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Abstract—Discrete event simulations for futuristic unmanned 

vehicle (UV) systems enable a cost and time effective 
methodology for evaluating various autonomy and human-
automation design parameters. Operator mental workload is an 
important factor to consider in such models. We present that the 
effects of operator workload on system performance can be 
modeled in such a simulation environment through a quantitative 
relation between operator attention and utilization, i.e., operator 
busy time used as a surrogate real-time workload measure. In 
order to validate our model, a heterogeneous UV simulation 
experiment was conducted with 74 participants. Performance-
based measures of attention switching delays were incorporated 
in the discrete event simulation model via UV wait times due to 
operator attention inefficiencies (WTAI). Experimental results 
showed that WTAI is significantly associated with operator 
utilization (UT), such that high UT levels correspond to higher 
wait times. The inclusion of this empirical UT-WTAI relation in 
the discrete event simulation model of multiple UV supervisory 
control resulted in more accurate replications of data, as well as 
more accurate predictions for alternative UV team structures. 
These results have implications for the design of future human-
UV systems, as well as more general multiple task supervisory 
control models. 
 

Index Terms—Attention allocation, operator utilization, 
queuing theory, simulation, unmanned vehicles.  

 

I. INTRODUCTION 
UPERVISORY control refers to intermittent operator 
interaction with a computer that closes an autonomous 

control loop [1]. With increased autonomy of unmanned 
vehicles (UVs), a human operator’s role is shifting from 
controlling one vehicle to supervising multiple vehicles [2]. In 
the future, it is likely that a team of UVs will be composed of 
vehicles that vary in their capabilities or their assigned tasks, 
resulting in a “heterogeneous system” [3, 4]. Although the 
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appropriate size of a team is mission dependent, several 
experiments have all reached the same conclusion: There 
exists some upper bound to the number of vehicles that can be 
supervised by a single operator [5, 6]. To determine the most 
appropriate UV system architectures, it is critical to 
understand the impact of varying system design variables, 
such as level of vehicle autonomy, on the efficiency of human 
supervisory control of multiple UVs.  

Human supervisory control is a complex system 
phenomenon with high levels of uncertainty, time-pressure, 
and a dynamically-changing environment. Discrete event 
simulation (DES), which models a system as a chronological 
sequence of events representing changes in system states [7], 
is particularly suited to model supervisory control systems due 
to their time-critical, event-driven nature. Such simulation 
models for futuristic systems allow for cost and time effective 
evaluation of different design parameters without conducting 
extensive experimentation, which is particularly critical in 
early conceptual design phases. While other modeling 
techniques, including agent-based models [8, 9], could 
potentially be used to capture human-UV interactions, a DES 
model was chosen as a first step, due to its ability to capture 
the temporal aspects of human-UV interactions. These 
temporal aspects determine important system limitations, and 
are defined below. 

Using DES-based approaches, a few studies have attempted 
to computationally predict operator capacity when controlling 
multiple UVs [10-12], which generally focused on the use of 
neglect and interaction times to represent event and service 
rate distributions. Neglect time (NT) corresponds to the time 
that a robot or UV can be ignored before its performance 
drops below a predetermined threshold. Interaction time (IT) 
is defined as the amount of time the operator has to spend to 
bring a robot back to its peak performance. While these 
previous studies focused on clearly observable state 
transitions, the inherent delays that humans introduce in 
supervisory control systems were not considered. Vehicle wait 
times due to attention inefficiencies (WTAI) will occur as the 
operators fail to notice that the system needs their attention, 
and have been shown to significantly affect system 
performance [13]. 

This paper uses experimental data to demonstrate the need 
to incorporate human attention inefficiencies in models of 
human-UV systems, as well as a methodology to do so. As a 
first step, the effects of mental workload on UV operator 
attention inefficiencies are investigated. The relation between 
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operator utilization (UT), a surrogate measure of workload, 
and a performance-based measure of inattention is 
incorporated into a DES model of multiple UV supervisory 
control through WTAI. Without the inclusion of the UT-
WTAI relation, the DES model fails to provide accurate 
replication and prediction of the observed data.  

 

II. BACKGROUND 
Discrete event simulations are based on queuing theory, 

which model the human as a single server serially attending 
the arrival of events [14-16]. These models can also be 
extended to represent operator parallel processing through the 
introduction of multiple servers [17, 18]. In addition to the 
application of discrete event simulations to operator control of 
multiple robots as discussed previously, they have also been 
successfully applied to other supervisory control domains such 
as air traffic control [19]. However, as previously mentioned, 
the existing models of multiple robot control did not explicitly 
include operator cognitive inefficiencies, either as an input or 
an output.  

A primary limiting factor in single operator-multiple UV 
systems is operator workload. Indeed, this limitation on the 
control of multiple UVs extends to any supervisory control 
task requiring divided attention across multiple tasks such as 
air traffic control and even supervisors multi-tasking in a 
command center like an air operation center.  

Mental workload results from the demands a task imposes 
on the operator’s limited resources; it is fundamentally 
determined by the relationship between resource supply and 
task demand [14]. While there are a number of different ways 
to measure workload [20, 21], given the temporal nature of 
supervisory control systems, particularly those in multi-UV 
control, we use utilization as a proxy for measuring mental 
workload. Utilization is a term found in systems engineering 
settings and refers to the “percent busy time” of an operator, 
i.e., given a time period, what percentage of time that person 
was busy. In supervisory control settings, this is generally 
meant as the time an operator is directed by external events to 
complete a task (e.g., replanning the path of a UV because of 
an emergent target). Compared to more common measures of 
workload (e.g., pupil dilation, NASA TLX), utilization 
provides the means to assess workload in real-time, non-
intrusively. What is not included in this measurement is the 
time spent monitoring the system, i.e., just watching the 
displays and/or waiting for something to happen. While 
arguably this is not a perfect measure of mental workload, 
another strength of such a measure is its ratio scale, which 
allows is to be used in quantitative models.  

The concept of utilization as a mental workload measure 
has been used in numerous studies examining supervisory 
controller performance [19, 22, 23]. These studies generally 
support that when tasked beyond 70% utilization, operators’ 
performances decline. In terms of operator attention, high 
levels of arousal have been shown to induce perceptual 
narrowing [24].  

While not well established empirically, there is some reason 

to anticipate a decrease in performance with low levels as well 
as high levels of utilization. Previous research suggests an 
inverted-U shape between arousal/workload level and 
performance [25-27], indicating a decrease in performance 
with both low and high levels of arousal, which can occur as a 
function of utilization. As for attention, it has been established 
that vigilance decrement occurs when low arousal is 
experienced for extended periods of time [28]. 

Given the previous research showing that supervisory 
control performance drops when utilization is greater than 
70%, and that there might be performance declines at high and 
low levels of utilization, we investigated whether the 
relationship between utilization and performance could be 
used to not just describe observed human behavior, but also be 
used to predict it. However, rather than connecting workload 
directly to performance, we captured effects of workload 
through delays introduced to the system by humans, which is 
more appropriate for incorporation to a DES model of human-
UV systems.   

Previous queuing theory based human information 
processing models have also used server utilization as a way 
to model workload [29, 30]. Although these models have 
successfully predicted workload and performance, the level of 
information processing detail captured was at the perceptual 
level and the human was represented by multiple servers.  
Supervisory control of complex systems requires operators to 
handle high-level tasking through reasoning and judgment, 
and these tasks are better fit to model at a higher (more 
abstract/cognitive) level as will be discussed later. Assessing 
the relation between workload and performance provides a 
parsimonious way to incorporate workload effects in high 
level models of human-system interaction when detailed level 
information processing models are not available. 

In order to address the general explicit lack of accounting 
for human cognitive inefficiencies in models of human-UV 
interactions, this paper presents a queuing theory-based 
discrete event simulation model of a single operator 
supervising multiple heterogeneous UVs that includes a 
utilization-attention inefficiency component.  

 

III. DISCRETE EVENT SIMULATION MODEL OF UV 
SUPERVISORY CONTROL 

The proposed model utilizes queuing theory to build a 
discrete event simulation model by capitalizing on the event-
driven nature of human-supervisory control (Fig. 1). This 
section presents an overview of the DES model and the details 
relevant to the focus of this paper. Further details can be found 
in [31].  

The human operator, responsible for multiple UV 
supervision, is modeled as a server in a queuing system with 
discrete events representing both endogenous and exogenous 
situations an operator must address. Endogenous events, 
which are vehicle-generated or operator induced, are events 
created internally within the supervisory control system, such 
as when an operator elects to re-plan an existing UV path in 
order to reach a goal in a shorter time. It is important to note 
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that this interaction may not be required by the system and can 
therefore be operator-induced. Events which result from 
unexpected external environmental conditions that create the 
need for operator interaction are defined as exogenous events, 
such as emergent threat areas which require re-planning 
vehicle trajectories. 
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Fig 1. A high level representation of the discrete event simulation model  

 
The design variables that serve as inputs to the model in 

Fig. 1 are composed of variables related to the vehicle team 
(team structure, level of autonomy, and vehicle collaboration), 
the human operator (interaction times, operator attention 
allocation strategies, and operator workload/attention 
inefficiency), and a model of environment unpredictability. 
These are discussed below in further detail. 

A. Vehicle Team Input Variables 
Team structure represents the number and type of vehicles 

included in the system. By representing each vehicle through a 
distinct input stream, the model is able to capture 
heterogeneous team composition since it includes different 
arrival processes for events associated with different vehicles.  
This is similar to the previously-discussed concept of neglect 
time except that in this case, the neglect time is for a specific 
event and not for the whole vehicle (i.e., other events 
associated with the same vehicle can still be generated while a 
specific event type is being neglected). Because NTs represent 
the time a vehicle can operate without human intervention, 
they effectively represent degrees of autonomy, i.e., the longer 
the NTs, the more autonomous the vehicle. Lastly, the model 
captures the effect of vehicle collaboration by taking into 
account the effect of servicing a particular event belonging to 
one vehicle on the arrival process of another event belonging 
to another vehicle. The types of vehicle autonomy and vehicle 
collaboration are influenced by the team structure, i.e., the 
different vehicle types. 
B. Human Operator Input Variables 

Our DES model represents the human server at a high level, 
capturing human performance holistically and stochastically 
through event service times (measured as the time from when 
operators engage a task to when they finish it), attention 
allocation strategies (i.e., strategies in choosing what task to 
service next), and attention inefficiencies.  

The length of time it takes the operator to deal with an 
event, also known as interaction time, is captured through a 

distribution of event service times. Interaction times occur for 
a single vehicle task, so in order to model the effect of an 
operator controlling multiple vehicles, the model should 
consider how and when operators elect to attend to the 
vehicles, also known as attention allocation [32].  

The model in Fig. 1 captures two attention allocation 
strategies that can impact the effectiveness of human-UV 
interaction. The first strategy is the amount of operator-
initiated re-planning. Since this model supports endogenous 
events that are both vehicle-generated and operator-induced, 
the rate at which operator-induced events arrive to the system 
depends on the operator’s desire to interact with the vehicles 
beyond unavoidable vehicle-generated events.  

Second, the queuing policy that is used by the operator, i.e., 
which task waiting in a queue the operator elects to service, is 
also represented. Examples include the first-in-first-out (FIFO) 
queuing scheme as well as the highest attribute first (HAF) 
strategy [33]. The HAF strategy is similar to a preemptive 
priority scheme in that high priority events are serviced first, 
except that there is no preemption. Therefore, if an event is 
generated with a priority higher than any of the events already 
in the system, it will be moved to the front of the queue but 
will not preempt a lower priority vehicle that is already being 
serviced. 

The need for the last human operator input, the workload-
attention inefficiency component, is the hypothesis of this 
paper and will be discussed in more detail in a subsequent 
section.  

C. Arrival Events 
As discussed previously, there are two categories of arrival 

events, endogenous and exogenous. Endogenous events are 
those created either by a vehicle (e.g., a UV requests 
permission from an operator to move to the next target), or by 
a human (a human initiating a new route without prompting by 
the system). Since an endogenous event associated with a 
specific vehicle generally requires attention before an event of 
the same type can be generated, the arrival process is one of 
correlated arrivals. For example, if an operator elects to 
initiate a path re-plan for vehicle A, he or she must finish 
servicing that event before electing to re-plan vehicle A’s path 
again. In order to model this phenomenon, the model uses a 
closed queuing network paradigm such that each endogenous 
event type in the system (where each endogenous event type is 
associated with a specific vehicle) has a population of one 
[34]. The arrival process can therefore be described by a 
probabilistic distribution over a random variable, which 
represents the time between the completion of a service for an 
event associated with a specific vehicle and the next event 
being generated by that vehicle.  

Exogenous events stem from sources external to the vehicle 
(weather, enemy movements, etc.). For example, many 
emergent threats can arise simultaneously, each requiring 
operator intervention, thus creating a queue. Therefore, the 
arrival process in the case of exogenous events is generally 
one of independent arrivals. The arrival process can therefore 
be described by a probabilistic distribution over a random 
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variable which represents the inter-arrival times between 
exogenous events.  

In order to capture interaction between different event 
types, the servicing of one event type can be modeled to have 
an effect on the arrival process of another. For example, a UV 
might be modeled through two event types; a) the need for 
operator interaction whenever the operator is required to 
identify a target, and b) the need for operator interaction once 
target identification is complete and the vehicle requires a new 
assignment. In this case, event type (b) is generated only after 
event type (a) is serviced by the operator.  

By modeling the operator as a single server, this model 
assumes serial operator interaction, such that events arriving 
while the operator is busy will wait in a queue. Although, it is 
possible for humans to multi-task, the appropriateness of the 
human model depends on the level of processing detail under 
consideration. When considering supervisory control tasks for 
complex systems such as those in UV systems, humans are 
generally required to handle high level tasking that involves 
application of human judgment and reasoning. While 
operators can rapidly switch between cognitive tasks, any 
sequence of tasks requiring complex cognition will form a 
queue and consequently, wait times will build [13]. As such, 
humans will act as serial processors in that they can only solve 
a single complex task at a time [35, 36]. While the serial 
processing model has been applied to capture higher level 
tasking [19], the parallel processing has been more generally 
applied for capturing lower-level perceptual processing such 
as that involved in driving tasks [18, 37]. For example, 
Schmidt [19] has suggested a single server queuing system as 
appropriate for modeling an air traffic controller in charge of 
conflict assessment and resolution, as well as general routing 
type tasks.  

Based on the assumption of serial operator interaction, the 
service processes can be described by probabilistic 
distributions representing the interval from the time the 
operator decides to service a particular event until the operator 
is done servicing (this applies to both endogenous and 
exogenous events).  
 

IV. EXPERIMENTAL MOTIVATION FOR A DES WORKLOAD 
MODEL 

An online experiment was conducted to validate the 
previously described DES model for different vehicle team 
structures, with the ultimate goal to predict performance of 
various human-UV systems. Prior to this experiment, there 
was no workload–attention inefficiency component in the DES 
model. Moreover, the initial model validation reported in [31] 
was conducted on experimental data from sixteen participants. 
Given the relatively small sample size of the previous 
validation experiment, we wanted to ensure that any 
significant trends resulting from the current experiment had 
higher statistical power. Thus, online data collection was 
chosen as a means to increase our sample size. However, in 
order to decrease the likelihood of participant withdrawal from 
the online experiment, we kept the trials fairly short at 10 

minutes. To ensure the validity of online experimentation, a 
pilot study was conducted with 15 participants completing the 
experiment online, and an additional 15 completing it in a 
laboratory setting with an experimenter present. No significant 
differences were observed between the two groups for the 
variables of interest [38].  

As will be shown through the experimental results, the 
model without considering a workload-attention relationship 
does not adequately replicate results of the human-in-the-loop 
trials. Model inaccuracies provided the motivation to 
incorporate the human delays in the DES model.   

A. Participants 
Seventy-four participants, 6 females and 68 males between 

the ages of 18-50 completed the study. There were 36 
participants between the ages of 18 and 25, 30 participants 
between 26 and 35, and eight participants whose age was 
greater than 35. The majority of participants were students and 
some were UV researchers from industry (n=14). Participants 
were randomly assigned to the experimental conditions based 
on the order they logged in to the online server. The 
breakdown of UV researchers across different experimental 
conditions was fairly constant (n = 4, 5, 5). There was no 
monetary compensation for participation; however the best 
performer received a $200 gift certificate. 

B. Experimental Test-bed 
The Research Environment for Supervisory Control of 

Heterogeneous Unmanned Vehicles (RESCHU) simulator was 
used in the experiment, and allowed operators to control a 
team of UVs composed of unmanned air and underwater 
vehicles (UAVs and UUVs). All vehicles were engaged in 
surveillance tasks, with the ultimate mission of locating 
specific objects of interest in urban coastal and inland settings. 
While there was only a single UUV type, there were two UAV 
types, one that provided high level sensor coverage (akin to a 
Global Hawk UAV), while the other provided more low-level 
target surveillance and video gathering (similar to a Predator 
UAV). Thus, there were three different vehicle types under 
control for a single operator. Because previous research has 
shown that to allow for the simultaneous supervision and 
payload management (e.g., managing cameras for target 
identification) of multiple unmanned vehicles, navigation 
tasks for the different vehicles should be highly automated [6], 
this was a basic assumption for this simulation.    

The RESCHU interface consisted of five major sections 
(Fig. 2). The map displayed the locations of vehicles, threat 
areas, and areas of interests (AOIs) (Fig. 3a). Vehicle control 
was carried out on the map, such as changing vehicle paths, 
adding a waypoint (a destination along the path), or assigning 
an AOI to a vehicle. The main events in the mission (i.e., 
vehicles arriving to goals, or automatic assignment to new 
targets) were displayed in the message box, along with a 
timestamp (Fig. 3b). When the vehicles reached an AOI, a 
simulated video feed was displayed in the camera window. 
The participant had to visually identify a target in this 
simulated video feed. Example targets and objects of interest 
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included cars, swimming pools, helipads, etc. 
 

 
Fig 2. RESCHU interface (A: map, B: camera window, C: message box, D: 
control panel, E: timeline) 

 
The control panel provided vehicle health information, as 

well as information on the vehicle’s mission (Fig. 3c). The 
timeline displayed the estimated time of arrival to waypoints 
and AOIs. Beneath the timeline was a mission progress bar 
that showed the amount of time remaining in the total 
simulation. 

As discussed previously, three types of vehicles were used 
in this experiment: a high altitude long endurance (HALE) 
UAV, medium altitude long endurance (MALE) UAVs, and 
UUVs. Both the MALE UAVs and the UUVs traveled to areas 
of interest (red AOIs in Fig. 3a) with a pre-determined target 
that needed to be visually acquired by the operator. MALE 
UAVs could travel to any AOI (both shore and land), whereas 
UUVs could only travel to AOIs that were on the shoreline. A 
HALE UAV traveled to AOIs that did not yet have a target 
specified (grey AOIs in Fig. 3a), and carried a Synthetic 
Aperture Radar (SAR)-type sensor, which allowed for target 
specification. These newly discovered targets were later 
acquired by a MALE UAV or a UUV.  

When the vehicles completed their assigned tasking, an 
automated-path planner automatically assigned the HALE 
UAV to an AOI that needed intelligence, and the MALE 
UAVs and UUVs to AOIs with pre-determined targets. The 
automatically-assigned AOIs were not necessarily the optimal 
choice. The operator could change the assigned AOI, and 
could avoid threat areas by changing a vehicle’s goal or 
adding a waypoint to the path of the vehicle in order to go 
around the threat area.  

When a vehicle arrived to an AOI, a visual flashing alert 
indicated that the operator could engage the payload. For a 
HALE UAV, clicking the engage button resulted in the 
uncovering of the target in the AOI. For a MALE UAV or a 
UUV, engaging the payload caused the camera window to 
display the simulated live video feed (Fig. 3b). The operator 
then had to complete a search task by panning and zooming 

the camera until the specified target was located. Once the 
operator submitted the target identification, the message box 
notified the operator on the accuracy of response (used to 
simulate feedback that real operators get from their 
commanders or teammates as a consequence of their actions), 
and the vehicle was automatically re-assigned to a new AOI.  

 

 
(a) 

 
(b)             (c) 

Fig 3. A section of the map (b) Activated camera view and message box (c) 
Control panel and timeline 

 
Participants were instructed to maximize their score by 1) 

avoiding threat areas that dynamically changed, 2) completing 
as many of the search tasks correctly, 3) taking advantage of 
re-planning when possible to minimize vehicle travel times 
between AOIs, 4) ensuring a vehicle was always assigned to 
an AOI whenever possible.  

The UVs were not modeled on real UV performance data as 
this experiment simulated a futuristic system, i.e., there are no 
operational command and control systems with integrated 
heterogeneous unmanned operations. However, to create some 
realism, UUVs were modeled to move slower than UAVs, 
based on typical current platform capabilities. In the 
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experiment, the UVs required human intervention multiple 
times, creating a fast-paced scenario, and thus represented 
high workload situations. 

C. Experimental Design and Independent Variables 
The experiment was a completely randomized design with 

vehicle team heterogeneity level as a between-subject 
condition: none (n=26), medium (n=25), and high (n=23). The 
no heterogeneity condition included five MALE UAVs. The 
medium heterogeneous level had three MALE UAVs and two 
UUVs. Because the UUVs were slower than UAVs, they 
produced events less frequently. The maximum level of 
heterogeneity required managing two MALE UAVs, two 
UUVs, and one HALE UAV. HALE UAVs were restricted to 
grey AOIs, which appeared at a ratio of five-to-two, as 
compared to red AOIs, which the UUVs and MALE UAVs 
could visit without assistance from the HALE. Thus, the 
arrival rates of events for HALE UAVs were different than 
both the MALE UAVs and UUVs. Moreover, service times 
were different since the HALE UAVs required just 
milliseconds of service time (operators clicking the engage 
button). Lastly, because the UUVs were slower than UAVs 
and the HALE UAVs did not have an associated visual task, 
the no heterogeneity condition composed of five MALE 
UAVs was the highest tempo scenario, followed by the 
medium and then the high heterogeneity conditions. 

D. Procedure 
The online experiment began with an interactive tutorial 

followed by an open-ended practice session. The interactive 
tutorial had to be completed before the participants could start 
the practice session. During the interactive tutorial, the 
participants had to repeat a task until they performed it 
correctly. Thus, a major part of the training took place during 
the interactive tutorial. After participants felt comfortable with 
the task and the interface, they could end the practice session 
and start the 10 minute experimental session. Pilot participants 
were observed to spend on average 10 minutes doing the 
practice session. The website was password protected and 
participation was via invitation only. All data were recorded to 
an online database. Demographic information was collected 
via a questionnaire presented before the tutorial.  

 

V. DES REPLICATIONS WITHOUT MODELING WORKLOAD 
EFFECTS 

This section presents the results obtained from the 
experiment, followed by the analysis of the model’s ability to 
describe the observed data and predict how changes in the 
vehicle heterogeneity structure will alter variables of interest.  

The variables of interest for evaluating model predictions 
were score, average search task wait time, and operator 
utilization. Mission performance was assessed via score, 
which was calculated as the proportion of the number of 
targets correctly identified normalized by the number of all 
possible targets that could have been identified. Search task 
wait time was calculated from vehicle arrival to an AOI and 

the operator engaging the search task. Average search task 
wait time assessed system performance efficiency since it 
demonstrated the effects of operator inefficiencies via system 
delays.  Operator utilization was calculated as the proportion 
of time the operator actively interacted with the display (e.g., 
adding a way point, engaging in a visual task, etc.) during the 
course of the experiment. Utilization therefore excluded any 
monitoring time expended by operators. 

A. Observed Effects 
A preliminary analysis demonstrated significant correlations 

between the three variables of interest: utilization/score (ρ=-
.25, p=.03), utilization/search task wait times (ρ=.50, 
p<.0001), and score/search task wait times (ρ=-.58, p<.0001). 
Because these three measures are correlated, Multivariate 
Analysis of Variance (MANOVA) was performed to control 
for the inflation of Type I error. Significant findings were 
followed with univariate analysis to assess the magnitude of 
the effect that vehicle heterogeneity level had on each 
variable.  
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Fig 4. Observed data with 95% confidence intervals and model replications 
for the three dependent variables of interest: (a) search task wait times, (b) 
utilization, and (c) score. 

The MANOVA results indicated that there were significant 
effects of heterogeneity level (Wilks’ Lambda=0.4, 
F(6,138)=13.33, p<.0001). The univariate analysis suggested 
that the effect of heterogeneity level is attributable to the 
differences observed in all of the three variables of interest 
(Fig. 4). There were significant differences between different 
heterogeneity levels for utilization (F(2,71)=33.31, p<.0001), 
score (F(2,71)=8.13, p=.0007), and search task wait times 
(F(2,71)=7.75, p=.0009).  

The pair-wise comparisons (Table 1) revealed that, as 
expected due to the tempo of arriving events, utilization was 
the highest for the no heterogeneity level, followed by the 
medium and the high heterogeneity levels. UUVs, which spent 
a considerable amount of time underwater, required less 
frequent interaction with the human operator than UAVs. 
Additionally, HALE UAVs required shorter interactions than 
the MALE UAVs. Thus, as the level of heterogeneity 
increased, operators interacted less frequently with the 
vehicles due to longer neglect times and shorter interaction 
periods. This cascading effect was also seen in the wait time 
metric as the homogenous (no heterogeneity) team structure 
generated significantly longer search task wait times as 
compared to both the medium and the high heterogeneity team 
structures. Because the operators had to interact more often 
with the MALES, the no heterogeneity service queues were 
larger, thus generating longer wait times.  

 
 

TABLE I 
PAIR-WISE COMPARISONS FOR DEPENDENT MEASURES  

Comparison of 
heterogeneity levels Difference 

t-value 
(df: 71) p 95% CI 

Search task wait times    
No vs. medium 11.63 s 2.06 .04 (0.35, 22.92) 
No vs. high 22.74 s 3.93 .0002 (11.21, 34.27) 
Medium vs. high 11.11 s 1.90 .06 (-0.53, 22.75) 

Utilization    
No vs. medium 6.29 % 3.17 .002 (2.34, 10.25) 
No vs. high 16.45 % 8.12 <.0001 (12.41, 20.49) 
Medium vs. high 10.16 % 4.97 <.0001 (6.08, 14.24) 

Score    
No vs. medium -9.24 % -4.03 <.0001 (-13.8, -4.67) 
No vs. high -4.42 % -1.89 .06 (-9.08, 0.25) 
Medium vs. high 4.82 % 2.04 .045 (0.11, 9.53) 

 
 
While the wait time and utilization results were expected 

due to the decrease in interaction times and longer neglect 
times with increasing heterogeneity, the performance score 
results in Fig. 4 showed a different trend, in that the medium 
heterogeneity configuration resulted in significantly higher 
score than both the no and high heterogeneity team structures. 
These results suggest that even though increasing the variety 
of the vehicles under control with different capabilities can 
reduce operator workload and system delays if NTs are 
increased, the use of higher levels of autonomy can also lead 

to degraded performance. While this is an important finding 
that no doubt has significant implications, we leave this as an 
area of future research since the focus of this work is to 
develop a DES model that can both replicate these results and 
predict the likely outcomes of other team configurations. 

B. DES Replications without Workload Effects 
Using the participant data from the experiment, DES 

models were constructed for the three vehicle heterogeneity 
conditions. In RESCHU there were four different vehicle 
event types which required user interaction: 1) a vehicle 
arriving to an AOI and requiring the operator to undertake a 
search task (a vehicle-generated endogenous event), 2) an 
opportunity for re-planning the vehicle’s path to a closer AOI 
(an operator-induced endogenous event), 3) an idle vehicle 
that requires assignment to an AOI (a vehicle-generated 
endogenous event), and 4) the intersection of a vehicle’s path 
with a threat area (an exogenous environmental event). Table 
2 presents the fitted distribution types and their parameters for 
these four different event arrivals and services. All 
distributions were generated from experimental data using 
distribution fitting software, assessed via Kolmogorov-
Smirnov goodness-of-fit tests. Using these distributions, 
10,000 trials were conducted for each DES model.  

The probabilistic distribution parameters presented in Table 
2 constitute the complete list of parameters used in the DES 
model. When replicating the high heterogeneity team 
structure, the model used the parameter estimates obtained 
from the high heterogeneity experimental data (column 4 in 
Table 2). Similarly, the medium heterogeneity and no 
heterogeneity conditions were replicated using the parameters 
obtained from the medium (column 5) and no (column 6) 
heterogeneity data, respectively.  

As shown in Fig. 4, the model estimates for the three 
dependent variables do not fall in the 95% confidence 
intervals obtained from the observed data for both the search 
task wait times and operator utilization. Given that there were 
10,000 trials run for the DES model, the standard errors for the 
estimated model means were practically 0. Thus, when the 
estimated means fall outside the 95% confidence intervals of 
the observed means, there is a statistically significant 
difference between the two. Therefore, this model fails to 
accurately replicate the observed data, which means that the 
model would also not be able to accurately predict for other 
UV team combinations. The following sections attempt to 
improve model replication by incorporating the workload 
effects on operator attention inefficiencies. 

 

VI. UTILIZATION AND ATTENTION INEFFICIENCIES 
As discussed previously, operator utilization, our measure 

of workload, is hypothesized to affect performance, such that 
it is degraded at both high and low ends of the utilization 
curve. In particular, utilization can guide how well operators 
notice events, inducing unnecessary wait times for vehicle 
servicing, in particular through attention switching delays (i.e., 
WTAI).  
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TABLE II 

EVENT ARRIVAL AND SERVICE DISTRIBUTIONS FOR THE THREE HETEROGENEITY VEHICLE STRUCTURES  

Vehicle Event type Event generator 
Distribution (parameters)  

Exp: Exponential, Γ: Gamma, Log-N: Log-normal, N: Normal, NA: Not Applicable 
High Heterogeneity Medium Heterogeneity No Heterogeneity 

MALE UAV 

Type1 Search task arrival Γ (α: 4.61, β: 21.97) Γ (α: 4.04, β: 26.80) Γ (α: 4.08, β: 26.27) 
Modified search task  
     arrival due to re-plan 

Log-N (μ: 3.86, σ: 0.54) Γ (α: 3.21, β: 19.67) Γ (α: 2.80, β: 18.65) 

Search task service Log-N (μ: 3.14, σ: 0.59) Log-N (μ: 2.96, σ: 0.64) Log-N (μ: 2.94, σ: 0.63) 
Type2 Re-plan ratio Bernoulli (p: .58) Bernoulli (p: .51) Bernoulli (p: 0.48) 

Re-plan service N (μ: 3.19, σ: 7.32) Exp (λ: 2.52) Exp (λ: 3.2) 
Type3 Idle ratio Bernoulli (p: .1) Bernoulli (p: 0) Bernoulli (p: 0) 

Idle duration Exp (λ: 34.88) NA NA 
Idle service N (μ: 3.19, σ: 7.32) NA NA 

Type4 Threat area arrival Exp (λ: 105.49) Exp (λ: 95.15) Exp (λ: 72.9) 
Threat area service Log-N (μ: 0.75, σ: 0.56) Γ (α: 1.64, β: 1.49) Γ (α: 0.58, β: 0.56) 

UUV 

Type1 Search task arrival Γ (α: 2.89, β: 73.51) N (μ: 174.07, σ: 102.33) 
 

Modified search task  
      arrival due to re-plan 

Log-N (μ: 4.73, σ: 0.58) Log-N (μ: 4.61, σ: 0.37)  

Search task service Log-N (μ: 2.95, σ: 0.69) Log-N (μ: 2.78, σ: 0.66)  
Type2 Re-plan ratio Bernoulli (p: 1) Bernoulli (p: 1)  

Re-plan service N (μ: 3.19, σ: 7.32) Exp (λ: 2.52)  
Type3 Idle ratio Bernoulli (p: .69) Bernoulli (p: .42)  

Idle duration Exp (λ: 35.91) Exp (λ: 59.1)  
Idle service N (μ: 3.19, σ: 7.32) Exp (λ: 2.52)  

Type4 Threat area arrival Exp (λ: 182.8) Exp (λ: 168.63)  
Threat area service Log-N (μ: 0.75, σ: 0.56) Γ (α: 1.64, β: 1.49)  

HALE UAV 

Type1 Search task arrival N (μ: 154.38, σ: 56.05) 
  

Modified search task  
      arrival due to re-plan 

N (μ: 94.42, σ: 39.57)   

Search task service N (μ: 0.1, σ: 0.1)   
Type2 Re-plan ratio Bernoulli (p: .38)   

Re-plan service N (μ: 3.19, σ: 7.32)   
Type4 Threat area arrival Exp (λ: 151)   

Threat area service Log-N (μ: 0.75, σ: 0.56)   

 

In the experiment, WTAI was measured as the time from an 
emergent threat area intersection with a vehicle’s path to the 
time when the participant responded to this intersection. The 
response to emergent threat areas was chosen as the measure 
of WTAI since avoiding threat areas was the highest priority 
task for the participants, and it required decisive and 
identifiable actions. 

The experimental data revealed that the overall average 
post-hoc utilization values for the different vehicle 
heterogeneity levels ranged between 40 and 80%. However, 
this static post-hoc calculation does not reflect the dynamic 
nature of utilization, so four utilization values were calculated 
for 2.5 minutes time windows for the 10 minute experiment. 
The average WTAI for different values of UT across the four 
time intervals are presented in Fig. 5a. Due to missing data, 
the number and spread of utilization bins for each condition 
differed. In the case of the no heterogeneity condition, only 
four bins had enough samples, all at higher utilization values 
due to the high operational tempo. Fig. 5b demonstrates the 
associated performance scores for these same utilization bins. 

In order to determine if significant differences existed in 
WTAI across 10% utilization bins for the three different 

heterogeneity conditions, a repeated measures Analysis of 
Variance (ANOVA) was conducted. A logarithmic 
transformation was performed on WTAI to meet statistical 
modeling assumptions, that is, normality and homogeneity of 
variances. Results revealed that there were significant 
differences between different utilization intervals for the 
medium (F(5,119)=2.43, p=.04) and high heterogeneity 
conditions (F(5,121)=8.11, p<.0001). Differences in WTAI 
for the low heterogeneity condition was only marginally 
significant (F(3,110)=2.54, p=.06). 

In the no heterogeneity case, pair-wise comparisons showed 
that 60-70% utilization resulted in shorter WTAI than both the 
80-90% (p=.03) and 70-80% utilization bins (p=.02). In the 
medium heterogeneity case, the 80-90% utilization bin 
resulted in longer WTAI than for the 60-70% bin (p=.03), 50-
60% bin (p=.008), and 40-50% bin (p=.04). In addition, the 
30-40% utilization bin also resulted in longer WTAI than the 
60-70% bin (p=.047) and the 50-60% bin (p=.02). Finally, in 
the high heterogeneity case, 80-90% utilization bin resulted in 
longest WTAI when compared to all other utilization values 
(70-80%: p=.04; 60-70%: p=.001; 50-60%: p<.0001; 40-50%: 
p<.0001; 30-40%: p<.0001). However, the 30-40% utilization 
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resulted in significantly shorter WTAI when compared to 60-
70% (p=.002), and 70-80% utilization (p=.005). 
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Fig 5. (a) Experimental results for UT/WTAI relation (with standard error 
bars) (b) Experimental results for score vs. UT (with standard error bars). 

 
These results demonstrate that WTAI is longer at higher 

utilization levels than at medium utilization levels, consistent 
with our initial hypothesis. However, the medium and high 
heterogeneity conditions contradict in terms of how utilization 
is related to WTAI for low utilization levels. While the 
medium condition is in agreement with the initial hypothesis 
that lower utilization values have higher WTAI than medium 
utilization values, the high heterogeneity case resulted in the 
reverse trend. As most of the data points for all three 
conditions fell towards higher utilization values and the 10 
minute experiment did not require vigilance to be maintained 
for a long period of time, the functional form of WTAI at 
lower utilization values is left for future work. Moreover, at 
high utilization values, WTAI appears to be much higher for 
the high heterogeneity vehicle structure. This suggests that 
high operator utilization resulting from controlling multiple 
vehicles with different capabilities can be especially 
detrimental to WTAI, and thus overall mission performance. 

In order to assess if the UT/WTAI relation was consistent 
across the four different time windows, another repeated 
measures ANOVA was conducted using the experimental data 

from all three vehicle heterogeneity levels. Vehicle 
heterogeneity could not be included as a factor in the model 
due to the large number of missing design cell combinations, 
and the small number of observations in some of the design 
cells. A logarithmic transformation was performed on WTAI 
to stabilize variance. The time window (p=.26) and the time 
window–UT interaction were not significant (p=.71), 
suggesting that UT/WTAI relation can be considered as fairly 
consistent across the different time windows. 

The distribution of the performance scores (Fig. 5b) 
suggests that over or under utilization caused overall mission 
performance to degrade. A mixed linear regression model 
demonstrated that utilization was significantly associated with 
score (F(5,126)=4.2, p=.001), given a backward selection 
model, controlling for vehicle heterogeneity level 
(F(2,71)=8.37, p=.0005), time window (F(3,208)=24.30, 
p<.0001), and vehicle heterogeneity level-time window 
interaction (F(6,208)=2.08, p=.06).  

Pair-wise comparisons for Fig. 5b revealed that 60-70% 
utilization corresponded to significantly higher scores than 
most other utilization values (30-40%: p=.02, 50-60%: p=.02, 
70-80%: p=.02, 80-90%: p<.0001). In addition, 80-90% 
utilization resulted in lower scores than both 70-80% (p=.03) 
and 40-50%, p=.04) utilization. Previous studies have also 
shown that when the operators work beyond 70% utilization, 
performance degrades significantly [19, 22], so these results 
also demonstrate that there is a threshold for performance in 
terms of operator utilization.   

 

VII. DES REPLICATIONS WITH MODELING WORKLOAD 
EFFECTS 

The experimental data previously described was used to 
incorporate the effects of workload in the DES model. This 
revision of the DES model included modification of the arrival 
of events (both exogenous and endogenous) so that events 
arrive to the system once they are noticed by the operator. 
Thus, an operator’s inattention efficiency due to workload was 
modeled stochastically by introducing vehicle wait times as a 
function of utilization. Whenever there was an event arrival, 
the utilization for the previous 2.5 minute time window was 
calculated, which in turn was used to identify the appropriate 
time penalty from the UT/WTAI relation as presented in Fig. 
5a.  

As shown in Fig. 4, the revised DES model estimates for 
the three dependent variables (i.e., search task wait times, 
utilization, and score) fall in the 95% confidence intervals 
obtained from the observed data. Therefore, the revised DES 
model, which accounts for WTAI, more accurately estimates 
the observed data for all vehicle heterogeneity levels, 
especially when compared to the results without including this 
relationship. This suggests that WTAI can be inserted into a 
DES model as a function of operator utilization, which can be 
fed back through the model, providing a better estimate of the 
operator’s influence on the system. 
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VIII. DES PREDICTIONS WITH MODELING WORKLOAD 
EFFECTS 

This section presents the effects of WTAI on the model’s 
predictive power, that is, the model’s ability to predict the 
effects of changes in the vehicle heterogeneity structure. In 
order to assess predictive power, the DES model was 
constructed using the experimental data for the medium 
heterogeneity condition in order to predict for the no and high 
heterogeneity levels. Therefore, model distributions (e.g., 
service times and UT/WTAI relation) were populated based 
on this experimental data subset only. The medium 
heterogeneity condition was chosen to build the model 
because we wanted to assess model’s predictive capabilities 
for both increasing and decreasing heterogeneity. 

 
 

47.9

25.2

34.2

16.8

41.7

26.6

0

10

20

30

40

50

60

70

No High

S
ea

rc
h 

ta
sk

 w
ai

t t
im

es
 (

se
c)

Observed data
Model without WTAI
Model with WTAI

 

70.2

53.7

73.7

55.1

69.7

50.4

45

50

55

60

65

70

75

80

No High

Ut
ili

za
tio

n 
(%

)

       

 

23.6

28.024.4

36.7

23.2

33.8

10

15

20

25

30

35

40

No High

Sc
or

e 
(%

)

Vehicle heterogeneity level
 

Fig 6. PREDICTION: Observed data with 95% confidence intervals and 
model predictions for the three dependent variables of interest (a) search task 
wait times, (b) utilization, and (c) score. 

 
In going from the medium to the no heterogeneity team, the 

change required replacement of two UUVs by two MALE 
UAVs. Thus in the DES, the appropriate arrival and service 

processes were substituted. The parameter estimates for 
MALE UAVs from column 5 in Table 2 were used to predict 
for the no heterogeneity vehicle team structure. 

In going from the medium heterogeneity team to the high 
heterogeneity team, one of the MALE UAVs was replaced by 
a HALE UAV. The parameter estimates for MALE UAVs and 
UUVs from column 5 in Table 2 were used when predicting 
for the high heterogeneity vehicle team structure, in particular 
when modeling MALE UAVs and UUVs. However, simple 
arrival distribution substitution was not possible for HALE 
UAVs because there were no HALE UAVs in the medium 
heterogeneity team and therefore the arrival processes of 
vehicle-generated events could not be derived for this type of 
vehicle. A Monte Carlo simulation was used to derive the 
missing data. More specifically, Monte Carlo simulations were 
used to derive travel times between randomly located AOIs, 
which translated to a new vehicle-generated event arrival. The 
samples from the simulations were then used to build the 
arrival distributions for this condition. The service times for 
HALE UAVs were assumed to be negligible, since servicing 
HALE UAVs only required clicking on a button which took 
much shorter than servicing MALE UAVs or UUVs. 

As discussed previously, the degree of heterogeneity in 
team structure resulted in significant differences in operator 
utilization, search task wait times, and score. The DES model 
incorporating WTAI more accurately predicted these observed 
changes in search task wait times and the operator utilization 
than did the DES model that did not account for workload 
(Fig. 6). In the case of the performance score and utilization, 
the predictions were accurate for the homogeneous condition, 
but for the high vehicle heterogeneity, the revised model’s 
estimates were not as accurate. This inaccuracy is likely due to 
the missing data problem. However, the DES model still 
captured the trend of increasing performance score as the team 
structure changed from no heterogeneity to high.  
 

IX. CONCLUSIONS  
This paper demonstrates the incorporation of the effects of 

workload in a discrete event simulation model of human 
supervisory control, in particular, multiple unmanned vehicle 
supervisory control. As demonstrated in a human-in-the-loop 
experiment, system delays caused by operator attention 
inefficiencies (measured through attention switching delays) 
are significantly related to operator utilization, and these 
system delays can negatively impact the overall mission. High 
levels of workload (measured through utilization), and in some 
cases low workload, led to increased attention switching 
delays. Consequently system wait times increased, which 
ultimately led to poor mission performance. The DES model 
with the inclusion of these additional wait times due to 
operator attention inefficiencies provided enhanced accuracy 
for replicating experimental observations and predicting 
results for different UV team structures, as compared to the 
DES model without accounting for operator workload. 

It is important to note that this DES model does not capture 
all possible human cognitive inefficiencies, but rather an 
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aggregate effect of inefficient information processing, which 
likely has many sources that exist at a level difficult to capture 
in a DES model. There are likely many more sources of 
cognitive inefficiencies, such as operator trust [39], that are 
manifested through system delays. However, in the spirit of 
Occam’s Razor, we have focused on a single quantifiable 
relationship that provides bounded estimates of operator 
behavior.  

One issue that requires further investigation is the temporal 
and dynamic nature of utilization. All utilization metrics 
reported here were post-hoc aggregate measures, which are 
not accurate as an instantaneous measure of workload. Thus 
more research is needed to determine how utilizations can be 
measured in a real-time fashion, and moreover, what 
thresholds truly indicate poor performance, i.e., does a person 
need to work at or above 70% utilization for some period of 
time before the negative effects are seen in human and/or 
system performance? 

Another related area that requires further investigation is the 
rate of onset of high workload or utilization periods. The true 
measure of the impact of workload on performance may not 
be sustained utilization, but rather the onset rates of increasing 
utilizations. The effects of low utilization or cognitive under-
load, and the nature of sustained and variable rates of 
utilization changes also deserve further scrutiny. 

Such investigations will be crucial in both aiding 
supervisory control modeling efforts, but they are also 
potentially valuable in the field of dynamic, adaptive 
automation design. If successful performance models of over 
or under cognitive load based on utilization can be developed, 
then more reliable forms of adaptive automation can be 
developed such that automation can intervene or assist human 
operators when a transition into a negative workload-
performance region occurs. 

The methodology used in this paper presents a way to 
dynamically adjust performance scores based on operator 
workload in order to make generally effective system 
predictions via DES models. Since the discrete event 
simulation model was substantially improved with the 
consideration of the effects of workload, this research has 
implications towards developing more realistic models of 
human supervisory control and human-system performance. 
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