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Interpreting non-coding variation in complex disease genetics

Lucas D. Ward1,2 and Manolis Kellis1,2

1Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology
2The Broad Institute of MIT and Harvard

Abstract
Association studies provide genome-wide information about the genetic basis of complex disease,
but medical research has primarily focused on protein-coding variants, due to the difficulty of
interpreting non-coding mutations. This picture has changed with advances in the systematic
annotation of functional non-coding elements. Evolutionary conservation, functional genomics,
chromatin state, sequence motifs, and molecular quantitative trait loci all provide complementary
information about non-coding function. These functional maps can help prioritize variants on risk
haplotypes, filter mutations encountered in the clinic, and perform systems-level analyses to reveal
processes underlying disease associations. Advances in predictive modeling can enable dataset
integration to reveal pathways shared across loci and alleles, and richer regulatory models can
guide the search for epistatic interactions. Lastly, new massively parallel reporter experiments can
systematically validate regulatory predictions. Ultimately, advances in regulatory and systems
genomics can help unleash the value of whole-genome sequencing for personalized genomic risk
assessment, diagnosis, and treatment.

Understanding the genetic basis of disease can revolutionize medicine by elucidating
relevant biochemical pathways for drug targets and by enabling personalized risk
assessments1,2. As technologies evolved over the past century, geneticists are no longer
limited to studying Mendelian disorders and can tackle complex phenotypes. The resulting
discovered associations have broadened from individual variants primarily in coding regions
to much richer disease architectures, including non-coding variants, wider allelic spectra,
numerous loci, and weak effect sizes (Table 1). In the last few years, a new wave of
technological advances has intensified the shift towards tackling more complex genetic
architectures and uncovering the molecular mechanisms underlying them.

In the early twentieth century, several metabolic disorders were shown to be genetic and
Mendelian, and later positional cloning allowed the identification of many such loci, such as
those curated by the Online Mendelian Inheritance in Man database (OMIM)3,4. Starting in
the 1980s, linkage analysis was used to correlate the inheritance of traits in families with the
inheritance of mapped polymorphic markers which could be assayed through restriction
fragment length polymorphism (RFLP) analysis5,6. However, the regions mapped by linkage
analysis were necessarily large, and cloning candidate genes for follow-up association
studies, resequencing, and functional assays required the application of painstaking
molecular techniques before the completion of the Human Genome Project7. In addition,
complex phenotypes were not amenable to linkage because of the large sample sizes needed
to detect loci with modest effects above the genomic background8. The long haplotype
structure of the human genome, and its systematic mapping by the HapMap Project9, has
allowed single nucleotide polymorphisms (SNPs) to be used as markers for common
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haplotypes, which could be genotyped using chip technology. The stage was set for a flood
of unbiased, genome-wide association studies (GWAS) to search across unrelated
individuals10 for common variants associated with complex disease and diverse molecular
phenotypes (Fig. 1, Table 2).

Relative to linkage analysis and sequencing, GWAS have less power in cases where
different rare mutations act in different families or individuals at the same locus (allelic
heterogeneity). However, they are far more sensitive than family studies to complex
polygenic associations where a phenotype is associated with the joint effect of many
weakly-contributing variants across different loci (locus heterogeneity). In this sense GWAS
have been a resounding success, identifying thousands of disease-associated loci for further
study11 and revealing previously-unknown mechanisms for diseases such as Crohn’s
disease, macular degeneration, and type 2 diabetes2. However, the pursuit of GWAS has
also received criticism (Box 1) because of the structure of the knowledge it has been
producing relative to the determinism of highly-penetrant Mendelian genetic
discoveries2,12,13. The current tension mirrors the intellectual rift in the early 1900s between
Mendelians, who modeled inheritance of discrete traits as being carried by single genes, and
the biometrician adherents of Galton, who studied the inheritance of continuous traits; the
fields were reconciled by R.A. Fisher, who proposed that quantitative traits’ heritability was
owed to the contribution of many genes with small effect 14,15.

Box 1

Potential and limitations of genome-wide association studies

Although several predominant criticisms of GWAS have been voiced, responses to each
can guide future studies.

Cumulative predictive power. Generally, the discovered loci reaching genome-wide
significance have weak additive predictive power for specific phenotypes, which limits
their clinical relevance for some traits at present130–132. However, risk prediction using
the loci discovered for complex disease using GWAS often performs similarly to using
classical clinical tests, and has unique properties, such as stability over the lifespan133.
Predictors that jointly use hundreds or thousands of weakly-contributing loci have also
been shown to explain a larger proportion of variance than was initially
appreciated134,135. Integrating these discoveries into clinical protocols is in its infancy,
and should be expected to mature.

Non-coding variants with unknown effect. Most of the loci are non-coding and many
are far from discovered genes, and, because of linkage disequilibrium (LD), encompass
many variants; therefore, they are not immediately informative or biochemically tractable
for experimental work. Assigning a prior probability to the deleteriousness of a non-
coding mutation is challenging136. To address this challenge, non-coding sequence is
being annotated at a rapid pace through systematic efforts such as the ENCODE Project21

and the Roadmap Epigenomics Mapping Consortium22, and through studies of the
impact of common variants on genomewide molecular phenotypes, discussed below.

Detection of rare variants. Significant loci tend to additively explain only a small
proportion of the narrow-sense heritability of phenotypes12, suggesting that rare rather
than common variants may underlie their genetics, which will only be discovered through
whole-exome and whole-genome sequencing or family-based studies13. Many
explanations for “hidden heritability” among the discovered common-variant associations
have been proposed12. The relative importance of rare and common variants is a topic of
intense debate137, ranging from arguments that associations with common variants are in
fact driven by synthetic associations with large-effect rare variants in long-range LD138,
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that common associations of weak effect contribute to heritability well beyond the
threshold of statistical significance139, and that narrow-sense heritability may be
overestimated in many twin studies due to epistasis disguised as additivity98.

Reproducibility. GWAS sometimes do not replicate across studies or populations140,
leading to the report of false positives and suspicion of the validity of novel associations,
especially when they are non-coding. This could be partly due to the difficulties both in
imputing genotypes, which will benefit from an increased understanding of common
human variation, and to the poor definition of organismal phenotypes140, which can
benefit from molecular disease biomarkers discussed below. Moreover, while the specific
loci involved may differ across populations, they may reflect the same underlying
molecular pathways, and thus regulatory annotations may be more reproducible across
populations. Focusing on molecular phenotypes may improve reproducibility by isolating
potential socio-economic or other environmental factors that occur downstream of
molecular phenotypes and can strongly affect organismal phenotypes.

In this review, we discuss both the computational challenges and the opportunities presented
by the large number of non-coding disease-associated variants being discovered through
GWAS and medical resequencing. We first survey the types of regulatory annotations
available, including those from functional and comparative genomics as well as quantitative
trait loci (QTLs) and allele-specific events, and the ways in which these can be used to
dissect disease-associated haplotypes to identify the most promising causal variants at a
locus. We then discuss the utility of these regulatory annotations to perform systems-level
analysis of GWAS and allelic spectra, revealing relevant cell types and regulatory
mechanisms. Finally, we present a variety of bioinformatics hurdles and computational
challenges that lie ahead for the field, such as discovering epistatic interactions, connections
between molecular and organismal phenotype, and patterns that must be mined from
potentially sensitive medical data.

Systematic annotation of the non-coding genome
Interpretation of the molecular mechanisms of disease-associated loci can be a great
challenge. Even though protein biochemistry has been used to characterize missense and
nonsense coding mutations that most often underlie monogenic traits, the frequency with
which loss-of-function mutations and rare coding variants are being discovered in healthy
individuals16,17 suggests our understanding is far from complete. The challenge of
interpretation is even greater for non-coding variants, given the diversity of non-coding
functions, the incomplete annotation of regulatory elements, and potentially still unknown
mechanisms of regulatory control. Several pioneering studies have provided a model for the
types of systematic regulatory annotations needed, by revealing the diverse mechanisms of
action underlying human disease, including at the transcriptional, splicing, and translational
level (Table 3).

In each of these cases, extensive experimental follow-up was needed to uncover the
molecular mechanisms responsible for the disease association signal, and many more
disease-associated variants remain uncharacterized, emphasizing the need for systematic
methods for annotating regulatory regions, their functional nucleotides, and their
interconnections.

Recognizing the need for systematic interpretation of non-coding disease-associated
variants, several large-scale projects are currently underway to enhance the annotation of the
non-coding genome (Fig. 2). These rely on reference annotation maps using both functional
genomics and comparative genomics, and can dramatically increase the annotation of
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regulatory elements, which can have a strong impact for interpreting both existing GWAS
and individual personal genomes.

Reference functional genomics and chromatin state maps
Massively parallel short-read sequencing technologies have obviated the need for the
extremely expensive tiling microarrays previously used to map biochemically active regions
of the human genome. This has enabled chromatin immunoprecipitation followed by high-
throughput sequencing (ChIP-seq) applied to map transcription factor binding, chromatin
regulators, or histone modification marks18, mapping of DNA methylation using bisulfite
sequencing (BS-Seq)19 and mapping of accessible chromatin regions by DNase
hypersensitivity analysis (DNase-Seq)20. Computational integration of these datasets
through supervised or unsupervised machine learning enables mapping of functional non-
coding elements such as distal enhancers, transcription factor binding sites, and regulatory
RNA genes on a genome-wide scale. For example, the Encyclopedia of DNA Elements
(ENCODE) project is releasing comprehensive maps of chromatin states, TF binding, and
transcription for a selection of cell lines and DNase maps for many primary cells21, and the
NIH Epigenomics Roadmap Project22 and BluePrint project23 both aim to construct
reference epigenome maps of hundreds of primary cells and cultured cells. Regulatory maps
can then guide the way towards the most likely causal regulators on a haplotype (Fig. 2a).

Nucleotide-resolution regulatory annotations
While maps of regulatory regions can be highly informative, increasing their resolution from
hundreds of nucleotides to single nucleotides requires additional computational or
experimental developments. This can leverage systematic efforts that seek to elucidate the
binding specificities of transcription factors24,25 and splicing regulators26,27, and to also
discover regulatory motifs genome-wide based on their enrichment and conservation
properties28,29. Similarly, new technologies have been applied to enhance existing
techniques, such as digital genomic footprinting using DNAse-seq30, dynamic application of
micrococcal nuclease (MNase)31, or the use of lambda exonuclease (ChIP-exo)32,
dramatically increasing the mapping resolution of regulatory elements even without
knowledge of the specific motifs involved.

Predictive models of variant effects
Even when the functional elements and motifs are known, we need models to distinguish
how mutations in different positions of a regulatory motif or element will affects its
function. These models can be used to distinguish silent from deleterious mutations, as is
possible within protein-coding regions. This requires integrative models of sequence motifs,
chromatin state, and expression patterns24,33–36, which can be trained on experimentally
tractable tissues or through in vitro experiments and applied to predict the effect of newly-
observed rare and private mutations. The massive scale of regulatory predictions,
encompassing hundreds of regulators and millions of regulatory motif instances, demands
correspondingly massively parallel methods to validate them. Such methods exploit
emerging large-scale synthesis and sequencing technologies are being developed both in
model organisms and cultured human cells37–39, and enable testing mechanistic hypotheses
about causal variants at unprecedented scales (Fig. 2b).

Comparative genomics between related species
Even when a regulatory element is rarely used and its activity unobserved in the cell types
and tissues sampled, its effect on fitness can still be recognized based on its preferential
conservation across multiple related species. Genome-wide comparative analysis of many
mammals has revealed a high-resolution map of constrained elements spanning 4.5% of the

Ward and Kellis Page 4

Nat Biotechnol. Author manuscript; available in PMC 2013 July 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



human genome40,41, revealing millions of likely new elements, including individual
transcription factor binding sites, whose nucleotides have been preserved across
evolutionary time. Beyond the overall level of evolutionary constraint, the specific
evolutionary signatures encoded in the patterns of substitutions, insertions and deletions
across related species can provide information for the type of molecular function likely
encoded by the constrained elements41–44. Together, constraint and evolutionary signatures
can pinpoint functional transcription factor binding motifs and individual binding sites (Fig.
2c), non-coding RNA genes and structures, microRNAs and their targets, and yet
uncharacterized sequence elements that confer a selective advantage.

Evolutionarily conserved biochemical activity
Even in absence of conserved sequence, the conservation of biochemical activity can be
indicative of conserved functional elements, even when the corresponding sequence features
are not detectable by traditional alignment and constraint measures due to turnover45,46.
Because some fraction of protein binding and RNA transcription may be nonfunctional
“noise,” cross-species analysis of transcription factor binding47 or gene expression48 can
help reveal the subset of elements that are most likely to be functional. However, lineage-
specific elements may nevertheless be important and not captured through this method.

Interpreting variants using functional genomic annotations
For protein-coding mutations, knowledge of protein structure and function, and the
unambiguous nature of the genetic code, has allowed the development of a class of
predictive algorithms that can score the severity of missense and nonsense variants49–52.
Reference annotations are needed to bring functional datasets to bear on understanding the
molecular roles of disease-associated common variants in individual regions, especially for
non-coding variants (Fig. 2). In addition, new methods are needed to define the relationship
between global genetic architectures and genome-wide functional landscapes.

Tools for prioritizing variants
An immediate concern for practitioners of GWAS is the interpretation and prioritization of
non-coding variants53. A number of resources, including HaploReg54 (L.D.W. and M.K.),
RegulomeDB55, and ENSEMBL’s Variant Effect Predictor56 aim to annotate non-coding
common variants from association studies using conservation, functional genomics, and
regulatory motif data. Databases such as ANNOVAR57 and VAAST58 are specialized for
annotating whole-genome/exome sequencing data, and leverage population-level negative
selection to identify extremely rare coding alleles that are most likely to be functional. None
of these tools presently brings together all of the available annotation resources listed in the
previous section, however, and they will need to be continuously updated to reflect the
exponential growth of regulatory knowledge (Table 4).

Gene set enrichment analysis
Prior knowledge of gene interrelationships has been leveraged in studies of gene expression
to discover differentially-regulated pathways even where single genes in those pathways
change expression too little to rise to statistical significance59. These methods for gene set
enrichment analysis (GSEA) are being applied to GWAS, where similarly, genetic risk is
expected to be concentrated along biological pathways and multiple testing diminishes the
statistical significance of associations considered individually. Dozens of methods have been
developed to use prior knowledge from gene functional annotation databases to perform
pathway analysis on GWAS60,61 (Fig. 3a).
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Regulatory element enrichment analysis
A recent study used chromatin state maps to discover an enrichment of cell type-specific
enhancers among the top associations in several GWAS62 (L.D.W., M.K., and colleagues),
demonstrating the utility of high-resolution functional genomics maps to serve as a type of
pathway annotation. Similar results have been seen using DNase hypersensitivity maps
across a large number of cell types63, and by examining concordance between expression
quantitative trait loci (eQTLs) and GWAS64,65. These approaches have demonstrated the
power of reference epigenomes to identify relevant tissues for further study (Fig. 3b).
Another way to use prior knowledge about variant function is to incorporate the information
into the association study itself through Bayesian methods61,66–69 or using boosting to
prioritize disease networks70. However, it is difficult to evaluate the utility of these
weighting schemes, which essentially discard loci about which there is the least functional
data.

Burden tests; dealing with heterogeneity
For potentially causal rare variants discovered through whole-genome sequencing, a class of
techniques has been developed that deal successfully with allelic heterogeneity and low
allele frequencies by pooling mutations across individuals by genes, pathways, or other
functional annotations and filters71; the additional use of functional genomic maps has
recently been proposed72. Improved annotation of non-coding regions will obviously
empower this type of analysis (Fig. 3c).

Table 5 lists examples of new insights from computational methods integrating regulatory
elements with GWAS.

Interpreting variants using population variation in molecular phenotypes
While until this point we have discussed regulatory annotations from reference cell lines,
biochemical activity is itself genotype-dependent, and thus a single reference annotation
fails to capture the complexity of the regulatory genome. Moreover, we treated LD as a
property of the human genome, while it is in fact population specific, and patterns of LD and
selection have varied across both geography and time. This increased complexity can in fact
be leveraged to gain additional insights into genome regulation, and provide additional
power for the aforementioned analyses.

Genotype-associated molecular activity
Two powerful tools have emerged to identify non-coding loci that affect molecular
phenotypes: association studies and allele-specificity studies. Association studies (Fig. 1b)
have been used to discover non-coding cis regulators of methylation (meQTLs)73, DNase I
sensitivity (dsQTLs)74, transcription factor binding75, gene expression (eQTLs)76, and
alternative splicing77. In the same manner as GWAS on organism-level quantitative traits,
these studies consider a phenotype associated with a particular genomic locus (such as
steady-state mRNA level corresponding to a gene) in the same cell type isolated across
unrelated individuals, and search for genetic regulators of those molecular processes. A
recent related study used eQTL data to reveal selective signatures of epistasis between
deleterious coding variants and the regulatory variants that modulate their penetrance78, a
method which should be broadly applicable to testing hypotheses about cis regulatory
interactions from genomics models.

Allele-specificity activity
In contrast, allele specificity tests look at heterozygous sites in individuals and look for a
skew in the molecular signal towards one of the alleles (Fig. 1c). Allele-specific
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methylation79, histone modification80, DNAse I sensitivity81, protein binding82, and
expression83 have been surveyed genomewide. While association studies have the advantage
of identifying regulatory variants that may be acting at some genetic distance from the
regulated locus, and can include homozygous individuals in the sample, allele-specific
studies can be performed on single individuals, and inherently control for possible trans-
regulatory differences caused by individuals’ genetic background.

Importance of population-specific effects
Causal variants within associated haplotypes should be identified not only for further
research, but also for genetic counseling; because of variations in LD patterns, a SNP that
marks a risk haplotype efficiently in one population may not in another84. Computational
methods that explicitly model ethnic background in admixed populations can increase their
power by exploiting their shared ancestry85.

Population differentiation and positive selection
Haplotype structure and allele frequencies from the HapMap project9 and 1000 Genomes
project86 provide evidence of both positive and negative selection currently acting on the
human lineage. Although the relative importance of population structure and selective
sweeps in recent human history is debated87–89, many non-coding loci show multiple lines
of evidence for local adaptation90.

Utilizing population structure and relatedness
Ultimately, linkage analysis and GWAS are sensitive to complementary genetic
architectures, but a wide spectrum of diseases likely exhibit both locus and allele
heterogeneity. Because the genomically-distributed signals of association with complex
disease are weak, the potential confounding effects of population stratification and cryptic
relatedness become especially important to control. Family-based methods such as linkage
analysis and the transmission disequilibrium test (TDT) are free of these complications, and
have been combined with association tests in a new class of methods91. In addition, new
methods in phylogenomics and ancestral recombination graph reconstruction provide an
opportunity to enhance association studies by explicitly taking population structure and
region-specific relatedness into account92,93.

Aggregate measures of purifying selection
Modeling of allele frequency data94,95 and sequence divergence data46 suggests that a large
amount of negative selection is occurring outside of mammalian conserved elements,
evidence for widespread non-coding function. These same forces can maintain disease-
associated alleles at lower frequency in the population dependent on their penetrance and
expressivity.

Identifying higher-order relationships between variants
Even when considering genome-wide enrichments of functional annotations in disease-
associated regions, the aforementioned methods have so far considered each locus as acting
independently and considered their effects as additive. Functional genomics should enable
us to consider higher-order interactions between these individual loci, by leveraging
functional and variation information to build interaction and regulatory networks. These
networks can then guide the search for epistatic effects.
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Detecting epistasis de novo
Substantial disagreement exists over the relative importance of epistasis in the genetic basis
of complex disease96–98. While genetic interactions have been systematically mapped in
yeast99 and cases have been identified in human66, testing for all possible interactions
remains impossible; understandably, detecting epistasis in association studies is an area of
intense theoretical interest66,100,101. One method102 successfully discovered epistasis
between two taste receptor genes affecting nicotine dependence by using a multifactor
dimensionality reduction (MDR) method integrated with linkage information from a
pedigree disequilibrium test, similar to the hybrid linkage-association studies described
previously91.

Guiding search for epistasis
Some methods propose to limit the search space for interactions by only searching among
the most significant independently-associated loci; this method failed to discover any
interactions among the 180 loci reported to be associated with height103. Another proposed
limit on the search space is with prior knowledge from gene annotations and protein-protein
interactions104–106. Again, epigenomic maps and improved regulatory annotation holds
promise for zeroing in on relevant combinations of SNPs that might be expected to interact.

Linking enhancers to their target genes using physical interaction data
Unlike promoters, enhancers pose the dual challenge of both pinpointing their location in
vast nonfunctional sequences, and linking them to their target genes. These distal regulatory
elements often interact physically with promoters, and technologies to detect these
interactions, such as chromatin conformation capture (3C, Hi-C)107,108 and chromatin
interaction paired-end tagging (ChIA-PET)109 are advancing rapidly.

Linking enhancers to their target genes using cell-to-cell variability
Another way of detecting enhancer-gene relationships is to measure the correlation of these
elements’ activity with expression across multiple cell types and conditions. This technique
is being used to infer gene regulatory networks in human35 and model organisms99,110.
While protein-protein interaction and metabolic networks are the most common types of
prior knowledge integrated into existing algorithms, these regulatory networks may provide
a more useful starting point in the search for epistasis.

Inferring networks from individual-to-individual variability
Molecular QTL data discovered from inter-individual variation can also being used to help
infer regulatory networks111, which unlike evidence learned solely from expression patterns
provide unambiguous directionality for causality.

Inferring networks from systematic perturbations
Chemical perturbations of cultured cells have been used for network inference. These
experiments are useful not only for their relevance to understanding pharmacological
mechanisms, but also for revealing the difference in network topology between normal and
cancerous cells112, including gene-gene and gene-drug interactions relevant to interpreting
genetic architecture of cancer.

Artificial selection and drug response experiments in model organisms
While human genetic history and selective pressures are closely intertwined, model
organisms offer an opportunity to measure the global effects of selection and the resulting
genetic interactions in a controlled setting113,114. Model organisms have also proven useful
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for testing gene-gene99 and gene-drug115 interactions on a scale that is impossible in
humans.

Functional genomics in a medical setting
While genotyping and sequencing is already becoming commonplace for discovery of
disease loci and increasingly for diagnostics in a clinical setting, in the future the
democratization of genome-wide molecular profiling technologies will further enable
cohort-level molecular association studies and personal functional genomics in a medical
setting. These can complement existing genetic and chemical biomarkers with molecular-
level diagnostics of disease state.

Functional genomics of disease cohorts
One of the major clinical applications of DNA microarrays was to identify disease-involved
genes and to classify disease subtypes by genome-wide expression signatures116, and
disease-associated gene sets from microarrays and now RNA-seq can be used to define
biological pathways, such as those in the Molecular Signatures Database (MSigDB)117.
Similarly, chromatin maps can be compared across lineages or between disease and normal
tissue to define sets of regulating loci (Fig. 1d). These sets can be used for enrichment and
pathway analysis of GWAS, as described previously.

Epigenome-phenotype association
Microarray-based assays for methylation are now allowing for the first time “epigenome-
wide association studies” (EWAS)118, which identify differentially-methylated sites
associated with disease without taking into account genotype (Fig. 1d). Such studies may
bypass some of the environmental variability that lowers the penetrance of genetic
factors119. Integrating family members into EWAS studies may be especially useful in order
to test for imprinting and other parent-of-origin effects.

Genetic association with molecular phenotypes for determining causality
One important future use of molecular QTLs may be to empower Mendelian randomization
studies120,121. Molecular traits - expression, epigenetic state, or biomarkers - can be
important stepping stones between genetic variation and complex phenotypes, but the
direction of causality can be unclear between the molecular trait and the organismal trait. A
recent study used this method to challenge the idea that raising HDL cholesterol levels
reduces risk of myocardial infarction, showing that alleles for higher HDL did not convey
the genetic protection from heart disease that would be expected if cholesterol were
causal122.

Predicting molecular consequences of rare and private mutations
Once these regulatory mechanisms are predicted from functional genomics and molecular
variation, the next challenge is applying this knowledge to rare variants discovered by
whole-genome sequencing (Figure 2d). A goal for regulatory genomics should be to develop
models that predict the effect of novel regulatory variants with the same accuracy as existing
methods for novel protein-coding variants.

Functional genomics of individuals
Some expression signatures of disease subtypes or progression are already being used
clinically, and their use promises to grow. However, analogous to the problem of rare
variants discovered through sequencing, clinical functional genomics samples will also
exhibit patterns too rare in the population to have been correlated with disease. As a recent
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pilot study on an individual demonstrates123, there is both great power but also many
challenges associated with interpreting such personal -omics profiling, and new
computational models are needed that can generalize from the effects of common genetic
and functional variation to personal genetics and functional genomics.

Hurdles in biomedical informatics and interoperability
In addition to these conceptual challenges of statistical and computational integration of
disparate datasets, each of these topics has relied on extensive data sharing between
genomics and medical genetics researchers. However, sharing is still limited due to privacy
concerns and informatics challenges of database interoperability. These challenges are even
greater for non-genomic datasets such as medical records and drug response, resulting in
treasure troves of information remaining unused. To complete the integration of genomics
into the drug discovery and target validation pipelines, several additional hurdles need to be
overcome:

GWAS P-value sharing
In order to facilitate integrative analysis, GWAS investigators should report the association
of all variants, not just those that are most significant. The editorial board of Nature Genetics
recently articulated a policy to this effect124, but concerns remain about sufficiently de-
identifying association results in order to protect subject privacy125. Procedures in place at
central archives such as the NCBI’s database of Genotypes and Phenotypes (dbGaP) and the
European Genome-Phenome Archive (EGA) are crucial to balancing the rights of human
subjects with the principles of scientific openness.

Database integration
The interoperability of databases remains paramount to integrative analysis. Continuing
efforts by the UCSC Genome Browser and the ENSEMBL Genome Browser have
facilitated integration of epigenomic and variation data, but better connections to domain-
specific knowledge bases such as the GTex eQTL Browser, dbGaP analyses, and the
NHGRI GWAS Catalog11 would broaden the scope of connections available to geneticists.

Medical record standardization
Medical records have been successfully mined to discover epidemiological patterns126,
adverse drug reactions127, and disease risk factors and heterogeneity128. As electronic
medical records become populated with genetic data, cooperation with clinicians will be
needed in order to mine patient data for genetic associations with biomarkers and disease,
and discover novel patterns of disease heterogeneity129.

Integration of medical and pharmacogenomics datasets
Ultimately, informatics challenges will need to be resolved in order to connect the resulting
molecular predictions to patient records, environmental variables, drug screening and
response databases, towards enabling genomics as commonplace for clinical practice.

CONCLUSIONS
Data from GWAS and whole-genome sequencing continue to expand the catalog of non-
coding variants implicated in human disease, and data from epigenome mapping consortia
complemented with regulatory modeling are needed to prioritize candidate causal variants
and candidate affected tissues. Thoughtful integration of systematic and manual annotations
of gene sets along with higher-resolution functional maps may hold the key to implicating
pathways and cell types, both through joint consideration of the many weak additive
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associations discovered in GWAS as well as in the search for epistatic interactions between
variants. Clinically relevant regulatory interactions may then be tested experimentally in the
tissues or in vitro experimental conditions that are predicted to recapitulate the phenotype. In
addition, an explosion of functional genomics data has been facilitated by high-throughput
sequencing technology, allowing “intermediate” molecular phenotypes to be correlated with
both organismal phenotype and with genotype. This new type of data can be combined with
genetic associations to decipher the mechanisms underlying complex disease.
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Figure 1. Four types of next-generation association tests
(a) Genetic association with organismal traits is performed in genome-wide association
studies (GWAS); at the locus shown, the G allele is associated with disease. The effect of
GWAS-discovered variants is mediated through many layers of molecular processes, some
of which can also be interrogated at a genomewide scale. (b) Rather than organismal traits,
molecular traits can be used, leading to the discovery of local regulatory variants such as
expression quantitative trait loci (eQTLs). In this example a local molecular signal, such as a
region of open chromatin, varies across the individuals, and is shown to co-vary with
presence of the T allele; this allele may influence a cis-regulatory motif of chromatin. (c)
Heterozygous sites in individual cells can be used to interrogate allele-specific effects;
unlike molecular QTLs discovered across individuals, these studies control for variation in
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trans genetic background. In this example, the G allele is not only associated with the
presence of a TF binding peak at that locus, but in heterozygous individuals is over-
represented in ChIP-seq reads originating from that locus, suggesting that the TF binds
specifically to the G allele. (d) Functional genomics data can be directly compared between
cases and controls to discover biomarkers for disease, without necessarily attributing genetic
causes to these molecular changes. Indeed, these biomarkers may be caused by trans genetic
factors, environmental factors, or by the disease itself.
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Figure 2. Dissecting haplotypes discovered through association tests
These three examples are ways to annotate loci containing several linked SNPs (in this case,
three) to discover those most likely to be causal. (a) Functional genomics techniques are
being developed to discover putative regulatory elements and link these elements to their
target genes. Here, the middle SNP lies in an enhancer in Tissue 1 and Tissue 3, and
regulates a gene to its left. (b) Regulatory genomics information leads to prediction of
sequence motifs active in classes of enhancers, and this can be combined with the motif
creation/disruption caused by variants. In this case, the middle SNP deletes a match to motif
B, which is predicted to be active in enhancers found in both Tissue 1 and Tissue 3. (c)
Comparative genomics identifies regions of evolutionary constraint in non-coding sequence.
Here, sequence surrounding only the middle SNP is constrained across mammals.
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Figure 3. Systems-level analyses beyond isolated common haplotypes. (a) Gene-based enrichment
analysis of genetic architecture
A typical analysis of GWAS results will compare the set of genes near associated loci with
prior knowledge about those genes, leading to hypotheses about the pathways involved (in
this example, process A but not process B). (b) Non-coding enrichment analysis of genetic
architecture using regulatory annotations. High-resolution maps of diverse regulatory
annotations can also be intersected with GWAS results. Examples are shown where tissue-
associated enhancers, eQTLs, DNAse peaks, or allele-specific polymerase binding are
enriched among the results of a GWAS. In addition, regulatory annotations can be combined
with gene-based annotations and linking information, in this case discovering an enrichment
for enhancers linked to the genes involved in process A. (c) Interpreting linked loci
exhibiting high allelic heterogeneity. In some cases only rare mutations at a locus
contribute to its genetic mechanism, and these regions will only be discovered through
classical linkage analysis. These regions can now be interrogated through WES/WGS, and
an imbalanced burden of putatively deleterious alleles can be observed in cases (as in the left
example). With regulatory annotations, these burden tests can now be extended to non-
coding regions (as in the right example.) (d) Interpreting causal variants in whole
genomes. Personal genomes pose the challenge of exposing potentially causal variants that
were too rare or low-penetrance to have been associated with a phenotype through
association or linkage studies. For coding alleles, prior knowledge is currently used in
several ways when analyzing personal genomes: knowledge of the genetic code (to filter on
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nonsynonymous variants), inference of negative selection from population panels (to filter
out common variants), and models developed from biophysical principles (to focus on those
amino acid substitutions most likely to alter protein structure and function.) Similar
pipelines will need to be developed for regulatory regions. We propose using both
population-level and cross-species signals of selection (to filter out not only common
variants, but those that are not constrained across mammals), and all of the regulatory
models previously mentioned (predicted regulatory elements and the motifs active within
them, molecular trait associations such as eQTLs, etc.) Such a pipeline will be crucial to
interpreting the flood of sequencing data that will be collected in both clinical and research
settings.
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Table 1

The diversity of genetic architectures underlying human phenotypes.

Architecture Notes Role of computational and regulatory
genomics

Classic monogenic traits The earliest human genes characterized were those leading
to inborn errors in metabolism, which were shown by
Garrod in the early 1900s to follow Mendelian
inheritance140,141. The modern study of human disease genes
began with the cloning of loci responsible for high-
penetrance monogenic disorders with Mendelian inheritance
patterns, such as phenylketonuria and cystic
fibrosis140,142,143, that were most amenable to classical
mapping approaches. Variants associated with monogenic
traits were also the first to be identified through positional
cloning in the 1980s, a classic success being the CFTR
mutations responsible for most cases of cystic
fibrosis3,142,143.

As the underlying mutations tend to alter
protein structure, the computational challenge
in predicting their effect lies in molecular
modeling and structural studies.

Monogenic traits with
multiple disease alleles

Even monogenetic diseases differ greatly in the extent to
which a single risk allele predominates among affected
individuals (allelic heterogeneity). On one end of the
spectrum, the F508del allele of CFTR is found in about 70%
of patients with cystic fibrosis144, even though thousands of
alleles are known. In contrast, phenylketonuria is extremely
heterogeneous, with different PAH alleles predominating
among affected individuals in different populations145. A
majority of mutations in this class are missense or nonsense
coding mutations3.

As noted above, for protein-coding
mutations, the relevant problem is predicting
the biochemical effect of the amino acid
substitution. In cases of allele heterogeneity,
the observed substitutions may be too
numerous to characterize experimentally,
necessitating computational models (Fig. 3c).

Multiple loci with
independent contributions
(“oligogenetic”)

Many variants increase or decrease the risk of a disease,
with the final phenotype relying on the genotype at many
loci (locus heterogeneity). One example well-studied
through linkage analysis is Hirschprung disease, a complex
disorder with low sex-dependent penetrance for which at
least ten genes are involved, including the tyrosine kinase
receptor RET and the gene GDNF which encodes its
ligand146. Interestingly, the most common variant in the
main susceptibility gene RET is non-coding, a single-
nucleotide polymorphism (SNP) in an enhancer. Both
coding and non-coding variants are involved typically in one
or a small number of well-defined pathways.

Oligogenetic traits, in which a handful of
well-characterized loci contribute to the
phenotype, may present the best opportunity
to observe and quantify epistatic interactions.
In cases where non-coding regions are
implicated, these haplotypes can be
functionally mapped to isolate the most likely
causal variants (Fig. 2).

Large numbers of variants
jointly contributing weakly to
a complex trait

GWAS on complex traits are also discovering many weakly-
contributing loci. For example a recent meta-analysis of
several height studies found 180 loci reaching genome-wide
significance15,103,139, enriched near genes already known to
underlie skeletal growth defects. In the height study and in a
study of psychiatric disorders, it has been shown that
polygenic association extends to thousands of common
variants, extending far beyond genome-wide significant
loci135,139

In contrast to the variants underlying
monogenic traits, the variants involved in
complex traits are overwhelmingly not
associated with missense or nonsense coding
mutations, suggesting that their mechanisms
are primarily regulatory11. Large sets of
regulatory variants can be combined with
reference annotations to elucidate relevant
pathways and tissues (Fig. 3b, Table 5).

Variants regulating a
“molecular trait” with
unknown effect on
organismal phenotype or
fitness

Variants are rapidly being discovered that directly affect
molecular quantitative traits, such as gene expression or
chromatin state, many of which may have no effect on
organismal phenotype or fitness38.

QTL and allele-specific analyses are needed
to characterize these variants (Fig. 1b,c). As
the studies performed to date sample only a
small fraction of the cell types in which a
variant may have an effect, and variant-
expression associations are highly tissue-
specific147, it is possible that many such
regulatory variants remain to be discovered.

Variants causing no known
molecular phenotype and no
effect on organismal
phenotype or fitness

The idea that the majority of mutations are neutral from an
adaptive perspective was controversial when first proposed,
and now is widely accepted148–150.

Although it is straightforward to calculate
from the genetic code what fraction of
protein-coding mutations will cause an amino
acid change, an analogous estimate for other
molecular phenotypes is far more challenging
and requires comprehensive regulatory
models at the nucleotide level.

Private and somatic variants Somatic mutations within an organism are frequent driver
mutations selected in cancer formation151.

The interpretation of private and somatic
variations (Fig 3d) will also benefit
tremendously from a systematic regulatory
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Architecture Notes Role of computational and regulatory
genomics

annotation, as they likely exploit existing
regulatory pathways, even though they are
subject to cellular, rather than organismal
selective pressures.
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Table 2

Computational tools for association analyses.

Class of analysis Tool Notes

Genome-wide association between genotype and
phenotype (GWAS)

SNPTEST155 Incorporates imputation

Bim-Bam156 Bayesian regression approach combining imputation and
association probabilities

EIGENSTRAT157 Models ancestry differences between cases and controls
using principal components analysis

PLINK158 Large package including tools to impute, control for
population stratification, and hybrid methods such as family-
based association and population-based linkage

Local association between genotype and molecular trait
(e.g., eQTL)

eQTNMiner159 Tests a Bayesian hierarchical model incorporating priors
based on TSS distance

Matrix eQTL160 Fast association testing of continuous or categorical
genotype values with expression

Allele-specific expression and binding ChIP-SNP82 For ChIP-chip data

AlleleSeq161 For ChIP-seq and RNA-seq data

Genome-wide association between molecular trait and
phenotype (e.g., differential expression, EWAS)

limma162 For expression microarray data

edgeR163 For RNA-seq data

Note: analyses using genotype information require tools to call variants, such as BirdSeed152 on array data or GATK153 on sequencing data, and

tools to impute genotypes, such as MaCH154.

Nat Biotechnol. Author manuscript; available in PMC 2013 July 07.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ward and Kellis Page 28

Table 3

Mechanisms through which non-coding variants influence human disease.

Non-coding element disrupted Molecular function and effect of mutations. Disease association

Splice-junction and splicing-enhancer Splicing is constitutive for some transcripts and highly
tissue-specific for others, relying on both canonical
sequences at the exon-intron junction as well as weakly-
specified sequence motifs distributed throughout the
transcript. Mutations affecting constitutive splice sites can
have an effect similar to nonsense or missense mutations,
resulting in aberrantly included introns or skipped exons,
sometimes resulting in nonsense-mediated decay (NMD).

Splicing regulatory variants are
implicated in several diseases164,165.

A recent analysis suggests that the
majority of disease-causing point
mutations in OMIM may exert their
effects through splicing166.

Alternative splice site variants in the
WT1 gene are involved in Frasier
Syndrome (FS)167

Skipping of exon 7 of the SMN
gene is involved in spinal muscular
atrophy (SMA)168

Sequences regulating translation,
stability, and localization

Sequences in the 5′-untranslated regions (UTRs) of
mRNAs can influence translation regulation, such as
upstream ORFs, premature AUG or AUC codons, and
palindromic sequences that form inhibitory stem loops169.
Sequence motifs in the 3′-UTR are recognized by
microRNAs and RNA-binding proteins (RBPs).

Loss-of-function mutations in the
5′-UTR of CDKN2A predispose
individuals to melanoma170.

A rare mutation that creates a
binding site for the miRNA hs-
miR-189 in the transcript of the
gene SLITRK1 is associated with
Tourette’s syndrome171.

Genes encoding trans-regulatory RNA Non-coding RNAs participate in a panoply of regulatory
functions, ranging from the well-understood transfer and
ribosomal RNA to the recently-discovered long non-coding
RNAs172,173.

Both rare and common mutations in
the gene RMRP encoding an RNA
component of the mitochondrial
RNA processing ribonuclease have
been associated with cartilage-hair
hypoplasia174

Non-coding RNA mutations can
cause many other diseases175.

Promoter Promoter regions are an essential component of
transcription initiation and the assembly of RNA
polymerase and associated regulators. Mutations can affect
binding of activators or repressors, chromatin state,
nucleosome positioning, and also looping contacts of
promoters with distal regulatory elements. Genes with
coding disease mutations can also harbor independently-
associated regulatory variants that correlate with expression,
are bound by proteins in an allele-specific manner, and
disrupt or create regulatory motifs176.

Mutations in the promoter of the
HIV1-progression associated gene
CCR5, are correlated with
expression of the receptor it encodes
and bind differentially to at least
three transcription factors177,178

APOE promoter mutations are
associated with Alzheimer’s
disease179,180

Heme oxygenase-1 (HO-1)
promoter mutations lead to
expression changes and are
associated with many diseases181

Enhancer Enhancers are distal regulatory elements that often lie
10,000 to 100,000 nucleotides from the start of their target
gene. Mutations within them can disrupt sequence motifs
for sequence-specific transcription factors, chromatin
regulators, and nucleosome positioning signals. Structural
variants including inversions and translocations can disrupt
their regulatory activity by moving them away from their
targets, disrupting local chromatin conformation, or creating
interactions with insulators or repressors that can hinder
their action. While it is thought that looping interactions
with promoter regions play a role, the rules of enhancer-
gene targeting are still poorly understood.

The role of distal enhancers in
disease was suggested even before
GWAS by many Mendelian
disorders for which some patients
had translocations or other structural
variants far from the
promoter182–184.

In one early study, point mutations
were mapped in an unlinked locus
in the intron of a neighboring gene,
a million nucleotides away from the
developmental gene Shh 185; this
distal locus acted as an enhancer of
Shh and recapitulated the
polydactyly phenotype in mouse.
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Non-coding element disrupted Molecular function and effect of mutations. Disease association

A number of GWAS hits have been
validated as functional enhancers186;
for example, common variants
associated with cancer susceptibility
map to a gene desert on
chromosome 8, with one SNP
demonstrated to disrupt a TCF7L2
binding site and to inhibit long-
range activation of the oncogene
MYC187–189.

Synonymous mutations within protein-
coding sequences

All of the aforementioned regulatory elements can also be
encoded within the protein-coding exons themselves. Thus,
synonymous mutations within protein-coding regions may
be associated with non-coding functions, acting pre-
transcriptionally at the DNA level, or post-transcriptionally
at the RNA level.

A synonymous variant in the
dopamine receptor gene DRD2
associated with schizophrenia and
alcoholism has been shown to
modulate receptor production
through differences in mRNA
folding and stability190.
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Table 5

Examples of regulatory enrichment analyses of genetic associations.

Class of test Finding Computational tools used

Gene set enrichment near associated loci Regulatory network of five proteins implicated
in Kawasaki disease192

Ingenuity Pathway Analysis (closed-source)

Genes differentially expressed in adipose
overlap with genetic associations with
obesity193

Microarray analysis of differential
expression

TGF-β pathway, Hedgehog signaling pathway
are enriched among height GWAS loci103

GSEA using MAGENTA194, network from
text-mining using GRAIL195, known disease
genes from OMIM4, eQTL enrichment

Concordance with eQTL results eQTL prioritization during replication
facilitated validation of two Crohn’s disease
susceptibility loci196

eQTL enrichment

GWAS involving immune system show
enrichment for lymphoblastoid eQTL64

eQTL enrichment (RTC64)

Chromatin state enrichment Many GWAS show enrichment for enhancers
in biologically-relevant cell types62

ChromHMM to define discrete chromatin
states197 (M.K. and colleagues); enrichment
analysis

TF binding site and DNase hypersensitivity
enrichment

Many GWAS show enrichment for ENCODE-
annotated DNAse and ChIP sites198

Enrichment analysis

Many GWAS show enrichment for DNAse in
biologically-relevant cell types63

Hotspot algorithm to define discrete
hypersensitive sites199; enrichment analysis

FOXA1 and estrogen receptor binding sites are
enriched among breast cancer GWAS loci200

Variant Set Enrichment (VSE200)
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