariant assertion
holds following the occurrence of rm-leaveh. The process-pkth(p) action may add id(p) to
CESRM-RECh.rqst-updates?(h') only if id(p) E CESRM-RECh.recovered-pkts?(h'). Lemmas 6.16
and 6.5 imply that id(p) C CESRM-RECh.window?(h'). Thus, the induction hypothesis implies
that the invariant assertion holds following the occurrence of process-pkth(p). 0

188

Invariant 6.19 For h, h' E H and any reachable state u of CESRM-RECh, it is the case that
u.to-be-requested? (h') n u. archived-pkts? (h') = 0.

Proof: The proof is similar to the induction used in the proof of Invariant 4.14. In this
case, we must also consider the discrete transitions involving a process-pkth(p) action, for p c

PCESRM, such that type(p) E {EXP-RQST, EXP-REPL, RQST-UPDATE, REPL-UPDATE}; the other actions
introduced in CESRM-RECh do not affect the variables to-be-requested?(h') and archived-pkts? (h').
In the case of either EXP-RQST, RQST-UPDATE, or REPL-UPDATE packets, the process-pkth(p)
may only add the identifiers of trailing missing packets from h' to to-be-requested?(h') and does
not affect archived-pkts?(h'). Trailing packets are not in the current window of h' and, thus,
Invariant 6.5 implies that the identifiers of trailing packets from h' are not in archived-pkts?(h').
Thus, the induction hypothesis implies that the invariant assertion holds following the occurrence
of process-pkth(p). In the case of a EXP-REPL packet, the process-pkth(p) action may only add
the identifiers of trailing missing packets from h' to to-be-requested?(h') and adds the identifier of p
to archived-pkts?(h'). Once again, Invariant 6.5 implies that the identifiers of any trailing missing
packets are not in archived-pkts? (h'). Moreover, Invariant 6.13 implies that the identifier of p is not
in to-be-requested? (h'). Thus, the induction hypothesis implies that the invariant assertion holds
following the occurrence of process-pkth(p). C1

Invariant 6.20 For hh' C H and any reachable state u of CESRM-RECh, it is the case that
u.scheduled-rqsts ? (h') n u.arc hived-pkts? (h') = 0.

Proof: The proof is similar to the induction used in the proof of Invariant 4.14. In this case, we
must also consider the discrete transitions involving a process-pkth(p) action, for p C PCESRM,
such that type(p) = EXP-REPL; the other actions introduced in CESRM-RECh do not affect the
variables scheduled-rqsts?(h') and archived-pkts?(h'). In this case, the process-pkth(p) action
removes the element id(p) from scheduled-rqsts?(h') whenever it adds it to archived-pkts?(h').
Thus, the induction hypothesis implies that the invariant assertion holds following the occurrence
of process-pkth(p). 0

Invariant 6.21 For hh' C H and any reachable state u of CESRM-RECh, it is the case that
u.to-be-requested? (h') n u.scheduled-rqsts? (h') =0.

Proof: The proof is similar to the induction used in the proof of Invariant 4.18. In this case, we
must also consider the discrete transitions involving a process-pkth(p) action, for p E PCESRM,
such that type(p) C {EXP-RQST, EXP-REPL, RQST-UPDATE, REPL-UPDATE}; the other actions intro-
duced in CESRM-RECh do not affect the variables to-be-requested? (h') and scheduled-rqsts?(h').
In the case of either EXP-RQST, RQST-UPDATE, or REPL-UPDATE packets, the process-pkth(p) may
only add the identifiers of trailing missing packets from h' to to-be-requested? (h') and does not
affect scheduled-rqsts? (h'). Trailing packets are not in the current window of h' and, thus, In-
variant 6.15 implies that the identifiers of trailing packets from h' are not in scheduled-rqsts?(h').
Thus, the induction hypothesis implies that the invariant assertion holds following the occurrence
of process-pkth(p). In the case of a EXP-REPL packet, the effects of the process-pkth(p) action
with respect to the to-be-requested?(h') and scheduled-rqsts?(h') variables are identical to those of
a REPL packet. Thus, the inductive reasoning for the case of a EXP-REPL packet is identical to that
of a REPL packet in the proof of Invariant 4.18. C3

Invariant 6.22 Let u be any reachable state of CESRM-RECh. For s c H, i E N, t, t' C R 0 , and
k E N+, if (s,i,t) E pending-rqsts and (s,i,t',k) C scheduled-rqsts, then t < t'.

189

Proof: The proof is identical to that of Invariant 4.19.

Invariant 6.23 Let u be any reachable state of CESRM-RECh. For h, s C H and i C N, if
the action send-rqsth(si) is enabled in u, i.e., u.Pre(send-rqsth(s,i)) = True, then (s,i) (
u.pending-rqsts?.

Proof: The proof is identical to that of Invariant 4.20. E

Lemma 6.2 Let u,u' C states(CESRMI) be any reachable states of CESRMI, a be any timed
execution fragment of CESRMJ, such that u = c.fstate and u' = a.lstate. It is the case that
u[CESRM].sent-pkts C u'[CESRM].sent-pkts.

Proof: The proof is identical to that of Lemma 4.2. E

Invariant 6.24 Let u C states(CESRMI) be any reachable state of CESRMJ . For any s C H and
i,i' E N7,i i', if (s,i) C u[CESRM].sent-pkts?(s) and (s,i') E u[CESRM].sent-pkts?(s), then it
is the case that (si") E u[CESRM].sent-pkts?(s), for any i" E N i < i" < i'.

Proof: The proof is identical to that of Invariant 4.21. E

Lemma 6.3 Let s, h E H, i E N, and u C states(CESRMI) be any reachable state of CESRMI,
such that (s,i) E u[CESRM-RECh].archived-pkts?. Moreover, let a be any timed execution
fragment of CESRMI that starts in u, does not contain a rm-leaveh action, and ends in some

u' E states(CESRMI). Then, it is the case that (s,i) C u'[CESRM-RECh].archived-pkts?.

Proof: The proof is identical to that of Lemma 4.3. E

Lemma 6.4 Let h C H, i C N, and u C states(CESRMI) be any reachable state of CESRMI,
such that u[CESRM-MEMh.status = crashed. Moreover, let a be any timed execution fragment
of CESRMI that starts in u and ends in some u' C states(CESRMI). Then, it is the case that

u'[CESRM-MEMh].status = crashed.

Proof: The proof is identical to that of Lemma 4.4. El

Lemma 6.5 Let s, h c H, i C N, and u C states(CESRMI) be any reachable state of CESRMJ,
such that (s,i) E u[CESRM-RECh].scheduled-rqsts?. Moreover, let a be any timed execution

fragment of CESRMI that starts in u, does not contain a rm-leaveh action, and ends in some
u' C states(CESRM1). Then, either (s,i) C u'[CE S RM-RECh].scheduled-rqsts? or (s,i) C
u'[CESRM-REChl.archived-pkts?.

Proof: The proof is identical to that of Lemma 4.5. El

Lemma 6.6 Let sh E H, i E N, t E R 0 , k C N+, and u E states(CESRMI) be any
reachable state of CESRMI, such that u[CESRM-RECh].status = member and (s,i,t,k) C
u[CESRM-RECh].scheduled-rqsts. Moreover, let a be any timed execution fragment of CESRMJ
that starts in u, contains neither crashh nor rm-leaveh actions, and ends in some u' C

states(CESRMI), such that t < u'.now and (s,i,t',k') C u'[C E S RM- RECh].scheduled-rqsts, for
t' C R O and k' E N+. Then, it is the case that k < k'.

190

71

Proof: The proof is identical to that of Lemma 4.6. r]

Lemma 6.7 The occurrence of either a send-rqsth(s,i), send-replh(sI), send-exp-rqsth(s,i),
send-exp-replh(s,i), send-rqst-updateh(s,i), or send-repl-updateh(s,i) action, for h,s E H,
and i E N, in any admissible timed execution a of CESRMJ is instantaneously succeeded in a

by the occurrence of either a crashh, rm-leaveh, or rec-msendh(p) action, for p E PCESRM,
id(p) = (s, i), and type(p) equal to either RQST, REPL, EXP-RQST, EXP-REPL, RQST-UPDATE, or

REPL-UPDATE, respectively.

Proof: The proof is identical to that of Lemma 4.7.

Lemma 6.8 Let a be any admissible execution of CESRM1 containing the dis-
crete transition (u,7,u'), for u,u' E states(CESRMI), h E H, p E PRM-CLIENT,

(spip) = id(p), and 7r = rm-sendh(p). If either u[CESRM-REChl.min-seqno(sp) =1 or

u[CESRM-RECh].min-seqno(sp) AI /ip = u[CESRM-RECh.max-seqno(sp) + 1, then the discrete

transition (u,i, u') is instantaneously succeeded in a by the occurrence of either a crashh,
rm-leaveh, or rec-msendh(pkt) action, for pkt G PCESRM, such that pkt = comp-data-pkt(p).

Proof: The proof is identical to that of Lemma 4.10. El

Lemma 6.9 The occurrence of an action rec-msendh(p), for h C H and p C PCESRM, in any
admissible timed execution a of CESRMI is instantaneously succeeded in a by the occurrence

of either a crashh, rm-leaveh, or msendh(pkt) action, for pkt E PIPMCAST-CLIENT, such that
strip(pkt) = p.

Proof: The proof is identical to that of Lemma 4.8. El

Lemma 6.10 The occurrence of an action mrecvh(pkt), for h E H and pkt E PIPMCAST-CLIENT,

in a state u E states(CESRMI) in any admissible timed execution a of CESRMI, such that
u [C ESRM-IP BUFFhI.status = member, is instantaneously succeeded in a by the occurrence of either
a crashh, rm-leaveh, or process-pkth(p) action, for p E PCESRM, such that p = strip(pkt).

Proof: The proof is identical to that of Lemma 4.9. El

We now present some invariants pertaining to the CESRMJ automaton.

Invariant 6.25 For h E H and any reachable state u of CES RM1 , it is the case that:

1. u[RM-CLIENTh].status = idle # u[CESRM-MEMh -status = idle,

2. u[RM-CLIENTh.status = member 4 u[CESRM-MEMh].status = member,

3. u[RM-CLIENTh].status = crashed a u[CESRM-MEMh].status = crashed,

4. u[RM-CLIENTh.status = joining a u[CESRM-MEMhI.status E Joining, and

5. u[RM-CLIENTh.status = leaving # u[CESRM-MEMh].status E Leaving.

Proof: The proof is identical to that of Invariant 4.22. El

191

Invariant 6.26 For h c H and any reachable state u of CESRMI, it is the case that
u[RM-CLIENTh].seqno = u[CESRM-RECh.max-seqno(h).

Proof: The proof is identical to that of Invariant 4.23. El

Invariant 6.27 For h e H and any reachable state u of CESRMI, it is the case that:

1. u[CESRM-MEMh] status = crashed 4 u[CESRM-IPBUFFh.status = crashed
Au[CESRM-MEMh .status = member e u[CESRM-IPBUFFh].status = member and

2. u[CESRM-MEMh].status = crashed a u[CESRM-RECh].status = crashed
Au[CESRM-MEMh.status = member e u[CESRM-REChl.status = member.

Proof: The proof is identical to that of Invariant 4.24. El

Invariant 6.28 For h C H and any reachable state u of CESRMI, it is the case that, for any
packet p c u [CESRM-REChl.msend-buff:

1. type(p) SESS V (h',i') E seqno-rprts(p), (h',i') E u[CESRM-REChl.window?(h'), and

2. type(p) f SESS = id(p) E u[CESRM-REChl.window?(source(p)).

Proof: The proof is similar to the induction used in the proof of Invariant 6.14. In this
case, we must also consider the discrete transitions involving either send-rqst-update(s, i),
send-repl-updateh(s,i), or process-pkth(p) actions, for s E H, i C N and p E PCESRM,
such that type (p) E {EXP-RQST, EXP-REPL, RQST-UPDATE, REPL-UPDATE}; the other actions
introduced in CESRM-RECh do not affect the variables CESRM-RECh-msend-buff and
CESRM-RECh .window? (h').

The action send-rqst-updateh(s,i) adds a RQST-UPDATE packet for (s, i) to
CESRM-RECh.msend-buff and does not affect CESRM-RECh.window?(h'). The precon-
dition of send-rqst-updateh(s, i) implies that (s, i) C uk[CESRM-REChl. rqst-updates? (s). Thus,
Invariant 6.18 implies that (s, i) C Uk[CESRM-REChl.window?(s). Since send-rqst-updateh(s,)
does not affect CESRM-RECh.window?(h'), it follows that (s,i) E u[CESRM-REChl.window?(s).

The action send-repl-updateh(s, i) adds a REPL-UPDATE packet for (s, i) to
CESRM-RECh.msend-buff and does not affect CESRM-RECh.window?(h'). The precon-
dition of send-repl-updateh(s, i) implies that (s, i) C uk[CESRM-REChl. repl-updates? (s). Thus,
Invariant 6.17 implies that (s,i) C Uk[CESRM-RECh.window?(s). Since send-repl-updateh(s, i
does not affect CESRM-RECh.window?(h'), it follows that (s, i) C u[CESRM-REChl.window?(s).

The process-pkth(p) action does not affect CESRM-RECh.msend-buff and may only add elements
to CESRM-RECh.window?(h'). Thus, the induction hypothesis implies that the invariant assertion
holds following the occurrence of process-pkth(p). E

Invariant 6.29 For any reachable state u of CESRMI, it is the case that, for all h, h' E H,
u[CESRM-RECh.window?(h') C u[CESRM].sent-pkts?(h').

Proof: The proof is analogous to the induction used in the proof of Invariant 6.29. El

Invariant 6.30 For any reachable state u of CESRMj, it is the case that, for all h, h' C H,
u[CESRM-RECh].archived-pkts?(h') g u[CESRM].sent-pkts?(h').

192

Proof: Follows directly from Invariants 6.5 and 6.29.

Invariant 6.31 For h, h' E H and any reachable state u of CESRMI, it is the case that

u[CESRM-RECh].to-be-delivered?(h') C u[CESRM].sent-pkts?(h').

Proof: Follows directly from Invariants 6.4 and 6.30. El

6.3.2 Correctness Analysis

In this section, we show that our reliable multicast implementation CESRMJ indeed implements
the reliable multicast service specification RMs(oc). We begin by defining a relation R from
CESRMI to RMs(A), for any A E R 0 U oc. This relation is identical to that relating CESRMI
to RMs(A) in Section 4.4.4. We repeat it here for completeness.

Definition 6.1 Let R be the relation between states of CESRMI and RMs(A), for any A E
? O U oc, such that for any states u and s of CESRMI and RMs(A), respectively, (u,s) E R
provided that, for all h, h' E H and p G PRM-CLIENT, such that (srip) = id(p), it is the case that:

s.now = u.now

s[RM- CLIENTh .status

s[RM-CLIENTh].seqno

s[RM(A)].status(h) =

s [RM (A)]. trans-time (p)

s[RM(A)].expected (h, h')

s[RM (A)].delivered (h, h')

= u[RM-CLIENTh.status

= u[RM-CLIENTh -seqno

idle if u[CESRM-MEMh -status = idle

joining if u[CESRM-MEMh .status G Joining

leaving if u[CESRM-MEMhI status E Leaving

member if u[CESRM-MEMh.status = member

crashed if u[CESRM-MEMh]. status = crashed

u[CESRM-REC,1.trans-time(p)

u[CESRM-REChj- expected (h')

u[CESRM-REChI.delivered (h')

The following lemma states that the relation R of Definition 6.1 is a timed forward simulation
relation from CESRMI to RMs(oc).

Lemma 6.11 R is a timed forward simulation relation from CESRM1 to RMs(oc).

Proof: The proof is identical to that of Lemma 4.11. El

Theorem 6.12 CESRMI < RMs(oc)

Proof: Follows directly from Lemma 6.11. 0l

193

71

6.4 CESRM Timeliness

In this section, we prove some timeliness guarantees of CESRM. We begin by showing that when
hosts neither crash nor leave the reliable multicast group and the number of packet drops pertaining
to the transmission and, potentially, the recovery of any packet is bounded, CESRMJ implements
RMS(AL), for a particular AL c R 0 .

We then strengthen this timeliness guarantee by weakening the assumption that hosts neither crash
nor leave the reliable multicast group. Our weaker assumption states that only reliable multicast
transmission sources (as opposed to all hosts) neither crash nor leave the reliable multicast group.
This weaker assumption is also reasonably practical, since in a real-life system it may be possible
to design sources to be highly robust to failures (e.g., through transparent replication).

We further strengthen our timeliness guarantee by once again weakening our assumption that
sources neither crash nor leave the reliable multicast group. Our new assumption states that
whenever a loss is detected by any host h, there is some other host h' that has delivered the packet

(and is thus capable of retransmitting it) and neither crashes nor leaves for a sufficiently long period
of time AR E R'0 thereafter. By choosing AR to be long enough so that h can recover the packet
from h', we show that h recovers the given packet within AL = DET-BOUND + AR time units, where
DET-BOUND E R 0 is an upper bound on the amount of time needed for h to detect the given loss.

We conclude our timeliness analysis by comparing the worst-case recovery latency incurred by
successful expedited and non-expedited first-round recoveries. In particular, we show that successful
expedited recoveries complete within at most DET-BOUND + RQST-DELAY + 2d time units, where d is
an upper bound on the inter-host transmission latency. Furthermore, we show that successful non-
expedited first-round recoveries complete within at most DET-BOUND+ (C +C 2)d+d+ (DI +D 2)d+d
time units. This analysis reveals that, for typical SRM request and reply scheduling parameter
values [13], the worst-case recovery latency of packets recovered by expedited rather than first-
round recoveries in CESRM is reduced by roughly 3RTT, where RTT = 2 d is an upper bound on
the inter-host round-trip-time.

6.4.1 Timeliness Analysis Preliminaries

The execution Constraints 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8 defined for the SRMI automaton
in Section 4.4.5 carry over to the CESRMj automaton unchanged. We proceed by defining bounded
unicast transmission latency and resolution execution constraints for CESRMj; these constraints
are analogous to Constraints 4.1 and 4.2.

Constraint 6.1 (Bounded Unicast Transmission Latency) Let a be any admissible timed
execution of CES RMj and h, h' be any two distinct hosts in H. The transmission latency incurred
by any packet sent by h using the IP unicast service and received by h' in a lies in the interval
[d, d]; that is, for any packet p E PIPUCAST-CLIENT multicast by h in a, the time elapsing from the
time of occurrence of the action usendh(p) in a to that of any action urecvh/(p) in a lies in the
interval [d,d].

Constraint 6.2 (Bounded Unicast Transmission Resolution) Let a be any admissible timed
execution of CESRMJ. The fate of any packet sent using the IP unicast service is resolved within
at most a time units past its transmission time; that is, letting p E PIPUCAST-CLIENT be any packet
unicast in a, (u,7r,u '), for u, u' E states(CESRMI), sp = source(p), and 7r = usend,(p), be the
discrete transition involving the transmission of p in a, and dp = dest(p) be the destination of p, it
is the case that either a crashdp, urecvs,(p), or udrop(p) action occurs no later than d time units
after the particular occurrence of the discrete transition (u, 7r,1 u) in a.

194

We now define CESRMr versions of the execution sets defined for the SRMI automaton in

Section 4.4.5.

Let aeXecsk(CESRMI), for k E N+, be the set of admissible timed executions of CESRMJ in
which the number of drops suffered by IP packets pertaining to the transmission and, potentially,
the recovery of any packet p E PRM-CLIENT is at most k. That is, a E aexecsk(CESRMI) if and only

if, for any p E PRM-CLIENT, a contains at most k either mdrop(pkt, Hd), for pkt E PIPMCAST-CLIENT

and Hd g H, such that strip(pkt) E PCESRM[P], or udrop(pkt'), for pkt' E PIPUCAST-CLIENT, such
that strip(pkt') E PCESRM[pI, actions.

Let timely-aexecs(CESRMI), for A E R o, be the set of all admissible timed exe-
cutions of CESRMI in aexecs(CESRMI) that satisfy Constraints 4.1, 4.2, 4.3, 4.4,
6.1, and 6.2. Let recoverable-aexecs(CESRMI) be the subset of the admissible
timed executions of CESRMJ in timely-aexecs(CESRMI) that satisfy Constraints 4.5
and 4.6. Let AL-src-recoverable-aexecs(CESRMI), for some AL F IR 0 , be the sub-
set of the admissible timed executions of CESRMI in timely-aexecs(CESRMI) that
satisfy Constraint 4.7, for some AL F R 0 . Let AR-recoverable-aexecs(CESRMI), for
some AR F R' , be the subset of the admissible timed executions of CESRMj in
timely-aexecs(CESRMI) that satisfy Constraint 4.8, for some AR (E TR 0 . Moreover, for
k E N+, let timely-aexecsk(CESRMI) = timely-aexecs(CESRMI) n aexeCsk(CESRMI),
recoverable-aeXecsk(CESRMI) recoverable-aexecs (CESRMI) n aeXecsk(CESRMI),

AL-src-recoverable-aeXecsk(CESRMI) AL-src-recoverable-aexecs(CESRM,) n
aexecsk(CESRMj), and AR-recoverable-aeXecsk (CESRMI) = AR-recoverable-aexecs (CESRMI)fn
aeXecsk(CESRMI).

The sets of admissible timed traces corresponding to each of the above admissible timed execution
sets of CESRMI are defined analogously to the respective sets defined for the SRMI automaton
in Section 4.4.5.

We now proceed by restating the preliminary lemmas of Section 4.4.5 for the CESRMI automaton.

Lemma 6.13 Let a be any admissible timed execution of CESRMI that satisfies Constraint 4.1
and contains the occurrence of a discrete transition (u, 7r,u'), for u, u' E states(CESRMI), h F H,
p E PPMCAST-CLIENT, and 7r mreCvh(P). Then, any mreCvh'(p) action, for h' E H, in a occurs no
earlier and no later than d - d time units from the discrete transition (u, ic u') in a.

Proof: The proof is identical to that of Lemma 4.17. El

Lemma 6.14 Let a be any admissible timed execution of CESRMI that contains the transmission
of a packet p E PRM-CLIENT- For any state u F states(CESRMI) in a, if u.trans-time(p) 71, then
u.trans-time (p) = a.trans-time(p).

Proof: The proof is identical to that of Lemma 4.18. El

Lemma 6.15 Let hh' E H, a F aexecs(CESRM1), u,u' E states(CESRMI) be any states in
a, such that u < ul', and auu' be the finite execution fragment of a leading from u to u'. If
u[CESRM-REChl.expected(h') : 0 and auu, contains neither crashh nor rm-leaveh actions, then
it is the case that u[CESRM-REChl. expected(h') = u'[CESRM-REChl. expected (h').

Proof: The proof is identical to that of Lemma 4.19. El

195

Lemma 6.16 Let h, h' E H, a C aexecs(CESRMI), u,u' E states(CESRMi) be any states in a,
such that u <, u', and auu, be the execution fragment of a leading from u to u'. If acn' contains
neither crashh nor rm-leaveh actions, then it is the case that u[CESRM-RECh].expected(h') C
u'[CESRM-REChl. expected(h').

Proof: The proof is identical to that of Lemma 4.20. 71

Lemma 6.17 Let hh' E H, a E aexecs(CESRMI), u,u' E states(CESRMI) be any states
in a, such that u , u', and azUU be the finite execution fragment of a leading from u
to U'. If ani' contains neither crashh nor rm-leaveh actions, then it is the case that
u[CESRM-RECh .delivered(h') 9 u'[CESRM-REChI.delivered(h').

Proof: The proof is identical to that of Lemma 4.21. 0

Lemma 6.18 Let p E PRM-CLIENT and a be any admissible timed execution of CESRMI
in timely-aexecs(CESRMI) that contains the transmission of p. Let (w, w, w'), for w,w' E
states(CESRMI), sp = source(p), and r = rm-send,(p), be the discrete transition of CESRMI
involving the transmission of p using the reliable multicast service. For any states u, u' of CES RMI
in a, such that w' 0 a a u', let auu' be the timed execution fragment of a leading from u to
U'. For any k E N+ and h E H, h :A sp, suppose that ann' contains neither crashh nor rm-leaveh
actions and h schedules k-th and k + 1-st round requests for p in auu,. Let tk,tk+1 E k 0 be the
points in time in ae,, at which the host h schedules its k-th and k + 1-st round requests for p,
respectively. Then, it is the case that tk+1 tk + 2 k-1(C 1 + C 2)d.

Proof: The proof is identical to that of Lemma 4.22. F1

Corollary 6.19 Let p E PRM-CLIENT and a be any admissible timed execution of CESRMI
in timely-aexecs(CESRM1) that contains the transmission of p. Let (w,7r,w'), for w,w' E
states(CESRMI), p E PRM-CLIENT, SP = source(p), and 7r = rm-send,(p), be the discrete transition
of CESRMJ involving the transmission of p using the reliable multicast service. For any states u, u'
of CESRMI in a, such that w' <, u a u', let auu' be the timed execution fragment of a leading
from u to a'. For any k c N+ and h E H, h # sp, suppose that aoz' contains neither crashh nor
rm-leaveh actions and contains the discrete transition in which h detects the loss of p. Moreover,
suppose that, following the detection of p in anu , h schedules a k+ 1-st round request for p in auut.
Let tk+I1 E R be the point in time in acq' at which the host h schedules its k + 1-st round request
for p. Then, it is the case that tk+1 < auu'.det-timeh(p)+ (2 k - 1)(C1 +C 2)d.

Proof: The proof is identical to that of Corollary 4.23. El

Lemma 6.20 Let p G PRM-CLIENT and a be any admissible timed execution of CESRMI
in timely-aexecs(CESRMI) that contains the transmission of p. Let (w, r, w'), for w, w' C
states(CESRMI), sp = source(p), and 7r = rm-send,(p), be the discrete transition of CESRMI
involving the transmission of p using the reliable multicast service. For any states u, u' of CESRMI

in a, such that w' <' u ' u', let auu, be the timed execution fragment of a leading from u to
u'. For any k E N+ and h E H, h : sp, suppose that ace' contains neither crashh nor rm-leaveh
actions and h schedules k-th and k + 1-st round requests for p in auu,. Let tk, tk+1 E R 0 be the
points in time in auu, at which the host h schedules its k-th and k + 1-st round requests for p,
respectively. Then, it is the case that t k + 2k--C 3 d < tk+1-

196

Proof: The proof is identical to that of Lemma 4.24. 0

Lemma 6.21 Let p E PRM-CLIENT and a be any admissible timed execution of CESRMI
in timely-aexecs(CESRMI) that contains the transmission of p. Let (w,7r,w'), for w,w' C

states(CESRMI), sp = source(p), and i = rm-send,(p), be the discrete transition of CESRMI

in a involving the transmission of p using the reliable multicast service. For any states u,u' of

CESRMI in a, such that w' <c u a u', let auu& be the timed execution fragment of a leading

from u to u'. Moreover, let h E H be any member of the reliable multicast group in u, such that

id(p) C u[CESRM-REChl. expected (sp) and id(p) V u[CESRM-RECh].scheduled-rqsts?.

For k E N+, k > krt, suppose that auu, contains neither crashh nor rm-leaveh actions, h

schedules k-th and k + 1-st round requests for p in auul, and h either sends or receives its k-th

and k + 1-st round requests for p at the points in time tk+1,tk+2 E R >O in aceu .

Then, the k-th and k + 1-st round requests of h for p are distinct.

Proof: The proof is identical to that of Lemma 4.25. El

Lemma 6.22 Let p G PRM-CLIENT and a be any admissible timed execution of CESRMI
in timely-aexecs(CESRM1) that contains the transmission of p. Let (w,w,w'), for w,w' E
states(CESRMI), sp = source(p), and r = rm-sends,(p), be the discrete transition of CESRMI
involving the transmission of p using the reliable multicast service. For any states u, u' of CESRMI

in a, such that w' <' u " u', let ann' be the timed execution fragment of a leading from u to

u'. For any k E N+ and h, h' c HI h : h', suppose that u[CESRM-MEMh -status = member,
u[CESRM-MEMh'].status = member, auu' contains neither crashh, rm-leaveh, crashh', nor
rm-leaveh' actions, h schedules k-th and k + 1-st round requests for the packet p in aeu,, h either

sends or receives its k-th round request for p and schedules its k + 1-st round request for p at the

point in time tk+1 E II o in auut, and tk+1 + d < u'.now. Then, h' may receive the k-th round

request of h for p no later than tk+1 + a in a.

Proof: The proof is identical to that of Lemma 4.26.

Lemma 6.23 Let p E PRM-CLIENT and a be any admissible timed execution of CESRMJ
in timely-aexecs(CESRMI) that contains the transmission of p. Let (w,7r,w'), for w,w' E
states(CESRMI), sp = source(p), and 7r = rm-send,(p), be the discrete transition of CESRMI
involving the transmission of p using the reliable multicast service. For any states u, u' of CESRMI

in a, such that w' <' u <" u', let au,' be the timed execution fragment of a leading from u to
u'. For any k E N+ and h,h' c Hh : h', suppose that u[CESRM-MEMhI.status = member,
u[CESRM-MEMh'.status = member, id(p) C u[CESRM-RECh'.archived-pkts?, aeu, contains nei-
ther crashh, rm-leaveh, crashh/, nor rm-leaveh, actions, h' receives a request for p from h at

time t' E R 0 in anuu, and t' + (D 1 + D 2)d < u'.now. Then, the reply of h' pertaining to this
particular request of h for p is either sent or received by h' no later than t' + (D 1 + D 2)d in a.

Proof: The proof is identical to that of Lemma 4.27. El

Lemma 6.24 Let p C PRM-CLIENT and a be any admissible timed execution of CESRMJ
in timely-aexecs(CESRMI) that contains the transmission of p. Let (w, 7, w'), for w, w' E
states(CESRM1), sp = source(p), and r = rm-sends,(p), be the discrete transition of CESRMI
involving the transmission of p using the reliable multicast service. For any states u,u' of CESRMI

197

in a, such that w' <' u a a', let au,, be the timed execution fragment of a leading from u to
u'. For any k G N+ and h, h' E H, h # h', suppose that u[CESRM-MEMh -status = member,
u[CESRM-MEMh'.status = member, id(p) c u[CESRM-RECh'].archived-pkts?, au", contains nei-
ther crashh, rm-leaveh, crashh/, nor rm-leaveh, actions, h' receives a request for p from h at
time t' C RJO in auut, and t' + (D 1 + D 2)d + d - d + DA < u'.now. Then, the reply absti-
nence period of the reply of h' pertaining to this particular request of h for p expires no later than
t'+ (D1 + D 2)d + d - d + D3 d in a.

Proof: The proof is identical to that of Lemma 4.28. C3

Lemma 6.25 Let p E PRM-CLIENT and a be any admissible timed execution of CESRMI
in timely-aexecs(CESRMI) that contains the transmission of p. Let (w,w7,w'), for w,w' C
states(CESRMI), sp = source(p), and , = rm-send,(p), be the discrete transition of CESRMI
in a involving the transmission of p using the reliable multicast service. For any states u,u' of
CESRMJ in a, such that w' <, u a u', let ana' be the timed execution fragment of a leading
from u to u'. Moreover, let q, r E H, q / r be any members of the reliable multicast group in u,
such that id(p) E u[CESRM-RECq].expected (sp), id(p) V u[CESRM-RECq].scheduled-rqsts?, and
id(p) C u[CESRM-RECrj.delivered(sp).

For k c N+,k > k*eP, suppose that auu, contains neither crashq, rm-leaveq, crashr, nor
rm-leaver actions, q schedules k-th, k + 1-st, and k + 2nd round requests for the packet p in
auut, q either sends or receives its k-th and k + 1-st round requests for p at the points in time

tk+1,tk+2 E R in auu/, r receives the k-th and k + 1-st round requests of q for p in azuu, and r
either sends or receives the replies pertaining to the k-th and k + 1-st round requests of q for p in

Then, the replies of r pertaining to the k-th and k + 1-st round requests of q for p are distinct.

Proof: The proof is identical to that of Lemma 4.29. 0

Lemma 6.26 Let k c N+, p C PRM-CLIENT, and a be any admissible timed execution of CESRMI
in timely-aexecsk(CESRMI) that contains the transmission of p. Let (w,7r,w'), for w,w' C
states(CESRMI), sp = source(p), and 7 = rm-sends,(p), be the discrete transition of CESRMI in
a involving the transmission of p using the reliable multicast service. Suppose that the host h C H

schedules a request for p following the transmission of p in a. Let u C states(CESRM1) be the

first state in a such that id(p) C u[CESRM-RECh].scheduled-rqsts?(sV), u' C states(CESRMI) be
any state in a such that u.now + REC-BOUND(k* + k) < u'.now, and auu' be the timed execution

fragment of a leading from u to u'. Suppose that auu, contains neither crashh nor rm-leaveh
actions, there exists a host h' E Hh' # h, such that id(p) c u[CESRM-RECh'I.delivered(sp),
and auui contains neither crashh', nor rm-leaveh' actions. Then, it is the case that id(p) C

u'[CESRM-RECh].delivered(sp).

Proof: The proof is identical to that of Lemma 4.30. El

Lemma 6.27 Let p C PRM-CLIENT and a be any admissible timed execution of CESRMI
in timely-aexecs(CESRM1) that contains the transmission of p. Let (w,w,w'), for w,w' C
states(CESRMI), s, = source(p), and w = rm-send,(p), be the discrete transition of CESRMI
involving the transmission of p using the reliable multicast service. Let h C H, u, u' be any states

of CES RMI in a, such that w'.now + d < u.now and u < u ', and auu' be the timed execution

fragment of a leading from u to u'. If id(p) C u'[CESRM-RECh].expected(sp), then auu, contains
neither crashh nor rm-leaveh actions.

198

Proof: The proof is identical to that of Lemma 4.31. 0

Lemma 6.28 Let p E PRM-CLIENT and a be any admissible timed execution of CESRMj
in timely-aexecs(CESRM1) that contains the transmission of p. Let (w,,r,w'), for w, w' c
states(CESRMI), sp = source(p), and r = rm-sends,(p), be the discrete transition of CESRMj
in a involving the transmission of p using the reliable multicast service. Let h G H, u,u'

be any states of CESRMj in a, such that w'.now + d < u.now and u <a u'. If id(p) E
U'(CESRM-REch].expected (sp), then it is the case that id(p) E u[CESRM-RECh.expected (sp).

Proof: The proof is identical to that of Lemma 4.32. C)

Lemma 6.29 Let k E N+, AL = DET-BOUND + REC-BOUND(k* + k), p E PRM-CLIENT, and a

be any admissible timed execution of CESRMJ in AL-src-recoverable-aexecsk(CESRMI) that
contains the transmission of p. Let (w,,7,w'), for w,w' E states(CESRM1), sp = source(p), and

,r = rm-send,, (p), be the discrete transition of CESRMj in a involving the transmission of p using

the reliable multicast service. For any state w" of CESRMj in a, such that w'.now+AL < w"-now,
let an'm" be the timed execution fragment of a leading from w' to w". If h E w".intended(p), then

it is the case that h G w".completed(p).

Proof: The proof is identical to that of Lemma 4.33. El

Lemma 6.30 Let k E N+, AR = REC-BOUND(k* + k), AL = DET-BOUND + REC-BOUND(k* + k),
p G PRM-CLIENT, and a be any admissible timed execution of CESRMj in

AR-recoverable-aexecsk(CESRMI) that contains the transmission of p. Let (w, ir, w'), for

w,w' E states(CESRMI), sp = source(p), and w = rm-send,(p), be the discrete transition of

CESRMj in a involving the transmission of p using the reliable multicast service. For any state

W" of CESRMJ in a, such that w'.now + AL < w".now, let aw'w" be the timed execution fragment
of a leading from w' to w". If h G w".intended(p), then it is the case that h E w".completed(p).

Proof: The proof is identical to that of Lemma 4.34. El

6.4.2 Static and Dynamic Timeliness Analysis

The static and dynamic timeliness guarantees for the SRM1 automaton presented in Sections 4.4.6

and 4.4.7 carry over to the CESRMj automaton unchanged. In this section, we restate those
guarantees for the CESRMj automaton.

When hosts neither crash nor leave the reliable multicast group and the number of packet drops

pertaining to the transmission and, potentially, the recovery of any packet is bounded, CESRMI
implements RMS(AL), for a particular AL E Z O. In particular, any timed trace of CESRMj in
the set recoverable-attracesk(CESRMI), for some k E N, is also a timed trace of the specification

automaton RMs(AL), for AL = DET-BOUND + REC-BOUND(k* + k). Thus, given Constraints 4.1,
4.2, 4.3, 4.4, 4.5, 4.6, 6.1, and 6.2 and assuming that the number of packet drops pertaining to the
transmission and, potentially, the recovery of any packet is bounded by k, CESRMj implements
the timely reliable multicast service specification RMS(AL).

Theorem 6.31 Let k G N+ and AL = DET-BOUND + REC-BOUND(k* + k). Then, it is the case that
recoverable-attraces k(C E S RMI) C attraces (RMs(AL))-

199

Proof: The proof is analogous to that of Theorem 4.35.

In terms of the dynamic timeliness guarantees, the following lemma states that when sources
remain members of the reliable multicast group for an amount of time AL = DET-BOUND +
REC-BOUND(k* + k) past the transmission of any packet they send using the reliable multicast
group, CESRMJ implements RMS(AL). In particular, any timed trace of CESRMj in the set

AL-recoverable-attracesk(CESRM1), for AL = DET-BOUND + REC-BOUND(k* + k) and some k C N,
is also a timed trace of the specification automaton RMS(AL).

Theorem 6.32 Let k e N+ and AL = DET-BOUND + REC-BOUND(k* + k). Then, it is the case that

AL-src-recoverable-attracesk (C E SRMI) C attraces(RMs(AL)).

Proof: The proof is analogous to that of Theorem 4.35. El

We strengthen the above result by weakening our assumption that sources neither crashing nor
leaving the reliable multicast group. In particular, we show that CESRMI implements RMS(AL),
for AL = DET-BOUND + REC-BOUND(k* + k), if whenever a host h E H detects the loss of any packet

p E PRM-CLIENT, there exists a host h' E H, h' : h that has already delivered p and remains a
member of the reliable multicast group for at least AR = REC-BOUND(k* + k) time units.

Theorem 6.33 Let k c N+, AR = REC-BOUND(k*+k), and AL = DET-BOUND+REC-BOUND(k*+k).
Then, it is the case that AR-recoverable-attracesk (CESRMI) C attraces(RMs(AL))-

Proof: The proof is analogous to that of Theorem 4.35. El

6.4.3 Expedited Versus Non-Expedited Recovery Timeliness Analysis

In this section, we compare the worst-case recovery latency incurred by successful expedited and
non-expedited first-round recoveries of CESRM. In particular, we show that successful expedited
recoveries complete within at most DET-BOUND + +RQST-DELAY + 2d time units, where a is an upper
bound on the inter-host transmission latency. Furthermore, we show that successful non-expedited
first-round recoveries complete within at most DET-BOUND+(Ci+C 2)d+d+(D 1+D 2)d+d time units.
These bounds reveal that, for typical SRM request and reply scheduling parameter values [13], the
worst-case recovery latency of packets recovered by expedited rather than first-round recoveries
in CESRM is reduced by roughly 3RT T, where RTT = 2 a is an upper bound on the inter-host
round-trip-time.

Let a be any admissible timed execution of CESRMI, p E PRM-CLIENT be any packet transmitted
in a, and (u,r,u'), for uu' C states(CESRMI) and w c acts(CESRMI), be any discrete
transition of CESRMI in a, such that r = process-pkth(pkt), for h E H and pkt C PCESRM,
such that type(pkt) = EXP-REPL and id(pkt) = id(p). If the discrete transition (U, , U') in a
culminates the recovery of the packet p by h, i.e., id(p) E u[CESRM-RECh .scheduled-rqsts? and
id(p) E u'[CESRM-RECh.archived-pkts?, then we say that the discrete transition (u, r, u') involves
an expeditious recovery of p by h in a.

The following theorem states that, in any admissible timed execution a of CESRMj in the set
timely-aexecs(CESRMI), any packet that is expeditiously recovered is done so within at most
DET-BOUND + RQST-DELAY + 2d time units from the time the particular packet is transmitted.

Theorem 6.34 Let a be any admissible timed execution of CESRMj in timely-aexecs(CESRMI)
and p be any packet transmitted in a that is expeditiously recovered by a host h E H in a.

200

C1

Let (w,r, w'), for w,w' E states(CESRMf), sp = source(p), and rw = rm-sends,(p), be the

discrete transition of CESRMI in a involving the transmission of p in a and (u, 7ru, u'), for

uu' E states(CESRMI) and 7r, = process-pkth(pkt), such that type(pkt) = EXP-REPL and

id(pkt) = id(p), be the discrete transition of CESRMI in a involving the expeditious recovery of p
by h in a. Then, it is the case that u.now < w.now + DET-BOUND + RQST-DELAY + 2d.

Proof: From the precondition of the process-pkth(pkt) action, it follows that

u[CESRM-IPBUFFh.recv-buff : 0. Since time is not allowed to elapse in CESRM-IPBUFFh
while CESRM-IPBUFFh-recv-buff is non-empty and EXP-REPL packets are sent using the
IP multicast service, it follows that the process-pkth(pkt) action immediately succeeds a
mrecvh(ip-mpkt) action in a, for ip-mpkt E PIPMCAST-CLIENT, such that strip(ip-mpkt) = pkt.
Let (uI,mrecvh(ip-mpkt),u') be the discrete transition in a involving the occurrence of this
rrrecvh(ip-mpkt) action.

Lemma 6.1 implies that this mrecvh(ip-mpkt) action is preceded in a by a msendh,(ip-mpkt) action,
for some h' E H, h' : h. Let (U2 , msendh'(ip-mpkt), u') be the discrete transition in a involving the

occurrence of this msendh'(ip-mpkt) action. Constraint 4.1 implies that the time elapsing between
these msendh'(ip-mpkt) and mrecvh(ip-mpkt) actions is at most a time units.

From the precondition of the msendh' (ip-mpkt) action, it follows that ip-mpkt E

u2 [CESRM-IPBUFFh' .msend-buff. Since time is not allowed to elapse in CESRM-IPBUFFh'
while CESRM-IPBUFFh'.msend-buff is non-empty, it follows that the msendh' (ip-mpkt) action
immediately succeeds a rec-msendh'(pkt) action. Let (u3 ,rec-msendh'(pkt),u') be the discrete
transition in a involving the occurrence of this rec-msendh'(pkt) action.

From the precondition of the rec-msendh,(pkt) action, it follows that pkt E

u 3 [CESRM-RECh'].msend-buff. Since EXP-REPL packets may only be added to

CESRM-RECh'.msend-buff through the occurrence of the process-pkth,(pkt') action,
where type(pkt') = EXP-RQST and id(pkt') = id(pkt), it follows that the rec-msendh'(pkt)
immediately succeeds a process-pkth,(pkt') action in a. Let (U4 ,process-pkth,(pkt'),u') be the
discrete transition in a involving the occurrence of this process-pkth,(pkt') action.

From the precondition of the process-pkth,(pkt') action, it follows that
pkt' E u4 [CESRM-IPBUFFh'.recv-buff. Since time is not allowed to elapse in CESRM-IPBUFFh'
while CES RM-IPBUFFh' .recv-buff is non-empty and EXP-RQST packets are sent using the
IP unicast service, it follows that the process-pkth,(pkt') action immediately succeeds a

urecvh/(ip-upkt) action in a, for ip-upkt E PPUCAST--CLIENT, such that strip(ip-upkt) = pkt'.
Let (u5 ,urecvh'(ip-upkt),u') be the discrete transition in a involving the occurrence of this
urecvh/(ip-upkt) action.

Lemma 6.1 implies that this urecvh'(ip-upkt) action is preceded in a by a usendh"(ip-upkt) action,
for some h" E H, h" -? h'. Let (U6 , usendh" (ip-upkt), u') be the discrete transition in a involving the
occurrence of this usendh"(ip-upkt) action. Constraint 6.1 implies that the time elapsing between
these usendh" (ip-upkt) and urecvha(ip-upkt) actions is at most d time units.

From the precondition of the usendh"(ip-upkt) action, it follows that ip-upkt E

u6 [CESRM-IPBUFFh" -usend-buff. Since time is not allowed to elapse in CESRM-IPBUFFh'
while CESRM-IPBUFFh".usend-buff is non-empty, it follows that the usendh"(ip-upkt) action
immediately succeeds a rec-usendh" (h', pkt') action. Let (u7 , rec-usendh" (h', pkt'), u') be the
discrete transition in a involving the occurrence of this rec-usendh" (h', pkt') action.

From the precondition of the rec-usendh/ (h', pkt') action, it follows that
pkt' E u7 [CESRM-RECh"l.usend-buff(h'). Since time is not allowed to elapse in CESRM-RECh"
while CESRM-RECh".usend-buff(h') is non-empty and the only action that may add an EXP-RQST
packet to CESRM-RECh".usend-buff(h') is the send-exp-rqsth"(s, i) action, for (s, i) = id(pkt'),

201

it follows that the rec-usendh" (h',pkt') action immediately succeeds a send-exp-rqst,(s,i)
action, for (s, i) = id(pkt'), in a. Let (u8 , send-exp-rqsth" (s, i), 8') be the discrete transition in
a involving the occurrence of this send-exp-rqsthI (s, i) action.

From the precondition of the send-exp-rqsth" (s, i) action, it follows that

(s, i) E u8 [CESRM-RECh"].expedited-rqsts?. The only actions that may add an element
pertaining to the packet (s,i) to the set CESRM-RECh" .expedited-rqsts are the actions
schd1-rqsth"(s,i) and process-pkth",(pkt"), for type(pkt") = RQST and id(pkt") = (s,i). Let
(ug, 7r, u') be the discrete transition in a involving the occurrence of either such action. Either of
these actions schedule the expedited request for (s, i) for a point in time that is RQST-DELAY time
units in the future. Since time is not allowed to elapse past the time such an expedited request is
scheduled for transmission, the discrete transition (U8 , send-exp-rqsthI (s,), U'8) occurs exactly
RQST-DELAY time units after the occurrence of the discrete transition (ug, F, u).

In the case of a schd1-rqsth"(si) action, the precondition of the schdl-rqsth"(s,i) ac-
tion implies that (s,i) E ug[CESRM-RECh"].to-be-requested?. Invariant 6.21 implies that

(s,i) V ug[CESRM-RECh"].scheduled-rqsts?. In the case of a process-pkth,(pkt") action,
for type(pkt") = RQST and id(pkt") = (s,i), the effects of process-pkth/,(pkt") imply that

(s,i) V ug[CESRM-RECh"1.scheduled-rqsts?. Moreover, the effects of either schd1-rqsth",(S, i)
or process-pkthll (pkt") imply that (s, i) E u' [CESRM-RECh"1 .scheduled-rqsts?.

In either case, it follows that (s,i) V ug[CESRM-RECh").scheduled-rqsts? and

(si) E u'[CESRM-RECh" 1.scheduled-rqsts?; that is, h" initiates the recovery of

(s, i) through the discrete transition (u9 , 7r, u'). Thus, Constraint 4.4 implies that
u g .now = u'9.now < w.now + DET-BOUND = w'.now + DET-BOUND.

It follows that the discrete transition (u,process-pkth(pkt), u') occurs at most DET-BOUND +
RQST-DELAY + 2d time units after the occurrence of the discrete transition (w, rm-sends,(p), w');
that is, u.now < w.now + DET-BOUND + RQST-DELAY + 2d. EJ

The following theorem states that, in any admissible timed execution a of CESRMj in the set
timely-aexecs(CESRM1), any packet that is recovered by a particular host by a reply to a 1st-round

request of the same host is done so within at most DET-BOUND + (C1 + C 2)d + d + (DI + D 2)d + a

time units from the time the particular packet is transmitted.

Theorem 6.35 Let a be any admissible timed execution of CESRMI in timely-aexecs(CESRMI)

and p be any packet transmitted in a that is expeditiously recovered by a host h G H in a.
Let (wr,, w'), for ww' C states(CESR.M1), s- = source(p), and 7r. = rm-sends,(p). be
the discrete transition of CESRMj in a involving the transmission of p in a and (u,7ru,u'),
for u,u' E states(CESRMj) and 7r, = process-pkth(pkt), such that type(pkt) = REPL and
id(pkt) = id(p), be the discrete transition of CESRMj in a involving the recovery of p by h
in a. Letting r = sender(pkt), if the packet pkt is a reply of r to the 1st-round request of h for p,
then it is the case that u.now < w.now + DET-BOUND + (C1 + C 2)d + d + (D 1 + D 2)d + d.

Proof: Suppose that h recovers p through the reception of a reply of r to the 1st-round request
of h for p. In this scenario, prior to the occurrence of the discrete transition (u, 7ru, u') in a, the

host h initiates the recovery of p through the occurrence of either a schdl-rqsth(sp, ip) action, for

(se, ip) = id(p), or a process-pkth(pkt') action, for type(pkt') = RQST and id(pkt') = id(p). In the
former case, CESRM-RECh initiates the recovery of p by scheduling a 1st-round request for p, while

in the latter, CESRM-RECh initiates the recovery of p by scheduling a 2-nd round request for p.
Constraint 4.4 implies that h initiates the recovery of p within at most DET-BOUND time units past
the transmission time of p. Moreover, Constraint 4.1 and Lemma 6.18 imply that r receives the

202

1-st round request of h for p no later than (Cl + C2)d + d time units past the particular occurrence
of either the schd1-rqsth(Sp, i) or the process-pkth(pkt') action.

The 1-st round request of h for p is received by r while either i) a reply for p is already scheduled,
ii) a reply for p is already pending, or iii) a reply for p is neither scheduled, nor pending. In either

of these cases, r transmits its reply to the 1-st round request of h for p no later than (D1 + D 2)d
time units past the point in time at which it receives the 1-st round request of h for p. The reply
of r to the 1-st round request of h for p is thus received by h no later than d thereafter.

Thus, it follows that h receives r's reply to its 1-st round request for p at most DET-BOUND + (Ci +
C2)d + d + (D 1 + D 2)d + d time units past the transmission of p. El

Floyd et al. [13] analyzed the performance of SRM under a variety of request and reply timing

parameter settings. The optimal such settings depend on the topology, the session's density, and
the loss characteristics of the links comprising the underlying IP multicast distribution tree. Given
the typical parameter values used by Floyd et al. [13] of C1 = C 2 = 2 and Di = D2 = 1,
Theorem 6.35 implies that the worst-case 1-st round recovery latency is DET-BOUND + 8d, or

DET-BOUND + 4RTT, where RTT = 2d denotes the worst-case round-trip-time between members

of the reliable multicast group. In contrast, Theorem 6.34 implies that the worst-case expedited
recovery latency is DET-BOUND + RQST-DELAY + 2;, or DET-BOUND + RQST-DELAY + RTT.

Recall that RQST-DELAY involves the delay used to avoid prematurely transmitting expedited
requests for packets that are temporarily considered missing due to packet reordering. Presuming
that this delay is insignificant compared to the worst-case round trip delay, i. e., RQST-DELAY <
RTT, the worst-case recovery latency of packets recovered by expedited rather than 1-st round
recoveries is reduced by roughly 3RTT.

The question that remains is how often expedited recoveries are successful. CESRM operates in the
spirit of our caching-based loss location estimation scheme introduced in Chapter 5. In CESRM,
receivers cache the optimal requestor/replier pair engaged in the recovery of their most recent losses
and attempt to recover losses using the optimal requestor/replier pair of the most recent loss whose
optimal requestor/replier pair has been identified. In effect, CESRM identifies loss locations by
their optimal requestor/replier pairs.

In our analysis of the IP multicast traces of Yajnik et al. [41] in Chapter 5, we estimated the
percentage of losses that may be successfully recovered using a caching-based loss recovery scheme.
This estimate included the consistent accurate estimates, the consistent high estimates, and the
average percentage of estimates comprising inconsistent estimates. By presuming that it is highly
likely that distinct losses on the same link will give rise to the same optimal requestor/replier pairs,
we claim that this estimate is a rough indication of the percentage of expedited recoveries initiated
by CESRM that are successful.

Thus, Figure 5.17 indicates that, for all of the IP multicast traces of Yajnik et al. [41], the percentage
of losses that are expeditiously recoverable by CESRM should exceed 65%. Thus, presuming that
the loss of recovery packets is infrequent, CESRM may afford a significant reduction is recovery
latency for a large percentage of the losses.

6.5 CESRM Trace-Driven Simulations

In this section, we evaluate the performance of CESRM and compare it to that of SRM using
trace-driven simulations. In these simulations, we reenact, as faithfully as possible, the 14 IP
multicast transmissions that result in the traces collected by Yajnik et al. [41]. Thus, our simulations
exhibit the packet loss locality exhibited by the actual IP multicast transmissions. We repeat our

203

simulations using either SRM or CESRM as the packet loss recovery scheme and observe the
recovery latency and overhead of each protocol. Our simulations show that, for the particular IP
multicast transmissions, CESRM reduces the average recovery time of SRM by an average of 50%.
Furthermore, CESRM sends fewer packet retransmissions than SRM - between 40% and 75%
of the number of retransmissions sent by SRM. Finally, CESRM sends roughly as many control
packets as SRM, but a large percentage of these are unicast whereas all of SRM's control packets
are multicast. We conclude that, CESRM's overhead is significantly smaller than that of SRM.

We begin this section by describing the setup of our simulations. We then present the simulation
results. We conclude by summarizing the results of our simulation-based evaluation of CESRM.

6.5.1 Simulation Setup

Following the presentation approach of Chapter 5, we collectively describe the setup of our
simulations by describing the setup for simulating a single generic IP multicast transmission.
This generic simulation is intended to correspond to the simulation of any single IP multicast
transmission of Yajnik et al. [41]. From Chapter 5, recall that k E N denotes the number of packets
transmitted during the IP multicast transmission, R denotes the finite set of receivers of the IP
multicast transmission, I ={1,... , k}, and loss : R -+ (I - {0, 1}) is a mapping that represents
per-receiver binary sequences, each of which indicates which of the packets the respective receiver
failed to receive. Moreover, recall that we represent the IP multicast tree by a tuple T = (N, s, L)
comprised of a set of nodes N, a root node s E N, and a set of directed edges L C N x N - the
elements of T satisfy several constraints, which are presented in Chapter 5. The packet transmission
period is denoted by AT E RIO. We also presume that the concrete link trace representation
c-link : R -+ (I -+ C-LINK U I), for C-LINK = L, accurately estimates the set of links responsible

for each of the losses suffered during the particular IP multicast transmission.

Our generic simulation involves setting up the IP multicast tree T and disseminating k packets
from the root of the tree, which corresponds to the IP multicast transmission source, to the tree's
leaf nodes, which correspond to the receivers of the IP multicast transmission. Recall that the IP
multicast tree is presumed to remain fixed throughout the duration of the IP multicast transmission.
Since the IP multicast trace information of Yajnik et al. [41] contains no link delay and bandwidth
info, we arbitrarily choose the delay and the bandwidth of each link in T to be 20 ms and and
1.5 Mbps, respectively. Since the depth of the IP multicast tree involved in any of the IP multicast
traces of Yajnik et al. [41] ranges from 3 to 7, the RTTs between the source and receivers in any
trace ranges from 120 ms to 280 ms.

We also presume that payload carrying packets, i.e., original packets and retransmissions, are
1 KB in size and control packets, e.g., packet retransmission requests, are 0 KB. Since the IP
multicast transmission period of any of the IP multicast transmission traces of Yajnik et al. [41]
is either 40 ms or 80 ms, the bandwidth required for the original transmissions is either 200 Kbps
or 400 Kbps. Thus, our choice of 1.5 Mbps for the link bandwidth is sufficient to guarantee that
no packets are dropped due to congestion. The simulation is carried out with the typical SRM
scheduling parameter settings C1, C2 = 2, C3 = 1.5, D1 , D2 = 1, and D 3 = 1.5. Session packets are
transmitted with a period of 1 s.

So as to focus our attention on the performance of CESRM packet loss recovery scheme, rather than
that of the inter-host distance estimation scheme through session packet exchange, we presume that
the session packet exchange is lossless. Since none of the session packets are dropped throughout
our simulation, the inter-host distances are accurately and promptly calculated. Moreover, we
sufficiently delay the beginning IP multicast transmission so that, prior to the beginning of the IP
multicast transmission, receivers have a chance to exchange session messages and, thus, estimate

204

their distance to each other.

We inject losses in the simulated IP multicast transmission according to the concrete link trace

representation c-link. Recall that c-link estimates the links responsible for each of the losses suffered

during the actual IP multicast transmission that resulted in the respective trace of Yajnik et al. [41].

Thus, by injecting losses in this fashion, we capture and reproduce the locality present in the actual

IP multicast transmission.

So as to compare the performance of CESRM to that of SRM, we repeat the simulation twice;

one simulation employs CESRM as the packet loss recovery scheme and the other employs SRM.

We first conduct these simulations under the assumption that the packet loss recovery is lossless;

that is, that none of the recovery packets (control packets and retransmissions) are dropped. This

is precisely the assumption under which Floyd et al. [13] conducted the performance analysis of

SRM. In order to obtain a more realistic evaluation of CESRM, we repeat the simulations while
introducing losses to the packet loss recovery. So as to abide by the loss characteristics of the

links of the IP multicast tree throughout which the IP multicast packets are disseminated, recovery

packets are dropped according to the link loss probability estimates calculated in Chapter 5 for

each of the links of the IP multicast tree.

6.5.2 Lossless Recovery Results

In this section, we assume that the packet loss recovery is lossless; that is, none of the recovery

packets are dropped.

Figure 6.16 presents the per-receiver average normalized recovery times achieved by SRM and

CESRM for 6 out of the 14 traces of Yajnik et al. [41] - the average normalized recovery times

for the simulations corresponding to the remaining traces are similar. The recovery time of each

receiver is normalized by the receiver's RTT distance estimate to the source of the IP multicast

transmission and is, thus, quoted in units of RTT. From Figure 6.16, we can see that the caching-
based expedited recovery scheme employed by CESRM substantially reduces the average normalized

recovery time.

Figure 6.17 depicts the percentage by which the per-receiver average normalized recovery times are

reduced using CESRM as opposed to SRM. Clearly, the use of expedited recoveries has a substantial
effect on the per-receiver average normalized recovery times. For most of the receivers, the average
normalized recovery times for CESRM are between 40% and 70% less than those of SRM.

Figure 6.17 depicts the difference in the average normalized recovery times between expedited
and non-expedited recoveries of CESRM. For the scheduling parameters used in our simulations,
Theorems 6.34 and 6.35 imply that the difference between the worst-case recovery latency between
expedited and non-expedited successful recoveries is 3RTT. Figure 6.17 reveals that, in the
particular simulations, the difference in the average normalized recovery latency between expedited
and non-expedited successful recoveries ranges from 1 to 2 RTTs.

Figure 6.19 depicts the number of request packets sent by each of the receivers for 6 out of the
14 traces of Yajnik et al. [41] for either the SRM or the CESRM protocols - the number of
request packets sent by each receiver for the simulations driven by the remaining traces are similar.

The bars corresponding to the number of request packets sent by each receiver in the case of the

CESRM protocol are split in two components. One component corresponds to the number of
requests that are multicast as part of the regular recovery process of CESRM, which mimics that of
SRM. The other component corresponds to the number of requests unicast as part of the expedited
recovery process carried out by CESRM. The source of the IP multicast transmission corresponds
to receiver 0.

205

Figure 6.16 Per-Receiver Average Normalized Recovery Times; Lossless Recovery
Trace RFV960419; Ave. Norm. Rec. Time

M SRM
3. CESRM

2.5-

2

1 .5 - - - - - - - -I.

1 5

0.5
-- [[II

3.5

3

2.5

"2

*1.5

0.5

1 2 3 4 5 6 7 8 9 10 11 12
Receiver

Trace WRN951113; Ave. Norm. Rec. Time

- SRM'
SCESRM

1 2 3 4 5 6 7 8 9 10 11 12
Receiver

Trace RFV960508; Ave. Norm. Rec. Time
3.5

2.5-

2-

1.5-

1

0.5 - T -
- --E - -R

1 2 3 4 R5v6 7 8 9 10
Receiver

Trac WR95128;Ave. Norm. Rec. Time

1 2 3 4 5 6 7 8
Receiver

9

Trace UCB960424; Ave. Norm. Rec. Time
3.5

RM
3 ~ CESRM

2.5-

2-

1.5-

0.5 - -- - -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Receiver

Trace WRN95121 1; Ave. Norm. Rec. Time

CSRMI
3.

2.5-

.5 II

0o 23J 67j 10 11
Receiver

Figure 6.17 Percent Reduction
Recovery

Trace RFV960419; Perc. Reduction in Ave. Rec. Time

in Per-Receiver Average Normalized Recovery Times; Lossless

Trace RFV960508; Perc. Reduction in Ave. Rec. Time
100 100 100

90 90- 90

80- 80 - 80

70 70 70

60 - 60- 60

R 50- 50- 50

401 40- - 40

30 1 1- -I-f- 30

20- 20[20

Uo 1 210 7 8 9 1

1 2 3 4 5 6 7 8 9 10 11 12
Receiver

Trace WRN951 113: Perc. Reduction in Ave. Rec. Time

1 2 3 4 R5ci6e 7 8 9 10
Receiver

Trace WRN951 128; Parc. Reduction in Ave. Rec. Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Receiver

Trace WRN95121 1; Parc. Reduction in Ave. Rec. Time

]VU 100
90 90 90

80- 80 - 80 -

70 70 70

60- 60 - 60

50 - 50 -- --- 50 --- - - - -

h0 40 iI40
30** 30 fl30-20-111li 20 IIlii 20
10 to10- 10

1 2 3 4 Receiver 7 8 9 1 2 3 4 5Receiver7 8 9 10 11

206

cc Cc

3.5
SRM
CESRM

2.5 -

*1 0.5

Trace UCB960424; Perc. Reduction in Ave. Rec. Time

1 2 3 4 5 6 7 8 9 10 11 12
Receiver

Figure 6.18 Difference in Average Normalized Recovery Times Between Expedited and Non-

Expedited Recoveries of CESRM

2.5

2-

1.5

0.5

1 2 3 4 5 6 7 8 9 10 11 12
Receiver

Trace WRN951 113; RTT Difference in Ave. Norm. Rec. Time
2.5

2-

1.5

0.5111
I

I

0 1 23 45 6789109101112
Receiver

Trace RFV960508; RTT Difference in Ave. Norm. Rec. Time
3

2.5 -

2-

1l.5

0.5

0
1 2 3 4 5 6 7 8 9 10

Receiver

Trace WRN951128; RTT Difference in Ave. Norm. Rec. Time
2.5

2-

1

0.5 2

0 1 2 3 4 5 6 7 8 9 -
Receiver

2Trace UCB960424; RTT Difference in Ave. Norm. Rec. Time
2 .5

2-

2.5 -. .. -.

1.5

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Receiver

Trace WRN95121 1; RTT Difference in Ave. Norm. Rec. Time

25

1.5-

0
1 2 3 4 5 6 7 8 9 10 11

Receiver

Figure 6.19 reveals that for most receivers in each of the simulations, the number of requests sent

by CESRM are most often less than those sent by SRM. For some of the receivers the number

of requests sent by CESRM exceeds that sent by SRM. Notably, however, a large portion of the

number of requests sent by CESRM are unicast from particular requestors to particular repliers,

rather than multicast to the entire group. Since unicast transmissions are substantially less costly

than multicast transmissions, the overhead in terms of the number of requests incurred by CESRM

is less than that incurred by SRM.

Figure 6.20 depicts the number of reply packets sent by each of the receivers for 6 out of the

14 traces of Yajnik et al. [41] for either the SRM or the CESRM protocols - the number of

reply packets sent by each receiver for the simulations driven by the remaining traces are similar.

The bars corresponding to the number of reply packets sent by each receiver in the case of the

CESRM protocol are split in two components. One component corresponds to the number of

replies that are multicast as part of the regular recovery process of CESRM, which mimics that

of SRM. The other component corresponds to the number of expedited replies multicast as part

of the expedited recovery process carried out by CESRM. Again, the source of the IP multicast

transmission corresponds to receiver 0.

Figure 6.19 reveals that for most receivers in each of the simulations, the number of replies sent by

CESRM are substantially less than those sent by SRM. The overhead incurred by replies is very

important since reply packets, i.e., packet retransmissions, carry the data. They are thus, not only

multicast to the entire group, but their transmission is also substantially more costly than that of

control packets, e.g., requests, which do not carry data.

Figure 6.21 depicts the number of update packets sent by each of the receivers for 6 out of the 14

traces of Yajnik et al. [41] in the case of the CESRM protocol - the number of update packets

sent by each receiver for the simulations driven by the remaining traces are similar. Once again,

the source of the IP multicast transmission corresponds to receiver 0.

Comparing Figures 6.19, 6.20, and 6.21, it is clear that the number of update packets are at least

207

Figure 6.19 Number of Request Packets for SRM and CESRM
Trace RFV960419; # of ROST Pkts Sent

50 0i
SRM (mutticast)

MECESRM (multicaat)
[CESRM-EXP (unicast)

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Receiver

Trace WRN951113; # of ROST Pkts Sent

SRM (multicast)
XCESRM (muticast)

=CESRM-EXP (unicast)

A 'IL
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Receiver

Trace RFV960508; # of ROST Pkts Sent
25000

SRM (multicast)
MECESRM (multicast)

20000 [CESRM-EXP (unicast)

215000

10000

5000-- ---

0
0 1 2 3 4 5 6 7 8 9 10 11

Receiver

Trace WRN951128; # of ROST Pkts Sent
6000

MSRM (muficast)
CESRM (multcast)

5000 CESRM-EXP (unicast)

54000-

:3000 -

2000-

1000-

0 2
0 1 2 34 56 78 9

Receiver

3
Cc

CL

I-
a

Trace UCB960424; # of RQST Pkts Sent
25000 I I I I I I

S RM (multicat)
MECESRM (multicaat)

20000 [CESRM-EXP (unicast)

15000

10000

5000 ---- - - - -

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Receiver

Trace WRN95121 1; # of RQST Pkfs Sent
12000 1 I I I I

SRM (multicast)
CESRM (multiceat)

10000 CESRM-EXP (unicast)

8000-

6000

4000

2000

0 1 2 3 4 Receiver 7 8 9 10 11

Figure 6.20 Number of Reply Packets for SRM and CESRM
Trace RFV960419; # REPL Pkts Sent

14000
M SRM (multicast)

12000- M - CESRM (multicast)
12000 L1 CESRM-EXP (muticeat)

10000-

8000-

6000-

4000-

2000-

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Trace WRN951113; # REPL Pkts Sent
12000 - -

1 SRM (multicast)
EMCESRM (multicaat)

10000 CESRM-EXP (multicast)

8000

6000

4000

00 0
2 4

0 1 2 3 4 5 6 7 8 9 10 1112 13

70000

60000

Z 50000

D40000

30000-.1

*20000

10000

Trace RFV960508; # REPL Pkts Sent

SRM (multicast)
CE M (multicaat)

EZCESRIM-EXP (muticast)

0 1 2 3 4 5 6 7 8 9 10 11
Receiver

Trace WRN951128; # REPL Pkts Sent
12000

M SRM (multicast)
MECESRM (multicast)

10000 CESRM-EXP (mutticaat)

U 8000

6000

0 4000

2000

0 1 2 34 56 78 9
Receiver

Ur

LL

in

4
-le

Trace UCB960424; # REPL Pkts Sent
40000

SRM (multicast)
35000 CESRM (mucast)

(T]CESRM-EXP (mulficast
30000-

25000-

20000

15000-

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Receiver

Trace WRN95121 1; # REPL Pkts Sent
25000-

SRM (muticast)
00CESRM (multicaat)

20000 -CESRM-EXP (muticast)

15000

10000

0 1 2 I 4Ijj
7

0 1 2 3 4 5 6 7 8 9 10 11
Receiver

208

4000

3000

2000

1000,

6000

5000

U 4000

3000

b 2000

1000

(I I

Figure 6.21 Number of Update Packets for CESRM
Trace RFV960419; # of UPDT Pkts Sent Trace RFV960508; # of UPDT Pkts Sent Trace UCB960424; # of UPDT Pkts Sent

450. . .
ROST-UPDT Pkts (multicast)

400 W REPL-UPDT Pkts (multicast)

350-

3300-

250 -

200 -

5150

100 -- --

50

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Receiver

Trace WRN951113; # of UPDT Pkts Sent
700

M RQST-UPDT Pkts (multicast)

600 [REPL-UPDT Pkts (multicast)

5500 -

400
L

300 -

200 -

100-

CL

D

2500
- ROST-UPDT Pkts (multicast)

- REPL-UPDT Pkts (multicast)

2000-

1500-

1000-

500

0 1 2 3 4 5 6 7 8 9 10 11
Receiver

Trace WRN951128; # of UPDT Pkts Sent

ROST-UPDT Pkts (multicast)
160 1J REPL-UPDT Pkts (multicast)

140-

D120-

100 --

280-

5 60-

40 -

20 - -

RQST-UPDT Pkts (mu ticast)
REPL-UPDT Pkts (multicast)

1000

800 -
a)

U)
2 00

600
-

400-

200-

0 1 2 3 4 5 6 7 8 9 1011121314151617
Receiver

Trace WRN951211; # of UPDT Pkts Sent

ROST-UPDT Pkts (multicast)
[REPL-UPDT Pkts (multicast)

200-

150-

S100-
.5

50-

tL.IL
0. 1 2 3 07 2 30 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Receiver Receiver Receiver

an order of magnitude fewer packets that either request or reply packets. As compared to requests

and replies, they thus introduce a substantially smaller overhead.

Figure 6.22 includes two plots pertaining to the performance of CESRM. The first plot depicts

the percentage of successful expedited recoveries achieved by CESRM for each of the simulations

driven by the respective IP multicast transmission traces of Yajnik et al. [41]. We consider an

expedited recovery to be successful when the expedited request induces the transmission of an

expedited reply. Thus, the percentage of successful expedited recoveries is given by the ratio of the

number of expedited requests to the number of expedited replies transmitted during the simulation.

Figure 6.22 reveals that a substantial percentage of expedited recoveries are successful. This

percentage exceeds 65% for all the simulations and exceeds 80% for all but two of the simulations.

The second plot of Figure 6.22 depicts the overall overhead of CESRM in terms of the number of

recovery packets sent as a percentage of the respective overhead of SRM. The overhead of CESRM

would thus amount to 100% when it is equal to the overhead of SRM for the respective simulation.

We split the overhead of CESRM into that associated with retransmission packets and control

packets. Since we presume that unicast packets introduce substantially less overhead as compared

to that introduced by multicast packets, we distinguish between the number of unicast and multicast

control packets.

Figure 6.22 reveals that the number of retransmissions sent by CESRM is substantially less than

that sent by SRM. For all the simulations, the retransmission overhead of CESRM is less than

80% of that of SRM. For 9 out of 14 of the simulations, the retransmission overhead of CESRM

is less than 60% of that of SRM. Since retransmissions are the only packets that carry data, they

are substantially more costly than control packets. Thus, the fact that CESRM sends substantially

fewer retransmissions than SRM is a significant performance improvement with respect to SRM.

In terms of the number of control packets, for all but four of the simulations, the overhead of

CESRM is either comparable to or less than that of SRM. For the remaining four simulations,

although the total number of control packets is more than that of SRM, a large percentage of the

209

Figure 6.22 CESRM Performance; Percentage of Successful Expedited Recoveries and Overall
Packet Overhead

CESRM; Perc. of Successful Expedited Recoveries CESRM Packet Overhead wrt SRM Packet Overhead
100 120-

90- 110

- 100 - - - - - - - - -P 80 aU))(n90
070--

W80
60- 70

-

50 -0- 60 -

cc
4D -0- 50-

3w 40-30-
oD 0 0

-20- 20 M Multicast Retransmissions
10_- 1 Multicast Control Pkts10Urkt

0 0 []Unicast Control Pkts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Trace Trace

packets sent by CESRM are unicast rather than multicast packets. Thus, even in the cases where
the number of control packets sent by CESRM is larger than that sent by SRM, the overhead of
CESRM associated with the transmission of control packets is presumably less than that of SRM.

6.5.3 Lossy Recovery Results

In this section, we assume that the packet loss recovery is lossy. In particular, in the simulations
whose results are presented in this section, recovery packets are dropped according to the link loss
probability estimates calculated in Chapter 5 for links of the IP multicast tree of each of the IP
multicast transmissions. Thus, these simulations attempt to capture the loss characteristics of the
links of the IP multicast tree of each of the IP multicast transmissions of Yajnik et al. [41].

Figure 6.23 presents the per-receiver average normalized recovery times achieved by SRM and
CESRM for 6 out of the 14 traces of Yajnik et al. [41] - the average normalized recovery times
for the simulations corresponding to the remaining traces are similar. Figure 6.23 reveals that the
caching-based expedited recovery scheme employed by CESRM substantially reduces the average
normalized recovery time. As a result of the losses suffered during the loss recovery, the average
normalized recovery time of both SRM and CESRM is greater than that observed when the packet
loss recovery process is lossless.

Figure 6.24 depicts the percentage by which the per-receiver average normalized recovery times
is reduced using CESRM as opposed to SRM. Once again, the use of expedited recoveries has a
substantial effect on the per-receiver average normalized recovery times. For most of the receivers,
the average normalized recovery times for CESRM are between 30% and 60% less than those of
SRM.

Figure 6.25 depicts the difference between the average normalized recovery time of expedited
and non-expedited recoveries of CESRM. Comparing Figures 6.18 and 6.25, it is clear that the
introduction of losses in the packet loss recovery process increases this difference. This effect is
expected since the loss of recovery packets may result in the failure of initial recovery rounds and,
consequently, the increase of the recovery latency associated with non-expedited recoveries.

Figures 6.26 and 6.27 depict the number of request and reply packets, respectively, sent by each
of the receivers for 6 out of the 14 traces of Yajnik et al. [41] for either the SRM or the CESRM

210

Figure 6.23 Per-Receiver Average Normalized Recovery Times; Lossless Recovery

3.5

3

2.5

h2

1.5

0.5

C,

4

3.5

3

2.5

1.5

0.5

1 2 3 4 5 6 7 8 9 10 11 12
Receiver

Trace RFV960508; Ave. Norm. Rec. Time

C M RMIF__1 '=MA I

I

11

Trace RFV960419; Ave. Norm. Rec. Time

S RM'
CESRM

1 2 3 4 5 6 7 8 9 10 11 12
Receiver

Trace WRN951113; Ave. Norm. Rec. Time

SRM'
CESRM

3. .

-- S RM3-

2.5 -

1 2

1 2 3 4 5 6 7 8 9
Receiver

Trace UCB960424; Ave. Norm. Rec. Time
3.5 .M -m SRM,

G ESRM

2.5-

-I

111

0 5 -ILI-I-J-I
2 3 4 5 6 R7c8v9r 10 11 12 13 14 15

Receiver
Trace WRN95121 1; Ave. Norm. Rec. Time

3.5 C SRM

3-

1 2 3 4 5 6 7 8 9 10 11
Receiver

Figure 6.24 Percent Reduction in Per-Receiver Average Normalized Recovery Times; Lossless

Recovery
Trace RFV960419; Perc. Reduction in Ave. Rec. Time Trace RFV960508; Perc. Reduction in Ave. Rec. Time

100 100 100

90 - --- - 90- 90

80- 80- 80 - -- -

70 70 70

60- 60 60

50 u~50- *v50-
40- 40 *f 40-
30- 30- 30-

20[20- 20-

10 i10lflI10
Receiver

Trace WRN951II3; Perc. Reduction in Ave. Rec. Time

Receiver
Trace WRN951 128; Perc. Reduction in Ave. Rec. Time

Trace UCB960424; Perc. Reduction in Ave. Rec. Time

Receiver

Trace WRN95121 1; Perc. Reduction in Ave. Rec. Time

90- 90- 90.

80- 80- 80-

70- 70- 70-

60- 60- 60-

50- 0 0

40- 40- u 40-

30- 30- 0

20- 20- 20-

10 10

U 12345678101111 1o- 1 1 21 4 5 61 1 7 8 9 1

0 1 2 3 4 Receiver 7 8 9 1 2 3 4 5 6 7 8 9 10 11
Receiver

211

1 2 3 4 5 6 7 8 9 10 1
Receiver

Trace WRN951128; Ave. Norm. Rec. Time

3.5-

3-

2.53 -- -. - . .

15 [II.H

1 2 3 4 5 Rceiv 8 9 10 11 12

Figure 6.25 Difference in Average Normalized Recovery Times Between Expedited and Non-

Expedited Recoveries of CESRM
Trace RFV960419; RTT Difference in Ave. Norm. Rec. Time Trace RFV960508; RTT Difference in Ave. Norm. Rec. Time Trace UCB960424; RTT Difference in Ave. Norm. Rec. Time

2.53

2- 2.5

151

0.5- 0.5uh~ 1111I
1 2 3 4 5 6 7 8 9 10 11 12

Receiver
Trace WRN951 113; RTT Difference in Ave. Norm. Rec. Time

1 2 3 4 R5civ6 7 8 9 10
Receiver

Trace WRN951 128; RTT Difference in Ave. Norm. Rec. Time

2

1.5

0.5-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Receiver

Trace WRN95121 1: RTT Difference in Ave. Norm. Rec. Time

2.5 2.5

2 2

U1. 12 4 6 89 0 1 21.54 5

1 2 3 4 5 Reiver 8 9 10 11 12 1 2 3 4 Receiver 8 9

2.5

1.5

0.5

0 1 2 3 4 5 6 7 8 9 10 11
Receiver

Figure 6.26 Number of Request Packets for SRM and CESRM
Trace RFV960419; # of RQST Pkts Sent

12000
SRM (multicast)

MECESRM (multicast)
10000 [CESRM-EXP (unicast)

8000 -

6000

4000

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Receiver

Trace WRN951113; # of ROST Pkts Sent
7000

SRM (multicast)
MCESRM (multicast)

6000 ElI CESRM-EXP (unicast)

5000-

4000 - -

3000-

2000 -

1000 --

0 1 2 3 4 5R6 7 8 9 10 11 12 13
Receiver

'E

.

Trace RFV960508; # of ROST Pkts Sent
60000

MSRM (multicast)
CESRM (multicast)

50000 E CESRM-EXP (unicast)

40000-

30000 - ----- -

20000

10000 --jj
0

0 1 2 3 4 5 6 7 8 9 10 11
Receiver

Trace WRN951 128; # of ROST Pkta Sent

SRM (multicast)
MCESRM (multicat)

5000 P CESRM-EXP (unicast)

4000

1- 3000 -
Co

0
C2
Z 2000

1000-

Receiver

0.

CL

0n
C)

Cn

C
Cc

Trace UCB960424; # of RQST Pkts Sent
30000~

SRM (multicast)
MCESRM (mutticast)

25000 CESRM-EXP (unicast)

20000-

15000-

10000-

5000 -- --

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Receiver

Trace WRN951211; # of RQST Pkts Sent
12000

SSRM (mu tcast)
MCESRM (multicast)

10000 E] CESRM-EXP (unicast)

8000

6000

4000-

2000

0 0 1 2 3 4 R5civ6 7 8 9 10 11

protocols - the number of request and reply packets sent by each receiver for the simulations driven
by the remaining traces are similar. These plots reveal that losses in the packet loss recovery process
result in an increase of the number of request and reply packets sent by both SRM and CESRM.
However, this increase is not substantial.

Figure 6.28 depicts the number of update packets sent by each of the receivers for 6 out of the

212

CO

a.

c-

0

Figure 6.27 Number of Reply Packets for SRM and CESRM

150001

10000

5000

Trace RFV960419; # REPL Pkts Sent

SRM (multicast)
SCESRM (muticast)

= CESRM-EXP (mutticast)

I'III .~ IL
0 1 2 3 4 5 7 9 10 11 1213

Receiver

Trace WRN951113; # REPL Pkts Sent
12000 RM r t 'st)SM(utiast)

CESAM (multiast
10000 -i] CESRM-EXP (multicast)

8000-

6000-

4000-

0 1 2 3 4 5 R 1 8 9 10 11 12 13
Receiver

80000

70000

60000

50000

-140000

a: 30000

a20000

10000

Cn

CL

-. 1
CL
W
cc

0
ft

Trace RFV960508; # REPL Pkts Sent

SRM (multicast)
.=CESRM((ulticast)

C CESRM-EXP muticast)
-

hkIL012345 6 7 8 9 10 11

0 01 23 4 5eci6e 7 8 9 10 11
Receiver

Trace WRN951 128; # REPL Pkts Sent

10000

8000-

6000-

4000

0 L

SRM (ticast)
[CESRM (multicast)
R CESRM-EXP muticast

0 1 234 56 78 9
Receiver

Trace UCB960424; # REPL Pkts Sent
40000I 1 (utcSRM (multicast)
35000- CESRM (muicast)

ELI1 CESRM-EX utcs

30000

25000

120000

:15000

0 0 1 2 3 4 5 6R eiver9 101112131415

Trace WRN95121 1; # REPL Pkts Sent30(=0 ,r ''. ' ----

25000-

U 20000 -

is

15000-

o 10000-

5000-

C'

MSRM (multicast)
cMast)OESRM (mnutticast)

C CESRM-EXP (multicast)

0 1 2 3 4 5 6 7 8 9 10 11
Receiver

Figure 6.28 Number of Update Packets for CESRM
Trace RFV960419; # of UPDT Pkts Sent

800
M RQST-UPDT Pkts (multicast)

7001] REPL-UPDT Pkts (multicast)

600-

500-

400 -

300 -

200-

100 - -1--1-10

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Receiver

Trace WRN951113; # of UPDT Pkts Sent
600

M ROST-UPDT Pkts (multicast)
[REPL-UPDT Pkts (multicast)

500

400-

300-

200-

100-

0- -i
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Receiver

Trace RFV960508; # of UPDT Pkts Sent
4500

ROST-UPDT Pkts (multicast)
4000 1 REPL-UPDT Pkts (multicast)

3500-

3000-

12500 --

2000 -

51500-

1000- - - - -

500-

0 1 2 3 4 5 6 7 8 9 10 11
Receiver

Trace WRN951128; # of UPDT Pkts Sent
300 I . I I I -

M RQST-UPDT Pkts (multicast)
[REPL-UPDT Pkts (multicast)

250-.-. -.......-.-.-.-.-.

~200 -

-150

5 100-

50

0 1 2 3 4 5 6 7 8 9 10 11
Receiver

CI)

a-
I-
0
0.

ZID

Trace UCB960424; # of UPDT Pkts Sent
1800 I I I I I

RQST-UPDT Pkts (multicast)
1600 [REPL-UPDT Pkts (multicast)

1400

1200-

1000---

800-

600-

400 Li-
200-

0 0 1 2 3 4 5 6 7R8 1 1011121314151617
Receiver

Trace WRN951211; # of UPDT Pkts Sent

M ROST-UPDT Pkts (multicast)
= REPL-UPDT Pkts (multicast)

250

200

150-

S0-
0 1 2 3 4 5 6 7 8 9 10111213

Receiver

14 traces of Yajnik et al. [41] by CESRM - the number of update packets sent by each receiver

for the simulations driven by the remaining traces are similar. These plots reveal that losses in

the packet loss recovery process do not substantially increase the number of update packets sent

by CESRM. In fact, for some of the simulations the number of update packets sent by CESRM is

actually reduced.

Figure 6.29 includes two plots pertaining to the performance of CESRM. The first plot depicts the

213

Lb I
I

a-
(D

a.)

a.

'I I

Figure 6.29 CESRM Performance; Percentage of Successful Expedited Recoveries and Overall
Packet Overhead

CESRM; Perc. of Successful Expedited Recoveries CESRM Packet Overhead wrt SRM Packet Overhead
100 140.

90- 130
120-

80 -- 110
Cl)DS70 . 100------ ------ -------

W > 90-
606 0 - 8 0 - -- -... - -.. - -. -

o- 50 - 70 -LuJD CU
cc a 0w 40 -

30- 40-

20-
22- Multicast Retransmissions

10- Multicast Control Pkts
10] Unicast Control Pkts

0 1 2 3 4 5 6 7 89 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Trace Trace

percentage of successful expedited recoveries achieved by CESRM for each of the simulations driven

by the respective IP multicast transmission traces of Yajnik et al. [411. This percentage exceeds

60% for all the simulations and exceeds 80% for all but three of the simulations. Thus, even in the

case when recovery packets suffer losses, a substantial number of the expedited recoveries initiated

by CESRM are successful.

The second plot of Figure 6.29 depicts the overall overhead of CESRM in terms of the number

of recovery packets sent as a percentage of the respective overhead of SRM. Once again, we split
the overhead of CESRM into that associated with retransmission packets and control packets and

distinguish between the number of unicast and multicast control packets. Once again, the number

of retransmissions sent by CESRM is substantially less than that sent by SRM. In particular,
for all but one of the simulations, the number of retransmissions sent by CESRM is less than

80% of the number of retransmissions sent by SRM; for half the simulations, this percentage is

below 70% (often, substantially so). Now, consider the number of control packets sent by CESRM.

Since losses may cause the failure of a larger percentage of the expedited recoveries, the control

packets pertaining to a larger percentage of the expedited recoveries are sent in vain. CESRM must

then recover the particular losses using SRM's recovery scheme; thus, in addition to the packets

pertaining to the expedited recoveries, CESRM incurs the overhead pertaining to SRM's recovery

scheme. Indeed, as shown in Figure 6.29, the number of control packets sent by CESRM is larger

than that sent by SRM. However, as in the lossless recovery case, a large percentage of the packets

sent by CESRM are unicast rather than multicast packets. Thus, once again, the overhead of

CESRM associated with the transmission of control packets is presumably less than that of SRM.

6.5.4 Summary of Simulation Results

Our simulations reveal that more than 65% (60%, when recoveries are lossy) of expedited recoveries

are successful. Thanks to such expedited recoveries, CESRM reduces the overall average recovery

time of SRM by an average of roughly 50% (40%, when recoveries are lossy). We further observe

that these performance gains do not introduce additional packet overhead. On the contrary, in

all of our simulations, CESRM reduces the total number of packet retransmissions. Moreover,
the number of control packets of CESRM is comparable to that of SRM. In the case of CESRM,
however, a large percentage of the control packets are unicast. SRM, in contrast, uses IP multicast

214

to transmit all control packets. We conclude that CESRM effectively incurs less overhead than
SRM while substantially reducing recovery latency.

215

216

Chapter 7

Reliable Multicast Using
Light-Weight Multicast Services

In this chapter, we model and analyze the router-assisted reliable multicast protocol based on
the Light-weight Multicast Services [32-34]. This protocol, which we will henceforth refer to as
LMS, exploits the augmented functionality of IP multicast routers so as to intelligently forward
retransmission requests and constrain the transmission of replies within the subtrees of the IP
multicast tree affected by the respective losses.

We begin by informally describing the protocol. We then present a formal model of the reliable
multicast protocol and the enhanced functionality of the underlying IP multicast routers. We
then state the correctness of the protocol; that is, that it is a faithful implementation of the
reliable multicast service specification of Chapter 3 with no timeliness guarantees. We conclude by
conducting an informal timeliness analysis of LMS in which we: i) state the worst-case recovery
latency of LMS when recoveries proceed smoothly, ii) state the worst-case recovery latency of LMS
in scenarios that demonstrate LMS's lack of robustness to highly dynamic and faulty environments,
and iii) compare its performance to that of both SRM and CESRM.

7.1 Overview of LMS

LMS is a router-assisted reliable multicast protocol that introduces and exploits additional
functionality in the underlying IP multicast routers. In our work, we presume that the IP multicast
service builds and maintains a shared IP multicast tree. Moreover, we presume that each IP
multicast router that is part of the IP multicast tree knows which of its links (network interfaces)
leads to each reliable multicast transmission source. For any source s and any router r, we refer to
the link of r that leads to s as the upstream link of r for s. For simplicity, we henceforth presume
that there exists only a single reliable multicast transmission source s. Moreover, we think of the
shared IP multicast tree as a per-source IP multicast tree rooted at s. Within this tree, the notions
of upstream and downstream are dictated by the upstream links maintained for the source s by
each IP multicast router.

In LMS, each IP multicast router selects one of its descendant members to be in charge of conducting
transport layer duties for the subtree originating at the respective router. This member is denoted
the replier of the respective subtree and the respective router. Members of the reliable multicast
group that are willing to perform transport layer duties periodically advertise themselves as repliers.
Moreover, each replier estimates the cost that is associated with serving as a replier and advertises

217

Figure 7.1 Example of LMS recovery hierarchy based on replier links.

h h'

it to the IP multicast routers by multicasting a refresh packet. A particular member's cost of
serving as a replier may correspond, for instance, to loss rate or its distance to the source.

Each IP multicast router maintains in soft state their link that leads to the replier that affords
the minimum cost and this minimum cost. We refer to this link and the associated cost as the
particular IP multicast router's replier link and replier cost, respectively. Presuming that the source
affords (and advertises) a replier cost of 0, IP multicast routers that are adjacent to the reliable
transmission source always adopt their upstream link and the cost of 0 as their replier link and
cost, respectively.

Upon either updating or refreshing its replier link and the associated replier cost, an IP multicast
router sends (propagates) a refresh packet upstream. By having members of the reliable multicast
group advertise their cost of serving as repliers and having the IP multicast routers propagating
their replier cost upstream, LMS builds a hierarchy of repliers. Each such replier is responsible for
performing transport layer duties on behalf of particular IP multicast subtrees. Figure 7.1 depicts
an example of this hierarchy. The solid links correspond to the links that form the IP multicast tree
and the dashed links correspond to the replier links dictating the replier hierarchy. For example,
in the IP multicast dissemination tree depicted in Figure 7.1, the host h' serves as the replier for
the subtree rooted at the IP multicast router r.

Upon detecting the loss of a packet p, a host h multicasts a request with a hop-by-hop designation
such that all IP multicast routers process it. After multicasting a retransmission request, h schedules
the transmission of another request for p for an appropriate point in time in the future. The reliable
multicast transmission of p is guaranteed by LMS by having h keep multicasting and rescheduling
requests for p until p is recovered. These requests are rescheduled either at fixed or exponentially
increasing intervals.

A router r processes a retransmission request for a packet p according to the link I on which it
arrives. If it arrives on the upstream link, i.e., the link leading to the source, then the router

218

knows that the request is destined for its replier and forwards the request on the replier link. If
the request arrives on the replier link, then the router forwards the request upstream toward the
source. In this case, the replier h' of the subtree rooted at r has shared the loss and serves as

the designated requestor for the given loss on behalf of the subtree rooted at r. By forwarding
the request upstream, the router r is attempting to reach either the replier of an encompassing
IP multicast subtree that has received the packet or the actual source of the packet. Finally, if

a request arrives at any other link, the router forwards the request along the replier link, thus
calling upon the replier to perform its transport layer duties. In this case, the router annotates the

forwarded request with fields that identify the router r and the link 1. Papadopoulos et al. refer to

r as the turning point because it is at the router r where the request for p stops moving upstream
toward the source and starts moving downstream toward the replier. Analogously, we henceforth

refer to the link 1 as the turning point link. The turning point link is the link on which a reply to
the request must be forwarded in order to reach the subtree of receivers suffering the loss of the
given packet.

Suppose that a host h' receives a request for a packet p and let r and I be the turning point router

and link, respectively, pertaining to this request. The host h' processes this request as follows.If
it has not received p but has already initiated the recovery of p, then it discards the request for
p. If it has neither received p nor already initiated the recovery of p, then it initiates its recovery

by transmitting a request for p. If h' has either sent or received p, then it encapsulates p into a

unicast packet and unicasts it to the turning point router r. Upon receiving this unicast packet,
r decapsulates it and forwards p on the turning point link 1 as a regular multicast packet. In so

doing, r effectively subcasts p down the IP multicast subtree reached through 1.

7.1.1 LMS's Weakness

In effect, LMS uses the enhanced IP multicast router functionality to introduce a recovery hierarchy.
This hierarchy is very effective in achieving localized recovery and, thus, reducing recovery exposure.
However, this hierarchy is relatively static and may not fare well in highly dynamic environments
where reliable multicast group members may either crash or leave the reliable multicast group
unexpectedly. In such environments, the replier state maintained by the IP multicast routers may
often become stale and, thus, either prolong or inhibit packet loss recovery until the replier state
in refreshed.

We proceed to describe an example of such behavior. Suppose that a packet p is dropped on the link
1 of the IP multicast tree. Based on replier state maintained by the IP multicast tree routers, let h
be the replier that is responsible for requesting p on behalf of all the members suffering the loss of
p. Moreover, let h' be the replier that is responsible of replying to the requests sent by h for packet
dropped on 1. If either h or h' either crash or leave the reliable multicast group unexpectedly, then
all recovery attempts to recover p will fail until the replier state at the appropriate IP multicast
routers becomes stale and is refreshed. Since h is the replier responsible for sending the request for
p on behalf of all the hosts that shared the loss of p, when it either crashes or leaves the reliable
multicast group no request for p will be transmitted beyond the IP multicast subtree sharing the
loss. Since h' is the replier that is responsible for replying to the requests of h for packets dropped
on 1, if it either fails or leaves the reliable multicast group then h's requests for p will go unanswered.

Since the members that suffered the loss of p will keep sending requests until the packet is recovered,
p will eventually be recovered when the replier state is updated. However, the resulting recovery
may incur a substantial delay.

Unfortunately, the recovery of a packet may similarly be delayed even when particular reliable
multicast group members leave gracefully (by multicasting flush packets that are intended to alert

219

the IP multicast routers of stale replier state). When these flush packets are either dropped or do
not reach the appropriate IP multicast routers in time for their replier state to be flushed, some
of the attempts to recover particular packets may be unsuccessful due again to stale replier state
information.

7.1.2 Improving LMS's Robustness to Leaves and Failures

Realizing this weakness, Papadopoulos et al. [32,34] have proposed modifying LMS slightly so as
to improve its robustness to replier leaves and crashes. To begin, Papadopoulos et al. propose that,
after several failed recovery attempts, reliable multicast group members alert the appropriate IP
multicast routers that their replier state has become stale. Upon being alerted to stale state, IP
multicast routers flush their replier state and begin soliciting replier costs from all downstream
links. Moreover, until their replier state has been refreshed, they forward all requests upstream.

Although forwarding requests for a given packet upstream allows the packet's recovery to proceed
uninhibited, it potentially exposes the packet's recovery to a larger than required IP multicast
subtree. So as to mitigate such unnecessary exposure, Papadopoulos et al. propose that IP
multicast routers maintain redundant (secondary) replier state. This redundant replier state allows
IP multicast routers to promptly delegate the transport duties of the subtree they root to alternate
repliers. In particular, once an IP multicast router is alerted to the fact that its replier state has
become stale, it may switch to its secondary (now, primary) replier state. Thus, instead of being
forwarded upstream, subsequently received requests are forwarded on the secondary replier link.
Presuming that the secondary replier hasn't either crashed or left the reliable multicast group,
subsequent recovery attempts may thus proceed uninhibited.

To our understanding, however, it is not clear whether and, if so, how the members of the reliable
multicast group may ascertain which IP multicast router(s) must either flush or switch to their
secondary replier state. For a loss on a link 1, the IP multicast router that must flush/switch its
replier state is either i) the IP multicast router that is immediately downstream of 1, or ii) the IP
multicast router that is upstream of I and whose replier does not lie in the IP multicast subtree
emanating from 1. However, the members of the reliable multicast group that have suffered the
loss on I are not aware of which these routers are. Therefore, the only option would be for them to
multicast a flush/switch packet. Were they to attempt this, then all of their upstream IP multicast
routers would flush/switch their replier state. Instructing all upstream IP multicast routers to
switch to their secondary replier state is a plausible solution. However, it may potentially be quite
costly since the given IP multicast routers would need to update their secondary replier state.
Instructing all the upstream IP multicast routers to flush their replier state would force all requests
to be forwarded upstream to the source and induce the IP multicast routers that lead to the source
to update their replier state. Both of these options seem to introduce substantial overhead and,
thus, do not provide a satisfactory solution to the LMS robustness concerns.

7.2 Formal Model of LMS

In this section, we present a formal model of LMS. Figure 7.2 depicts the interaction of the
components of LMS and the environment. The client at each host is modeled by the RM-CLIENTh
timed I/O automaton of Chapter 3. The reporting, membership, and IP buffer components of
LMS are identical to those of our model of the CESRM protocol of Chapter 6. In the rest of this
section, we present the recovery component pertaining to the LMS reliable multicast protocol and
a new model of the IP multicast service component. In addition to refining the behavior of the IP
multicast service models used for SRM and CESRM in Chapters 4 and 6, this new IP multicast

220

Figure 7.2 Interface of the components of the reliable multicast service involving the LMS reliable

multicast protocol.
r--- -- ,r-- crashh

mJoinI rmjoinh

mjoin-ackh m-join-hack
a rm-leaveh

mleave-ackh I rm-leave-ackh

msendh(p)

mrecvh(p)

usendh(p)

urecvh(p)

process-pkt(p

rec-msendh(p) rm-send(P)

rec-usend(h',p) rm-recvh(p)

LMSh

mdrop(p, Hd)

udrop(p)

LMS
L ---------------------------------------] LJ

Figure 7.3 Preliminary Definitions for LMS

LMS-RECh Automaton

LMS-Status = {idle, member, crashed}
Scheduled-Rqsts = {(s, i, t, k) I s E H, i E N, t E R 0, k C N}

LMS-IP Automaton

JPmcast-Status {idle, joining, leaving, member, crashed}
H, set of hosts.
R, set of IP multicast capable routers.
N H U R, set of IP multicast capable nodes.
L N x N, set of bidirectional links interconnecting IP multicast capable nodes.
L = {{n,n'} E L I n E H}
LR {{n,n'} E L I n E R}
L, = {{n',n"} E L I n' = n}, for n E N.
Ln= {{n', n'} C L In' = n, n" E R}, for n C N.
LnH = {{n',n"} L I n' = n, n" E H}, for n E N.

model precisely specifies the behavior of the enhanced router functionality introduced by LMS.
Figures 7.3 and 7.4 contain several set and packet definitions, respectively, used in the specification
of LMS.

221

Figure 7.4 Packet Definitions for LMS

PRN\-CLIENT :Vp E PRi-CLIENT,

source(p) E H
seqno(p) C N
data(p) E {0, 1}*
id(p) E H x N id(p) = source(p), seqno(p))
suffix(p) = {(s, i) E H x N I source(p) s A seqno(p) < i}

PIPUCAST-CLIENT : Vp E PIPUCAST-CLIENT,

source(p) E H
tp-router(p) E R
tp-link(p) E LR
dest(p) E H
strip(p) C PL\IS

PIPNICAST-CLIENT : Vp C PIPMCAST- CLIENT,

source(p) C H
cost(p) C R 0

tp-router(p) E R
tp-link(p) E LR
strip(p) C PL-S
type(p) = {DATA, RQST, REPL, REFRESH, SOLICIT, FLUSH, PRUNE}

PLNIS : Vp E PLNIS,
type(p) C {DATA, RQST, REPL, SESS}

DATA
sender(p) E H
source(p) E H

seqno(p) C N
strip(p) E PRM-CLIENT
id(p) E H x N : id(p) (source(p), seqno(p))

RQST :
sender(p) e H
source(p) C H
seqno(p) E N
tp-router(p) E R
tp-link(p) E L
id(p) C H x N : id(p) (source(p), seqno(p))

REPL :
sender(p) E H
source(p) C H
seqno(p) E N
tp-router(p) c R
tp-link(p) E L
strip(p) C PRM-CLIENT

id(p) E H x N : id(p) (source(p), seqno(p))
REFRESH:

sender(p) C H
source(p) C H
cost(p) E R'o

SOLICIT:

source(p) C H
seqno(p) E N

Figure 7.5 The LMS-RECh Automaton - Signature

Parameters:

h E H,DFLT-COST,RQST-DELAY,RQST-TIMEOUT,REFRESH-PERIOD E R+

Actions:

input internal
crashh update-costh(s), for s E H
rm-join-ackh send-refreshh(s), for s E H
rm-leaveh send-rqsth(s,i), for s E H, i E N
rm-sendh(p), for p E PRBI-CLIENT time-passage
process-pkth(p), for p E PLIS v(t), for t C R 0

output
rm-recvh(p), for p E P\I-CLIENT
rec-msendh(p), for p E PL.IS
rec-usendh(h',p), for h' G H, h' 6 h,p G PLMIS

7.2.1 The Recovery Component - LMS-RECh

The LMS-RECh timed I/O automaton specifies the recovery component of the LMS protocol.

Figure 7.5 presents the signature of LMS-RECh, that is, its parameters and its actions. Figure 7.6
presents the variables of LMS-RECh. Figures 7.7 and 7.8 present the discrete transitions of
LMS-RECh. Throughout this section, we only describe the functionality of LMS-RECh that is
either new or different from that of either SRM-RECh or CESRM-RECh presented in Chapters 4
and 6, respectively. Once again, in order to provide the appropriate context, the description of
each of the parameters of LMS-RECh is deferred to appropriate places within the description of its
variables and actions.

222

Figure 7.6 The LMS-RECh Automaton - Variables

Variables:

now E RO, initially now = 0
status C LMS-Status, initially status = idle
cost(s) E R&!, for all s E H, initially cost(s) = DFLT-COST, for all s E H
refresh-deadline(s) C R 0U -, for all s E H, initially refresh-deadline(s) =-, for all s E H
min-seqno(h') C N U I, for all h' E H, initially min-seqno(h') =L, for all h' E H
max-seqno(h') C N U I, for all h' C H, initially max-seqno(h') =JL, for all h' C H
archived-pkts C PR-MCLI ENT x R 0 , initially archived-pkts = 0
scheduled-rqsts C Scheduled-Rqsts, initially scheduled-rqsts = 0
to-be-delivered C PRM-CLIENT, initially to-be-delivered 0
msend-buff C PLMIS, initially msend-buff = 0
usend-buff(h') Q PL\1S, for all h' C H, h' - h, initially usend-buff = 0, for all h' E H, h' : h
recovered-pkts? C H x N, initially recovered-pkts? - 0

Derived Variables:

for all h' E H, proper?(h') = 0 if min-seqno(h') =-

I{(s, i) C H x N I s = h', min-seqno(h') < i} otherwise

fo l ' ,wndw h if min-seqno(h') =-L
for all h' C H, window?(h') = (s, i) C H x N I s = h', mrin-seqno(h') < i < max-seqno(h')} otherwise

archived-pkts? = {(s,i) C H x N | Ep C PBN\-CLIENT,t E R: 0 : p, t) C archived-pkts A id(p) (s,i)}
archived-pkts? (h') {(s, i) C archived-pkts ? I s = h'}, for all h' E H
scheduled-rqsts? = {(s,i) E H x N I] t C R 0,k C N : (s,i,t,k) C scheduled-rqsts}
scheduled-rqsts? (h') = {(s, i) E scheduled-rqsts? I s = h'}, for all h' C H
to-be-delivered? = {(s, i) C H x N 1 p C to-be-delivered : (s,i) = id(p)}
to-be-delivered?(h') {(s,i) C to-be-delivered? s = h'}, for all h' C H
recovered-pkts? (h') ={{ s, i) E recovered-pkts ? s h'}, for all h' C H
sources = {h' C H I archived-pkts?(h') : 0}

Variables

Each variable cost(s), for s E H, denotes the cost associated with h serving as a replier for packets

transmitted by the source s. Each variable cost(s), for s E H, is initialized to DFLT-COST, where

DFLT-COST E R+ specifies the default replier cost of h.

Each variable refresh-deadline (s), for s C H, denotes the time at which h must send its next

refresh packet to the IP multicast communication service - a member of the reliable multicast
group periodically sends refresh packets so as to advertise its cost of serving as a replier for packets
transmitted by the source s. Each variable refresh-deadline(s), for s E H, is initialized to I.

The derived variable sources denotes the set of IP multicast transmission sources that h is aware of.
The host h becomes aware of a particular source s upon receiving either an original transmission or
a retransmission of a packet originally transmitted by s. Since h archives all such packets, sources
is the set of sources some of whose packets h has archived. It is initially equal to the empty set.

Actions

The internal action update-costh (s), for s E H, updates the cost of h serving as a replier for packets
transmitted by the source s. The action update-costh(s) is enabled when the host h is a member
of the reliable multicast group and h is aware of the source s. The effects of update-costh(s) are
to nondeterministically set the variable cost(s). For simplicity, we have chosen not to model the
manner in which the cost of h serving as a replier for packets transmitted by s is calculated. By
forcing hosts to advertise a finite cost for serving as repliers, we are effectively disallowing hosts
from avoiding to become repliers. However, the larger the cost of h serving as a replier for s, the
less likely it is that h is selected to serve as a replier for s.

The internal action send-ref reshh(s), for s E H, models the expiration of the refresh timeout for

223

the source s and the composition of a refresh packet intended to advertise the cost of h serving
as a replier for s. The action send-refreshh(s) is enabled when the host h is a member of
the reliable multicast group, h is aware of the source s, the refresh timeout for s has previously
been set and has expired, i.e., refresh-deadline(s) 01 and now = refresh-deadline(s). The effects
of send-refreshh(s) are to compose a refresh packet, to add it to the msend-buff buffer, and
to reset the refresh timeout to a point in time REFRESH-PERIOD time units in the future. The
parameter REFRESH-PERIOD specifies the period with which LMS-RECh transmits refresh packets
which advertise the current cost of having h serve as a replier for s.

The internal action send-rqsth(s, i), for s E H and i E N, models the expiration of the request
transmission timeout, the transmission of a request for the packet (s, i), and the scheduling the
transmission of another request for the packet (s, i) for an appropriate time in the future. The action
send-rqsth(s, i) is enabled when the host h is a member of the reliable multicast group and the
transmission time of a scheduled request for the packet (s, i) has arrived; that is, status = member,
t = now, and (s, i, t, k) C scheduled-rqsts. The effects of send-rqsth(s, i) are to compose a request
for the packet (s, i), to add it to the IP multicast transmission buffer of LMS-RECh, and to
reschedule the request for an appropriate time in the future by updating the request tuple in
scheduled-rqsts pertaining to the packet (s, i). Papadopoulos et al. [32, 34] propose two request
rescheduling schemes. The first involves scheduling the transmission of the next request for a point
in time that is RQST-TIMEOUT time units in the future. This scheme results in requests being
transmitted at fixed intervals. The second involves scheduling the transmission of the next request
for a point in time that is exponentially further (than the previous request) in the future; that
is, for a point in time now + 2kr--RQST-TIMEOUT, where kr = k + 1 and k is the back-off used to
schedule the previous request. This scheme results in requests being transmitted at exponentially
increasing intervals. The pseudo-code of Figure 7.7 implements the second scheme.

The input action process-pkth(p) models the processing of the packet p by LMS-RECh. The
packet p is processed only when the host h is a member of the reliable multicast group. We proceed
by describing the effects of process-pkth(p) depending on the type of the packet p. Throughout
our presentation of the effects of process-pkth(p), we let sp E H and i, E N denote the source
and the sequence number pertaining to the packet p.

First, consider the case where p is a DATA packet. If p is the foremost packet from sp,
process-pkth(p) records its reception. If h is not the source of p and p is not already archived, then
process-pkth(p) archives p. Moreover, process-pkth(p) cancels any scheduled requests for p. Fi-
nally, if p is a proper packet, then process-pkth(p) adds p to the packet delivery set to-be-delivered
and schedules the request for any trailing missing packets for RQST-DELAY time units in the future.
The requests for these missing packets are delayed so as to avoid the transmission of extraneous
requests when packets are temporarily presumed missing due to packet reordering. The parameter
RQST-DELAY specifies the amount of time that such requests must be delayed to avoid the trans-
mission of such extraneous requests. It is important to note that LMS-RECh archives all packets
and not only proper packets as done by the recovery components of our models of the SRM and
CESRM protocols in Sections 4.3.4 and 6.2.3, respectively. This is done because in the case of LMS
a host may serve as a replier for improper packets; that is, packets that it need not deliver to its
reliable multicast client.

Second, consider the case where p is a RQST packet. If the packet (sr, i) has been archived,
then process-pkth(p) composes a reply packet for the packet (s, i) and adds it to the unicast
transmission buffer usend-buff. The destination of this reply is the turning point router annotating
p. The reply is also annotated with the turning point link annotating p. Upon receiving this unicast
reply, the turning point router will forward the reply along this turning point link, which presumably
leads to the requestor that instigated the reply. If the packet (sr, i) has not been archived

224

Figure 7.7 The LMS-RECh Automaton - Discrete Transitions

input crashh

eff status := crashed

input rm-join-ackh

eff if status # crashed then
status member
refresh-deadline :E now + (0, REFRESH-PERIOD]

input rm-leaveh

eff if status 5 crashed then
Reinitialize all variables except now.

input rm-sendh(p)

eff if status = member A h = source(p) then
(sp,ip) = id(p)
\\ Record foremost DATA packet

if min-seqno(sp) =1 then min-seqno(sp) :p
\\ Only consider next packet

if max-seqno(sp) =1
Vip = max-seqno(sp) + 1

then
max-seqno(sp) := ip
\\ Archive packet
archived-pkts U= {(p, now)}
\\ Compose data packet

msend-buff U= {comp-data-pkt(p)}

internal update-costh(s)

pre status = member A s E sources
eff \\ Update cost

cost(s) :E R-o

internal send-refreshh (s)

pre status = member A s E sources
A refresh-deadline(s) $1 A refresh-deadline(s) now

eff \\ Compose refresh packet

msend-buff U= { comp-refresh-pkt (h, now, s, cost (s))}
\\ Reset refresh deadline

refresh-deadline(s) := now + REFRESH-PERIOD

internal send-rqsth(s, i)

choose t E R J, k E N
pre status = member

At = now A (s, i, t, k) E scheduled-rqsts
eff \\ Compose request packet

msend-buff U= {comp-rqst-pkt(s, i)}
\\ Back-off scheduled request

scheduled-rqsts \= {(s, i, t, k)}
kr := k + 1; tG: now + 2kr_-RQST-TIMEOUT

scheduled-rqsts U= {(, i, tr, kr)}

time-passage v(t)

pre status = crashed
V (to-be- delivered = 0

Amsend-buff = 0 A (Ah'EHh' husend-buff(h') 0)
AsEsources (refresh-deadline(s) =-L

Vnow + t < refresh-deadline(s))
A no requests scheduled earlier than now + t

eff now := now + t

output rm-recvh(p)

pre status member A p E to-be-delivered
A(p' C to-be-delivered :

source(p') = source(p) A seqno(p') < seqno(p))
eff to-be-delivered \= {p}

output rec-msendh(p)

pre status = member A p E msend-buff
eff msend-buff \= {p}

output rec-usendh(h', p)

pre status = member A p E usend-buff(h')
eff usend-buff(h') \= {p}

and for which there is no scheduled request, then process-pkth(p) schedules the immediate

transmission of a request for the packet (sp, ip). This is done by adding the tuple (sp, ip , now, 0)

to the set scheduled-rqsts of scheduled requests. Finally, if the packet (sp,ip) is a proper packet,

then process-pkth(p) schedules the immediate request for any trailing missing packets. Here,

process-pkth(p) does not delay the transmission of these requests by RQST-DELAY time units; we

presume that, by the time p is scheduled, transmitted, and received by h, a sufficient amount of

time has elapsed such that the premature transmission of requests as a result of packet reordering

is highly unlikely.

Third, consider the case where p is a REPL packet. The effects of process-pkth(p) in the case of

REPL packet are similar to those when p is a DATA packet. The only difference is that, if h is not the

source of p and p is not already archived, then in addition to archiving p, process-pkth(p) also

records that p has been recovered.

Finally, consider the case where p is a SOLICIT packet. This action models the solicitation of an

updated cost of h serving as a replier for packets transmitted by sp. If h is aware of the source

sP, then it composes a refresh packet including the current cost of h serving as a replier for sp and

adds it to the multicast buffer msend-buff. Moreover, process-pkth(p) resets the refresh timeout

for sp to a point in time REFRESH-PERIOD time units in the future.

225

Figure 7.8 The LMS-RECh Automaton - Discrete Transitions

input process-pkth(p)

where type(p) = DATA
eff if status = member then

(sp,ip) = id(p)
\\ Record foremost DATA packet

if h t sp A min-seqno(sp) =1 then

min-seqno(sp) := ip; maz-seqno(sp) := ip
\\ Archive the packet
if h : sp A (sp,ip) 0 archived-pkts? then

archived-pkts U= {(strip(p), now)}
\\ Cancel any scheduled requests

scheduled-rqsts \= {(sp,ip,t, k) I t E R 00 ,k E N}
\\ Only consider proper packets

if min-seqno(sp) 01 Amin-seqno(sp) <; ip then
\\ Deliver proper packet
if h : sp then to-be-delivered U= {strip(p)}
\\ Discover any trailing missing packets
if h $ s, A max-seqno(sp) < ip then

foreach i E N : max-seqno(sp) < i < ip do:
\\ Schedule a delayed request
scheduled-rqsts U=

{(sp, i, now + RQST-DELAY, 0)}
max-seqno(sp) := ip

input process-pkth (p)
where type(p) RQST
eff if status = member then

(sp,ip) = id(p)
if {sp,ip) E archived-pkts? then

\\ Compose reply packet
choose p' E PR-CLIENT, t E R> 0

where (p', t) E archived-pkts A id(p') = (sp, ip)
usend-buff U=

{comp-repl-pkt (p', tp-router(p), tp-link(p))}

input process-pkth(p)

where type(p) = REPL
eff if status = member then

(sp, ip) = id(p)
\\ Archive the packet
if h : sp A (sp,,ip) i archived-pkts? then

recovered-pkts? U= {(sP, ip)}
archived-pkts U= {(strip(p), now)}

\\ Cancel any scheduled requests
scheduled-rqsts \= {(sp, ip, t, k) I t E R> 0 , k E N}
\\ Only consider proper packets

if min-seqno(sp) tL Amin-seqno(sp) < ip then
\\ Deliver proper packet
if h $ sp then to-be-delivered U= {strip(p)}
\\ Discover any trailing missing packets

if h A sp A max-seqno(sp) < ip then
foreach i E N : max-seqno(sp) < i < ip do:

\\ Schedule an immediate request

scheduled-rqsts U= {sp, i, now, 0)}
max-seqno(sp) := ip

input process-pkth (p)
where type(p) = SOLICIT
eff if status = member then

s = source(p)

if sp E sources then
\\ Compose refresh packet
msend-buff U=

{ comp-refresh-pkt(h, now, sp, cost(sp))}
\\ Reset refresh deadline
refresh-deadline(sp) := now + REFRESH-PERIOD

else
if h : sp A (sp, ip) 0 scheduled-rqsts? then

\\ Schedule an immediate request

scheduled-rqsts U= {(sp, ip, now, 0)}
\\ Only consider proper packets
if min-seqno(sp) 1 Amin-seqno(sp) < ip then

\\ Discover any trailing missing packets

if h A sp A max-seqno(sp) < ip then
foreach i G N : max-seqno(sp) < i < ip do:

\\ Schedule an immediate request

scheduled-rqsts U= {(sp, i, now, 0)}
max-seqno(sp) := ip

7.2.2 The Light-Weight Multicast Services Component - LMS-IP

In this section, we give an abstract specification of the IP communication service enhanced with the

Light-Weight Multicast Services (LMS) [32,34]. We model the LMS-enhanced IP multicast service

by the timed I/O automaton LMS-IP. Figure 7.9 presents the signature of LMS-IP, Figure 7.10

lists the variables and derived variables of LMS-IP, and Figures 7.11, 7.12, and 7.13 specify the

discrete transitions of LMS-IP.

It is important to note that LMS-IP models the dissemination tree used by the IP multicast

communication service to disseminate IP multicast packets to the members of the IP multicast

group. In particular, LMS-IP models the routers and the bidirectional links that form the IP

multicast dissemination tree and the hop-by-hop transmission of packets from one router of the

tree to the next and, finally, to the members of the IP multicast group. In terms of faults, we only

consider host crashes and packet drops on the bidirectional links interconnecting the hosts to their

respective gateway routers and the routers among themselves.

226

Figure 7.9 The LMS-IP Automaton - Signature

Parameters:

REPL-TIMEOUT E R+
Actions:

input output
crashh, for h C H mjoin-ackh, for h E H
mjoinh, for h E H mleave-ackh, for h E H
mleaveh, for h C H urecvn(p), for n E N,p E PIPUCAST-CLIENT
usendh(p), for h E H,p E PIPUCAST-CLIENT mrecvh(p), for h E H,p E PIPMCAST-CLIENT
msendh(p), for h E H,p E PIPM1CAST-CLIENT udrop(p), for p E PIPUCAST-CLIENT

internal mdrops;(p), for n E N, C E L,p E PIPICAST-CLIENT
mpropn1 (p), for n C N,1 E L,p E PIPMCAST-CLIENT time-passage

v(t), for t C R>0

Variables

The variable now E R> 0 denotes the time that has elapsed since the beginning of an execution

of LMS-IP. Each variable status(h) E IPmcast-Status, for h E H, denotes the IP multicast

membership status of the host h as already described in Section 4.3.5. The set routers C R consists
of the routers that are part of the IP multicast tree. Each set links(n) C La, for n E N, consists of

the links connecting the node n to its neighbor nodes in the IP multicast tree.

Each variable upstream-link(r, s) E Lr U {1}, for r E R, s E H, is the upstream link of r for

s; that is, the link of r that is believed to lead to the source s. Each variable repl-state(r, s) E

{Lr x R 0 U {oo} x R 0 U {oo}} U {I}, for all r E R, s E H, involves the soft state maintained by
r for the source s. This state is a tuple involving the replier link repl-link(r, s) of r for s, the cost

repl-cost(r, s) of recovering the packet from the replier reached through the replier link, and the

expiration time repl-timeout(r, s) of the replier state maintained by r for s.

The set upkts C PIPUCAST-CLIENT consists of the unicast packets that have been sent by clients
of the IP unicast communication service and whose delivery is still pending. Each variable

mqueue(n, 1) : QueueOf(PIPMCAST-CLIENT), for all n E N, I C La, consists of the packets that are

pending transmission at node n along the link 1. The variable mqueue(n,l) is presumed to be

a FIFO queue. For any packet p E PIPMCAST-CLIENT, the operation enqueue(p, mqueue(n, 1)) adds

the packet p to the end of the queue mqueue(n, 1). The operation dequeue(mqueue(n, 1)) removes
and returns the packet at the front of the queue mqueue(n, 1). The operation head(mqueue(n, 1))
returns the packet at the front of the queue mqueue(n,l) without actually removing it from the

queue.

The derived variables up C H, idle C H, joining C H, leaving C H, and members C H are as

defined in Section 4.3.5. The set up denotes the set of hosts that are operational. The sets idle,
joining, leaving, and members denote the set of hosts that are idle, joining, leaving, and members

of the IP multicast group, respectively. Each derived variable sources(r), for r c R, consists of the

IP multicast transmission sources that the router r is aware of; that is, the sources for which the

router r maintains upstream link state.

We presume that the state of LMS-IP satisfies the following constraints:

1. The set of IP multicast tree links maintained by each member h of the IP multicast group

includes exactly two links: the link {Jh, h} which abstractly models the connection between

the IP multicast process and its client (i.e., reliable multicast) process on h and a link {h, r},

for some r E routers, which corresponds to a link connecting h to its gateway router r. We

refer to the transmission queue corresponding to the link {h, h} as the delivery queue.

2. The set of IP multicast links maintained by each host h' that is not a member of the IP

multicast group is empty.

227

Figure 7.10 The LMS-IP automaton - Variables

Variables:

now E R!O, initially now = 0
status(h) E IPmcast-Status, for all h E H, initially status(h) = idle, for all h E H
routers C R, initially routers = 0
links(n) C L,, for all n E N, initially links(n) = 0, for all n E N
upstream-link (r, s) E Lr U {I}, for all r E R,s E H, initially upstream-link (r, s) =-, for all r E R, s E H
repl-state(r,s) E {Lr x Rl!O U {oo} x R 0} U {I}, for all r C R,s E H,

initially repl-state(r, s) =J, for all r E R, s E H
repl-state(r, s) = (repl-link(r, s), repl-cost(r, s), repl-timeout(r, s)), for all r E R, s E H

upkts C PIPUCAST-CLIET, initially upkts = 0
mqueue(n, l) : QueueOf(PIPCAST-cLIENT), for all n E N, l E L,, initially mqueue(n, l) -0, for all n E N, I E L,

Derived Variables:

up = {h E Hjstatus(h) 5 crashed}
idle = {h C HIstatus(h) = idle}
joining = {h E Hlstatus(h) = joining}
leaving = {h C Hlstatus(h) = leaving}
members = {h E H~status(h) = member}
for all r C R, sources(r) = {s c H I upstream-link(r,s) #I}

State Constraints:

V h C members, links(h) = {{h, h}, {h, r}}, for some r E routers
V h E H\members, links(h) = 0
V r E R\routers, links(r) = 0
V r E R\routers, s C H, upstream-link(r, s) = I Arepl-state(r, s) =I
V n, n' E members U routers, {n, n'} E links (n) #> {n, n'} E links (n')
The nodes members U routers and the links Urrouerslinks(r) form a spanning tree of members U routers with members as
the set of leaf nodes.

3. The set of IP multicast links maintained by each router r that is not part of the IP multicast
tree is empty.

4. For each router r that is not part of the IP multicast tree, the upstream link and the replier
state is undefined.

5. Any two nodes n, n' that are either members of the IP multicast group, or routers that are
part of the IP multicast tree, are mutually aware of an IP multicast link connecting them.

6. The IP multicast tree nodes (i.e., the members of the IP multicast group and the routers that

are part of the IP multicast tree) and their IP multicast links form a spanning tree.

Actions

The input action crashh models the crashing of the host h. The crashh action sets the variable
status(h) to crashed, thus recording the fact that the host h has crashed. Moreover, crashh
reinitializes the links and flushes the IP multicast transmission queues of h. By reinitializing the
links of h, we ensure that no other packets are propagated to h. By flushing the IP multicast
transmission queues of h, we ensure that none of the packets in the IP multicast transmission

queues of h get propagated after h has crashed.

The input action mjoinh models the request of the client at h to join the IP multicast group. The
mjoinh action is effective only while the host is idle with respect to the IP multicast group. When
effective, the mjoinh action sets the status(h) variable to joining, thus recording the fact that the
host h has initiated the process of joining the IP multicast group. If the client is either a member
of or in the process of joining the IP multicast group, then the mjoinh action is superfluous. If the
client is already in the process of leaving the group, then the mjoinh action is discarded so as to
allow the process of leaving the IP multicast group to complete.

The output action mjoin-ackh acknowledges the join request of the client at h. The mjoin-ackh
action is enabled only when the host is in the process of joining the IP multicast group. The

228

Figure 7.11 The LMS-IP automaton - Discrete Transitions

Discrete Transitions:

input crashh

eff status(h) := crashed
\\ Reinitialize the set of links of h
links(h) := 0
\\ Flush the queues of h

foreach 1 E Lh do: mqueue(h, l) : 0
input mjoinh

eff if h E idle then status(h) := joining

output mjoin-ackh

pre h e joining
eff status(h) := member

\\ Extend IP multicast tree to include h

2b-added :C R\routers
routers U= 2b-added
foreach n e routers U members do:

links(n) :C {{n, n'} E L I n' E routers U members}
foreach I E L,\links(n) do: mqueue(n,l) := 0

such that IP multicast tree constraint is satisfied.

input mleaveh

eff if h E joining U members then
status(h) := leaving
\\ Choose the link to the gateway router of h
choose I E Lh\{{h,hl}
\\ Reinitialize the set of links of h

links(h) := 0
\\ Flush the queues of h

foreach I E Lh do: mqueue(h, 1) := 0
\\ Send PRUNE pkt to gateway router of h

p := comp-prune-pkt(h)
enqueue(p, mqueue(h, 1))

output mleave-ackh

pre h E leaving A (V 1 E Lh, mqueue(h,1) = 0)
eff status(h) := idle

input msendh(p)

eff if h E up then
foreach I E links(h)\{{h, h}} do:

enqueue(p, mqueue(h, 1))

output mrecvh(p)

pre p = head(mqueue(h, {h, h}))
eff \\ Dequeue p from delivery queue at h

dequeue(mqueue(h, {h, h}))

output mdropn1 (p)
choose n' E N such that I = {n, n'}
pre n : n' A n' E members U routers

Al E links(n') A p = head(mqueue(nl))
eff \\ Dequeue p from queue at n

dequeue (mqueue(n, 1))

input usendh (p)

eff if h E up then upkts U= {p}
output urecvn(p)

where n E H
pre n E up A n = dest(p) A p upkts
eff upkts \= {p}

output urecvn(p)

where n C R
pre n = dest(p) A p E upkts
eff upkts \= {p}

\\ Subcast p down turning-point link of p

s := source(p)
if tp-link(p) E links(n)\{upstream-link(r,s)} then

pI := comp-repl-pkt(p)
enqueue(p', mqueue(n, tp-link(p)))

output udrop(p)

pre p E upkts
eff upkts \= {p}

time-passage v(t)

pre V h E H, mqueue(h, {h, h}) = 0
eff now := now + t

mjoin-ackh action sets the status(h) variable to member, thus recording the fact that the client

at h has become a member of the IP multicast group. Moreover, it nondeterministically extends

the IP multicast tree to include h. So as to simplify our model of the IP multicast communication

service, we model this extension abstractly and atomically. In particular, the mjoin-ackh action

instantaneously extends the IP multicast tree by adding an appropriate set of routers to the IP

multicast tree and nondeterministically updating the state of each IP multicast group member and

each IP multicast tree router so as to satisfy the IP multicast tree state constraint specified in

Figure 7.10.

The input action mleaveh models the request of the client at h to leave the IP multicast group.

The mleaveh action is effective only while the host is either a member of or in the process of joining

the IP multicast group. When effective, the mleaveh action sets the status(h) variable to leaving,

thus recording the fact that the host h has initiated the process of leaving the IP multicast group.

Leave requests overrule join requests; that is, when an mleaveh action is performed while the host h

is in the process of joining the IP multicast group, its effects are to abort the process of joining and

to initiate the process of leaving the IP multicast group. If the client is either idle with respect to

or already in the process of leaving the IP multicast group, then the mleaveh action is superfluous.

229

Moreover, the mleaveh action reinitializes the IP multicast links of h and flushes the IP multicast
packet queues of h. Finally, the mleaveh action composes a prune packet and enqueues it on the
IP multicast transmission queue of h leading to its former gateway router. This packet is intended
to prune the IP multicast tree and to flush the replier state of any router that leads to h - since
h has initiated the process of leaving the group, h can no longer function as a replier.

The output action mleave-ackh acknowledges the leave request of the client at h. The mleave-ackh
action is enabled only when the host is in the process of leaving the IP multicast group and
no packets are enqueued for transmission at any of the IP multicast transmission queues of h.
This latter condition prevents the acknowledgment of a leave request prior to transmitting the
aforementioned prune packet to the former gateway router of h and, thus, initiating the process
of pruning the IP multicast tree and flushing stale replier state. The effects of the mleave-ackh
action are to set the status(h) variable to idle, thus recording the fact that the client at h has
become idle with respect to the IP multicast group.

The input action msendh(p) models the IP multicast transmission of the packet p by the client at h.
The msendh(p) action is effective only if the client is a member of the IP multicast group. Here, our
model of the IP multicast service departs from our earlier models of the IP multicast service where
host need not be members of the IP multicast group prior to sending packets to the IP multicast
group. Requiring that a host be a member of the group off-loads the issue of extending the IP
multicast tree to include h to the process of joining the IP multicast group. Our decision to model
the IP multicast service in this fashion does not affect our modeling of the reliable multicast service
since the reliable multicast processes send packets using the IP multicast service only while being
members of the IP multicast group.

The effects of the msendh(p) action are to enqueue the packet p onto the IP multicast transmission
queue of h leading to its gateway router. Recall that the set of IP multicast tree links of h includes
only two links: the link {h, h}, which is used to deliver packets to the client of the IP multicast
service at the host h, and a link {h, r}, for some r C routers, which corresponds to the link
connecting the host h to its gateway router r. When h is not a member of the IP multicast group,
the set of IP multicast links of h is empty and, thus, msendh(p) doesn't affect the state of LMS-IP.

The output action mrecvh(p) models the delivery of the packet p to the IP multicast client at
h. The action mrecvh(p) is enabled when p is at the front of the delivery queue at h, i.e.,
p = head(mqueue(h, {h, h})). The effects of mrecvh(p) are to remove p from the delivery queue at
h.

The output action mdropa1 (p) models the unsuccessful transmission, i.e., the loss, of the packet p
from the node n along the link 1. Letting n' E N, such that I {n, n'}, the action mdrop,,1 (p) is
enabled when n and n' are different nodes, n' is either a router of the IP multicast tree or a member
of the IP multicast group, the link 1 is an IP multicast tree link of n', and the packet p is at the
front of the IP multicast transmission queue of h for 1. The effects of mdropn1 (p) are to remove p
from the IP multicast transmission queue of h for 1.

The input action usendh(p) models the unicast transmission of the packet p by the client at h.
The usendh(p) action is effective only when the client is operational. In such a case, the usendh(p)
action adds p to the set of unicast packets upkts whose delivery is pending.

The output action urecvn(p) models the delivery of the unicast packet p to the node n. When n is
a host node, the occurrence of urecvn(p) models the delivery of the unicast packet p to the client
at the host n. In particular, if n is a host node, is operational, and is the destination of p and p
is a pending unicast packet, i.e., p C upkts, then the effects of urecvn(p) are to remove p from the
set of pending unicast packets upkts.

When n is a router node, the occurrence of urecv, (p) models the delivery of the unicast packet

230

p to the router n. In this case, the router n is responsible for sub-casting the packet p down the
turning-point link tp-link(p) of p. In particular, if tp-link(p) is an IP multicast link of n other
than the upstream link of n for the source s to which p pertains, then urecv,(p) composes an IP
multicast reply packet p' corresponding to p and enqueues p' onto the IP multicast transmission
queue of n for tp-link(p).

The output action udrop(p) models the loss of the unicast packet p. The udrop(p) action is enabled
when p is a unicast packet whose delivery is pending, i.e., p E upkts. The effects of udrop(p) are
to remove p from the set upkts.

The time-passage action v(t), for t E R O, models the passage of t time units. The action v(t) is
enabled while all host delivery queues are empty. Its effects are to increment the variable now by
t time units.

Figures 7.12 and 7.13 specify the internal action mpropnl(p), which models the successful trans-
mission of the packet p from the node n along the link 1. The action mpropn1 (p) is enabled only
if 1 does not correspond to the delivery queue of n, i.e., I -A {n, n}, and p is at the front of the
transmission queue of n pertaining to 1. The effects of mprop, 1 (p) depend on the type of the link
I and the type of the packet p. Irrespective however of the type of I and p, the action mpropn1 (p)
dequeues p from the transmission queue of n pertaining to 1.

We first consider the case where the node n is a router and the link I connects n to a host h
(Figure 7.12). In this case, if h is a member of the reliable multicast group, n is the gateway router
of h, and p is either an original transmission, a request, a reply, or a replier cost solicitation packet,
then mpropn1 (p) enqueues p to the delivery queue of h, i.e., the transmission queue of h pertaining
to the link {h, h}.

Next, we consider the case where the node n in either a host or a router and the link I connects
n to a router r. In this case, the effects of mprop, 1 (p) depend on the type of the packet p. First,
consider the case where p is a DATA packet (Figure 7.12). If I is an IP multicast tree link of r, then
the packet p is enqueued on all IP multicast transmission queues of r other than the one pertaining
to 1. Since p is a DATA packet, i.e., an original transmission of s, mpropn1 (p) records that 1 is the
upstream link of r for s by assigning I to the state variable upstream (r, s). Moreover, if either r has
not set its replier state for s, or the upstream link affords less replier cost than the current replier
link pertaining to s, then mpropn1 (p) sets the replier link of r for s to be the upstream link 1. This
is achieved by assigning the tuple (1, c, now + REPL-TIMEOUT) to the state variable repl-state (r, s),
where c is the replier cost of the upstream link 1. The replier cost c of I is equal to 0, if r is adjacent
to s, i.e., n = s, and equal to oc, otherwise. By assigning a replier cost of oc to the upstream link
1 when r is not adjacent to the source host of p, we effectively give priority for becoming a replier
link to downstream links - downstream links will presumably have finite replier costs. Conversely,
when r is adjacent to the source s of p, we give priority to the upstream link I by assigning to it a
replier cost of 0.

Second, consider the case where p is a SOLICIT packet (again, Figure 7.12). In this case, if the link
I is an IP multicast tree link of r and, moreover, is the upstream link of r for s, then mpropn1 (p)
attempts to send a refresh packet upstream so as to advertise its replier cost upstream. If the
replier state is stale, then mpropn1 (p) reinitializes it. Similarly to above, if the router r is adjacent
to the source s to which p pertains, then mpropn1 (p) resets the replier link to the upstream link

{r, s} of r for s and the replier cost to 0. Otherwise, mpropn1 (p) resets the replier to the upstream
link {r, s} of r for s with a replier cost of oc and propagates p on all downstream links.

Alternatively, if the replier state of r is current, then mpropn1 (p) composes a refresh packet including
the replier cost of r for s and enqueues it on the transmission queue of the upstream link of r for
s. This refresh packet is the response to the replier cost solicitation packet p.

231

Figure 7.12 The LMS-IP automaton - Discrete Transitions, Cont'd

Discrete Transitions:

internal mpropn1 (p)
where 1 E LnH
choose h E H where 1 = {n, h}
pre n # h A p = head(mqueue(n, 1))
eff \\ Dequeue p for the queue at n

dequeue(mqueue(n, 1))
\\ Propagate p to delivery queue at h
if h E members A I E links(h) then

if type(p) E {DATA,RQST,REPL,SOLICIT} then
enqueue (p, mqueue (h, {h, h}))

internal mpropni (p)
where I E LnR A type(p) = DATA
choose r E R where I = {n, r}
pre n ? r A p = head(mqueue(n, 1))
eff \\ Dequeue p from the queue at n

dequeue(mqueue(n, 1))
\\ Propagate p to router r
if I E links(r) then

foreach ' E links(r)\{Il} do:
enqueue(p, mqueue(r, l'))

s := source(p)
upstream(r, s) =1
if n = s then c := 0 else c:= oo
if repl-state(r, s) =1 Vc < repl-cost(r, s) then

repl-state(r, s) := (1, c, now + REPL-TIMEOUT)

internal mprop,1 (p)
where I E LnR A type(p) = SOLICIT
choose r E R where I {n, r}
pre n 0 r A p = head(mqueue(n, 1))
eff \\ Dequeue p from the queue at n

dequeue(mqueue(n, 1))
s := source(p)
\\ Propagate p to router r
if I E links(r) A upstream-link(r, s) -L

At = upstream-link(r, s)
then

if repl-timeout(r, s) < now then
if upstream-link (r, s) = {r, s} then

\\ Reset replier state
repl-state(r, s) :=

(upstream-link(r, s),0, now + REPL-TIMEOUT)
else

\\ Flush replier state
repl-state(r, s) :=

(upstream-link (r, s), oo, now + REPL-TIMEOUT)
\\ Propagate p downstream
foreach l' E links(r)\{upstream-link(r,s)} do:

enqueue(p, mqueue(r, I'))
else

\\ Send REFRESH pkt upstream

p' := comp-refresh-pkt(r, s, repl-cost(r, s))
enqueue (p', mqueue (r, upstream-link (r, s)))

internal mpropni (p)
where 1 E LnR A type(p) = RQST
choose r E R where I = {n, r}
pre n # r A p = head(mqueue(n, 1))
eff \\ Dequeue p from the queue at n

dequeue(mqueue(n, 1))
s := source(p)
\\ Propagate p to router r
if I E links(r) A upstream-link(r, s) 51 then

\\ Handle stale replier state
if repl-timeout(r, s) < now then

if upstream-link (r, s) = {r,s} then
\\ Reset replier state
repl-state(r, s) :=

(upstream-link(r, s), 0, now + REPL-TIMEOUT)

else
\\ Flush replier state
repl-state(r, s) :=

(upstream-link(r, s), oc, now + REPL-TIMEOUT)
\\ Send FLUSH control pkt upstream
p' := comp-flush-pkt (r, s)
enqueue (p', mqueue (r, upstream-link (r, s)))
\\ Solicit downstream replier costs

P' := comp-solicit-pkt(r, s)
foreach ' E links(r)\{upstream-link (r, s)} do:

enqueue(p', mqueue(r, I'))
\\ Propagate p upstream
enqueue(p, mqueue(r, upstream-link(r, s)))

else
if I = repl-link(r, s) then

\\ Propagate p upstream
enqueue(p, mqueue(r, upstream-link(r, s)))

else
if I : upstream-link(r, s) then

tp-router(p) := r; tp-link(p) := I
\\ Propagate p down replier link

enqueue(p, mqueue(r, repl-link(r, s)))

internal mpropa (p)
where I C LnR A type(p) = REPL
choose r E R where I = {n, r}
pre n r A p = head(mqueue(n, 1))
eff \\ Dequeue p from the queue at n

dequeue(mqueue(n, 1))
s := source(p)
\\ Propagate p to router r

if I C links (r) A upstream-link (r, s) :-L then

if 1 = upstream-link (r, s) then
foreach ' E links(r)\{Il} do:

enqueue(p, mqueue(r, I'))

232

Third, consider the case where p is a RQST packet (again, Figure 7.12). If I is an IP multicast

tree link of r and the upstream link of r for s is set, then mpropn1 (p) attempts to appropriately
forward p. If the replier state is stale and the router r is adjacent to the source s of the

packet being requested, then mpropn1 (p) resets the replier state of r pertaining to s to the tuple
(upstream(r, s), 0, now + REPL-TIMEOUT). If the replier state is stale and the router r is not

adjacent to s, then mpropn1 (p) i) flushes the replier state of r for s by setting it to the tuple
(upstream(r, s), oc, now + REPL-TIMEOUT), ii) sends notice upstream that its replier state has been

flushed, and iii) solicits replier costs from all downstream links of r with respect to s. Once the

replier state has been reset, mpropn1 (p) forwards the request packet p on the upstream link of r for

S.

If the replier state is not stale and I is the replier link of r for s, then mpropn, (p) forwards the
request packet p on the upstream link of r for s. If the replier state is not stale and I is not the
replier link of r for s, then mprop, 1 (p) forwards the request packet p down the replier link of r for
s. In this case, if 1 is not the upstream link of r for s, then, prior to forwarding p, mprop"1 (p) sets
the turning point router and link fields of p to r and 1, respectively - since p is received from a
downstream link of r for s and forwarded on the replier link of r for s, this constitutes the turning
point of p.

Fourth, consider the case where p is a REPL packet (again, Figure 7.12). In this case, I is an IP
multicast tree link of r, the upstream link of r for s is set, and 1, in particular, is the upstream link
of r for s, then mprop, 1 (p) enqueues the packet p on all transmission queues of r other than the
one pertaining to 1. Thus, reply packets are only forwarded downstream with respect to s.

Fifth, consider the case where p is a REFRESH packet (Figure 7.13). In this case, if I is an IP multicast
link of r and the upstream link of r for s is set, then mpropn1 (p) attempts to appropriately forward
the refresh packet p. The mpropn1 (p) action determines whether it should update the replier state
of r for s, updates it according to the information contained in p, and propagates p on the upstream
link of r for s. The replier state is updated and p is propagated upstream when either: i) the node
n is the source s, ii) the link I is the replier link of r for s, or iii) the replier link of r for s does
not connect r to s, the link 1 is not the upstream link of r for s, and the replier cost advertised
by the refresh packet p is less than the current replier cost of r for s. In the first scenario, the
refresh packet simply refreshes the replier state of r to be the link leading to the source s. In the
second scenario, the refresh packet is advertising a new replier cost for the current replier link.
Thus, mpropn1 (p) refreshes the replier state by setting the replier cost to the cost advertised by p
irrespective of whether its is lower than the current replier cost. The third scenario corresponds to
the case where the refresh packet p is advertising a lower replier cost from a link that is neither the
replier nor the upstream link of r for s.

Sixth, consider the case where p is a FLUSH packet (again, Figure 7.13). In this case, if I is an IP
multicast link of r, the upstream link of r for s is set, and 1, in particular, is the replier link of r for
s, then mprop, 1 (p) appropriately flushes the replier state of r for s. If the router r is adjacent to
the source s to which the flush packet p pertains, then the replier link is reset to the upstream link

{r, s} of r for s and the replier cost is set to 0. Otherwise, the replier link is reset to the upstream
link {r, s} of r for s and the replier cost is set to oc. Moreover, mpropn1 (p) propagates p on the
upstream link of r for s so as to alert the ancestors of r with respect to s to the fact that r is
no longer a valid replier since it has just flushed its replier state. Finally, mpropn1 (p) composes a
replier cost solicitation packet and forwards it on all links of r except the upstream link of r for s
and the ex-replier link 1. This packet solicits replier costs from all candidate downstream links of
r for s.

Finally, consider the case where p is a PRUNE packet (again, Figure 7.13). In this case, if 1 is an IP
multicast link of r and the upstream link of r for s is set, then mprop,1 (p) attempts to appropriately

233

Figure 7.13 The LMS-IP automaton - Discrete Transitions, Cont'd

Discrete Transitions:

internal mprop,1 (p)
where I E LnR A type(p) = REFRESH
choose r E R where = {n, r}
pre n $ r A p = head(mqueue(n, 1))
eff \\ Dequeue p from the queue at n

dequeue(mqueue(n, 1))
s := source(p)
\\ Propagate p to router r
if 1 E links(r) A upstream-link (r, s) $1 then

c := cost(p)
if n = s V 1 = repl-link(r, s)

V(repl-link(r,s) $ {r,s}
Al $ upstream-link(r, s) A c < repl-cost(r, s))

then
repl-state(r, s) := (1, c, now + REPL-TIMEOUT)
\\ Propagate p upstream
enqueue(p, mqueue(r, upstream-link (r, s)))

internal mprop, 1 (p)

where I E LnR A type(p) = FLUSH
choose r E R where I = {n, r}
pre n 7 r A p = head(mqueue(n, 1))
eff \\ Dequeue p from the queue at n

dequeue(mqueue(n, 1))
s := source(p)
\\ Propagate p to router r
if I E links(r) A upstream-link(r, s) $1 then

\\ Propagate p to router r
if I = repl-link(r,s) then

if upstream-link(r, s) = {r, s} then
\\ Reset replier state
repl-state(r, s) :=

(upstream-link (r, s), 0, now + REPL-T IMEOUT)
else

\\ Flush replier state
rep-state(r, s) :=

(upstream-link (r, s), oo, now + REPL-TIMEOUT)
\\ Propagate p upstream
enqueue (p, mqueue (r, upstream-link (r, s)))
\\ Solicit downstream replier costs;
\\ except from upstream and ex-replier link
p := comp-solicit-pkt(r, s)
foreach 1' E links(r)\{upstream-link(r,s), } do:

enqueue(p', mqueue(r, P'))

internal mpropni (p)
where I E LaR A type(p) = PRUNE
choose r E R where I = {n, r}
pre n i r A p = head(mqueue(n, 1))
eff \\ Dequeue p from the queue at n

dequeue(mqueue(n, 1))
s := source(p)
\\ Propagate p to router r
if I E links(r) A upstream-link(r, s) $1 then

\\ Prune r if part of chain leading to n
if Ilinks(r)\{1} < 1 then

\\ Flush the queues of r
foreach ' E Lr do: mqueue(r,1') := 0
\\ Propagate p upstream
foreach ' E links(r)\{l} do:

enqueue(p, mqueue(r, '))
\\ Reset router's replier state
foreach s E sources(r) do:

upstream-link(r, s) :=I; repl-state(r, s) :=1
\\ Reinitialize links of r
links(r) := 0
\\ Remove r from router set
routers\= {r}

else
\\ Remove I from router's links
links(r) \= {l}
\\ Flush the I queue of r
mqueue(r,1):= 0
\\ Reset replier state of r
foreach s E sources(r) do:

if repl-link(r, s) = 1 then
\\ Flush replier state
repl-state(r, s) :=

(upstream-link (r, s), oo, now + REPL-TIMEOUT)
\\ Send FLUSH control pkt upstream

p := comp-flush-pkt (r, s)
enqueue(p', mqueue(r, upstream-link (r, s)))
\\ Solicit downstream replier costs

pi := comp-solicit-pkt (r, s)
foreach

1' E links(r)\{l, upstream-link(r, s)}
do:
enqueue(p", mqueue(r,1'))

prune the IP multicast tree of the router r. The effects of mpropnl(p), however, depend on whether
r is part of a chain of routers whose sole purpose is to extend the IP multicast tree to include the
node n. If r has only two IP multicast tree links (including 1), then r is indeed part of such a chain.
In this case, the action mpropn1 (p) prunes the router r from the IP multicast tree by flushing all
IP multicast transmission queues of r and propagating p on all its IP multicast tree links other
than 1 (since r is part of a chain, there is only one such link and this link is the upstream link of
r for s). Moreover, mpropn1 (p) reinitializes the upstream link and replier state of r for all sources,
reinitializes the links of r, and removes r from the set of routers routers that are part of the IP
multicast tree.

If r is not part of a chain and has multiple IP multicast tree links other than 1, then mprop"1 (p)
removes the link 1 from the set of IP multicast tree links of r and flushes the IP multicast
transmission queue of r for 1. Moreover, if the replier link for any source s E sources(r) is 1, then
mpropn1 (p) flushes the replier state for s, composes and forwards a flush packet on the upstream
link of r for s, and composes and forwards a replier cost solicitation packet on all links of r apart

234

from I and the upstream link of r for s.

7.3 LMS Correctness

In this section, we state the correctness of our model of the LMS protocol against the reliable
multicast service specification of Chapter 3.

As in the case of the SRM and CESRM protocols, our model of the LMS protocol involves the
LMS processes at each host and the underlying IP multicast service; that is, the automaton

HhEH LMSh x LMS-IP, where LMSh = LMS-MEMh x LMS-IPBUFFh x LMS-RECh. We define
the automaton LMS to be the composition lhEH LMSh x LMS-IP after hiding all output
actions that are not output actions of the specification RM(A), for any A E R>0 U oc; that
is, LMS = hidej>(HhGH LMSh x LMS-IP), with <I>= out(HheH LMSh x LMS-IP)\out(RM(A)).

Furthermore, we let LMS1 and RMs(A), for any A E R 0 U oc, denote the implementation and
the specification of the reliable multicast service each composed with all the client automata; that
is, LMS, = LMS x RMCLIENTS and RMs(A) = RM(A) x RMCLIENTS.

The correctness analyses of both SRM and CESRM in Sections 4.4.4 and 6.3, respectively, show
that SRMI and CESRMJ, respectively, are faithful implementations of RMs(oo). However, the
reliable multicast specification RMs(oo) enforces no timeliness guarantee as to the delivery of the
packets transmitted using the reliable multicast service. Thus, the correctness proofs of SRMI and
CESRMI effectively state that both SRMJ and CESRMI may deliver the appropriate packets to
the appropriate members of the reliable multicast group.

The functionality that dictates which packets are delivered to each member of the reliable multicast
group is identical in all reliable multicast protocol implementations SRMI, CESRMI, and LMS 1 .
Moreover, this functionality is independent of the functionality governing how losses are recovered
in each of the protocols. Thus, we claim that the correctness proof of each of the protocols is
practically identical, with minor proof modifications. For purposes of brevity, instead of repeating
the correctness proof for LMS1 , we simply state it.

Lemma 7.1 R is a timed forward simulation relation from LMS 1 to RMs(oo).

Proof: The proof is similar to that of Lemmas 4.11 and 6.11. Once again, the proof involves
introducing the history variables of Section 4.4.2, defining the relation R from LMS 1 to RMS(A),
for any A E R 0 U oc, similar to that of Definitions 4.1 and 6.1, and showing that R is a timed
forward simulation relation from LMS, to RMs(oo). 0

Theorem 7.2 LMS < RMS(oc)

Proof: Follows directly from Lemma 7.1. 0

7.4 LMS Informal Timeliness Analysis

In this section, we informally comment on the timeliness of LMS. We begin by stating the worst-
case recovery latency afforded by LMS when the recovery process proceeds smoothly; that is, when
its not inhibited by, for example, unstable repliers, host crashes and host leaves. Then, we estimate
the recovery latency of LMS in scenarios in which recovery packets are dropped, the replier state is

235

Figure 7.14 Example of LMS lossy transmission scenario. The dashed lines correspond to the

replier links of the routers.

r

h" h' h

unstable, and hosts either crash or leave the reliable multicast group. We conclude by summarizing

the conclusions of our simple recovery latency analysis of LMS and compare its performance to

that of SRM and CESRM.

Throughout this section, we consider the transmission scenario depicted in Figure 7.14 involving the

transmission of a packet p by s and the loss of p on the link 1. Moreover, we let DET-BOUND E R 0

be an upper bound on the time it takes for reliable multicast group member to detect the loss

of a proper packet, d E R 0 be an upper bound on both the IP unicast and the IP multicast

transmission latencies, and RTT = 2 d be an upper bound on the inter-host round-trip-time.

7.4.1 Ideal Recovery

In this section, we consider the ideal scenario in which the recovery of p proceeds smoothly. For

simplicity, we presume that, throughout the recovery of p, the IP multicast topology and replier

hierarchy remain stable (unchanged), no recovery packets are dropped, no repliers either crash or

leave the reliable multicast group, and h' considers p to be a proper packet.

According to the replier state depicted in Figure 7.14, the designated requestor and replier that

are responsible for recovering p are the hosts h' and h, respectively. Thus, upon detecting the loss

of p, h' multicasts a request for p. This request is routed according to the replier state of the

IP multicast tree to h. Upon receiving this request, h unicasts p to the router r and, in turn, r

forwards p on 1. The worst-case recovery latency incurred during such a recovery scenario is given

by:

DET-BOUND + 3a. (7.1)

236

This worst-case recovery latency includes the time required for h' to detect the loss of p, the latency

of multicasting the request from h' to h, the latency of unicasting the reply from h to r, and the

latency of multicasting the reply from r to any of its descendant hosts.

7.4.2 Improper Packet Recovery

In our model of LMS, we presume that hosts take the initiative to detect and to recover from the

loss of proper packets only. However, since hosts may act as designated requestors on behalf of

other hosts, they may need to initiate and carry out the recovery of packets which they consider

to be improper. Since the recovery of an improper packet is initiated by the designated requestor

upon receiving a request for the given packet, the packet's recovery incurs some additional delays.
We proceed by giving an example of such a scenario and estimating the recovery latency afforded
in such cases.

In the transmission scenario depicted in Figure 7.14, suppose that h' considers p to be improper

and h" considers p to be proper. In this case, h' does not initiate the recovery of p until it receives

a request for p from h". Thus, the worst-case recovery latency of p is given by:

DET-BOUND + 4a. (7.2)

It follows that the recovery latency is increased by d time units. This additional delay corresponds

to the time it may take for the request of h" for p to reach h' and, in effect, instruct h' to initiate

the recovery of p. It is plausible for such delays to accumulate when the reliable multicast group is

large and there are several repliers that must successively be instructed to initiate the recovery of
a packet.

Although this extraneous delay may seem artificial since it results from our treatment of proper
and improper packets, we argue that, even in the case of LMS, it is preferable for hosts to take the
initiative to detect and recover from the loss of proper packets only. By adopting this behavior,
hosts initiate the recovery of improper packets on a need basis and, thus, avoid incurring the
overhead of recovering from packets whose delivery is not required.

7.4.3 Lossy Recovery

In LMS, a particular pair of repliers is responsible for carrying out the recovery of a particular loss.
Since the recovery of a packet relies on the successful transmission of the request and the reply for
the given packet, a single loss may cause the failure of any single recovery attempt. Suppose that
the transmission and the recovery of the packet p (whose transmission is depicted in Figure 7.14)
incurs at most k G N+ packet drops. Presuming that each attempt of h' to recover p fails solely
due to packet drops, at most k - 1 recovery attempts of h' may fail - the transmission and the
recovery of p incurs at most k packet drops and the first such drop corresponds to the loss of p on
1.

Presuming that requests are periodically transmitted by h' every RQST-TIMEOUT time units (which
is one of the schemes proposed by Papadopoulos et al. [32, 34]), the worst-case recovery latency of
p is given by:

DET-BOUND + (k - 1) RQST-TIMEOUT + 3d. (7.3)

Presuming that requests are transmitted by h' at exponentially increasing intervals, the worst-case

237

recovery latency is given by:

DET-BOUND + (2 k - 1) RQST-TIMEOUT + 3d. (7.4)

Of course, this simplistic analysis presumes that the recovery attempts proceed smoothly; that
is, that h' considers p to be a proper packet, that the replier state of all the routers involved in
forwarding the requests of h' to h remains unchanged during the recovery of p, that h and h'
neither crash nor leave the IP multicast group, and that all hosts that share the loss of p remain
descendants of r' so as to receive h's retransmissions of p.

7.4.4 Unstable Replier State

In this section, we describe a subtle scenario that demonstrates that unstable (rapidly changing)
replier state may delay the recovery of a packet. In particular, we demonstrate that if the replier
state of r' changes rapidly, it is possible to temporarily trap the requests for p within the subtree
rooted at r' and, thus, delay the recovery of p. We proceed by describing an example of such a
scenario.

Suppose that h' does not consider p to be a proper packet and thus does not initiate the recovery of
p until it receives a request from h". Suppose that h" detects the loss of p and multicasts a request
for p. This request is routed by r' to h'. Moreover, suppose that immediately after forwarding the
request from h" to h', r' receives a refresh packet from h" advertising a lower replier cost. Then,
r' switches replier links and its new replier is now h". Upon receiving the request of h" for p, h'
initiates the recovery of p by multicasting a request for p. However, upon receiving this request,
r' forwards it to h" since its replier link now leads to h". Unless the replier state of r' remains
stable for a sufficiently long enough time, r' may keep forwarding all requests for p downstream.
The recovery of p may thus be delayed.

For our simple example, it may be highly unlikely for the replier state of r' to oscillate among its
two downstream links fast enough to delay the recovery of p by a large amount of time. However,
replier state may be more susceptible to such instability in large IP multicast trees where routers
have a large number of downstream links and descendant hosts.

7.4.5 Replier Crashes/Leaves

As explained in Section 7.1.1, perhaps the most important weakness of LMS is its lack of robustness
to scenarios in which hosts either crash or leave the reliable multicast group. According to the replier
state depicted in the transmission scenario depicted in Figure 7.14, the designated requestor and
the designated replier for the loss of p on I are the hosts h' and h, respectively. Thus, the recovery
of p relies on h' multicasting a requests for p and on h replying to this request for p. However, if
prior to carrying out the recovery of p either h or h' crashes or leaves the reliable multicast group,
then the recovery of p may be substantially prolonged.

We first consider the scenario in which either h or h' crashes prior to carrying out the recovery of
p. In particular, consider the scenario in which h' crashes prior to requesting the retransmission
of p. Until the replier state of r' changes, any requests received by r' would be forwarded to h'
and, thus, fail to recover p. However, it may take up to REPL-TIMEOUT time units for the replier
state at r' to become stale and be refreshed. Presuming that the recovery of p proceeds smoothly
thereafter, a rough upper bound on the recovery latency of p is given by:

DET-BOUND + d + REPL-TIMEOUT + RQST-TIMEOUT + 3d. (7.5)

238

This recovery latency is exhibited by the following recovery scenario. The host h' detects the loss

of p after DET-BOUND time units, sends a refresh packet, and then crashes. This refresh packet is
received by r' after d time units, at which point it the replier state of r' for s is refreshed. The replier
state of r' for s becomes stale REPL-TIMEOUT time units thereafter. Presuming that the recovery of
p proceeds smoothly once the replier state of r' becomes stale and that h' transmits requests for p
periodically with a period of RQST-TIMEOUT time units, it may take up to RQST-TIMEOUT time units
for h" to transmit another request for p. Once this request is transmitted, the recovery of p takes

3d time units to complete - d time units for the request to be received by h, d time units for the
unicast reply to be received by the turning point router r, and a time units for the reply subcast
on the turning point link to be received by all the descendants of the turning point link.

The recovery of p may also be prolonged when either the designated requestor or the designated
replier for the loss of p on 1 leaves the reliable multicast group. When a host issues a request to
leave the IP multicast group, the IP multicast service uses a prune packet to prune the IP multicast
tree and to flush the replier state pertaining to the given host. Provided it is not dropped, this
prune packet appropriately prunes the branch of the IP multicast tree leading to the given host
and flushes the replier state of any router whose replier link leads to the given host. Presuming
that the recovery of the packet proceeds smoothly thereafter, a rough upper bound on the recovery
latency of p is given by:

DET-BOUND + a + RQST-TIMEOUT + 3d. (7.6)

This recovery latency is exhibited by the following recovery scenario. The host h' detects the loss
of p after DET-BOUND time units and leaves the reliable multicast group prior to transmitting a
request for p. The prune packet of h' flushes the replier state of r' within d time units. Thereafter,
r' forwards all requests for p upstream. Subsequently, presuming that h" periodically transmits
requests for p with a period of RQST-TIMEOUT time units, it may take h" up to RQST-TIMEOUT time
units to transmit another request for p. Once this request is transmitted the recovery of p takes 3d
time units to complete.

Thus, when either the designated requestor or the designated replier leaves the IP multicast group,
it is possible for some recovery attempts to fail. The recovery during such leaves may be prolonged
further when the prune packet is dropped prior to flushing the replier state of the appropriate
repliers. In fact, the recovery delay in such scenarios is equivalent to that of scenarios where
the same designated requestor/replier crashes, given in (7.5). It follows that, in a highly lossy
environment, even graceful leaves may substantially prolong packet recovery.

7.4.6 Comparison to SRM

Since SRM does not rely on particular members of the reliable multicast group to carry our the
recovery of each loss, SRM's recovery scheme is not as susceptible as is LMS to either crashes or
leaves. In particular, irrespective of whether hosts crash or leave the reliable multicast group while
a packet is being recovered, a rough upper bound on the average recovery latency of a successful
first-round recovery of SRM is given by:

DET-BOUND + (Cl + C 2 /2)a + d + (D1 + D2 /2)d + d. (7.7)

This recovery latency is afforded by the recovery scenario in which both the request and reply
are scheduled for transmission at the midpoint of the request and reply scheduling intervals,
respectively. This is a rough upper bound for two reasons. First, a is an upper bound on the
inter-host transmission latencies and their estimates. Second, since multiple requests may be

239

scheduled per loss, the request that instigates a packet's recovery is either sent or received with
higher probability in the first half of the request interval. This is similarly true for replies.

Given the typical SRM scheduling parameter values used by Floyd et al. [12,13] of C1 = C 2 = 2 and
D, = D2 = 1, the rough upper bound on the average recovery latency of a successful first-round
recovery of SRM is 6.5d, or 3.25RTT.

We now roughly estimate the average recovery latency of LMS when either the designated requestor
or the designated replier crashes. By presuming that the recovery proceeds smoothly once the replier
state leading to the crashed host becomes stale and, potentially, gets updated, the average recovery
latency of LMS is roughly:

DET-BOUND + d + REPL-TIMEOUT/2 + RQST-TIMEOUT/2 + 3d. (7.8)

The amount of time REPL-TIMEOUT that a router's replier state remains current, prior to becoming
stale, is on the order of several round-trip times. For our analysis in this section, we adopt a
valuation of 3 RTT for the parameter REPL-TIMEOUT. Moreover, since hosts must allocate enough
time for a particular request to instigate a packet's recovery prior to transmitting another request,
it follows that RQST-TIMEOUT > RTT. Choosing RQST-TIMEOUT close to the worst-case round-
trip-time would result in recovering a packet sooner, but would potentially also introduce the
transmission of extraneous (superfluous) requests. Thus, for our analysis in this section, we adopt
a valuation of 2 RTT for the parameter RQST-TIMEOUT. Even for these modest valuations of the
parameters REPL-TIMEOUT and RQST-TIMEOUT, the recovery latency afforded by LMS is roughly
equal to DET-BOUND + 9 d = DET-BOUND + 4.5 RTT, which is worse than that afforded by SRM.
Choosing higher values for the parameters REPL-TIMEOUT and RQST-TIMEOUT would further increase
the recovery latency afforded by LMS.

SRM is also relatively robust to recovery packet drops. In SRM, when a packet suffers a loss, all
the hosts that reside in the subtree of the IP multicast tree affected by the loss schedule requests
for the given packet. Depending on how effective the suppression of requests is, one or more of
these requests get multicast. Similarly, each host that receives such a request and has received the
requested packet schedules the transmission of a reply for the given packet. Again, depending on
how effective the suppression of replies is, one or more of these replies get multicast. Thus, even
if SRM suffers losses during a packet's first recovery round, the packet may still be recovered by
the first recovery round as a result of the transmission of duplicate requests and replies. SRM
effectively trades off the additional overhead of transmitting duplicate requests and replies for
robustness against recovery packet losses.

In contrast, LMS relies on a particular request and a particular reply to recover a particular loss.
If either this request or this reply is dropped, then the particular recovery attempt fails. In effect,
LMS's recovery scheme introduces specific points of failure and is thus less robust to losses in
recovery packets.

Although SRM may perform comparably and, often even better, than LMS in highly dynamic and
faulty environments, SRM's performance remains the same even when the topology is static and
the recovery is lossless and fault-free; that is, a rough upper bound on SRM's average recovery
latency afforded by successful first-round recoveries is DET-BOUND + 3.25RTT. Conversely, in such
cases, LMS affords a worst-case recovery latency of DET-BOUND +3d = DET-BOUND + 1.5RT T, which
is substantially better.

240

7.4.7 Comparison to CESRM

CESRM bridges the performance gap between SRM and LMS. When the topology is static,
CESRM's caching-based expedited recovery scheme effectively establishes a hierarchy of repliers
similar to the one established by LMS - CESRM's hierarchy is dictated by the locality in the IP
multicast losses as opposed to replier state maintained by the IP multicast routers in LMS. When
the topology is static, we expect CESRM's expedited recovery scheme to successfully recover a large
percentage of the losses. Recall that successful expedited recoveries in CESRM incur a worst-case
recovery latency of DET-BOUND +a=2d DET-BOUND + RTT. Thus, the worst-case recovery latency of
all losses recovered by CESRM's expedited recovery scheme is comparable to (if not better than)
than that afforded by a smooth recovery in LMS.

In highly dynamic and faulty environments, CESRM's caching-based expedited recovery scheme
may fail to recover a large percentage of the losses. In such cases, CESRM falls back onto SRM's
recovery scheme, which is highly robust to losses and failures.

In conclusion, CESRM provides an attractive alternative to LMS. CESRM's expedited recovery
scheme promptly recovers from a large percentage of losses in static environments, while CESRM's
fall-back recovery scheme, which mimics that of SRM, ensures CESRM's robust to highly dynamic
and faulty environments.

7.4.8 Summary

Our simple analysis of the recovery latency afforded by LMS in a variety of scenarios has confirmed
that, while LMS promptly recovers packets in static environments, it is not particularly robust to
highly dynamic and faulty environments. This weakness can be mitigated by requiring routers to
refresh their replier state more frequently, i.e., reducing the value of the parameter REPL-TIMEOUT,
and by having hosts transmit requests at a higher frequency, i.e., reducing the value of the
parameter RQST-TIMEOUT. Tuning LMS in this fashion, however, introduces additional overhead
and, potentially, the transmission of extraneous requests for packets. When the parameters
REPL-TIMEOUT and RQST-TIMEOUT of LMS must be chosen to reduce this overhead, then LMS
may loose its performance advantage to SRM and, in particular, CESRM.

241

242

Chapter 8

Conclusions

In this thesis, we conduct an extensive case study on formally modeling, analyzing, and designing
retransmission-based reliable multicast protocols. We begin by presenting an abstract model of the
reliable multicast service that several reliable multicast protocols [12,13,32-34] strive to provide.
This model precisely specifies i) what it means to be a member of the reliable multicast group,
ii) which packets are guaranteed delivery to which members of the group, and iii) how long it takes
for a packet to be delivered to the appropriate members of the reliable multicast group.

We proceed by modeling the Scalable Reliable Multicast (SRM) protocol [12, 13] and proving
that this model is a faithful implementation of our reliable multicast service model. Under some
timeliness assumptions and presuming a fixed number of per-recovery packet drops, we also show
that our model of SRM guarantees the timely delivery of packets. This timeliness guarantee is
shown by bounding the number of recovery rounds that may fail prior to recovering a packet. Our
timeliness analysis of SRM reveals that the careless selection of SRM's scheduling parameters may
introduce superfluous recovery traffic and may undermine the loss recovery process. This is an
important observation that has, to date, been overlooked.

We then design, model, and analyze the Caching-Enhanced Scalable Reliable Multicast (CESRM)
protocol. The design of CESRM is motivated by our observation that losses in IP multicast
transmissions exhibit locality - the property that losses suffered by a receiver at proximate times
often occur on the same link of the IP multicast tree. This observation stems from our analysis
of the effectiveness of a simple caching-based expedited recovery scheme. In this scheme, receivers
cache information about the recovery of recently recovered packets and use this information to
estimate the links responsible for subsequent losses. The effectiveness of this scheme when applied
to the IP multicast transmission traces of Yajnik et al. [41] reveals that, indeed, IP multicast losses
exhibit substantial locality and that caching can be very effective.

CESRM augments SRM with a caching-based expedited recovery scheme that exploits packet
loss locality in IP multicast transmissions by attempting to recover from losses in the manner
in which recent losses were recovered. Since CESRM uses SRM's recovery scheme as a fall-back,
when an expedited recovery fails to recover a loss, either due to additional losses or because the
replier has also shared the loss, then the packet is recovered, in due time, through SRM's recovery
scheme. Thus, CESRM inherits SRM's robustness to dynamic environments while, thanks to its
caching-based expedited recovery scheme, drastically reducing SRM's average recovery latency in
static environments. We show that CESRM is a faithful implementation of our reliable multicast
service model. Furthermore, we analytically show that the worst-case recovery latency for successful
expedited recoveries in CESRM is roughly 1 round-trip time (RTT) where as that of successful first-
round recoveries in SRM (and, similarly, in CESRM) is 4 RTT (for typical scheduling parameter
settings). Finally, we evaluate the performance of CESRM using trace-driven simulations. By

243

using traces to drive our simulations, the simulated IP multicast transmissions exhibit the packet

loss locality of actual IP multicast transmissions. Our simulations reveal that CESRM reduces the

average recovery latency of SRM by roughly 50% and incurs less overhead in terms of recovery

traffic.

Finally, we model the Light-weight Multicast Services (LMS) router-assisted reliable multicast

protocol [32-34]. This protocol enhances the functionality of IP multicast routers so as to

intelligently forward recovery traffic and achieve localized loss recovery. Again, we show that LMS

is a faithful implementation of our reliable multicast service model. Furthermore, through careful

reasoning, we show that, although LMS promptly recovers from packets in static membership and

topology environments, it may not perform well in dynamic environments. Thus, our analyses of

CESRM and LMS demonstrate that CESRM is a preferable reliable multicast protocol to both

SRM and LMS; CESRM inherits SRM's robustness to dynamic environments and, thanks to its

caching-based expedited recovery scheme, drastically reduces the average recovery latency of SRM

in static environments.

8.1 Contributions

Our case study on formally modeling, analyzing, and designing reliable multicast protocols makes

several contributions of distinct nature.

First, a byproduct of using a formal modeling and analysis approach are the formal specifications

of both the reliable multicast service and the reliable multicast protocols. The specification of

the reliable multicast service formalizes the notion of eventual delivery in the multicast setting.

Moreover, by parameterizing our specification by a worst-case packet delivery bound, particular

instantiations of our specification formalize the notion of a timely reliable multicast communication

service. This timely specification may be used to prove both the correctness and the timeliness of

particular reliable multicast protocols. Furthermore, the specifications of SRM, CESRM, and LMS

precisely and completely describe the behavior of the respective protocols. In so doing, they also

abstractly specify the underlying communication primitives each of the protocols uses. The abstract

specification of these underlying communication primitives is also an important contribution. This

is especially true in the case of LMS where the IP multicast communication service includes the

behavior of the extended router functionality introduced by LMS.

Second, we demonstrate how simulation relations can be used to prove both protocol correctness

and performance. The use of a simulation proof to show the correctness of an implementation with

respect to a more abstract specification is standard practice. We use a similar approach to show

that a particular reliable multicast protocol guarantees the timely delivery of multicast packets.

This is achieved by instantiating our abstract model of the reliable multicast service with the worst-

case packet delivery latency. Instantiating this model using a worst-case packet delivery latency

of infinity specifies an eventual delivery guarantee. Thus, showing that a protocol implements

such a timely reliable multicast service constitutes a timeliness claim about the protocol. We also

demonstrate how to state and show conditional timeliness guarantees. This is particularly useful

when a reliable multicast protocol guarantees timely delivery only under particular assumptions.

Conditioning the simulation proof on these assumptions leads to a conditional performance claim

about either a protocol's correctness or timeliness.

Third, our timeliness analysis of SRM reveals that choosing SRM's scheduling parameters arbitrarily

may result in either superfluous recovery traffic or the failure of particular recovery rounds due

to scheduling issues rather than losses. Our analysis gives rise to several constraints on SRM's

scheduling parameters. These constraints constitute guidelines for choosing SRM's scheduling

parameters so that scheduling issues do not induce superfluous traffic and recovery round failure.

244

To our knowledge, these constraints, or even similar ones, have not been expressed to date. This
demonstrates that a formal approach to protocol modeling and analysis may often help in better
understanding and, potentially, redesigning a protocol's behavior.

Fourth, we present a methodology for estimating the potential effectiveness of caching in multicast
loss recovery. This methodology analyzes the performance of a caching-based loss location

estimation scheme that estimates the links responsible for the losses suffered by each reliable

multicast group member. By applying this methodology to the IP multicast transmission traces of
Yajnik et al. [41] we observe that indeed packet loss locality in IP multicast transmissions can be
exploited through a caching-based scheme very effectively.

Fifth, motivated by the expected effectiveness of caching in multicast loss recovery, we demonstrate
such a caching scheme by designing the Caching-Enhanced Scalable Reliable Multicast (CESRM)
protocol. CESRM employs a caching-based expedited recovery scheme that opportunistically
attempts to recover from losses in the manner in which recent losses were recovered. By using
SRM as a fall-back loss recovery scheme, CESRM may only reduce the average recovery latency
incurred by SRM. In fact, trace-driven simulations reveal that, under realistic packet loss locality
conditions, CESRM reduces the average recovery times of SRM by an average of roughly 50%,
reduces the total number of retransmissions, and incurs comparable control packet traffic to that
of SRM.

Sixth, CESRM also demonstrates the effectiveness of the system design paradigm in which an
opportunistic and highly efficient scheme for performing a task is complemented by a more robust
but less efficient scheme to handle the cases where the opportunistic scheme fails. The opportunistic
scheme is usually based on a particular assumption about the behavior of the system at hand.
When this assumption indeed holds, the opportunistic scheme succeeds in performing the task
at hand. When the assumption does not hold, the task is performed by the fall-back scheme,
albeit not as efficiently. In CESRM, this assumption corresponds to the assumption that packet
losses in IP multicast transmissions exhibit locality and, thus, that the replier to which CESRM's
expedited request is sent is indeed capable of retransmitting the given packet. This design paradigm
is prevalent in many computer systems, e.g., the traditional caching schemes used in processor
memory designs. CESRM demonstrates that the same paradigm can very effectively be used in
wide-area network protocols.

Finally, through careful reasoning, we expose several scenarios in which packet loss recovery
in LMS may be prolonged and even inhibited due to changes in either the reliable multicast
group membership or the replier hierarchy. With the proliferation of host mobility and wireless
connections, a protocol's performance in dynamic environments becomes increasingly important.
This suggests that future protocol designs should put substantial emphasis on their performance
in highly dynamic and faulty environments. Moreover, it indicates that CESRM is a preferable
reliable multicast protocol to both SRM and LMS; CESRM inherits SRM's robustness to dynamic
environments and, thanks to its caching-based expedited recovery scheme, takes advantage of packet
loss locality and affords good recovery latency in static environments.

8.2 Future Work

Similarly to other router-assisted reliable multicast protocols, LMS uses the enhanced IP multicast
router functionality to introduce a recovery hierarchy. This hierarchy is very effective in achieving
localized recovery and, thus, reducing recovery exposure. However, it may not fare well in
highly dynamic environments where reliable multicast group members may either leave or crash
unexpectedly. In such cases, the replier state maintained by the IP multicast routers becomes stale
and must be updated. Such updates may prolong and even inhibit packet loss recovery.

245

CESRM's caching-based expedited recovery scheme establishes a similar hierarchy of repliers. This
hierarchy is dictated by the packet loss locality exhibited by the losses suffered during the IP
multicast transmission. Moreover, it evolves to match the changing reliable multicast group
membership resulting from member leaves and crashes. Although this adaptation may not be
immediate, the recovery of packets is undisturbed because when expedited recoveries fail, losses are
recovered by SRM's recovery scheme, which is robust to failures and membership changes.

As future work, we propose designing a router-assisted CESRM protocol in which expedited
recoveries are carried out locally. This can be achieved by augmenting IP multicast routers to:
i) annotate reply packets with their turning point routers, i.e., the routers at which reply packets
are received from and forwarded on downstream links with respect to the source of the original
packet, and ii) allow the subcasting of expedited reply packets downstream. This functionality is
nearly identical to that of LMS [32,34], with the exception that LMS requires routers to maintain
replier state.

CESRM may exploit this extra router functionality as follows. Recovery tuples may be augmented
to include the turning point router involved in the recoveries of the respective packets. By
annotating each expedited request with the pertinent recovery tuple, including the pertinent turning
point router, the resulting expedited reply may be unicast to the particular turning point router,
which may subsequently subcast the reply downstream. Since IP multicast routers need not
maintain replier state, such a scheme offers a lighter-weight local recovery scheme than that of
LMS. Moreover, by employing SRM as a fall-back recovery scheme, this scheme is also robust to
highly dynamic and faulty environments.

246

References

[1] BOLOT, J.-C., CREPIN, H., AND VEGA GARCIA, A. Analysis of Audio Packet Loss in the
Internet. In Proc. 5th International Workshop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV'95) (Durham, NH, Apr. 1995), vol. 1018 of Lecture Notes
in Computer Science, pp. 154-165.

[2] C&CERES, R., DUFFIELD, N. G., HOROWITZ, J., AND TOWSLEY, D. F. Multicast-Based
Inference of Network-Internal Loss Characteristics. IEEE Transactions on Information Theory
45, 7 (Nov. 1999), 2462-2480.

[3] CACERES, R., DUFFIELD, N. G., MOON, S. B., AND TOWSLEY, D. Inference of
Internal Loss Rates in the MBone. In Proc. Global Telecommunications Conference
(IEEE/GLOBECOM'99), Global Internet: Application and Technology (Rio de Janeiro, Brazil,
Dec. 1999), vol. 3, pp. 1853-1858.

[4] CAIN, B., DEERING, S., FENNER, B., KOUVELAS, I., AND THYAGARAJAN, A. Internet
Group Management Protocol, Version 3. Internet-Draft, Internet Engineering Task Force,
Nov. 2000. Proposed Update to RFC 2236.

[5] CARLE, G., AND BIERSACK, E. W. Survey on Error Recovery for IP-based Audio-Visual
Multicast Applications. IEEE Network Magazine 11, 6 (Nov./Dec. 1997), 24-36.

[6] CASNER, S. Frequently Asked Questions (FAQ) on the Multicast Backbone
(MBONE). Technical Memo, Information Sciences Institute (ISI), Dec. 1994.
URL=ftp://ftp.isi.edu/mbone/faq.txt.

[7] CHAYAT, R., AND ROM, R. Applying Deterministic Feedback Suppression to Reliable Multi-
casting Protocols. In Proc. 10th IEEE International Conference on Computer Communications
and Networks (IEEE/ICCCN'01) (Scottsdale, AZ, Oct. 2001), pp. 81-88.

[8] DEERING, S. E. Host Extensions for IP Multicasting. Request for Comments (RFC 1112),
Internet Engineering Task Force, Aug. 1989. Obsoletes RFCs 988 and 1054.

[9] DEERING, S. E., AND CHERITON, D. R. Multicast Routing in Datagram Internetworks and
Extended LANs. ACM Transactions on Computer Systems (TOCS) 8, 2 (May 1990), 85-110.

[10] DIoT, C., DABBOUS, W., AND CROWCROFT, J. Multipoint Communication: a Survey of
Protocols, Functions, and Mechanisms. IEEE Journal on Selected Areas in Communications
15, 3 (Apr. 1997), 277-290.

[11] FENNER, W. C. Internet Group Management Protocol, Version 2. Request for Comments
(RFC 2236), Internet Engineering Task Force, Nov. 1997. Updates RFC 1112.

247

[12] FLOYD, S., JACOBSON, V., MCCANNE, S., Liu, C.-G., AND ZHANG, L. A Reliable Multicast

Framework For Light-Weight Sessions And Application Level Framing. In Proc. Conference

on Applications, Technologies, Architectures, and Protocols for Computer Communication

(ACM/SIGCOMM'95) (Aug. 1995), ACM Press, New York, pp. 342-356.

[13] FLOYD, S., JACOBSON, V., MCCANNE, S., Liu, C.-G., AND ZHANG, L. A Reliable

Multicast Framework For Light-Weight Sessions And Application Level Framing. IEEE/ACM

Transactions on Networking 5, 6 (Dec. 1997), 784-803.

[14] GARLAND, S. J., LYNCH, N. A., AND VAZIRI, M. IOA: A Language For Specifying,
Programming, and Validating Distributed Systems. Draft of User and Reference Manual,

Lab. for Computer Science, MIT, 1997.

[15] HANDLEY, M. An Examination of MBone Performance. Research Report RR-97-450,

University of Southern California (USC)/Information Sciences Institute (ISI), Jan. 1997.

[16] HOLBROOK, H. W., SINGHAL, S. K., AND CHERITON, D. R. Log-Based Receiver-Reliable

Multicast For Distributed Interactive Simulation. In Proc. Conference on Applications, Tech-

nologies, Architectures, and Protocols for Computer Communication, ACM Special Inter-

est Group on Data Communication (ACM/SIGCOMM'95) (1995), ACM Press, New York,
pp. 328-341.

[17] LEVINE, B. N., AND GARCIA-LUNA-ACEVES, J. J. A Comparison of Known Classes

of Reliable Multicast Protocols. In Proc. 4th IEEE International Conference on Network

Protocols (IEEE/ICNP'96) (Columbus, Ohio, Oct./Nov. 1996), pp. 112-121.

[18] LEVINE, B. N., AND GARCIA-LUNA-ACEVES, J. J. A Comparison of Reliable Multicast

Protocols. A CM Multimedia Systems Journal 6, 5 (Aug. 1998), 334-348.

[19] Li, D., AND CHERITON, D. R. OTERS (On-Tree Efficient Recovery using Subcasting): A

Reliable Multicast Protocol. In Proc. 6th IEEE International Conference on Network Protocols

(IEEE/ICNP'98) (Austin, Texas, 1998), pp. 237-245.

[20] LIN, J. C., AND PAUL, S. RMTP: Reliable Multicast Transport Protocol. In Proc. 15th Annual

Joint Conference of the IEEE Computer and Communications Societies, Networking the Next

Generation (IEEE/INFOCOM'96) (San Francisco, CA, Mar. 1996), vol. 3, pp. 1414-1424.

[21] Liu, C.-G., ESTRIN, D., SHENKER, S., AND ZHANG, L. Local Error Recovery in SRM: Com-

parison of Two Approaches. Technical Report TR97-648, University of Southern California,
1997.

[22] Liu, C.-G., ESTRIN, D., SHENKER, S., AND ZHANG, L. Local Error Recovery in SRM:

Comparison of Two Approaches. IEEE/ACM Transactions on Networking 6, 6 (Dec. 1998),
686-692.

[23] LIVADAS, C., AND KEIDAR, I. The Case for Exploiting Packet Loss Locality in Multicast Loss

Recovery. Technical Report MIT/LCS/TR-867, Lab. for Computer Science, MIT, Cambridge,
MA, Oct. 2002.

[24] LIVADAS, C., KEIDAR, I., AND LYNCH, N. A. Designing a Caching-Based Reliable

Multicast Protocol. In Proc. International Conference on Dependable Systems and Networks

(IEEE/DSN'01), Fast Abstracts Supplement (Gdteborg, Sweden, July 2001), IEEE Computer

Society, pp. B44-B45.

248

[25] LYNCH, N. A. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Francisco,
CA, 1996.

[26] LYNCH, N. A., AND VAANDRAGER, F. Forward and Backward Simulations - Part II: Timing-
Based Systems. Technical Memo MIT/LCS/TM-487.c, Lab. for Computer Science, MIT,
Cambridge, MA, Apr. 1995.

[27] LYNCH, N. A., AND VAANDRAGER, F. Forward and Backward Simulations - Part II: Timing-
Based Systems. Information and Computation 128, 1 (July 1996), 1-25. Preliminary version
appeared as Ref. 26.

[28] MARKOPOULOU, A., AND TOBAGI, F. A. Hierarchical Reliable Multicast: Performance
Analysis and Placement of Proxies. In Proc. 2nd International Workshop on Networked Group
Communication (NGC'2000) (Stanford University, Palo Alto, CA, Nov. 2000).

[29] NONNENMACHER, J., AND BIERSACK, E. W. Performance Modelling of Reliable Multicast
Transmission. In Proc. 16th Annual Joint Conference of the IEEE Computer and Communi-
cations Societies (IEEE/INFOCOM'97) (Kobe, Japan, Apr. 1997), vol. 2, pp. 471-479.

[30] NONNENMACHER, J., BIERSACK, E. W., AND TOWSLEY, D. Parity-Based Loss Recovery for
Reliable Multicast Transmission. IEEE/A CM Transactions on Networking 6, 4 (Aug. 1998),
349-361.

[31] OBRACZKA, K. Multicast Transport Protocols: A Survey and Taxonomy. IEEE Communica-
tions Magazine 36, 1 (Jan. 1998), 94-102.

[32] PAPADOPOULOS, C. Error Control for Continuous Media and Large Scale Multicast Applica-
tions. Doctor of Philosophy Thesis, Washington University in St. Louis, St. Louis, Missouri,
1999.

[33] PAPADOPOULOS, C., AND LALIOTIS, E. Incremental Deployment of a Router-Assisted Reliable
Multicast Scheme. In Proc. 2nd International Workshop on Networked Group Communication
(NGC'2000) (Stanford University, Palo Alto, CA, Nov. 2000).

[34] PAPADOPOULOS, C., PARULKAR, G., AND VARGHESE, G. An Error Control Scheme For
Large-Scale Multicast Applications. In Proc. 17th Annual Joint Conference of the IEEE
Computer and Communications Societies (IEEE/INFOCOM'98) (San Francisco, CA, Mar.
1998), vol. 3, pp. 1188-1196.

[35] PAUL, S., SABNANI, K. K., LIN, J. C., AND BHATTACHARYYA, S. Reliable Multicast
Transport Protocol (RMTP). IEEE Journal on Selected Areas in Communications 15, 3 (Apr.
1997), 407-421.

[36] PERKINS, C., HODSON, 0., AND HARDMAN, V. A Survey of Packet-Loss Recovery Techniques
for Streaming Audio. IEEE Network Magazine 12, 5 (Sept./Oct. 1998), 40-48.

[37] SEMERIA, C., AND MAUFER, T. Introduction to IP Multicast Routing. Internet-Draft (In-
formational), Internet Engineering Task Force, July 1997. Also, Technical Memo, Networking
Solutions Center, 3Com Corporation.

[38] SHARMA, P., ESTRIN, D., FLOYD, S., AND ZHANG, L. Scalable Session Messages in SRM.
Technical Report TR98-670, University of Southern California, Aug. 1997.

[39] SHARMA, P., ESTRIN, D., FLOYD, S., AND ZHANG, L. Scalable Session Messages in
SRM using Self-Configuration. Technical Report TR98-670 (Updated Version), University
of Southern California, Feb. 1998.

249

[40] TOWSLEY, D., KUROSE, J., AND PINGALI, S. A Comparison of Sender-Initiated and Receiver-

Initiated Reliable Mutlicast Protocols. IEEE Journal on Selected Areas in Communications

15, 3 (Apr. 1997), 398-406.

[41] YAJNIK, M., KUROSE, J., AND TOWSLEY, D. Packet Loss Correlation in the MBone

Multicast Network. In Proc. Global Telocommunications Conference (IEEE/GLOBECOM'96),
Communications: The Key to Global Prosperity (London, England, Nov. 1996), pp. 94-99.

[42] YAJNIK, M., MOON, S. B., KUROSE, J., AND TOWSLEY, D. Measurement and Modeling

of the Temporal Dependence in Packet Loss. In Proc. 18th Annual Joint Conference of the

IEEE Computer and Communications Societies (IEEE/INFOCOM'99) (New York, NY, Mar.
1999), vol. 1, pp. 345-352.

250

