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Abstract: In resource allocation problems for systems with moving planning horizons and 

significant uncertainty, typical of supervisory control environments, it is critical that some 

balance of human-automation collaboration be achieved. These systems typically require 

leveraging the computational power of automation, as well as the experience and judgment of 

human decision makers. Human-automation collaboration can occur through degrees of 

collaboration from automation-centric to human-centric, and such collaboration is inherently 

distinct from previously-discussed levels of automation. In the context of a command and control 

mission planning task, we show that across a number of metrics, there is no clear dominant 

human-automation collaboration scheme for resource allocation problems using three distinct 

instantiations of human-automation collaboration. Rather, the ultimate selection for the best 

resource allocation decision support system will depend on a cost-benefit approach that could 

include mitigation of workload, conformance to intended design characteristics, as well as the 

need to maximize overall mission performance. 
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INTRODUCTION 

Resource allocation problems typically involve large data sets including multiple and 

interrelated variables, conflicting trade spaces, and often significant uncertainty for problems in 

dynamic environments. Human cognitive limitations such as limited speed in computation [13] 

and the tendency towards biased decision making in the presence of uncertainty [33] suggest that 

some form of automation-based decision support should be used to solve such complex problems, 

particularly in time-pressured environments. However, automation is inherently brittle in that 

underlying models cannot account for all potential external conditions or relevant variables which 

could result in erroneous or misleading solutions [32]. In systems with moving planning horizons 

and significant uncertainty, especially with dynamic exogenous events such as those in command 

and control environments, it is critical that some balance of human-automation collaboration be 

achieved in order to leverage the computational power of automation, as well as the experience 

and judgment of human knowledge-based reasoning [15; 23; 30]. 

While attempting to generate an automated optimal solution in a resource allocation 

problem is relatively straightforward, even if theoretically an algorithm can guarantee an optimal 

solution quickly (which may not always be the case as problem complexity grows), such optimal 

solutions assume that all variables and constraints are identified a priori. A significant problem in 

the development of optimal resource allocation algorithms in command and control settings is 

that not all variables and constraints are known in advance. Moreover, since the situation is 

highly dynamic and uncertain, those algorithmic rules codified a priori could be invalidated on a 

day-to-day or even hour-to-hour basis. Thus, such “optimal” algorithms have inherent limitations. 

Unfortunately, it is also extremely difficult for humans to solve such problems, primarily due to 

the information processing limitations discussed above. As a result, they often resort to heuristic-

based reasoning, which can be powerful [14] but can also equally lead to disastrous consequences 

[27].  However, humans are very effective in identifying patterns and applying judgment and 

knowledge-based reasoning [25] to ill-defined problems, thus filling in some of the information 
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gaps that automation cannot recognize. Moreover, the use of “satisficing” or accepting a “good 

enough” solution [31] is key in dynamic, uncertain, and high risk settings like commands and 

control with no true optimal solution. Thus, for resource allocation command and control 

problems with significant uncertainty, we propose that collaborative decision support is needed 

that allows operators the ability to leverage the strengths of fast and comprehensive computations, 

but still allows them the ability to modify and interact with system parameters and respond to 

dynamic situations in order to find a satisficing solution.  

For complex resource allocation problems, operators can be aided by intelligent 

automation in four distinct information-processing phases, which include data acquisition, data 

analysis, decision-making, and action-taking [21]. While computer-based data acquisition is a 

strength of automation (including sorting and filtering of data), especially in time-pressured 

environments, it is not clear to what degree automation-generated solutions actually “help” 

human decision makers in the cognitively demanding the data-analysis and decision-making 

phases. Automation-generated recommendations and solutions often cause mode confusion, a loss 

of situation awareness, and automation-bias [8; 20]. These issues are especially problematic when 

the automation presents sub-optimal or even erroneous solutions. 

Recognizing then that operators need to leverage automation for complex resource 

allocation problems, but that too much automation can negate positive benefit from its 

introduction, we propose that including some form of human-automation collaboration in the 

form of sensitivity analysis tools can improve both operator and system performance. For our 

purposes, “collaboration” is defined as the “mutual engagement of agents, such as a human or a 

computer, in a coordinated and synchronous effort to solve a problem based on a shared 

conception of it” (adapted from [11], [28] and [12]).  

In order to test our hypothesis that providing a decision support environment that 

provides human operators the ability to conduct sensitivity analyses in collaboration with the 

automation will improve performance, we developed a test bed for a complex, resource allocation 
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problem that included varying degrees of human-automation collaboration. In the following 

sections, we detail the resource allocation scenario, the development and testing of the 

collaboration interfaces, and the results and implications of the findings. 

BACKGROUND 

Our representative scenario is that of mission planning for Tomahawk Land Attack 

Missiles (TLAM), which in reality requires a human operator to solve a complex, multivariate 

resource allocation problem, much like that found in air traffic control settings, the commercial 

trucking industry, and first-responder resource allocation. In the TLAM environment, human 

planners must pair missiles, which can come from different launchers (ships or submarines) with 

preplanned missions, including targets and routes to targets. These mission planners must 

consider many pieces of information such as different warhead and sensor requirements, location 

and priority of targets, terrain contour matching data, global positioning system (GPS) data, 

digital scene matching area correlation (DSMAC) data, etc. The ultimate goal of the mission 

planner is to develop a list of missile-mission pairings that best meets the overall objectives of 

higher-level commanders (e.g., such as striking as many terrorist training camps as possible 

within a specified period of time, while minimizing possible civilian casualties). 

While current TLAM mission planners have some very basic computer-based decision 

support, the planners typically must use either pencil and paper or their memory to keep track of 

the different factors to include in the assignment task [10]. Such a process is time and resource 

consuming, and also gives operators no feedback as to the degree of optimality for their plans. 

Moreover, this mission planning typically occurs under moderate time pressure (1-2 days prior to 

a launch), often with dynamic environmental constraints (i.e., changing rules of engagement), so 

the entire mission planning process contains a high degree of uncertainty. Moreover, such strikes 

can include more than a hundred missions and missiles so the problem space is quite large. 
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This resource allocation problem features three types of information. The first type, “hard 

constraints”, refers to those pieces of information that require exact matching between the 

resource and the objective. For example, if a mission can only be performed with GPS data, only 

missiles with GPS equipment can be assigned to that mission. The second type, “probabilistic 

information”, refers to those pieces of information that embed uncertainty. In our mission-missile 

assignment problem, this is exemplified by the hypothetical notion of “firing rate” which we 

describe as the likelihood of successful launch of a missile from its launcher. The last category, 

“optimization information”, represents variables in a pre-existing algorithm that a planner can 

change in order to conduct a sensitivity analysis. In our case, the example “days to port” 

represents an actual critical operational variable, in that the U.S. Navy wishes to take as few 

missiles as possible into the next port for security reasons. Thus, those ships and submarines that 

are due into port the soonest should use their missiles first, but this is a variable that can be 

negotiated/optimized. The last two information types, “optimization” and “probabilistic” 

information, are considered soft constraints, as they involve trade-off analyses. 

Given these different information types, the question is then how to design the algorithms 

and automation, as well as the accompanying decision support interface, including visualizations, 

in order to promote collaboration in the solution generation process. We propose that 

collaboration for solution generation of resource allocation problems can be defined across 5 

levels (Table 1) [9]. Given the previous discussion of the limitations of humans and automation 

(i.e., neither are exclusively suited for this task), we propose that collaboration for this solution 

generation task should fall somewhere across the three middle levels of collaboration (1, 0, -1). 

The next section details how the different information types were integrated into three different 

collaborative interfaces, and were then tested in human-in-the-loop experiments. 
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Table 1: Levels of Collaboration (LOC) 

Level Degree of Collaboration  

2 All Human 

1 Mixed, but more human 

0 Equally Shared 

-1 Mixed, but more automation 

-2 All Automation 
 

THE DECISION SUPPORT INTERFACES 

In order to determine if and how human-automation collaboration could improve operator 

performance in resource allocation problems, a decision-support system for missile strike 

planning was developed, StrikeView, which enables planners to develop TLAM mission plans. 

An important overarching design consideration is that the mission planners understand the 

domain very well, but are not computer scientists or engineers so they should not require any 

significant technical experience beyond average computer skills.  

Given pre-defined threat areas, no-fly zones and launch baskets (the geographic location 

of the ship and submarine launch platforms), planners match candidate missiles to possible 

missions, which include location, number, and priority of targets, and their corresponding routes. 

Within StrikeView, three decision support interfaces were created to allow for the matching of 

the missiles to the missions, at three different levels of collaboration previously described for 

solution generation.  

A. Interface 1 

Interface 1 (Figure 1) only allows for the manual matching of the resources (the missiles) 

to the objectives (the missions). The operator selects a mission in the mission table (top left) and 

matches them to available missions by clicking the button “Add Match”. The mission-missile pair 

is then added to the match table (bottom center), which displays all matches, constituting the 

“solution” to the problem. The right table in Fig. 1 displays the primary characteristics of the 



7 
 

missiles, such as assigned ship, launch basket, navigation equipment available, and warhead 

available; as well as those of the missions (left table, Fig. 1), including target, route, navigation 

equipment required, warhead required, number of missiles required and priority. The priority 

characteristic corresponds to the priority of the target, which can take the values of high, medium, 

or low.  

Some missions contain loiter patterns, which correspond to the missile hovering over an 

area of interest (AOI), waiting for an emergent target, which would be considered a high priority 

target. In case no target emerges, the missile is redirected to a default target, typically a low 

priority target. Hence, loiter missions are considered of the highest priority despite their assigned, 

default low priority target. This scenario exemplifies the complexity and ambiguity inherent in 

such command and control domains. 

The bottom left of Interface 1 features two warning tables that display those targets that 

cannot be reached (no missile is left to fulfill the hard constraints of these targets), and any 

unused missiles. Finally, Interface 1 includes a summarizing feature at the bottom right, where 

horizontal bars fill according to the number of targets that have been assigned in the solution. 

Fig. 1 Interface 1 
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This summary is presented with an additional breakdown by target priority. 

Interface 1 is given the LOC of 1 because the computer only provides basic tools for 

easier decision and action selection such as filtering, sorting, warning and summarizing features. 

The human planner is responsible for defining what constitutes locally and globally “good 

enough” solutions. For example, when a mission (and respectively a missile) is selected in its 

table, the computer filters the missiles (and the missions) and grays out those which cannot fulfill 

the hard constraints of the match. So if a mission requires a penetrating warhead, the computer 

will gray out those missiles which do not carry a penetrating warhead. But the human must decide 

of all the remaining possible candidates, which constitutes the best match. 

B. Interface 2 

Interface 2 (Figure 2) allows for more collaborative interaction in the matching of the 

missiles to the missions, and thus is labeled a LOC of 0, which represents a relatively balanced 

system. Interface 2 features all the elements of Interface 1, thus providing the human operator 

with the necessary tools to implement manual matching. However, Interface 2 also features 

advanced collaborative tools designed to leverage the automation’s computational power. In 

addition to the mission, missile, the match tables (and their sorting and filtering features), and the 

summary bars seen in Fig. 1, the main evolution of Interface 2 is the provision of an automated 

feature called “Automatch”. This automated solution tool includes a customizable heuristic search 

algorithm. The bottom left of Interface 2 includes a column listing eighteen criteria of potential 

use when solving this resource allocation problem. These criteria, for example “Match all high 

priority missions first” or “Use penetrating missiles first”, allow the human to change algorithm 

variable weights and thus the overall cost function, which allows them more solution flexibility. 

Operators can select and order (in the adjacent right column) the list of criteria they want to use in 

order to perform the search to match the missiles to the missions. Once this list is selected and 

ordered, a simple click on the button “Automatch” will perform an automated heuristic search 

and subsequent matching based on those criteria.  
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A heuristic search can be defined as “any search strategy which makes use of heuristics 

to suggest the best nodes to consider at each stage of the search.” [29]. Heuristics are typically 

“rules of thumb”, or subjective estimates of the best probable course of action, as defined by the 

operator. Heuristic search algorithms are generally fast and complete, i.e., if there is a solution, 

even partial, the search algorithm will find it. However, heuristic search algorithms are hindered 

by their non-optimality: they can easily get stuck in local optima, hence offering no guarantee that 

the solution proposed is the best (provided there is an adequate measure of a solution’s quality). 

In the StrikeView environment, a heuristic-based solution is typically generated by the computer 

in no more than five seconds.  

This implementation of an automated planner allows for efficient use of the computer’s 

computational power, but under human guidance. The computer’s solution appears in the match 

table, allowing the operator to manually “tweak” it if deemed necessary. The planner can reject 

Fig. 2. Interface 2 
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all solutions, adjust just a few matches, and in general, explore the automation’s proposed 

solution space. In addition, Interface 2 features a visualization of the impact of probabilistic and 

optimization information (namely, firing rate and days to port) on the used and available 

resources (Fig. 2, right corner). Finally, Interface 2 includes an option to save the current 

assignment for a “what-if” comparison. When used, the “Save” option stores the assignment 

currently displayed in the match table at the bottom right of the interface, only showing the 

summarizing graphical display. The operator can then compute another solution (manually or 

using Automatch) and then compare the two graphical solution summaries. 

C. Interface 3 

As compared to Interfaces 1 and 2, Interface 3 (Fig. 3) does not provide access to the raw 

data (mission, missiles, matches and their respective characteristics), but only presents aggregated 

information. The “Automatch” button at the top leverages the same heuristic search algorithm as 

in Interface 2, however, the user is limited in the number of variables they can manipulate. 

Instead of modifying the weights of all the variables included in the cost function, in Interface 3, 

planners can only slightly modify this algorithm. This is accomplished by using the “Cost 

Function Weighting” sliding bar, which sets the relative importance between the probabilistic 

information (firing rate) and the optimization information (days to port) in the heuristic search 

algorithm. Moreover, as will be discussed in further detail below, operators can change missile 

assignments by priority and warhead type, so operators have access to four variables in Interface 

3, as opposed to eighteen in Interface 2. 

The other significant difference in Interface 3 (Fig. 3) is the use of a configural display, 

which relies on a higher-level visual representation of the solution, as opposed to the text-based 

tables in Interface 1 and Interface 2. Configural displays have been shown to promote faster and 

more efficient perceptual cognitive processes, as compared to those relying on memory, inference 

and integration [1; 2; 7; 18; 24]. Configural displays typically include emergent features, or 
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“high-level, global perceptual features that are produced by the interaction among individual parts 

or graphical elements of a display” [3]. 

The global perceptual feature of this display is the depiction of the quality of the overall 

automation-generated solution, displayed in the center with the solid green area. This trapezoidal 

figure metaphorically represents the assignment solution quality, i.e., the more missions that have 

been assigned, the more filled in the central area is. A complete solution (all missions assigned) is 

represented by a full rectangle (up to 100% on all corners).  

In addition to manipulating the Cost Function Weighting, planners can also force the 

algorithm to make assignments by clicking on the up or down arrows in the vertical sliders for the 

different warhead (penetrating (P), unitary (U), and submunition (S)) and priority types (loiter, 

high, medium, and low). This forces the computer to find a way to increase or decrease the 

number of assignments that correspond to that specific slider. For comparison purposes, each 

time the solution is modified by the user, the new solution is displayed in solid green, while the 

previous solution is displayed in pale grey in the background, as seen in Fig. 3.  

Interface 3 is assigned a LOC of -1 since more of the burden is on the automation to do 

the computation and solution generation, and only gives the human planner some ability to tailor 

Fig. 3: Interface 3 
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the search space. It does not have the same level of automation transparency available in 

Interfaces 1 and 2. However, Interface 3 provides a higher-level visualization that allows the user 

to more easily compare possible solutions. 

II. HUMAN-IN-THE-LOOP EXPERIMENT 

In order to investigate planners’ behavior with these different collaborative decision-

support systems, an experiment was conducted. Twenty four subjects took part in the experiment: 

13 U.S. Naval officers and 11 reserve officers in training from the Air Force (8) and Army (3). 

These participants (21 males, 3 females, mean age: 26 yrs ± 4 standard deviation (SD)) had on 

average 2.6 ± 3.2 yrs military experience. All Naval officers received basic mission planning as 

part of their standardized Navy schooling, four had extensive experience with TLAM planning 

(more than 500 hours each), and four had ~100 hours of experience with TLAM mission 

planning. Eight participants had been involved with live operations or exercises involving the use 

of Tomahawks.  

Participants were randomly assigned to a counterbalanced interface configuration. The 

three configurations of the StrikeView interfaces that were tested were Interface 1 (I1), Interface 

2 (I2), and Interface 3 (I3), as described in the previous section. The test scenario required 

matching 30 missions with 45 missiles, but due to a lack of required resources (reflective of real 

world constraints), not all missions could be matched with the required number of missiles. 

Participants were tested on similar computer configurations: a Dell Dimension 8250 with two 

Dell 19in flat panels (1280x1024 resolution); or a Stratosphere Titan QX6, with a Samsung 21in 

flat panel (1280x1024 resolution). The difference in computers used did not impact operator 

experience as StrikeView requires little computer resources, and thus operated with no latency 

between the experimental settings.  

Each experiment started with a 30-minute training session, which included a short 

briefing about the TLAM environment and the task, a walkthrough of the interface configuration, 
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and two practice sessions. During the experiment, screen-capture software recorded the screen 

activity during the entire experiment. Participants were provided with Rules Of Engagement 

(ROE), describing the three main criteria ordered by priority, to be used to solve the problem (see 

Table 2, PL = priority level). A 30-minute debriefing session followed the experiment, where one 

randomly chosen scenario performed was replayed for each participant using the screen capture 

software. Participants were asked to explain to the experimenter what strategy they used to solve 

the problem. 

Table 2:  ROE Priority List 

PL1 Prioritize the missions in this order: Loiter (most important), High, 
Medium, Low (least important). 

PL2 Assign at least one missile to each target. (Note that a target may 
be reached by several missions). 

PL3 Maximize firing rate and minimize days–to-port constraints. 

 

RESULTS AND DISCUSSION 

A. Performance Score 

Overall performance (P) across the three interfaces was evaluated using a weighted 

objective function of the number of matches accomplished by the operator, with a breakdown by 

priority (1). The PMs correspond to the Percentages of Matches for the four levels of mission 

priority: loiter, high, medium and low, in decreasing order of importance. Each PM is computed 

as the number of missions of each priority that were matched, over the total number of missions 

of that priority. The weights of the performance function (1) were chosen to reflect the hierarchy 

of levels of priorities, i.e. the weight is doubled at each level of priority in increasing order. The 

sum of weights is one, in order to ensure a 0-to-100 range of performance (the same scale as the 

PMs).  
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 (1) 

The statistical model used was a 3x2 ANOVA with the interface type as the first factor 

(1, 2, or 3), and experience (novice vs. expert) was the second factor. The experience factor was 

included since 13 of the subjects were experienced Naval officers, while the rest were officers-in-

training, so this difference in general military experience could be a confounding factor. One 

subject (a novice) was removed from the sample of 24 as an outlier (4.2 standard deviations 

(SD)), because of lack of adherence to pre-specified rules of engagement. The overall omnibus 

test was significant for interface type (F(2, 22)= 6.482, p=.008), but was not significant for 

experience. There was no significant interaction, and Figure 4 illustrates the interface factor level 

results. Tukey pairwise comparisons between Interfaces 1 and 2 reveal no significant difference, 

however, the differences between Interfaces 2 and 3 (p=.015) and Interfaces 1 and 3 (p=.014) 

were significant. 

It is not surprising that experience level did not have a significant effect since all three 

interfaces represent a revolutionary technology over current strike planning tools, so while the 

Figure 4: Performance Comparison for Interfaces 1, 2, and 3 
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officers had significantly more actual strike planning experience, the playing field was leveled for 

all participants because of the introduction of a new tool. 

The interface factor results proved interesting in that the two interfaces (1 and 2) that 

both supported the more traditional spreadsheet approach to mission planning essentially 

promoted statistically no different performance. However the more graphical configural display, 

not familiar to participants, promoted the lowest performance scores. While statistically 

significant, it should be noted that while participants using the graphical Interface 3 performed 

“worse” than those with the more traditional spreadsheet displays, they were also within 5% of 

the best solution.  

B. Strategies 

Given the fact that overall performance scores were very similar across the interfaces, 

even those for Interface 3, investigating those strategies used across the interfaces is critical for 

assessing the primary research question, which was how the balance of automation and human 

decision-making in the solution generation process influenced performance. The primary tool 

used to investigate these human-automation interaction strategies was the Tracking Resource 

Allocation of Cognitive Strategies (TRACS) tool that plots plot users’ decision making and action 

selection steps as a function of levels of interface information aggregation [5; 6]. 

TRACS is a two dimensional representation of strategies exhibited by operators in 

supervisory control systems. It is a grid representation that maps interface information 

aggregation (y axis) across information processing stages (x axis). As depicted in Figure 5, the 

information aggregation axis ranges from data element to criteria set which represents the level of 

“control” an operator has in guiding embedded automation in supervisory control resource 

allocation. For example, in Interfaces 1 and 2, an operator can select individual data elements like 

specific missiles or missions for solution filtering. In Interfaces 2 and 3, they can specify higher-

level criteria such as groups of missiles for automation-generated plans, thus allowing the 

automation to aggregate the necessary lower level information for faster processing (but with less 
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“control” in that operators do assign each individual mission/mission.) The information 

processing axis represents the basic stages required in supervisory control decision making and 

action [22], which include requesting information, analysis of this information, the resulting 

decision, evaluation of this decision, and lastly, integration of a local solution into the overall 

resource allocation plan. 

The TRACS two axis representation forms an operator “state” map which shows the 

chaining of operator states (e.g., requesting low-level data or making decisions based on high-

level aggregated data.) The lines in Figure 5 show transitions between states and the circles show 

percentages of times in a state. The x and y axes are anchored as seen in Figure 5 so that the 

lower half of the map represents use of low-level automation, which the upper half  represents 

reliance on automated planners. The left side generally represents information acquisition and 

analysis (either by the human or the automation), which the right half depicts the use of 

automation for decision-making and action implementation. Figure 5 represents an operator who 

Figure 5: Tracking Resource Allocation Cognitive Strategies (TRACS) Representation 
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spent most of his time in the analysis of low level data, and did not leverage any automation 

planning tools. TRACS is not an analytic tool in and of itself, but it is a representation of operator 

state transitions that is meant to enable analyses of different strategies which may vary, which 

will be demonstrated in the following sections. 

The first variable which examined different strategies used across the three interfaces was 

the simple count of how many steps a participant exhibited in generating a solution across all the 

information processing steps. This simple count of steps taken along the TRACS x axis can be 

seen as a surrogate task load measure. The same 2x2 statistical model described previously was 

used. The interface factor had a significant effect on the number of steps to a solution ((F(2,22) = 

9.122), p = 0.002) while status (novice vs. expert) did not, and there was no significant 

interaction. As suggested in Figure 6, Tukey comparison tests reveal a significant difference 

between Interfaces 1 and 2 (p = .004) and Interfaces 1 and 3 (p = .006), but no difference between 

Interfaces 2 and 3. 

 These results demonstrate the manual interface (Interface 1), which required more human 

Figure 6: Average number of steps taken per interface for a single solution 
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interaction than automation, expectedly generated significantly more steps in the solution 

generation process. However, unexpectedly Interfaces 2 and 3 were not statistically different, 

even though there were 64% fewer inputs available for Interface 3. Interface 3 was expected to 

produce fewer steps than Interface 2; however, this was not achieved. This discrepancy is likely 

due to the fact that operators were not sure if their Interface 3 solutions were correct, and could be 

an indicator of distrust. 

 While the simple count of steps is useful as a broad indicator of possibly different 

strategies, understanding how this number of steps compares to the expected number of steps for 

generating a solution, assuming the perfectly-trained operator, can reveal how robust an interface 

is to deviations from expected strategies.  This measure, the percentage of actual steps compared 

to the expected number of steps (termed conformance), was analyzed using the same 2x2 

ANOVA model described in the previous section. The expected number of steps was represented 

in the TRACS grid as a function of the “optimal” strategy as intended by the decision support 

designer, and then compared to the actual operator results. We recognize what is intended to be 

optimal by a designer may not actually be, and all decision support systems carry inherent biases 

Figure 7: Actual vs. Expected Number of Strategy Steps by Interface 
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of their designers. However, this is a real limitation of all decision support systems, which we 

assert can and should be assessed, both to highlight possible design flaws as well as possible 

training issues. Thus resultant operator strategies that deviate from the expected are not wrong, 

just different from intended. 

The ANOVA results revealed that the interface omnibus test was significant (F(2,22) = 

9.442, p = .002), and the experience level was not significant (F(1,22) = 2.814, p = .112). There 

was no significant interaction between the experience and interface factors. The Tukey pairwise 

comparisons yielded no statistical difference between Interfaces 1 and 2,  but there was a 

difference between Interfaces 2 and 3 (p = .001), and a marginal difference between Interfaces 1 

and 3 (p = .097) (Figure 7). 

Those participants with Interface 3 performed the best in terms of strategy conformance, 

which occurred because of the decreased degrees of freedom for strategy selection, so operators 

using Interface 3 were more bounded than those using Interface 2: This form of bounded 

collaboration means that operators with Interface 3 did not have access to the same amount of raw 

data as those with Interface 1, or fewer filtering criteria than in Interface 2. However, as seen by 

the performance scores, while the configural display in Interface 3 more closely matched the 

expected strategies, those additional degrees of freedom for emergent strategies allowed 

participants to achieve superior performance. 

The last strategy analysis was a categorical, qualitative classification based on the 

TRACS patterns. Analysis of the patterns of all participants’ strategies revealed four distinct 

categories which are 1) Manual, in which participants used only manual features (as seen in 

Figure 5), 2) Comparative, in which participants created an automated solution and a manual 

solution, followed by selection of best of the two, with slight modifications of this final solution, 

3) Augmentative, which included the creation of an automated solution followed by manual 

tweaking of that solution, and lastly 4) Automated, which was the use of automation only. 

Examples of the last 2 strategies can be seen in Figure 8. 
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Table 3 illustrates how these four strategies were used across the three interfaces. 

Because these strategies were interpreted from the TRACS images as seen in Figures 5 and 8, two 

raters were used and achieved 100% agreement in the assessment of each participant’s strategy. 

Those cells in gray in Table 3 indicate those strategies were not possible for the given interface. 

Table 3: Dominant Strategies per Interface 
 Interface 1 Interface 2 Interface 3 

1 - Manual 8 (100%)            0  
2 - Comparative     3 (37.5%)  
3 - Augmentative     4 (50.0%) 7 (87.5%) 
4 - Automated     1 (12.5%) 1 (12.5%) 

 

Table 3 illustrates that in all cases where fully automated strategies could be used (Interfaces 2 

and 3), participants overwhelmingly chose to use some other mixed initiative approach that 

allowed them greater degrees of freedom.  This is not to say operators were adverse to 

automation. On the contrary, the most frequent strategy used across Interfaces 2 and 3 was the 

Augmentative approach, which was an approach that heavily leveraged automation. In this 

approach, participants used automation to quickly create a base solution, and then modified this 

solution to some small degree before submitting the final solutions. This meta-strategy and 

avoidance of fully automated solutions seen across Interfaces 2 and 3 appeared to be an effective 

one, as a Kendall Tau b association performed for the strategy vs. performance variables yielded 

Figure 8: Augmentative (left) vs. Automated (right) Strategy 
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a significant negative relationship (correlation coefficient = -.499, p = .03). This means that those 

participants who used more automation typically performed worse that those using comparative 

or augmentative strategies. 

 

CONCLUSION 
 

We originally proposed that providing a decision support environment that provides 

human operators the ability to conduct sensitivity analyses in collaboration with automation will 

improve performance for large multivariate resource allocation problems with uncertainty. 

However, since collaboration can take on three general forms in that it can be human-centric (-1), 

balanced (0), and automation-centric (1), it was not clear how such collaboration should be 

structured to promote the best system performance. To this end, an experiment was conducted in 

a realistic military mission planning setting with these three mixed-initiative architectures 

embedded in three separate interfaces. Given a complex resource allocation task for this mission 

planning setting, the experimental results demonstrated no clear dominant superior collaboration 

decision support scheme. 

As seen in Table 4, the interfaces that resemble a typical spreadsheet decision-space 

formulation (Interfaces 1 and 2) which allow the human to guide the solution process, proved to 

have the highest performance scores. However, the interfaces that allowed the operator the ability 

to offload much of the manual sorting, filtering, and assignment functions (Interfaces 2 and 3) 

promoted the lowest workload. And while conformance to intended strategies may lead to 

somewhat less than optimal strategies, it is important to note that the most collaborative, balanced 

interface promoted the least conformance (Interface 2). This lack of conformance could be a 

positive result in unanticipated situations with unforeseen variables, but it can also be negative in 

that operators could more easily violate established procedures or miss critical details. We leave 

the investigation of the positive and negative aspects of strategy conformance to future work.  
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Table 4: Experimental Results Summary 
 Human-Centric 

(Interface 1) 
Equivalent Balance 

(Interface 2) 
Automation-Centric 

(Interface 3) 

Performance Best Best Worst 

Workload  Worst Best Best 

Conformance Moderate Worst Best 

 

 There are other considerations not explicitly considered in this research effort which 

could have influenced the results. As previously mentioned, trust was likely an issue for those 

operators using Interface 3, which was nothing like current decision support tools in use. As 

previous supervisory control research has indicated [16; 17; 19], trust can dramatically influence 

both operator and system performance, so it is not a trivial issue to consider. All participants in 

the study reported here all had some exposure to spreadsheet interfaces prior to the study, but 

none with a configural decision support display so this bias alone could have significant 

influenced the results. 

 Another factor that is likely to influence these outcomes is the nature of time pressure. In 

the mission planning task simulated in this study, time pressure was on the order of minutes to 

hours, so operators had time to explore the decision space. Had the time pressure been on the 

order of seconds-minutes, behaviors could have been much different, and indeed previous 

research indicates that under second-minutes time pressure, operators will often change their 

strategies [26], including those concerning the use of automation [4]. Thus the nature of how 

much collaboration a decision support system should promote will have to explicitly consider this 

question of time pressure. 

 Given the results of this study, as well as the implication of trust and time-pressure on the 

outcomes, further work is needed to quantify the cost-benefit nature of the design of collaborative 

systems. It is generally recognized that operators need to leverage automation for complex 
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resource allocation problems, but that too much automation can negate positive benefit from its 

introduction. As we have demonstrated in this investigation, if the system designer’s goal is to 

ensure operator conformance, then one collaborative architecture design that promotes sensitivity 

analysis is superior to that design which would reduce workload. Thus the critical next step in 

research efforts examining “optimal” design of resource allocation collaborative decision support 

tools is determining how to design such systems for competing objective functions across various 

stakeholders, and still ultimately achieve satisficing results. 
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